
Test Intelligence
Explore Your Own Data From Software Tests to Find More Errors in Less Time

Jakob Rott



https://sportdaten.welt.de/fussball/champions-league/bayern-muenchen/paris-st-germain/2021-04-07/clvfh/2021/142784/heatmap



2013 2014 2015 2016 2017 2018 2019 2020 2021 2022



Test Intelligence

» Where are untested changes? «

» Which tests are most/least valuable now? «» Where are most bugs? «

TicketsVersion History Test Coverage











• = changed
• = new



Test Intelligence

» Where are untested changes? «

» Which tests are most/least valuable now? «» Where are most bugs? «

TicketsVersion History Test Coverage





• = executed in test



Test Intelligence

» Where are untested changes? «

» Which tests are most/least valuable now? «» Where are most bugs? «

TicketsVersion History Test Coverage



• = Changed
• = New



• = Executed in Test

manual &

automated tests



• = modified & untested
• = new & untested
• = unchanged
• = modified & executed in test



100% Change Coverage

100% Change Coverage → 0 Bugs 



• = modified & untested
• = new & untested
• = unchanged
• = modified & executed in test



• = modified & untested
• = new & untested
• = unchanged
• = modified & executed in test



Continuous Testing

RELEASE RELEASE RELEASE RELEASERELEASE RELEASE

2021 2022

DEV TEST

Feature #9838







CR#9838: Added TODO 26.07.16 16:38
CR#9838: Adjust naming 26.07.16 15:33
CR#9533: RED 26.07.16 15:13
CR#9533: GREEN 26.07.16 15:12
CR#10181: Added new finding for deprecated classes, methods and fields 26.07.16 14:43
CR#10037: Moved ReviewMetricsSynchronizer to Crucible package and made some improvements to its internal structure 26.07.16 14:31
CR#10037: Updated aggregation strategy of open reviews so each review is only counted once, even over multiple files 26.07.16 13:04
CR#10203: Fixed "field could be made final" for Java interfaces 26.07.16 12:16
CR#10200: Rename pathRestriction -> subPath (1) 26.07.16 11:35
CR#10172: Removed unwanted colons from headers in the commit view of the activity perspective 26.07.16 11:20
CR#9838: Fix: only one color of a threshold is specified in a corridor 26.07.16 11:14
CR#0: Fix findings 26.07.16 11:01
CR#9838: minor improvement 26.07.16 10:56
CR#10199: Mail notifications do now support starTLS 26.07.16 10:52
CR#9533: working on developer feedback 26.07.16 09:50
CR#9838: Amend last commit 26.07.16 09:38
CR#9838: minor refactoring 26.07.16 09:05
CR#9838: Fix NPE 26.07.16 09:01

CR#9838: Added TODO 26.07.16 16:38
CR#9838: Adjust naming 26.07.16 15:33
CR#9533: RED 26.07.16 15:13
CR#9533: GREEN 26.07.16 15:12
CR#10181: Added new finding for deprecated classes, methods and fields 26.07.16 14:43
CR#10037: Moved ReviewMetricsSynchronizer to Crucible package and made some improvements to its internal structure 26.07.16 14:31
CR#10037: Updated aggregation strategy of open reviews so each review is only counted once, even over multiple files 26.07.16 13:04
CR#10203: Fixed "field could be made final" for Java interfaces 26.07.16 12:16
CR#10200: Rename pathRestriction -> subPath (1) 26.07.16 11:35
CR#10172: Removed unwanted colons from headers in the commit view of the activity perspective 26.07.16 11:20
CR#9838: Fix: only one color of a threshold is specified in a corridor 26.07.16 11:14
CR#0: Fix findings 26.07.16 11:01
CR#9838: minor improvement 26.07.16 10:56
CR#10199: Mail notifications do now support starTLS 26.07.16 10:52
CR#9533: working on developer feedback 26.07.16 09:50
CR#9838: Amend last commit 26.07.16 09:38
CR#9838: minor refactoring 26.07.16 09:05
CR#9838: Fix NPE 26.07.16 09:01

Version
Control
System

Git

SVN

TFS

Issue 
Tracker

JIRA

Azure
DevOps

GitHub

Test 
Coverage

JaCoCo

NCover

gcov

Issue Test Gap



Benefit Analysis of TGA



Test

%RemainingBugs



%RemainingBugs = %Tested ∗ TestIneffectiveness +%Testgap



%RemainingBugs = %Tested ∗ TestIneffectiveness +%Testgap

Bugs in untested code



Bugs found by testing

%RemainingBugs = %Tested ∗ TestIneffectiveness +%Testgap

Bugs that testing missed,
despite running through this code



Paper published at Workshop on Automation of Software Test, 2013.



How Many Changes Remain Untested?

Study: C# System @ Munich Re

Release A: 
15% Code new/modified, 
>50% untested

Release B: 
15% Code new/modified,
>60% untested

Eder, Jürgens, … Did We Test Our Changes? Assessment btw. Tests & Development in Practice, AST@ICSE 2013

Tested
ChangesTested

Unmodified
Code

Untested
Changes

Probability of remaining field bugs is 5x higher in untested changes!



%RemainingBugs = %Tested ∗ TestIneffectiveness +%Testgap
W

ith
ou

tT
es

t G
ap

 A
na

ly
si

s



%RemainingBugs = %Tested ∗ TestIneffectiveness +%Testgap
W

ith
ou

tT
es

t G
ap

 A
na

ly
si

s

50% Testgap



%RemainingBugs = 50% ∗ TestIneffectiveness +%Testgap
W

ith
ou

tT
es

t G
ap

 A
na

ly
si

s

50% tested



Bugs found by testing

%RemainingBugs = 50% ∗ TestIneffectiveness + 50%
W

ith
ou

tT
es

t G
ap

 A
na

ly
si

s

20%80%



Bugs found by testing

%RemainingBugs = 50% ∗ 20% + 50%
W

ith
ou

tT
es

t G
ap

 A
na

ly
si

s

20%80%



Bugs found by testing

%RemainingBugs = 10% + 50%
W

ith
ou

tT
es

t G
ap

 A
na

ly
si

s

20%80% 50% Testgap



Bugs found by testing

%RemainingBugs = 60%
W

ith
ou

tT
es

t G
ap

 A
na

ly
si

s



%RemainingBugs = %Tested ∗ TestIneffectiveness +%Testgap

W
ith

Te
st 

G
ap

 A
na

ly
si

s

Bugs found by testing

%RemainingBugs = 60%
W

ith
ou

tT
es

t G
ap

 A
na

ly
si

s



%RemainingBugs = 90% ∗ 20% + 10%

Bugs found by testing

%RemainingBugs = 60%

10%

Bugs found by testing

W
ith

ou
tT

es
t G

ap
 A

na
ly

si
s

W
ith

Te
st 

G
ap

 A
na

ly
si

s



%RemainingBugs = 18% + 10%

Bugs found by testing

Bugs found by testing

%RemainingBugs = 60%
W

ith
ou

tT
es

t G
ap

 A
na

ly
si

s
W

ith
Te

st 
G

ap
 A

na
ly

si
s



%RemainingBugs = 28%

Bugs found by testing

Bugs found by testing

%RemainingBugs = 60%
W

ith
ou

tT
es

t G
ap

 A
na

ly
si

s
W

ith
Te

st 
G

ap
 A

na
ly

si
s



Test Gap Analysis reduced field bugs in applications of Munich Re by ½ 

Remaining Field Bugs = 𝟓𝟎%



Test Intelligence

» Where are untested changes? «

» Which tests are most/least valuable now? «» Where are most bugs? «

TicketsVersion History Test Coverage









https://www.technica-engineering.de/produkte/bts-body-electronic-test-system/



Test Intelligence

» Where are untested changes? «

» Which tests are most/least valuable now? «» Where are most bugs? «

TicketsVersion History Test Coverage
per Test Case

















… 4000+ Test Cases 
without Coverage





Step 1: Selection of Impacted Tests



Step 1: Selection of Impacted Tests



Step 1: Selection of Impacted Tests



Step 2: Prioritization of Impacted Tests



Step 2: Prioritization of Impacted Tests



Step 2: Prioritization of Impacted Tests

Change coverage

Execution time



Step 2: Prioritization of Impacted Tests





1 % 80 %



2 % 90 %



In
iti

al
 R

ec
or

di
ng

 o
fa

ll 
Te

sts

Execution of
All Tests

Coverage & Runtime
of All Tests

Test-Impact Analysis



In
iti

al
 R

ec
or

di
ng

 o
fa

ll 
Te

sts

Coverage & Runtime
of All Tests

Test-Impact Analysis

Te
st 

Ex
ec

ut
io

n
af

te
r C

ha
ng

es

VCS Code Changes

Execution of
All Tests



In
iti

al
 R

ec
or

di
ng

 o
fa

ll 
Te

sts

Coverage & Runtime
of All Tests

Te
st 

Ex
ec

ut
io

n
af

te
r C

ha
ng

es

VCS Code Changes Ordered List of Impacted Tests

Test Selection

Test Prioritization

Test-Impact Analysis

Test-Impact Analysis

Execution of
All Tests



Isn‘t there a simpler option?







Pareto Testing: 80/20 Optimization



Why is there potential for optimization?















Test: Gaussian Blur



Test: Motion Blur



Test: Lens Blur



Test: Smart Blur



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 40 80

Re
la

tiv
e 

C
ov

er
ag

e

Relative Runtime

Time vs Code Coverage



Test: Create and Modify 
Selection



Test: Change View Settings



Test: Second Layer



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 40 80

Re
la

tiv
e 

C
ov

er
ag

e

Relative Runtime

Time vs Code Coverage
Test Create and 
Modify Selection

Test Gaussian Blur





6 % 80 %



11 % 90 %



Continuous Recording of all Tests

Coverage & Runtime
of All Tests

CI Pipeline

VCS Code Changes Ordered List of Impacted Tests

Test Selection

Test Prioritization

Test-Impact Analysis

Test-Impact Analysis

Execution of
All Tests



Ordered Subset
of Tests

Test-Selection

Test-Prioritization

Pareto-Analysis

Pareto-OptimizationSingle Recording of all Tests

CI Pipeline

Coverage & Runtime
of All Tests

Execution of
All Tests



Test-Impact-Analysis

Test selection w.r.t. code changes

90% of bugs found in 2% time

Requires continuous recording of
coverage and tight integration with
test automation framework.

Higher speedup & higher effort

Pareto-Optimization

Tests selection independent of code changes

90% of bugs found in 11% time

Record coverage once (per quarter)

Smaller effort & higher applicability



Evaluation: what‘s the benefit?
How much test time can we expect to save?



Runtime of 
selected tests

1 day

Runtime of all tests



All Tests
without TIA



On 93% of all days: test runtime < 17%

!

< 
20

m
in

< 
40

m
in

< 
1h

< 
2h

< 
3h

< 
4h

< 
5h

< 
6h

< 
7h

< 
8h

< 
9h

< 
10

h

< 
11

h



0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Re
la

tiv
e 

M
et

ho
d 

C
ov

er
ag

e

Relative Test Runtime

Pareto

We achieve 99,2% relative method coverage with just 1h of test runtime.

Comparison to TIA

Contains at least one impacted test
in all cases.

Contains 17% of impacted tests
on average.

!



Using TIA

Before the Pilot: nightly „Re-run all“

Feedback only on the next day

Build Test



Using TIA

Fast feedback during the day: TIA Timeboxing

First feedback on checked in changes within 2h.

Build Test max. 1h



Using TIA

Still: nightly „Re-run all“, to update TIA data in Teamscale

Fast feedback during the day: TIA Timeboxing

First feedback on checked in changes within 2h.

Build Test max. 1h



Using Pareto Testing

Fast feedback during the day: Pareto Timeboxing

First incomplete feedback on checked in changes within 2h.

Build Test 1h

Still: nightly „Re-run all“

Per quarter year: update Pareto test list



Test Intelligence

» Where are untested changes? «

» Which tests are most/least valueable now? «» Where are most bugs? «

TicketsVersion History Testwise Coverage



Test Intelligence

» …? «

TicketsVersion History Testwise Coverage









Happy to meet you
during the breaks!

Jakob Rott · rott@cqse.eu · +49 172 186 0190

CQSE GmbH
Centa-Hafenbrädl-Straße 59
81249 Munich

slides: cqse.eu/2022/ucaat


