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Abstract—Traditionally, most work in program comprehen-
sion focuses on understanding the inner workings of software
systems. However, for many software maintenance tasks, not
only a sound understanding of a system’s implementation but
also comprehensive and accurate information about the way
users actually use a system’s features is of crucial importance.
Such information e. g., helps to determine the impact that a
specific change has on the users of a system. In practice,
however, this information is often not available. We propose
an approach called feature profiling as a means to efficiently
gather usage information to support maintenance tasks that
affect the user interface of a software system. Furthermore,
we present tool support for feature profiling and report on a
case study in the insurance domain. In this study, we profiled
the features of an application that is used by 150 users in 10
countries over a period of five months.

Keywords-Usage Analysis, Software Maintenance

I. INTRODUCTION

Software systems create value by effectively and effi-
ciently supporting their users’ tasks. As the tasks change
over time, software systems must be continuously evolved
to reflect these changes. Consequently, more than 50% of
the maintenance activities carried out over the lifetime of a
software system are of perfective nature, i. e., they modify
existing functionality or add new features [1], [2].

Traditionally, the program comprehension research com-
munity has mostly taken the role of a programmer that
is faced with implementing a change request specified by
requirement engineers. The programmer’s tasks are to under-
stand the change requests, locate the system’s source code
that needs to be modified or extended and implement the
change requests. While these tasks are doubtlessly central,
we argue that program comprehension could gain from
taking a more holistic view that does not exclusively focus
on the system itself but also takes its context into account.
In particular, we believe that software maintenance would
benefit from comprehensive and accurate information about
the way users actually use a software system’s features.
Such information enables software engineers to make more
informed decisions w.r.t. crucial questions like:

• What is the impact of proposed change requests for the
system’s users?

• Are there features that are not used at all and could
potentially be removed to save maintenance efforts?

• What are the most important features to which test
efforts should be dedicated [3]?

One might argue that requirements engineering should
be responsible for supporting software maintenance with
such data. Experience, however, shows that requirements
engineering often focuses on the initial version of a system
and does not consistently follow its evolution. Moreover,
requirements engineering usually lacks the tools to obtain
the required information in a reliable manner.

In this paper, we build on the techniques developed
in program comprehension (and related) communities and
propose feature profiling, a dynamic analysis technique,
to obtain precise and complete usage data of a system’s
features. We present the feature profiling approach, the tools
required to implement it as well as a comprehensive case
study in the domain of business information systems that
demonstrates how our approach can be applied in practice.
Custom software in this domain offers unique opportunities
for feature profiling, since its users are typically better
known and accessible than users of off-the-shelf software or
embedded systems. However, from our experience gained
in several maintenance projects in the German insurance
industry, the amount and accuracy of usage information
available to software engineers is typically very limited.

Problem. Although many software maintenance tasks could
benefit from comprehensive and accurate information about
the usage context of a software system, it is often not
available to software engineers.

Contribution. We propose an approach called feature pro-
filing, based on dynamic analysis of deployed software,
as a means to efficiently gather such comprehensive and
accurate usage information for business information systems.
We list the primary challenges of feature profiling and
present solutions. Additionally, we introduce tool support
for feature profiling and report on a large scale case study
in the insurance domain. In this case study, we profiled an
application that supports about 150 experts in 10 countries
over a period of 5 month and found, among others, multiple
features that are not used at all. Our approach protects the
users’ privacy by anonymizing the collected usage data.



Maintenance Feature Profiling Usage

Expected
Usage

Actual
Usage

Usage
Evaluation

Usage
Deviation

System

Change Requests Training

Figure 1. A control loop for feature profiling

II. TERMS & DEFINITIONS

We define a feature according to Eisenbarth et al. [4] as a
realized functional requirement that has observable behavior
and can be triggered by a user. Features thus represent the
functionality offered by a system. The functionality to print
a document in a text processor, or to put an item into the
shopping cart in a web shop, are examples of features. They
can—but need not—match the requirements. Both system
users and engineers know features. They can thus provide a
foundation for communication between different stakehold-
ers. Feature groups collect features of related functionality.

Features are implemented in the source code of a system.
From a dynamic analysis perspective, source code can be
regarded as a collection of methods1. One method can
contribute to the implementation of several features. We call
a method characteristic for a feature, if it is executed always
when the feature is executed, but never when other features
are executed. A single feature can have none, a single or
multiple characteristic methods, depending on the system
structure. A feature beacon is a characteristic method that
has been selected manually from the set of all characteristic
methods for the feature.

III. FEATURE PROFILING

We propose to perform feature profiling in order to mea-
sure and evaluate the usage of a system’s features. Figure 1
illustrates the general control loop for feature profiling.
Feature profiling advocates to specify the expected usage
of the features of an application (in a feature model) and
to continuously check whether the actual usage conforms
to these expectations. In case the usage evaluation uncovers
significant deviations, there are two possibilities to react: on
the one hand, the deviations may be caused by features that
do not support the business processes (anymore) the way
they should. A possible reaction is a modification of the
features of the system. On the other hand, usage deviations
may be caused by the a lack of user familiarity with certain

1We do not differentiate between methods and functions. For simplicity,
we only use the term method.

features. Thus, training the users could be an appropriate
reaction. In summary, feature profiling helps the developers
to understand the usage of the features and to make informed
decisions when maintaining the system based on their usage.

Our approach for feature profiling consists of four tasks.
1) Feature modeling: The central artifact that is needed
for feature profiling is a feature model. The feature model
contains basic information about all the features that are
implemented in a software system as well as their expected
usage. 2) Feature location: In order to measure the actual
usage of a system in production, a mapping from the
features and the code is needed. This mapping is specified
by identifying feature beacon methods (c. f., section II).
3) Execution monitoring: Given a set of feature beacons,
execution monitoring can be performed by installing a
method profiler in the production environment to monitor
the invocations of these methods. Due to the definition of
the feature beacons, these measurements reveal the number
of feature invocations. 4) Usage evaluation: Based on the
feature invocations, we can determine the deviations between
actual and expected usage of the features. The following
sections explain feature profiling in detail.

A. Feature Modeling

We use a feature model to capture the functionality of
a system. Features are modeled as a tree, using feature
groups as inner nodes. Each feature comprises a unique
name and a textual description. A feature model for the
software RSSOwl2 is shown in Figure 2. Use cases and user
manuals are a good starting point for identifying features
and structuring the feature model. From our experience, the
organization of the user interface can guide feature model
construction. This has the advantage that the stakeholders
are already familiar with this structure and the used terms.

We specify the expected usage for every feature in terms
of a time interval. This interval represents the amount of
time after which it would be astonishing if the feature would
never have been executed by any user. As business informa-
tion systems are usually used during workdays, weekends
and public holidays are not taken into account. Some fea-
tures might be intended to only be used very infrequently—
e. g., balance sheet generation is probably only executed
once in a year. Other features are only intended to be used
under special circumstances that only appear sporadically.
For them, “never” is a suitable expectation. Fail-over features
are an example for such functionality, as they are never
executed if no failures occur.

B. Feature Location

The identification of feature beacons is a lightweight way
of performing feature location. To a certain degree, develop-

2For nondisclosure reasons, we use a feature model of the open source
application RSSOwl instead of the application of Munich Re that we
analyze in the case study in Section V.



ers typically have an estimation about which methods might
be beacons for individual features. However, we need a
structured technique to identify and evaluate feature beacon
methods. We propose the following steps:

1. Feature tracing: Execute every feature in the feature
model and record the set of methods that are executed.
Repeat the execution several times with different arguments
for each feature. As a result we gain a set of methods which
have been invoked during the different feature executions.

2. Identification of characteristic methods using feature
inference: The set of characteristic methods for a feature
can be determined by what we call feature inference. Feature
inference is an algorithm for selecting the methods that have
been invoked in all executions of a certain feature and that
do not appear in any execution trace of any other feature in
the feature model.

3. Feature beacon selection: Select one appropriate feature
beacon for each feature from the set of its characteristic
methods. The developers should be involved in choosing the
feature beacons. The choice is influenced by the identifiers
of the characteristic methods. Methods with feature-specific
identifiers should be preferred over general identifiers. Fur-
thermore, the location of the methods within the structural
architecture of the system also influences the choice. From
our experience, in GUI-based applications, event handlers
for buttons or menus as well as feature-specific services in
a business logic layer are a good choice.

The result of feature location are feature beacons. De-
pending on the architecture of the system, there may be
features without a single beacon candidate. Thus, these
features cannot be monitored without modifying the code.

C. Execution Monitoring

Having feature beacons for the features of the application,
the usage of the features can be measured by monitoring the
invocations of the beacon methods. In general, this task can
be achieved by using instrumentation or profiling techniques.
However, as execution monitoring is applied in a production
environment, it is a crucial requirement that the monitoring
technique applied does not have a negative impact on the
system’s performance.

The information about the invocations of the methods gets
written to a file or database as the output of the execution
monitoring. By examining if this data contains invocations
of the beacon methods, the actual usage of the features in
the system is determined. This usage data is collected in
regular time intervals and made accessible to compare it to
the expected usage.

D. Usage Evaluation

In order to reason about the usage of the system, feature
profiling puts the feature model and the collected usage data
together. The measured actual usage can now be compared

with the expected usage to identify deviations. Furthermore,
changes of the usage behavior over time can be analyzed
in order to identify changes in the business processes. The
analysis results can be employed in different ways.

First, features that are not used at all might be removed
from the implementation of the software system, thereby
reducing code size and thus maintenance effort (if they are
not fail-over features or similar). This lowers the overall
lifecycle costs of the system.

Second, the results can be used to adapt the features
implemented in a software system to increase its customer
value. The usage data makes the actual usage of the sys-
tem more transparent to the developers and enables more
substantiated discussions with the stakeholders about the
direction of the future evolution of the system.

Third, the actual usage can be used to prioritize change
requests. Developers can use the usage data as an indicator
for the importance of change requests that target certain fea-
tures and prioritize their tasks accordingly. Thus, important
changes are introduced earlier into the system.

Fourth, the usage data can be used as an operational
profile (c. f., [5]) for reliability engineering [6]. Knowing
that features are used very frequently indicates that bugs
in the corresponding code regions have serious impact on
reliability. Thus, also the planning of testing and quality
assurance activities should be guided by the data about the
actual usage of the system.

IV. TOOL SUPPORT

We have implemented tool support for each of the four
phases explained in Section III. In the following, we outline
the tooling for each phase.

A. Feature Modeling
Feature modeling is supported by the feature model editor,

as depicted in Figure 2. It is implemented based on a meta-
model using the Eclipse Modeling Framework (EMF) [7]
and provides multiple views to edit a feature model.

The tree view on the left shows the structure of a feature
model. Leafs represent features; inner nodes represent fea-
ture groups. The tree view provides standard functionality to
modify the feature model structure: creation, deletion, drag
& drop, and copy & paste of model elements.

The properties view at the top right corner allows the user
to modify the properties of a model element. The user can
set the name and description for each model element as well
as the expected usage for each feature (c. f., Section III-A).

The problems view at the bottom right corner lists the
violations of the validation rules built into the feature model
editor. An example of a validation rule is that the name of a
feature must be unique within a feature group. The validation
rules produce problems with different severities indicated by
different icons. The problems are also shown in the tree and
properties view as icons decorating the model elements and
properties where the problems exist.



Figure 2. Feature model editor

B. Feature Location

Feature location requires tools to record method traces for
feature executions and to select the beacons for features.

To record method traces for feature executions, we have
implemented a tracer for the .NET virtual machine using
its profiling API3. This way, the code of the traced software
system does not need to be modified. Similar techniques
can be applied for other virtual machines, like e. g., the
Java or ABAP virtual machine. The tracer records entry
and exit events of each invoked method by using its fully
qualified name. As a consequence, the tracer has a high
impact on the performance of the system during tracing.
However, this kind of tracing is only required to locate the
features and not to monitor the execution of the system in
production. Moreover, the tracer allows to exclude methods
from recording. This way, methods from 3rd party code can
be excluded to reduce the memory footprint.

The tracer is integrated seamlessly into the feature model
editor. The user can start the tracer for a certain feature, and
can then execute the feature in the traced software system.
The method trace recorded during the feature execution is
linked directly to the feature in the feature model. After all
feature executions have been recorded, the editor can auto-
matically infer the characteristic methods for each feature.
From them, the user selects a beacon for each feature.

Figure 3 shows different views of the feature model editor
that support the user in selecting feature beacons. The view
at the top left corner shows the methods contributing to a
feature and indicates whether they are characteristic for the
feature or to which other features they contribute. If there
are multiple characteristic methods, the view at the top right
corner can display the call dependencies between them to
support the user in choosing a method that has been called
early during the execution of the feature. If there are no
characteristic methods, the view at the bottom left corner
can determine other features with which the feature can be

3http://msdn.microsoft.com/en-us/magazine/cc301725.aspx

Figure 3. Feature beacon selection

merged to obtain characteristic methods. Finally, the view at
the bottom right corner allows the user to inspect the method
traces as sequence diagrams.

C. Execution Monitoring

On the one hand, the impact on performance needs to be
as low as possible, when monitoring the execution of the
software system in production. On the other hand, we have
to ensure that we do not miss a method invocation, since
usage data could otherwise be incomplete.

Using the .NET profiling API, we implemented a very
efficient method profiler that employs ephemeral [8] pro-
filing. The method profiler determines which methods have
been executed. When the software system is started, each
method is instrumented with a profiling hook that registers
the invocation of the method. When the method is invoked
for the first time, the hook is automatically removed from
the method. As a consequence, the hook has no impact on
the later invocations of the method, thereby significantly
reducing the overall profiling impact. In addition, due to
its implementation as an in-process component, the profiler
does not require expensive context switches.

Using this technique, we can measure whether a feature
is used within a certain time interval, but not how often
it is used. However, this information is enough for usage
evaluation, as long as the time interval is short enough.
We typically set it to a day. Therefore, the software system
needs to be restarted each day to ensure that its methods are
instrumented again. When the software system is stopped,
the profiler stores the usage data in a file.

The profiler might miss invocations of methods that are
inlined due to optimizations performed by the just-in-time
(JIT) compiler. To alleviate this issue, the hook instruments
the method also for the inlining event. We are safe to
interpret the inlining of a method as an invocation, since the
inlining is performed just-in-time by the virtual machine,
and we are only interested in the first invocation anyway. In
addition, feature location also traces method inlining. Thus,



feature beacon inference takes into account during which
feature executions which methods are inlined.

To further reduce the performance impact, we could limit
instrumentation to the methods that are feature beacons.
However, we instrument all methods due to the following
reasons. First, we are more robust w.r.t. changes of feature
beacons due to software evolution. Second, we can already
start monitoring, even if we do not have beacons for all
features yet. Third, we do not miss feature executions, in
case we made an error when inferring a feature beacon.
Similar to the tracer, we can again exclude methods that we
do not want to monitor.

D. Usage Evaluation

The results of the usage evaluation can be shown in the
feature model editor. It can import method profiler data and
determine feature executions using the feature beacons. As
shown in Figure 4, the actual usage can be represented in a
table where the rows represent the features and the columns
represent the days. The feature model editor also compares
the actual with the expected usage. The comparison is im-
plemented as a validation rule, and deviations are indicated
by warnings. Thereby, the user can easily spot deviations
for further analysis. Another validation rule highlights the
features that are not used at all. The aggregated actual usage
data can be exported to an Excel file for further analysis
outside the feature model editor.

V. CASE STUDY

This section presents the industrial case study we per-
formed to evaluate feature profiling.

A. Research Questions

We investigated 4 research questions to better understand
the benefits and limitations of feature profiling:

RQ1: How well does beacon inference work in practice?
Feature beacons are required to mine feature information
from method profiling data. Whether feature beacons exist,
and how difficult they are to discover, depends on the
structure of the analyzed system. The practical suitability
of beacon inference thus needs to be validated empirically.

RQ2: Do different software engineers have a consistent
expectation of feature usage? Feature profiling compares
expected against actual usage. This assumes that a common
understanding of the expected usage exists among software
engineers. However, different roles could cause usage ex-
pectations to vary. We need to understand usage expectation
consistency to determine how to produce models of expected
usage for feature profiling.

RQ3: Do expected and actual usage differ? If stakeholders
already have an accurate understanding of the usage of
a system, we can simply ask them and do not need to
invest effort into usage measurement as we propose it. The

Table I
STUDY OBJECT

Language Age (years) Size (kLOC) Engineers (max)

C# 8 360 9 (16)

difference between expected and actual usage is thus an in-
dicator for the importance of feature profiling as opposed to
simply interviewing stakeholders. Furthermore, it determines
the potential usefulness of feature profiling to help align
requirements and features.

RQ4: How does the profiler impact the analyzed system?
Feature profiling needs to be performed in production to
produce meaningful data. This is only possible, if the feature
profiler has no noticeable impact on the usage of the appli-
cation, both in terms of correctness and performance. This
research question thus determines the feasibility of applying
the feature profiler in a production context.

B. Study Object

We evaluated research questions RQ1, RQ2 and RQ3 on a
business information system at Munich Re Group. Munich
Re Group is one of the largest reinsurance companies in
the world and employs more than 47,000 people in over
50 locations. For their insurance business, they develop a
variety of individual supporting software systems.

The analyzed business information system implements da-
mage prediction functionality and supports about 150 expert
users in over 10 countries spread over Europe, North and
South America, China, Australia and Africa. An overview
is shown in Table I.

We chose this system as study object for several reasons.
First, the system has been in successful use for 8 years
and is still actively used and maintained. Improvements in
feature alignment are thus likely to improve usage value
or decrease maintenance costs. Second, the development
and usage context is typical for Munich Re Group. Its
users are distributed across different countries. The software
engineers are from different companies (some are employed
by Munich Re, some by software suppliers) and work in
different buildings. This distribution of users and engineers
complicates communication inside and across the stake-
holder groups and could thus allow a lack of alignment to
remain unnoticed. Third, it is a web application. Its server
offers a single point for usage data collection4.

C. Suitability of Feature Inference (RQ1)

We analyze how well feature beacon inference can estab-
lish a link between features and source code in practice.

Study Design. We modeled a subset of the features of the
application. The subset comprises the three feature groups

4Feature profiling is not limited to server-based applications, however.
We are currently working on a solution that collects and aggregates usage
data from all clients to create complete profiles and preserve user privacy.



that were accessible on our machine. It covers the majority
of the application functionality. For each feature, we pro-
duced traces. Afterwards, we inferred feature-characteristic
methods to determine beacon candidates. From them, the
beacon was manually selected for each feature. To deter-
mine practical suitability, we computed the ratio of features
for which beacons could be determined and recorded the
problems encountered during beacon inference.

Execution. We modeled all 111 features in the three feature
groups. We manually executed each feature and used the
tracer to record the executed methods. If a feature could
be executed in different fashions (e. g., via a menu or via a
button), we produced several traces, one for each.

Results. We encountered several challenges during beacon
inference. Implementation overlap: some features are im-
plemented in the same set of methods. Which feature is
executed depends on the values of the method parameters.
No beacons can be determined for such features. Feature
interaction: some features call other features. The called
features thus do not have any characteristic methods that
can be used for beacons. Trace volume: full method tracing
produces large amounts of data. For features that involve
heavy computation, tracing was infeasible, since the appli-
cation timed out.

Beacon inference is complicated by the semi-decidability
of whether a method is characteristic for a feature. Methods
may appear characteristic for a given set of traces, but turn
out not to be, as more traces become available. Such methods
were excluded from the results through manual inspection
by the developers.

Due to these problems, we only succeeded to infer bea-
cons for 76 out of 111 features. For the remaining ones, the
system would need to be modified. To avoid inaccuracies due
to incomplete traces, it needs to be complemented by manual
inspections of the discovered beacons. The applicability of
feature beacon inference in practice is thus limited by the
structure of the system and the available effort.

D. Consistency of Usage Expectation (RQ2)

We determine how consistent the usage expectations of
different stakeholders are for the modeled features.

Study Design. We asked project participants for their us-
age expectation for each modeled feature. Each participant
was interviewed independently. We chose participants from
different roles to capture different engineering perspectives.
Actual usage information produced by feature profiling was
not made available to them to not bias their expectations.
On the results, we computed Cohen’s Kappa—a measure for
inter-rater agreement—to capture expectation consistency.

Execution. Three project participants took part in the ex-
periment: a product manager, a Munich Re-internal soft-
ware maintainer and an external software maintainer. All
participants had been working on the project for over one

year. Each participant recorded his usage expectation, c. f.,
Section III-A for each of the 76 features. Answers were
chosen from a drop-down list from these values: “1 day”,
“2 days”, “3 days”, “4 days”, “5 days”, “2 weeks”, “3
weeks”, “1 month”, “2 months”, “3 months”, “6 months”,
“9 months”, “1 year”, “2 years”. The participants only took
workdays into account.

Results. Only for 8 of the 76 features did the three par-
ticipants have identical usage expectations. Computation of
Cohen’s Kappa yielded 0.21, indicating weak agreement5.

This measurement treats slight and significant deviations
uniformly. If, e. g., two participants select “2 days”, and one
selects “3 days”, we do not treat this differently than if the
third participant had rated “2 years”. However, intuitively,
the agreement in the former case is substantially stronger
than in the latter. To reflect this, we aggregated the expec-
tations into the ranges “≤ one week”, “between one week
and one month”, “between one month and half a year” and
“over half a year”. For these ranges, Cohen’s Kappa yields
0.59. While better, this still indicates a certain amount of
disagreement between the stakeholders.

In summary, while there is a certain amount of agreement
between different stakeholders, their usage expectancy is not
consistent. We thus cannot expect the expectancy of a single
engineer to reflect the expectancy of other stakeholders well.

E. Actual versus Expected Usage (RQ3)

We investigate how well the usage expectations of the
different stakeholders match the actual usage of the system.

Study Design. We performed ephemeral method profiling
on the production server. This way, the methods executed
by all users of the system are recorded for the study period.
However, we did not collect any user-specific information
(both for privacy and performance reasons). To determine
feature usage, we mapped the feature beacons against the
called methods to determine which features were executed
on which day. Finally, we compared the actual usage against
the usage expectation of each of the three participants.

Execution. We installed the profiler on the server that hosts
the analyzed system. The server recycled its application
pools every night. This triggered the profiler to write out its
report and reset its state. Feature profiling was performed
over a period of five months. After one week, we analyzed
the reports and validated their plausibility with the system
stakeholders to ensure result validity.

Analysis of the method execution reports had to cope with
feature beacon evolution. During the analysis period, three
consecutive versions of the software were in production.
Feature beacon inference was performed on the last version.
However, during software evolution, methods—including

5It also indicates that the agreement is—statistically significantly—higher
than random assignments.
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Figure 4. Actual feature usage

feature beacons—change. Some of the identified beacons
did not exist in all three software versions. Of the 76 feature
beacons, 53 (70%) existed in all three software versions. We
limited the analysis of feature usage to these.

Comparison of actual and expected usage was performed
as follows. For each feature, we computed the longest
period (in workdays) in which it had not been used. If this
period was more than twice, or less than half, of the usage
expectation of the feature, we considered it a deviation.
We computed the deviations between the features and the
usage expectations of each of the three study participants.
In addition, we determined how many features were not used
at all during the study period.

Results. Figure 4 depicts the actual usage of the features
during the study period. Each feature is depicted as a colored
horizontal bar. For each day, the feature bar fragment is only
visible, if the feature was executed on that day. Features are
ordered by execution frequency: seldom used features at the
top, often used ones at the bottom. Weekends and Christmas
exhibit low feature usage. Of the 53 profiled features, only
38 were used during the five months of study. The remaining
15 features (28%) were not used at all.

The actual usage deviated from the usage expectation
of the product manager for 43% of the features. For the
internal and external developer, it deviated in 40% and 55%,
respectively. In the majority of the deviations, the system
was used less than expected. The Munich Re-internal stake-
holders had a more accurate usage expectation (deviations of
43% and 40%) than the external developer (55%). However,
deviations for all three of them are substantial. We thus
answer RQ3 positively: for the analyzed system, actual usage

does deviate from expected usage.
For the 15 unused features, usage expectations are de-

picted in Table II. For 5 features, it was unexpected for
all three engineers that they were not used. For 6 further
features, it was unexpected for at least one engineer. Only
for 4 features did the engineers agree that the expected usage
interval is larger than the study period.

F. Feature Profiling Impact (RQ4)

Since the profiler performs load-time instrumentation of
the code, it can, in principle, skew execution results. More-
over, since it monitors jitting and inlining operations, it
can slow down execution speed. In this study, we analyzed
impact on both correctness and performance.

Study Design. To evaluate its impact on correctness, we
executed a unit test suite with and without the profiler and
checked whether it influenced the results. For performance
impact evaluation, we executed a .NET performance bench-
mark with and without the profiler and compared execution
times. Third, we installed the profiler on the machine that
was used for testing. It was thus part of both the system and
load tests done during maintenance.

Execution. We used the unit test suite of the Mono C# com-
piler6, which is itself written in C#, to evaluate correctness
impact. We chose it for its size (> 3500 unit tests) and
its coverage of all .NET language constructs. It exercises
a large part of the profiling API and we thus assume that
it has a high probability to uncover errors in the profiler.
For performance evaluation, we used benchmarks from the
Zorn CLI7 Benchmark suite8. Ahc is a memory-intensive
compiler benchmark, Lcs a compute-intensive compression
benchmark. Each exists in three versions that operate on
increasingly large data (and thus have increasing runtimes).
For each, we took the best result from 10 runs to reduce
influence of background tasks.

Results. All unit tests produced the same results with and
without the profiler. We thus did not detect any impact of
the profiler on correctness. The results of the performance
benchmark are depicted in Table III. The impact of the
profiler on performance is measurable, but very small.
Importantly, it is independent of the actual runtime of the
benchmark. (The deviation between 0.0 and 0.1 in acs and
0.2 and 0.3 in lcs are due to measurement inaccuracies.)
This confirms the effectiveness of ephemeral profiling.

Finally, during system testing of the study object that
is performed during every maintenance iteration, the test
engineers did not notice any impact of the profiler on
the test results. In summary, the profiler does not impact

6http://www.mono-project.com/
7CLI stands for “Common Language Infrastructure” and refers to the

.NET virtual machine and its platform technology.
8http://research.microsoft.com/en-us/um/people/zorn/benchmarks/

default.htm



Table II
USAGE EXPECTATIONS OF UNUSED FEATURES

#Feat. Product Manager Internal Dev. External Dev.

5 ≤ 3 months ≤ 3 months ≤ 3 months
2 ≥ 6 months ≤ 3 months ≤ 3 months
4 ≥ 6 months ≤ 3 months ≥ 6 months
4 ≥ 6 months ≥ 6 months ≥ 6 months

Table III
PERFORMANCE BENCHMARK RESULTS

ahc1 ahc2 ahc3 lcs1 lcs2 lcs3

No profiler 0.7s 3.3s 7.5s 2.1s 8.3s 18.6s
With profiler 0.8s 3.4s 7.5s 2.4s 8.6s 18.8s

∆ 0.1s 0.1s 0.0s 0.3s 0.3s 0.2s

correctness, and its performance impact is small enough
for use in production, even in computation and memory
intensive applications.

G. Threats to Validity

The biggest threat to the generalizability of our study is
its limitation to a single system. While both the technical
aspects of the system and the development context are rep-
resentative of the systems at Munich Re, the transferability
of, e. g., the usage deviation results to other systems inside
and outside Munich Re is unknown. Future work is required
to foster our empirical understanding of deviations of actual
and expected usage. However, the study demonstrates the
practical applicability of our approach for feature profiling
and the usefulness of its results.

Our approach to compare actual and expected usage uses
thresholds. More specifically, we consider expected usage to
deviate from actual usage, if the former is less than half or
twice as much as the latter. We chose these thresholds, since
they capture our intuitive understanding of deviation. Such
thresholds are necessarily somewhat arbitrary—a different
choice would result in different deviation values. It is thus
hard to interpret, e. g., the difference between 40% and 43%
deviation. However, we are convinced that the metric is a
good indicator for the magnitude of the usage deviation,
since it coincided with the intuitive reaction of the stake-
holders to the actual usage results.

Some of the modeled features could not be profiled, either
because beacon inference failed or because the beacons were
not stable across the analyzed versions. However, since these
features were distributed equally across the modeled feature
groups, the remaining features are still representative for the
system. The missing features, thus, do not invalidate the
usage deviation results.

One limitation of the ephemeral profiler is that it cannot
differentiate between a single or more executions of a
method. It just does not differentiate between, e. g., 1 and
100 executions of a feature during a single day. If this

information is necessary, all invocations of feature beacons
need to be monitored. The increased profiling impact could
be compensated by only instrumenting beacon methods.

H. Discussion

The deviation between the expected and actual usage was
substantial. During the five month study period, 40% of the
features were used differently than expected by the best and
55% by the worst estimate. 28% of the features were not
used at all. We consider these results to be valuable for
project control. This was confirmed by the project mem-
bers, who consider the feature profiling results as valuable
information for feature alignment, planning and control.

The analysis of usage expectation consistency revealed
that different stakeholders have different usage expectations.
This leads to two conclusions. First, the feature model
should reflect the expectation from different stakeholders.
Its content thus needs to be created collaboratively. Second,
explicit modeling of expected feature usage can serve as
a catalyzer for communication between different stakehold-
ers. Different usage expectations can result from different
perceptions of the importance of a feature. A common un-
derstanding of feature usage and centrality, however, can be
useful when making trade-off decisions during, e. g., quality
assurance effort allocation or time-to-market considerations.

Feature beacon inference is feasible, but failed to produce
beacons for some features. The problems can, in principle
be overcome by restructuring the analyzed application, e. g.,
by splitting methods that implement multiple features. Al-
ternatively, more invasive tracing and profiling that inspects
parameter and variable values could help to identify further
feature executions, albeit at the cost of higher performance
impact. However, even with system restructuring and more
invasive techniques, reverse engineering of feature beacons
is tedious. We expect it to be simpler to determine feature
beacons already during forward engineering. Their anno-
tation, e. g., through code annotations, could substantially
reduce feature inference efforts. However, beacon inference
is still a viable method to determine beacons in existing code
or if the analyzed application cannot be modified.

The case study discovered a number of features that were
not used at all. The reactions to them are twofold: the unused
features with a usage expectation below the study period
are candidates for removal, if discussions with stakeholders
reveal that they are no longer needed. The remaining features
need to be profiled further until a decision can be taken
on how to treat them. If they are still unused once their
usage expectation has been exceeded, they will also become
candidates for removal.

VI. RELATED WORK

We are not aware of other approaches that employ feature-
level usage information to support maintenance. However,
our approach builds on existing work from several areas. We



relate it to usage mining, feature location, remote analysis
of deployed software and program profiling below.

Usage mining analyzes interaction patterns in user behavior.
Web usage mining [9]–[11] analyzes server logs to reveal
web site usage. Data mining algorithms are employed to
reveal frequent interaction patterns. It is employed to, e. g.,
evaluate web site usability and support personalization.
Recently, techniques from web usage mining have been
transferred to analyze software systems. In [12], El-Ramly
and Stroulia propose to instrument legacy software to infer
user interaction patterns. In [13], Murphy, Kersten and
Findlater monitor command invocations to analyze how de-
velopers employ features of the Eclipse IDE such as software
refactorings. In contrast to our work, these approaches are
exploratory and do not target maintenance.

Feature location aims to support maintenance by identify-
ing regions of code that implement a feature. Both dynamic
[14], [15] and static [16], [17] approaches and combinations
thereof [4], [18] have been proposed. Those approaches
provided valuable insights into the complex relationship
between solution and application domain artifacts to us and
provide the foundation for our feature location approach.
However, they aim at reverse engineering of feature location
knowledge. In contrast, our work makes constructive use of
feature locations in order to profile feature executions.

Remote analysis of deployed software has recently been
proposed by several researchers. Hilbert [19] proposes to
employ agents to collect usage information in deployed
software to support usability engineering. Orso et al. [20]
investigate means to distribute monitoring tasks across users
to reduce associated impact. Liblit et al. [21], [22] propose
remote program sampling to isolate bugs. Elbaum and Diep
[23] survey existing approaches to support testing by profil-
ing deployed software. Haran et al. [24] present approaches
to classify execution data gathered during remote program
analysis in support of further analysis. These approaches
were a valuable inspiration for our work and provide general
indication for the feasibility of profiling deployed software.
However, to the best of our knowledge, none of them pro-
duces information on the level of application features. They
are hence not targeted at usage analysis and maintenance.

Program profiling [25] is an established practice in per-
formance engineering to identify problematic code regions.
Existing approaches can be categorized into exact and sta-
tistical profilers. While exact profilers yield precise results,
their application is traditionally limited to development and
maintenance due to their potentially devastating impact
on performance. Statistic approaches sacrifice precision to
reduce performance impact and can thus be applied to
continuous profiling of deployed software [26]. Ephemeral
profiling, as we employ it for feature profiling, combines
exact results with measurement minimal impact—thus com-

bining the advantages of both approaches.

VII. FUTURE WORK

In the future, we plan to switch from the presented reverse
engineering approach to a forward engineering approach and
to use a different mechanism to mark feature beacons.

From Reverse to Forward Engineering. Up to now, we
used feature profiling in a reverse engineering manner, i. e.,
we built a feature model and determined the beacons for
an existing system. This is suboptimal for two reasons.
First, the feature model itself is a valuable artifact as it
explicitly captures the system’s features. As all development
phases can benefit from it, it should be built and maintained
in parallel to development. This saves efforts for reverse-
engineering the model. Second, the identification of feature
beacons is tedious, because developers loose the knowledge
about the location of features in the source code. To address
these problems, we plan to make feature modeling and
beacon identification a standard development activity.

Marking Feature Beacons. We found that some features
cannot be monitored since they have no feature beacon
(as some features are entered through the same method).
Moreover, the study showed that evolution sometimes in-
validates beacons, e. g., because a method has been moved
or renamed. To remedy this, we want to integrate feature
beacons more tightly into the code. One way to do this
is to insert special logging statements that increment the
call counter for their feature. This not only allows to place
feature beacons inside methods but also makes them more
robust against changes.

First Experiences. While we haven’t had the opportunity to
fully evaluate the forward engineering approach, we gained
experience with in-code feature beacons. We found that they
are significantly more robust against code changes and can
be created, even retroactively, with relatively low effort—
retrofitting the beacon logging statements took about one
person week for 120 features in a medium-sized system.

VIII. CONCLUSION

For effective software maintenance, program comprehen-
sion must go beyond a system’s inner workings. Under-
standing the source code and other artifacts is undoubtedly
crucial, but is not enough to answer some questions arising
during maintenance: How many many users will a change to
a certain feature affect? Which code can be removed because
the features it implements are no longer required? Will a
certain feature not be used until the end of the year, so that
we can safely move testing effort to other areas for now?
To provide better answers, we need to understand the usage
context of a software system.

In this paper, we proposed feature profiling as a
lightweight approach to continuously monitor system usage
on the level of application features. It relies on dynamic



analysis of software in production to achieve comprehensive
and accurate results.

We performed feature profiling on an industrial business
information system for a period of five months for all of
its over 100 users in 10 different countries. 28% of the
monitored features were not used at all during that period,
indicating potential for code removal. Furthermore, the study
showed that different stakeholders had different expectations
of system usage. Interestingly, actual usage deviated from
all of them. However, since many maintenance decisions
implicitly or explicitly involve usage context information,
we consider this as precarious.

We are convinced that this holds for other systems as well,
as distributed development and usage—as in the analyzed
system—pose a real challenge for forming and maintaining
a consistent understanding of its usage context. We are
optimistic that feature profiling can serve as a catalyzer for
substantiated discussions and help create a picture that is
consistent both among stakeholders and with actual usage.
Feature profiling can thus extend program comprehension to
include usage context information.
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