
What Clone Coverage Can Tell

Nils Göde, Benjamin Hummel, Elmar Juergens
CQSE GmbH, Germany

{goede, hummel, juergens}@cqse.eu

Abstract—In research and practice there is a desire to
express the amount of cloning in a system in a compact form
and compare different systems with each other. A popular
choice for doing so is to use the clone coverage—the percentage
of source code being part of at least one clone. However, the
clone coverage is strongly influenced by the parameters used
for clone detection and the peculiarities of each system. In
this paper, we summarize certain pitfalls and argue that clone
coverage values should be interpreted with care.

Keywords-Software quality, code clones, clone detection

I. INTRODUCTION

When it comes to analyzing code clones in a system,
we often want to summarize the cloning situation in a very
compressed form. The easiest way to compare the severity
of cloning in different systems is to use a single value that
expresses the overall extent of cloning for a given system.
A popular choice to boil down the cloning situation to a
single number is the clone coverage—the percentage of the
source code that is part of at least one clone. It can be
interpreted as the probability that a randomly selected source
code statement is cloned.

The clone coverage has been used since the early days
of clone research [1] and is now established as one of
the standard cloning metrics. It is tempting to use the
clone coverage to compare cloning in different systems and
interpret higher clone coverage as “the system has more
problems with cloning”. However, we observed two major
problems regarding the clone coverage. First, it strongly
depends on the clone detection parameters. Small changes
in the parameters may already have a strong influence on the
clone coverage. Consequently, comparing systems requires
the same choice of clone detection parameters for both
systems. Second, even if the parameters are identical, each
system has a unique structure, history, and development
process. These peculiarities may also have a significant in-
fluence on the clone coverage. In this paper we demonstrate
how clone detection parameters and systems with different
characteristics influence the clone coverage.

II. CLONE DETECTION PARAMETERS

In this section we demonstrate that the parameters used
for clone detection have a strong influence on the clone
coverage. We selected three prominent parameters which are
the minimum length of a clone, the exclusion of generated
code (which can be regarded as a boolean parameter),

 0

 20

 40

 60

 80

 100

 2  4  6  8  10  12  14  16  18  20

C
lo

n
e 

C
o

v
er

ag
e 

[%
]

Minimal Clone Length [Statements]

G, N
no G, N

no G, no N
G, no N

Figure 1. Clone coverage using different parameters (G = generated code
is included, N = identifiers and literals are normalized)

and whether identifiers and literals are normalized or not.
Figure 1 illustrates how the clone coverage changes for
different combinations of these parameters when detecting
clones within an industrial C/C++ system with 1400 KLOC
(600 KLOC when generated code is excluded).

The numbers show that we can achieve a clone coverage
anywhere between 19% and 92% depending on which
parameters we choose. Even if the minimum clone length
is fixed, changing the other two parameters can cause the
clone coverage to change by up to 50%.

In some cases, the effect of changing a parameter is not
immediately obvious. In our example, exclusion of generated
code decreases the clone coverage when normalization is
applied but increases the clone coverage when there is
no normalization. The reason is that, while the generated
code is highly stereotypical, the exact identifiers used differ.
Without normalization all the generated code looks different,
reducing the overall clone coverage when including it.

From these results we conclude that comparing the clone
coverage of different systems requires the same set of
parameters to be used for detecting clones in both systems.
Small differences may already make the clone coverage
incomparable. Unfortunately, many studies do not describe
their choice of parameters in sufficient detail to allow a



 0

 10

 20

 30

 40

 50

 60

 70

 2  4  6  8  10  12  14  16  18  20

C
lo

n
e 

C
o

v
er

ag
e 

[%
]

Minimal Clone Length [Statements]

Industrial-CPP
Industrial-Java

ArgoUML
JabRef

jUnit

Figure 2. Clone coverage of different systems

comparison of the results. A precise description of the
parameters would certainly increase the comparability of
results from different studies.

III. SYSTEM CHARACTERISTICS

Assuming that the parameters used for clone detection
are the same, systems may still not be comparable by
their clone coverage due to their different structure and
design. For example, if one system contains large amounts of
generated code while the second does not, we might observe
the first one as “better” or “worse” depending on whether
we (consistently) exclude generated code or not. Similarly,
other parameters used for clone detection might influence
which system we perceive as “better”. To illustrate this,
Figure 2 compares the clone coverage for different systems
and varying minimum length. All other parameters are fixed.

Not surprisingly, we can observe that the clone coverage
of all systems decreases with increasing minimum clone
length. We can also observe that, in most cases, the relative
ordering of systems with respect to their clone coverage
is stable. For example, jUnit always has a lower coverage
than ArgoUML, independent of the clone length chosen.
However, there is also the case where the relative order
changes. ArgoUML has a higher clone coverage than the
industrial Java system up to a minimum clone length of 12
statements. For a length of 13 and above, the clone coverage
of the industrial system is higher. Hence, we conclude that
using the clone coverage for comparing systems should be
taken with care, as the outcome of the comparison heavily
depends on the exact parameters used.

IV. ALTERNATIVES

Although comparing systems based on a single number
will always be problematic, it might be reasonable to think

about an alternative measure to quantify the extent of
cloning. Some of these measures are built on the notion of a
redundancy-free size (RFS), which measures the hypothetical
size of the system after perfectly removing from each clone
all instances but one. The RFS allows to differentiate
situations where there are few clones with many instances or
many clones with few instances. For systems with identical
clone coverage, the first situation would result in a smaller
redundancy-free size than the second one.

Although the RFS allows more differentiation, it is to
some degree related to the clone coverage (CC). Let S be
the size of the system and RS = S − RFS the redundant
size. There are two extreme situations: either all redundancy
is caused by many instances of a single small clone, then
the RS will consist of nearly the entire region covered by
clones (RS = CC · S), or the redundancy is caused by
neatly aligned clone pairs, which makes the RS consist of
only half of this region (RS = 0.5 · CC · S). Hence,

0.5 · CC · S ≤ RS ≤ CC · S,

which is equivalent to

0.5 · CC ≤ 1− (RFS/S) ≤ CC.

This inequality implies that the redundancy-free size is
determined within certain bounds by the clone coverage. As
a consequence, the extreme volatility of the clone coverage
carries—at least to some degree—over to the redundancy-
free size and derived metrics, such as the clone overhead
defined as (S/RFS)− 1 [2], [3].

V. CONCLUSION

We conclude that despite its straightforward calculation
and intuitive meaning, the clone coverage should always
be interpreted with care. When comparing different systems
based on the clone coverage, the same parameters should be
used for clone detection. A comprehensible description of
the parameters used would ease the comparison of results
of different studies. In addition, the structure and design
of both systems should be analyzed and considered in the
comparison. In summary, we believe that comparing the
cloning situation of different system requires an in-depth
analysis of both systems and can hardly be done based on
a single number.

REFERENCES

[1] B. S. Baker, “On finding duplication and near-duplication in
large software systems,” in Proceedings of the 2nd Working
Conference on Reverse Engineering. IEEE Computer Society,
1995, pp. 86–95.

[2] E. Juergens, “Why and how to control cloning in software
artifacts,” Ph.D. dissertation, Technische Universität München,
2011.

[3] E. Juergens and F. Deissenboeck, “How much is a clone?”
in Proceedings of the 4th International Workshop on Software
Quality and Maintainability, 2010.


