Erfahrungen aus 10 Jahren

Test-Gap-Analyse im Praxiseinsatz

CQSE

Dr. Sven Amann




Agenda

= Teil 1: Grundlagen der Test-Gap-Analyse
= Teil 2: Herausforderungen bei der Einfihrung

= Teil 3: Kosten-Nutzen-Berechnung




Teil 1

Grundlagen der
Test-Gap-Analyse




Stellen Sie sich vor, Sie sind dafir verantwortlich,
dass alle Codeénderungen »ausreichend« getestet werden...




Wo treten Fehler in Produktion auf?

Studie: C# System

Release A:

15% Code neu/gedndert, S Croses BTG
Anderungen >

>50% Ungefes’re’r Bestandscode e @

Release B:

15% Code neu/gedndert,
>60% ungetestet

Feldfehlerwahrscheinlichkeit 5x hoher fir ungetestete Anderungen!

Eder, Jirgens, ... Did We Test Our Changes? Assessment btw. Tests & Development in Practice, AST@ICSE 2013



Ziel
Finde die ungetesteten Anderungen
(= Test Gaps)

Weil Fehler im gednderten, ungetesteten Code
sehr viel wahrscheinlicher sind als anderswo




Codednderungen

aus dem
Versionskontrollsystem

»

Test-Gap-
Analyse

\ 4

Test Gaps

pe

Testabdeckung

mittels eines
Profilers






[ H

I N I

1 [

j

11 [T
NI
1T T LT
I - ) —— T 1
[TTTTI

= ] =
| - i T
____ _ - : _ 7 _ __,__ __ ___I,Hm;m:*j ~ _ _
:_Ef _,__:,,_ — _rw%JE: :L.:ﬁ H_Iﬁu.%
1 s i
| [ [ R =
[ T [ I1 [ 1 &: 7__7 : ___ _____7_ _|HWW
|% I% L]
T P ] [ \;
_L_ﬂ | = _%m H\ a
[ _f 7 | lﬁm‘
[ _:|P_L._H ‘|_ i I _
o T
_ . ﬁnﬂw | Hu__|\
5N L E - T T
=] | i I —
e D e e
. P : | TE_T
| 1 BT [ =
e e s
| =
| [ TTITTT] ]
[ il - Seni
- — 1 HY
1 s S I
| ]
[ ] = | HH T T 7
— [ [ [0 THET
T THHH [ [ [ HH I
R [ |
T 11] ___:_ S| ______i__ AT 1 T
= [ i — |
F 5 =




1 H\HW T lEmﬂvLMH mwn S5t T ;_:____: k__:___ _k______ _, ,ﬁ __,:
hc_qﬁl_,_g__._l.__._ﬁ_: foe e : HTW ,":,__,,_ - F_“Eﬂi - HmHn A_ﬂ&ﬁ m : T ____ T ,_,_ __ ____ﬁ__: ,__:__,_,_:__,_ _,
%ﬂyﬁwﬂﬁnﬂﬁm_ﬁ HLITICTIL T 1T [ IT ___,#ﬂrar T 8 A N A - _,___, ,: ,_
E&qﬂuﬂn’% A e e 1:_:_;

T : H -1 [ — RSl
! L - 4_ =L Mu,_,:_ s
O T ,:,_______.___, it
o -
& ___ L % 7___f7:7%£_ ;"_ m_%__ﬁz.wﬂ__ﬁ______i_lt_*“_:___:___;? I ,G _ ___: T $ EEl—\mm
Huuum% \%WH Hﬁ% o 1 H
BiE fme i i s SR e
. m_mT_j— 15 ______ ‘|\ 11 i Inm|n Hm IAIHﬂ@m i . L
T __ _, II__ \Hﬁﬁ [] [ L i - %ﬁ
e T T T o e —
;:_ _:_ __i,_ T ____ __: :_:_ ; _: i :__:_:__ JTT T __, _* i Hﬁ
[ HH - T i T S o]
LT
Tl LS TR 1
i — T =H|_: H__ ; ! LI W
[T TEEe T T O o W= L

T

#I Jﬁuwm ﬁ _m“, il _f: _, i ,,__,,,,,___,,_,_ _ M_L_ﬂ_r_I__ﬁ__ﬂ_____I____M_w__ﬂ.w“w_j,
A_vx_iﬁu_u H% :_:,,_ R

_ 1 T
E0

o T T RS _ UM#r_ Bt Rianills _
Wﬁiﬁ ERL

i i i
1T H—H T

T 7 L £ \_,,_Ermﬁ, | __,_z_,___,,__ ,ﬂﬁ_ w " :ﬁuﬂ. [ uﬁ% H e
|% T_l_._yﬁ% H_H m ﬁ R s o 5 s s v I
7 (1 |ﬁ # H H‘H = s




» Test-Gap- «

Analyse

o

g:

z 10
g |










ne el 1
i




Test-Gap-
—=- » Analyse -

©n
III
Q -

—|
@
e

< I




B Neu & ungetestet




nnuneEn rEAnn

i e
=T L
LLLR L




Ul RTTTT J ILLLLL B




Entwicklungsbegleitender Test

Feature #9838

DEV

RELEASE RELEASE RELEASE RELEASE RELEASE RELEASE
(0000 O i

== S = —
|:l o
| -| -| = oot |
|I::. | COCD 00 CO0o
Ctl s |
——] |:l IZIIZ‘ZI

v

2018 2019




m Issue TS-23282 - clang-tidy causes SIGSEGV on C++ project (rewrite clang-tidy
integration from JNI to call-in-new-process)

Updated Aug 10 2020 11:23
Creator: z Nils Kunze (on May 28 2020 12:32)

Assignee: 9 Alexander von Rhein

project Type Priority Resolution Fix Version Component

TS Bug High Green Teamscale 6.1 Backend

Labels Affected Version  Customer Customer Issue  Dev Squad Epic Name

long-runner 6.0RC3 | ] Denali

Freshdesk URL  Merge Request PDash Task QA-Contact
https://git.cqse.eu/cqse/teamscale/-/merge_requests/8246 #4887 wilhelm

Description

Our clang-tidy integration can lead to Teamscale crashes because the clang-tidy tool sometimes (non-
deterministic) causes segfault errors.
Since we execute clang-tidy via NI in the same process as Teamscale, this segfault tears Teamscale down.

The concrete segfault appears in clang-tidy 9.0.2 (which we integrate currently) and has probably been fixed in

read more
¥ Affected files 1046
A Test Gaps
@K Auto-selectissue branch @ I Auto-selected: cr/23282_reimplement_clang_tidy_integration
Jun 16 2020 13:47-Now | Test Gap: 100% Coverage sources:  ([ZI)

¥ Findings

¥ Commits 44




Issues: Bug Fix Day 9.06.20 v

( Auto-select issue branch @ I (Automatically selected) Y Allissues Coverage sources: m
Found 210 issues matching your query Test Gap over all matching issues: 34%
a I
ID Subject # Changes Test Gap v
4 TS-23445 GitChangeRetriever stuck in branch labeling for 10-15 minutes 9 11 0%
O
4%
@ TS-23460 TestimpactSynchronizer still runs OOM 9 47
(I
. " 13%
4 TS-23547 Slow analysis progress due to long labeling e 8
I
. : v " 29%
4 TS-23501 Security: XML External Entity vulnerability in architecture uploads e 7
N
i o i - . 33%
[ TS-23599 Potentially swallowed exception in AnalysisReportPersister Discarded Q 3
I
£ TS-23576 Force Rollback Ul broken C 3 33%
O
3 : o S . 33%
4 TS-23446 Python architecture analysis handles late addition of __init__.py file incorrectly 9 3
O
i . q 50%
4 TS-23450 JIRA-Integration: Duplicated Table Rows, even for the same project ﬁ 9
CCC——
[ TS-23458 Audit search appears to ignore line breaks e 3 o7%
I
. 77%
4 TS-23558 External Upload view doesn't load due to JSON error 9 30
-am =




Teil 2

Herausforderungen

bei der Einfiihrung




Herausforderung: Vollstéindiges Bild

E2E Tests
Ii=:
Tests in der Cl d':tp Teamscale
= > :n
[ | [ |

222
i




Herausforderung: Anderung des Entwicklungsprozesses

E2E Tests Ergebnisse integrieren

=5 vau
Tests in der Cl d‘:‘l:p Teamscale G 0

e 4 - >
= e 5 Benachrichtigungen
TestGaps ' —
22 e
||

5‘5 E‘E ?‘S HE §‘E i‘s “3




Herausforderung: Einfluss des Profilings

*+

Performance Profiler-Wahl
cgse.eu/tga-trumpf

» MM

Verhalten Redundanz



Herausforderung: Microservices

Service A

Service C

Service B

»

Test-Gap-
Analyse

c

pe

Container 1

Container 3

Container 5

Container 2

Container 4



Herausforderung: Microservices

@ dockerhub  Q Search for great content (e.g., mysal)

Explore  c qseteamscale-| jacoco-a gent
cqse/teamscale-jacoco-agent ¥
By cqse * Updated a month ago
Teamscale JaCoCo Agent
Container

Gesamtsicht Uber alle Infrastructure as Code
Repositories

Analysis Progress

Project cgse-all

— = Py =
1598521 151146d 1598852 0484985

Project cgse-all-java-default

3de77f6

Analyse-Performance



Teil 3

Kosten-Nutzen-Berechnung
der Test-Gap-Analyse




TR O S S N

b

h. 4

¥ P I I

L

Y
%Restfehler



%Restfehler = %Getestet * Testineffektivitat + %Testgap

¥ P I I ¥ P P I I I




%Restfehler = %Getestet * Testineffektivitat + % Testgap

‘ %l#%%ﬂfﬂf:

Fehler in ungetestetem Code




%Restfehler = 9 Getestet « Testineffektivitat + %Testgap

ittt ,_
;\ o
e e e e e e e _

—

Im Test verpasste Fehler
in getestetem Code




Did We Test Our Changes?
Assessing Alignment between Tests and
Development in Practice

Sebastian Eder, Benedikt Hauptmann,  Elmar Juergens  Rudolf Vaas, Karl-Heinz Prommer
Maximilian Junker CQSE GrbH, ch Re Group,
Technische Universitit Miinchen, Germany Germany Germany

approach is sultable o produce meaningfol data and supports
st alignment in

Index Terms—Software.testing, software maintenance, dy-
mamic analysis, untested code

L. INTRODUCTION

A substantial part of the toal lie cycle cost of long-
in the domain

For such systems, a substantial part of their
tota lifecycle costs is spent on testing to make sure that new

oy . and—cqy
existing functionlity has not becn impaircd.

'g maintenance of these systems, test case sclection is
erucial. Ideally. cach test cycle should validate all implemented
functionality. In practice. however, available resources limit
cach test cycle to a subset of all available test cases. Since se-
lection of test cases for a test cycle determines which bugs arc
found, this sclection process is central for tes effectiveness.

A common strategy is to sclect test cascs based on the
changes that

has test cycles unchanged.
support his assumption (1. 2], (3]. [4].
If devclopment and testing cflorts are not aligned well
esting might focus on code arcas that did not change,
i wok was prlyfied by e G Feker My of Edcs

tiom s Resesch (BMBF). gt “Evcko, 01IS12054A". The esponsitly
o this s i withthe

I code changes might remain
e, st lgnment depends an commaicaion btwece
testing and development. However, they are ofien performed
by different teams, oficn located in different countrics
time-zoncs. This distance complicaies. communication and
thus challenges test alignment. But how can we assess test
alignment and expose arcas where it necds to be improved?
Problem: W lack approsches to detemine alignment be-
tween development and testing in practice.

Sokon: It puper ve proposs o s
st aligament by measuring the amount of code that wa
Changed but ot (st W popons o e meshodlevl
change coverage information to support esters in asscssing

can contain bugs although they have not changed in ages.
Contribution: This paper prescnts an industrial casc study
that explores the meaningfulness and helpfulness of method-
level change coverage information. The casc study was per-
formed on a busincss information system owned by Munich
Re. System development and testing were performed by d
ferent organizations in Germany and India. The case study
analyzed all development changes, testing activity, and all ild
bugs.for a period of 14 months. It demonsrates that field bugs
arc substantially more likely (o occur in methods that were
changed but not test

1L RELATED WORK

“The proposed approach s relted (o the ficlds of defect
prediction, selectve regression tesing, st case prortization.

named topics is the simplicity of the proposcd approach and
the fact that change coverage assesses the exccuted subscts of
test e, bt docs ot give hints 1 ks them.

iy code regions that were Changet, bt m..m amesed,
the expectation that there are more fild bug

gaps in their test coverage.

months. The system has been successfully in use for nine years.
and is still actively used and maintsined. Therefore, there is.
a well implemented bug tracking and testing strate
allows us o gain precise data sbout which parts of the system
were changed and why they were changed.

‘We analyzed two consecutive releases of the system. Re-

Both releases were deployed t the
due 1o hot fixes five times and were in productive use for
six months. Note that one deployment may concern several
bugs and changes in the system. The system contained 22123
ot Lo e b s ey

Bt protubiey e mabod

3. Probability of s i bot releses

‘and a query interface that allows retrieving coverage, change.
‘and change coverage information. The same tool support was
used in carlier studies [17], [19].

Validity ¢ We focus on validity procedures and not
on threats 1 validity due to space limitations.

i e i epeton & e oy bug
i it by ur ol

the comectness of method umloglt; we build

m.mng the main functionality were cxecuted thrce times.
C. Study Design and Execution

tions of randomly chosen method gencalogies. We found no
false gencalogies and have therefore a high confidence in the.
oo e kil W st 2 e

well

For. i classify
the categories shown in Figure 2: Tested or untested, changed
or unchanged, and whether s contain field bugs.

Method csepore s to evaluae change conersge

Study Design: First, we collect coverage and program data,

sge daa 0 e gacalogie. Wi his nfomation, we

117), which

thods account for 34% in both releases

development phase of the system, also in both releases. The

equality of the numbers for both releases is a coincidence.
8% respectively 9% of all methods were changed-untested.

Considering only changed methods, only 44% were tested in

coverage of changed code in the analyzed system.
RQ 2 We found 2 release 1 and 10 fixes in
release 2. The disribution of the bugs over the different change.
and coverage categories of methods is shown in Table 1
‘The biggest part of bugs occurred in methods categorized as

dentify me dog

For ans mng RQ 2 e <ol the robabily o

defcts for every category of methods by detecting ch
rodacine e of the st i rewespectve. Tus

is vl fo the snayo sy soce ol

and ety It prodhudive eviresocat, which I e

by the company's processes.

‘We gain our results by identifying methods that are changed
in the productive phase, which means they were related (©
a bug. We then categorize methods by change and coverage
during the development phase. Based on this, we calculate the
bug probability in the different groups of methads.

Study Execution: We used 1ool support, which consists of
three parts: An ephemeral (18] profiler that reconds which
methods were called within  certain time interval,  database:
that stores information about the system under consideration.

with 43% of all bugs in release | and 40%
of all bugs i relcase 2. In both releases,there are considerably
less bugs in unchanged regions than in changed regi

‘The probabilities of bugs are shown in Figure 3. With 0.53%
in release | and 021% in release 2. the probabiliy of bugs
is higher in the group of methods that were changed-untested.

There are several models for defect prediction [5]. In
contrast 1o these models, we measure only changes in the
sysiem and the coverage by tests and do not
assess test suites and use the probability of bugs in changed,
1 i e 5 i
appeoach is related to m, which uses series
of chan‘n “change bursts” to predict bugs. The good results
fha were acive b sing chmge daa o deispreicion
encourage us to combine similar data with testing cfforts.
Selectiv etng s g e slcion
of test cases from changes in d coverage
information. (7). [8]. [9]
contrast 10 these approaches, the paper at hand focuses
ady exculed test suites, because
often experts decide which tess to execute o cover most of
the changes made 10 a software system [10]. However, their

that were found duing developmeat

tests. Much rescarch has been pcﬂmmmcstwpusll"]
and there is a plethora of tools [13] and a number of metrics
sl such 2 e, branch o pth covere 14] ln
1 these metrics, we focus on the moee coarse grained
et . Furthermore, we do not oaly consider static
propertes of the system under test, but changes
Empirical studies on related topics. focus 1o the best of ous
knowledge mainly on the effectiveness of est case klu:lwn
d pricriizaionechigues 9. 15, n cu sy, we
o s sy e g~
s, b do o conidor s s o atel
111 CONTEXT AND TERMS
In this work, we focus oa system resting according 1 the
definition of IEEE Std 610.12-1990 [16] to denote “testing
conducted on a complete, integrated system 1o evaluate the
system’s compliance with s specified requirements”. Sysiem
used o detect bugs in existing functionality

the development phase s less likely 1o contain fekd defects.
E Discussion

RQ 1: With 155% of all methods being changed and 345 of
il methods being ot tesed, untested code

plays & considesble role i the analyzed system. The high
amount of changed methods results from newly developed
features. which means that many methods were added during
the phse of both relesses.

be regarded as units of functionality of 3
system. They are defined by a signature and a body.
To compare different releases of  software system over time,

Fig. 1. Development fe-<ycke

or new features are developed. Development usually occurs
in iterations which are followed by fest runs which are the
xecution of a selection of fests diming o test regressions
as well as the changed or added code. A development phase
' a release which wansfers the sysiem into
the peoductive phase, functionality
ther added nor changed. If critical malfunctions

during a test run. If 2 method has been changed or added
and been tested afterwards before the system is released we
consider it as changed-tested. If 3 change or addition
has not been tested before the system is transferred in the
P phase. we consider the meth

(see genealogy 1 and 3 in Figure 1)

IV. CHANGE COVERAGE
To quantify the amount of changes covered by tests, we
introduce the metric change coverage (CC). I is computed by
the following formula and ranges between [0.1].
‘#methods changed-tested
Fmethods changed
A change coverage of | (CC = 1) means that all methods
which have been changed since the last test run have been
pe

change coverage =

been covered by a test.
V. Case STUDY

A. Goal and Research Questions

The goal of the study i to show whether change coverage is
a useful metric for assessing the alignment between tests and
development. We formulate the following rescarch questions.
T e s e gl sl e i
o tis esarh qusion is o imestgate the exiscce of

hanged.

TABLE 1
IDISTRIBUTION OF FIXES OVER THE DIFFERENT CATEGORIES

i
of testing and development activities.

Relese | Relense 3
" iesters during the testing process. With information about

Category Aclute_Relaive_ Abichae_Relaive

[rm— R if necessary, because the probability of bugs is increased in

umgedumessd 1 4% 4 0% changed-untest ermore, we pres ur ool

nchanged sesed o o o " that allows us to utilize our technique in practice.

[ ——— 3 0% However, the number of bugs we found is too small 1o

43% respectively 40% of the changed methods were not
tested in the analyzed system. These high numbers also result

phase. For these new features, there was only 3 very limited
umber of test cases.
RQ 2: With a probability of bugs in untested-changed methods
of 0.53% respectively 021%, this group of methods contains
most of the bugs. This means that the sysiem isclf contains
few bugs at the current stage of development and bugs are
brought into the sysiem by changes.

urthermore, the probability of bugs in untested code s,
in both releases, less than half of the
untested code. Hence, we conclude that only considering test
coverage is ot a efficient a5 consering change coverage.

fiest results that we presented in this work point out that the
coasideration of code regions that are modified, but not very
well tested is important. This motivates fuure work on the
topic and the inference of improvemen goals.

code regions to give hints 1o testers and developers which test
case 10 execute 1o cover more changed. but untested methods.
Therefore, we plan to evaluate techniques related 1o trace link
recovery o bridge the gap to test cases.

REFERENCES

sbdtr.\N) higher o e regions. But
test coverage and changed methods points to

wae regions o i 5 Tikely t0 contain bugs than others.

Is Change Coverage Helpful in Practice? We employe

t0 developers and testers by presenting code unit, like types or

assemblies ordered by change coverage. During the discussion

of the results, we conducted open interviews with developers to.

gain knowledge about how helpful infomation about change
intenance and testing.

to identify features that remained untested. For example the
processing of excel sheets in a particular calculation was
hanged. i In i

some others, the (re-Jexecution of panicular test cases and
the creation of new test cases were issued. This increased
the change coverage considerably for the code regions where
the features are located. This shows that change coverage is
helpful for practitioners.

V1. CONCLUSION AND FUTURE WORK.

a single method over time. A gencalogy connects all releases.
of a method in chronological order [17].

In the context of our work, the life cycle of a software
system consists of two aliemating phases (see Figure 1). In
the development phase, existing functionality is maintained

this work. Therefore, we qlunuiy ‘changed and untested code.

this rescarch question is to decide whether change coverage
can be used as a peedictor for bugs in large code regions and is

of test suites and changes in a simple and understandable
way. Instead of using rather complex mechanisms to derive
‘code units that may be subject 1o changes, we are focusing
on changed but untested methods and calculate an expressive
metric from these methods. The results show that the use of

< rgrevi teting
191 T. L Geaves. M. 1. Harot, M. Kim. A. Porer. and G Rsherml.
“An cmpirical sy o regres

I Thiaganyan “Efccinely piciizing s in dvel
vionmes. n [SSTA, 2002

X oamcr “Fesre el o i ywem n ICPC.

Paper published at Workshop on Automation of Software Test, 2013.



Wo treten Fehler in Produktion auf?

Studie: C# System

Release A:

15% Code neu/gedndert, S Croses BTG
Anderungen >

>50% Ungefes’re’r Bestandscode e @

Release B:

15% Code neu/gedndert,
>60% ungetestet

Feldfehlerwahrscheinlichkeit 5x hoher fir ungetestete Anderungen!

Eder, Jirgens, ... Did We Test Our Changes? Assessment btw. Tests & Development in Practice, AST@ICSE 2013



%Restfehler = %Getestet * Testineffektivitat + % Testgap

P P I I I P I I I

Ohne Test-Gap-Analyse




%Restfehler = %Getestet * Testineffektivitit + 50%

Ohne Test-Gap-Analyse

Y
50% Testgap




%Restfehler = %Getestet * Testineffektivitit + 50%

Ohne Test-Gap-Analyse




%Restfehler = 50% = Testineffektivitit + 50%

Y
50% Getestet

Ohne Test-Gap-Analyse




%Restfehler = 50% = Testineffektivitit + 50%

Ohne Test-Gap-Analyse




%Restfehler = 50% = Testineffektivitit + 50%

Ohne Test-Gap-Analyse




%Restfehler = 50% * 20% + 50%

Ohne Test-Gap-Analyse




%Restfehler = 10% + 50%

Ohne Test-Gap-Analyse




%Restfehler = 609%

Ohne Test-Gap-Analyse




%Restfehler = 60%

Ohne Test-Gap-Analyse

%Restfehler = %Getestet * Testineffektivitat + %Testgap

P P P I I I P W I W

Mit Test-Gap-Analyse




%Restfehler = 60%

Ohne Test-Gap-Analyse

W - -




%% Restfehler = 60%

Oh TprA |)’

*i**ﬂ#%gf

%Restfehler = 90% * 20% + 10%

Mit Test-Gap-Analyse




%% Restfehler = 60%

Oh TprA |)’

*i**ﬂ#%@f

%Restfehler = 18% + 10%

Mit Test-Gap-Analyse




%% Restfehler = 60%

Oh TprA |)’

*i**ﬂ#%@f

%Restfehler = 28%

Mit Test-Gap-Analyse




Reduzierte Feldfehler = 509%

Test-Gap-Analyse reduziert Feldfehler in Applikationen der Munich Re um 2




Fazit

Sichtbarmachen von Qualitat ist essentiell

Werkzeuge und Prozesse sind wichtig

Internes Change Management notwendig

Deutlicher positiver Effekt beobachtbar

Am besten gleich von Anfang an einsetzen




Mehr Details und Live Demo
im CQSE Workshop

™ 14. Februar 2022, 10:30-12:00 Uhr CEST
Registrierung: cgse.eu/tga-workshop-de-2022-02-s

[m] ' [m]

"

[=]

Test Gap Analyse
Ungetestete Anderungen

im Que“fext aufdecken

= 09. Marz 2022, 17:00-18:30 Uhr CEST
Registrierung: cgse.eu/tga-workshop-en-2022-03-s



http://cqse.eu/tga-workshop-de-2022-02-s
http://cqse.eu/tga-workshop-en-2022-03-s

Kontakt — Ich freue mich auf Diskussionen!

Dr. Sven Amann - amann@cgse.eu - +49 172 1860063

CQSE GmbH
Centa-Hafenbrad|-Str. 59 CQSE

81249 Mu nChen Continuous Quality in Software Engineering




