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Abstract—Existing research has demonstrated promising re-
sults when applying large language models (LLMs) to detect
security vulnerabilities in source code. However, these studies
have been exclusively evaluated on benchmarks from open-source
systems, using publicly known vulnerabilities that are likely part
of the LLMs’ training data. This raises concerns that reported
performance metrics may be inflated due to data contamination,
providing a misleading view of the models’ actual capabilities.

In this paper, we quantify this effect with a case study that
evaluates five frontier LLMs on two carefully curated datasets:
CWE-Bench-Java (an open-source dataset) and TS-Vuls (based
on a closed-source commercial codebase). To provide a second
angle, we also split CWE-Bench-Java by CVE record date to
explore temporal contamination based on LLM knowledge cutoff
dates.

Our results reveal that the average F1 score dropped by
approximately 20 percentage points when comparing the open-
source to the closed-source dataset. Additionally, the precision
drops from 56% to 34% on average, which is statistically
significant (p < 0.05) for four of five models. This declining trend
is consistent across all tested LLMs and metrics. In contrast,
the results for the temporal split on the open-source data are
inconclusive, suggesting that using a knowledge cutoff may reduce
but does not ensure the elimination of contamination effects.

Although our study is based on a single closed-source system
and thus not generalizable, these findings provide the first empir-
ical evidence that evaluating LLM-based vulnerability detection
on open-source benchmarks may lead to overly optimistic results.
This motivates the inclusion of closed-source datasets in future
LLM evaluations.

Index Terms—security, large language models, data contami-
nation, static application security testing, security vulnerabilities

I. INTRODUCTION

Advances in language and code processing enabled by
progress in large language models (LLMs) have significantly
shaped the landscape of software engineering research and
enabled new approaches that have not been possible before [|1]].
Still, while we understand LLMs in terms of data structures,
model architectures, training data and algorithms, we currently
have no deep understanding of the capabilities and limitations
of those models. The sheer size, the stochastic evaluation strat-
egy, and variations in model training lead to a situation where
it is impossible to formally deduce if a model can address

a certain task. Instead, evaluation based on benchmarks has
become the de-facto standard to determine the fitness of a
model for a certain task.

A. Static Security Analysis

Static security analysis is one of the areas where LLMs
have been applied recently [2]-[6]. With the constant rise
of cybercrime [7] and a growing number of known software
vulnerabilities, as indicated by the rise of CVE entries [8]],
static application security testing (SAST) becomes an in-
creasingly important ingredient for maintaining and improving
system security during software development. Additionally,
many compliance frameworks, including NIS2 (Network and
Information Security Directive 2 [9]]) or DORA (Digital Oper-
ational Resilience Act [[10]]), effectively mandate the inclusion
of SAST tools in the software development process.

The shift from traditional analysis based on program parsing
and analysis, data-flow graph analysis, and similar techniques
to LLM-based approaches is driven by the goal to cover a
wider range of vulnerability patterns and improve precision
and recall [3]. While existing work reports positive results,
those approaches have been primarily evaluated on benchmark
data distilled from open-source systems (see Section [VII).

B. Threats of Evaluation on Open-Source Projects

Due to the availability of large amounts of data, empirical
research and evaluations in software engineering are often
based on open-source software systems. This can be a potential
threat to validity, as open-source systems might be developed
differently from commercial ones and hence exhibit different
properties [|11].

However, when evaluating LLM-based approaches on open-
source projects, there is another effect that may impact the
transferability of research results, namely the training bias
towards open-source systems. Open-source projects are well-
known to be a huge part of the training data used for the
initial training of LLMs [[12], while closed-source projects
(due to their nature of being closed) are not used for training
of frontier LLMs. Additionally, meta information outside of
the core project (such as third-party blog posts, vulnerability



reports, tutorials, etc.) is available on the Internet and thus
potentially used for LLM training.

This training bias can affect the output of LLMs, as ob-
served by [13[], where LLMs were found to have a strong
output preference for programming languages and libraries
used in an open-source context, even when applied in a closed-
source setting, despite the availability of more appropriate
alternatives.

Similarly, an evaluation of LLM-based approaches using
samples from open-source systems can lead to a situation
where the same samples that were used for training the LLM
are then used for the evaluation. This situation, where the
training data already contains full or partial answers to the
exact questions passed to the LLM, is often referred to as
data contamination [14]], [[15].

This might give LLM-based approaches a head start when
evaluated on open-source systems, as the relevant patterns
could be partially encoded in the LLM’s model weights.
This is different from closed-source/commercial development,
where typically the code and also accompanying information
are not provided publicly, but only to internal teams or
(partially) to customers, e. g. security information.

Due to this effect, approaches based on LLMs may overper-
form when evaluated on open-source systems, while showing
degraded performance on closed-source codebases.

C. Contribution and Results

This paper studies and quantifies the effect of one specific
task, namely the identification of security vulnerabilities in
source code. We perform a case study to get insights into
the differences in performance of LLMs in security analysis
between open-source and a closed-source system. We demon-
strate how state-of-the-art LLMs exhibit statistically significant
differences in precision, recall, and F1 score when evaluated
on samples from open-source systems (which are likely in the
LLM’s training data) compared to an evaluation on samples
from a commercial closed-source software system (which was
not part of the training data).

Our main result is that, on average, the used LLMs solve
the selected vulnerability detection task on the open-source
benchmark with a precision of 56%, while for the closed-
source system, precision drops to 34%. This drop in result
quality is consistent across all LLMs and metrics (precision,
recall, F1 score). This also does not change when focusing
on individual vulnerability classes in most of the chosen
LLMs. Additionally, we observe a slight drop in performance
metrics on vulnerabilities in the open-source benchmark that
were fixed and recorded after their knowledge cutoff date,
compared to the performance on those recorded and patched
before this date (and hence, most of the solutions to remediate
vulnerabilities and fix-related reports cannot be part of the
training data).

We acknowledge that a case study based on one single
closed-source system does not generalize to all closed-source
systems, as the studied system could be an outlier. Yet, we are
convinced that with more studies like ours, the community will

get a better feeling for the capabilities of LLMs in industrial
contexts.

II. METHODOLOGY
A. Dataset

To investigate the impact of data contamination on LLM-
based vulnerability detection, we used two datasets represent-
ing different exposure levels to public training data.

1) Dataset Source:

a) CWE-Bench-Java: CWE-Bench-Java [16] is an open-
source benchmark that consists of 120 open-source Java
projects. The sizes of these projects span from 511 to 7.7
million Source Lines of Code (SLOC), with an average size
of approximately 280 thousand SLOC. Each project contains a
Common Vulnerabilities and Exposures (CVE)-recorded vul-
nerability and detailed information on how this vulnerability
was fixed [16]. In this dataset, the featured vulnerability
classes are CWE-22 (Path Traversal), CWE-78 (OS Com-
mand Injection), CWE-79 (Cross-Site Scripting), and CWE-94
(Code Injection). Furthermore, we excluded 20 projects due to
technical problems, such as LLM context window limitation
(if a project features extraordinarily big files) or missing access
to the full commit history of a project. In the end, 100 CWE-
Bench-Java samples remained for our study.

b) TS-Vuls: To create a basis for comparison that is free
from potential data contamination, we constructed a closed-
source dataset called 7'S-Vuls. This dataset is derived from the
source code of Teamscale, a commercial continuous software
quality analysis tool developed by CQSE GmbH. The system
has a history of more than 10 years, consists of over 1.7 million
lines of Java and TypeScript code, and is developed by a team
of more than 30 people. It monitors code quality, detects test
gaps, and provides feedback to developers [17]]. CQSE uses the
issue tracking tool Jira to report bugs in the Teamscale source
code as tickets. Each ticket concerning a security bug contains
detailed information, including the corresponding fix commits
and records of the subsequent review processes. Due to
Teamscale’s closed-source nature, these security issues are not
publicly recorded as CVEs. Therefore, these vulnerabilities are
not assigned specific CWE identifiers internally, which makes
it necessary to implement the broader classification scheme
discussed in the section. However, every vulnerability
included in the TS-Vuls dataset has been validated by either
internal or external security experts and fixed by experienced
software engineers.

2) Dataset Design: We refer to each documented vulnera-
bility in our datasets as a sample. Each sample includes the
necessary metadata to reproduce and evaluate one specific
vulnerability within a single project as follows:

e git_repository — The full git repository where
the vulnerability exists, including its complete commit
history and codebase.

e vul_commit — A specific commit hash that points
to a state of the repository where the vulnerability is
present and observable. Our data sources, such as the



TABLE I
CWE-BENCH-JAVA AND TS-VULS

Vulnerability Type =~ CWE-Bench-Java  TS-Vuls
Access Control 46 25
Injection 54 10
Total 100 35

original CWE-Bench-Java dataset and Teamscale vulner-
ability reports, do not provide information about the exact
commit that introduced a vulnerability for the first time.
Therefore, it is not feasible to determine the exact com-
mit that introduced the vulnerability. Consequently, the
vul_commit is not necessarily the one that introduced
the security flaw, but can be any commit between its
introduction and the fix.

e fix commits — The set of one or more commits that
contain the expert-provided fix for the vulnerability.

e fix_methods - The set of all methods that were
modified as part of the fix_commits. Each method is
uniquely identified by its name, class, and file path.

e fix_files — The set of all source code files that
contain at least one of the fix methods.

e cve_year — The year in which the CVE record associ-
ated with the vulnerability was officially published.

This design ensures that every sample is fully reproducible
and that the code locations relevant for the vulnerability and
its repair are unambiguously defined.

3) Vulnerability Types: We categorize all vulnerabilities
into two high-level types: Access Control and Injection. This
grouping is necessary because the closed-source dataset TS-
Vuls does not contain a sufficient number of samples for the
specific CWE types represented in CWE-Bench-Java. This
limitation arose from the difficulty of assigning precise CWE
identifiers to internal vulnerabilities, which lack public CVE
records.

To ensure categorical comparability between the two
datasets, we adopted this higher-level classification inspired
by the CWE Mapping and Navigation Guidance [[18]], which
organizes individual CWEs into a comprehensive hierarchical
structure. Following this hierarchy, we mapped the specific
vulnerabilities from CWE-Bench-Java to our broader cate-
gories. CWE-22 was assigned to the Access Control class
because it deals with the improper limitation of a pathname to
a restricted directory. The remaining three, CWE-78, CWE-
79, and CWE-94, are all classic examples of Injection flaws;
hence, they were categorized as the Injection class. The
vulnerabilities in TS-Vuls were similarly classified into these
two categories, creating a consistent basis for comparison. The
resulting dataset configurations are detailed in Table

4) Temporal Split in Open-Source Dataset: Furthermore,
in order to add a second data point for our analysis, we
partition the CWE-Bench-Java dataset into two temporal sub-
sets. This partition is based on the publication year of the
CVE record associated with the vulnerability in each sample,

TABLE II
CVE RECORD PERIOD BREAKDOWN FOR CWE-BENCH-JAVA

Group CVE reported before 2023 ~ CVE reported 2023 onwards
Access Control 37 9
Injection 44 10
Total 81 19

which we refer to as cve_year. The first subset (CVEs
before 2023) includes vulnerabilities whose CVE records were
published before 2023 (cve_year < 2023). The second
subset (CVEs from 2023 onwards) contains vulnerabilities
with CVE records published in 2023 or later (cve_year >=
2023).

This division aligns with the knowledge cutoff dates of our
chosen LLMs (see[Table III). In particular, vulnerabilities, their
corresponding fixed code, and such CVE records published
before 2023 may have been part of the training data of
those LLMs because a public CVE record is usually disclosed
after public references (vulnerability details and fix commits)
become available [[19]. In contrast, the 2023 onwards subset
represents more recent CVE records and corresponding fixed
code, potentially not seen by the LLM. Moreover, this subset
contains only one vulnerability with a CVE record in 2024,
which LLMs with 2023 knowledge cutoffs would not have
seen during training, while it potentially falls within the
training data of the Claude models, whose cutoff dates are
in 2024. Nevertheless, we retain the sample to ensure the full
CWE-Bench-Java dataset is used consistently in all analyses,
thus avoiding discrepancies in sample size between different
parts of our study.

With this consideration in mind, the temporal split allows
us to assess whether LLMs perform better on vulnerabilities
whose CVE reports and patched code were likely present in
their pre-training data, compared to more recent vulnerabili-
ties (2023 onwards). Such recent vulnerabilities have expert-
provided fixes and associated CVE reports that were published
after the models’ knowledge cutoff date, meaning these details
were not available during training. The final counts for this
configuration are presented in Table

B. Vulnerability Detection with LLMs

The primary task for the LLM is to perform fine-grained
vulnerability localization at the method level. For each vul-
nerability sample, we provide the LLM with the content of
all source code files that were eventually modified by the
expert fix (fix_files), extracted from the state of the
repository where the vulnerability is present (vul_commit)
(see for the overview of our approach). The LLM
aims to analyze these files and identify the precise set of
methods that must be modified to remedy the vulnerability.
We define the ground truth for this task as the set of expert-
modified methods (i.e., fix_methods).

For example, shows the vulnerability reported in
CVE-2018-1002201, which is one of the samples from the
CWE-Bench-Java dataset. In this sample, the expert’s fix is



located only in a single method. Therefore, the ground truth
for this sample is the process method.

File path: zeroturnaround/src/main/java/org

ZfI;fHLNdL(jMd zip/ZipUtil. jave
ZipUtil {

process (InputStream in,
IOException {
String root = getRootName (zipEntry.getName ()) ;

ZipEntry zipEntry)

(rootDir == ) {
rootDir = root;
}
(!rootDir.equals (root)) {
ZipException ("Unwrapping _with _multiple
roots _is,_not_supported, roots: " + rootDir + ",
" + root);

}

String name = mapper.map (getUnrootedName (root,

zipEntry.getName ()));
(name != ) |
File file = File (outputDir, name);
START VULNERABILITY FIX
(name.indexOf ("..") != -1 && !file.
getCanonicalPath () .startsWith (outputDir.
getCanonicalPath())) {

ZipException ("The _file "+name+" is _,
trying to_leave_the_target _output directory,,
of "+outputDir+". Ignoring,_this _file.");

END VULNERABILITY FIX

(zipEntry.isDirectory()) {
FileUtils.forceMkdir (file);
}
{
FileUtils.forceMkdir (file.getParentFile());

(log.isDebugEnabled () && file.exists()) {
log.debug ("Overwriting_file ' {}’.", zipEntry.
getName () ) ;
}

FileUtils.copy (in,
}

file);

}

Listing 1. The Zip Slip vulnerability is fixed by disallowing file names
containing the relative traversal string "..". Since this fix spans only one
method, the sample’s set of £ix_methods contains exactly that method.

This approach was designed as a pragmatic solution to
two key challenges. First, an ideal scenario would involve
providing the entire code repository to an LLM for analysis.
However, this is prevented by the context window limitations
of current LLMs. Second, many security vulnerabilities are
not confined to a single function but result from complex in-
teractions across multiple methods or files [20]. Our approach
approximates a realistic detection scenario by providing the
necessary context for identifying such vulnerabilities, framing
the task as a focused analysis within a pre-scoped set of
relevant files. It is also important to note that the location of a
fix may not always be unique. For instance, a vulnerability in
a method A that is called by method B could be remediated
in either A or B. Since our ground truth is defined by the
specific human-implemented patch, our evaluation measures
the LLM’s ability to identify that particular solution. We
acknowledge, however, that other valid and semantically dif-
ferent fixes may exist.

Prompt

fix_files Template

checked out at
vul_commit

Vulnerable |
Methods

Fig. 1. High-level overview of the vulnerability detection pipeline

C. Pipeline

Figure [1] illustrates our automated pipeline for evaluating
LLM-based vulnerability detection. The pipeline processes
each vulnerability sample by executing a sequence of steps,
from data preparation to the final calculation of performance
metrics.

a) Input Data Preparation: For each sample, the pipeline
first checks out the specific commit (vul_commit) from the
git repository to ensure the code is in its vulnerable state. It
then reads the full content of all source files listed in fix_files.

b) Prompting: This phase embeds all retrieved
fix_files within a standardized prompt that instructs the
LLM on its task and required output format.

c) API Interaction: This step sends the complete prompt
as a single request to the respective LLM vendor’s API. We
used commercial APIs from vendors that are under contract
with CQSE GmbH.

d) Response Processing: Upon receiving the response,
this module parses the structured JSON output to extract the
list of methods the LLM identified as vulnerable. It then
compares this list against the ground-truth fix_methods. This
comparison is used to calculate the number of true Positives
(TPs) and False Positives (FPs) for that sample.

e) Metrics Calculation and Export: This phase aggre-
gates the total counts of TPs and FPs across all samples.
These aggregated values are then used to compute the overall
precision, recall, and F1 score for the model’s performance on
the dataset.

D. Prompts

To ensure a consistent evaluation across all LLMs, we
used a single, standardized prompt that combines role-setting
instructions, the specific analytical task, and a strict JSON
output format (see [Listing 2). This is because not all LLM
vendor APIs support a distinct system prompt.

The prompt instructs the LLM to act as a security expert
and analyze a given set of Java files for vulnerabilities that
may span multiple methods. It requires the model to return its
findings in a raw JSON format. However, Gemini 1.5 Pro had
issues returning a well-formatted JSON string when given the
standard prompt used for the other models. To resolve this, we
added detailed instructions about the JSON format to ensure
the model would comply with the expected output format for
our evaluation framework. Lastly, the full code of the chosen
fix_files for each sample was appended to this prompt in
each single request.



system_prompt :

You are a security expert specialized in analyzing Java
code for vulnerabilities. Your task is to identify
security vulnerabilities that may span across multiple
methods and files. For each vulnerability you find, you
must specify all methods that are part of the
vulnerability pattern, using their exact names as they
appear in the code. Note that you may return 0 or more
vulnerabilities in your response. Be accurate and avoid

false positives, while also ensuring you do not miss

any vulnerabilities.

analysis_instruction:
Analyze the following Java files for security
vulnerabilities. A single vulnerability may involve
multiple methods that need to be fixed together. Return
your response as raw JSON without any markdown
formatting. The response must follow this exact format:
{
"1lm vuls": [
{
"1llm_fix_methods": [
{
"method_name":
"class_name":
"file _path":

"exactMethodNameWithoutSignature",
"fully.qualified.ClassName",
"exact/path/to/File. java"

"method_name":
"class_name":
"file_path":

"anotherMethod",
"another.qualified.ClassName",
"another/path/to/File. java"

Listing 2. Input prompt template

III. EVALUATION SETUP

This section details the experimental design used to evaluate
the impact of data contamination in LLM vulnerability detec-
tion. We outline the research questions that guide our study,
the metrics used for performance evaluation, the statistical
methods for analysis, and the selection and configuration of
the LLMs.

A. Research Questions

It is a significant challenge for security teams in industry to
determine how reliable LLMs are at detecting vulnerabilities
in a closed-source project compared to their widely reported
performance on open-source benchmarks. This uncertainty
arises from a methodological limitation in prior research —
its reliance on open-source benchmarks for evaluation, which
come with the risk of data contamination.

To systematically investigate this issue, we present a com-
parative analysis. As our evaluation of proprietary code is
based on a single industrial system, our study can be viewed
as a case study. This case study aims to provide insight for
future research on the aspect of data contamination in LLMs.
Our study is guided by the following research questions:

1) RQ1 (Dataset-level data contamination impact): How
large is the difference in the effectiveness when the same
state-of-the-art LLMs are evaluated on (i) a public open-
source benchmark (100 open-source systems) and (ii)

a specific proprietary industrial codebase (1.7 million
LOC)?

2) RQ2 (Class-level data contamination impact): How
large is the performance difference between open-source
and closed-source datasets for each vulnerability class?

3) RQ3 (Temporal data contamination impact): How do
LLMs’ vulnerability detection capabilities vary based
on whether vulnerabilities are fixed and reported be-
fore or after their training cutoff dates on the open-
source dataset? The rationale here is that better LLM
performance on data before the cutoff date ("seen” data)
compared to those after this date ("unseen” data) can
further support the data contamination hypothesis.

B. Evaluation

1) Metrics: To evaluate the performance of each LLM, we
adopt the standard metrics of recall, precision, and the F1
score. These metrics are computed based on true positives and
false positives at the sample level.

For each sample 4, let r; denote the repository at commit
vul_commit;, and define the set of Java methods as

M; = {m | m is a Java method in r;}.

Let Fé denote the set of fix commits (fix_commits;), and
define the ground truth set of fixed methods as

Fi, = {m € M; | m is modified in any ¢ € F},}.

An LLM’s response for sample ¢ consists of zero or more
predicted vulnerabilities. When evaluating a specific LLM L,
we denote its response by

Rz(‘ﬁ) = {Vzgf)v A szfz}’ szgﬂ) < M;,

where 7 is the index for each distinct vulnerability predicted
by the LLM for that sample, and n; represents the total
number of such predictions for sample <. Each Vl(f) denotes
a predicted vulnerable method set. Each sample contains one
vulnerability, but the LLM is not limited to returning only one
vulnerability; hence, it may return multiple vulnerabilities with
their methods that are related to such vulnerabilities (i. e., the
methods have to be fixed to patch the vulnerability).

True Positives (TP): We define the number of true positives
for sample ¢ with respect to £ as follows:

TR(s) = Lﬁﬂﬁm%¢&
0, otherwise.

In other words, if the LLM returns at least one pre-
dicted vulnerable method that is included in the ground truth
fix_methods; for sample %, it is counted as a true positive.
We acknowledge that this creates a less strict success criterion,
making the task easier since it requires only one overlapping
method instead of an exact match of all methods involved in
the fix.



TABLE III
LLMS SELECTED FOR THE EXPERIMENT

Model Vendor Knowledge Cutoff | Context Window
GPT-40 OpenAl October 2023 128,000 tokens
03-mini OpenAl October 2023 128,000 tokens
Claude 3.5 Sonnet | Anthropic | April 2024 200,000 tokens
Claude 3.7 Sonnet | Anthropic | October 2024 200,000 tokens
Gemini 1.5 Pro Google November 2023 2,000,000 tokens

False Positives (FP): The number of false positives for
sample 7 with respect to L is defined as the count of predicted
vulnerabilities that do not overlap with the ground truth:

. L L 7
FP(i) = (V. | Vi n Fiy =0}

That is, every predicted vulnerability for sample ¢ that fails
to include any of the ground truth fix_methods; is counted
as a false positive. Unlike true positives, there may be more
than one false positive per sample.

Assuming n total samples, the evaluation metrics are defined
as:

Recall: Recall quantifies the ratio of successfully detected
vulnerabilities:

1 n
Recall ®) = = " TP(;
P
=1
Precision: Precision measures the accuracy of the flagged
vulnerabilities, defined as the ratio of true positives to the sum
of true positives and false positives:

£y _ i1 TP(4)
i1 (TP(i) + FP(i))
F1 Score: The F1 score combines precision and recall into
a single performance measure:

Precision’

Precision'”) - Recall*)
Precision'”) + Recall¥)

This balanced measure in the F1 score reflects both the
LLM’s ability to detect vulnerabilities and its precision in
flagging them.

2) Statistical Analysis: To determine if the performance dif-
ferences investigated in our research questions are statistically
significant, we employ the Wilcoxon-Mann-Whitney U test. It
is designed to examine if the distribution of a random variable
A differs from the distribution of another random variable
B by chance. In our case, a random variable A is either
of our three performance metrics (precision, recall, and F1
score) scored by an LLM L using a certain set of samples, for
example, the CWE-Bench-Java dataset. B* is analogous, but
based on a different set of samples, for example, TS-Vuls.

This non-parametric test is appropriate for our study as it
does not assume that the performance data (recall, precision,
and F1 scores) follow a normal distribution. It is designed to
compare two independent groups, which in our case are the
LLM performance scores on CWE-Bench-Java (open-source
dataset) versus the scores on the proprietary dataset TS-Vuls.

F1©) — 9.

A crucial aspect of our statistical analysis is that we do
not aim to test whether LLMs perform better on open-source
software versus proprietary software in general. Such a claim
would require a representative sample of many proprietary
systems. Instead, our statistical test is focused on the specific
datasets we constructed, for instance, multiple open-source
systems in CWE-Bench-Java vs. one closed-source system
(Teamscale) in the TS-Vuls dataset.

We formulate distinct null hypotheses for RQ1 and RQ3 to
align with the specific comparisons in each.

o For RQ1, which compares performance on public versus
private datasets, the null hypothesis is Ho rgi: The
distributions of LLM performance scores are the same
for CWE-Bench-Java (open-source dataset) and TS-Vuls
(closed-source dataset).

o For RQ3, which examines temporal data contamination
within a single public dataset, the null hypothesis is
Hy rgs: The distributions of LLM performance scores
are the same for vulnerabilities published as CVE records
before 2023 and those published from 2023 onward
within the CWE-Bench-Java dataset.

For both, we will reject the null hypothesis if the resulting
p-value is less than our chosen significance level of 0.05. A p-
value below this threshold would indicate data contamination
effects in our case study. Thus, our observed experimental
results are unlikely under Hj, thus, we reject it. Conversely,
if a p-value is above the threshold (p > 0.05), it means that
we do not have sufficient evidence to reject the null hypothesis
Hy. We apply this test to the results of each LLM for RQ1
and RQ3 by calculating separate p-values for precision (pp),
recall (pr), and the F1 score (pr1) to analyze the significance
for each metric individually.

C. LLM Selection and Setup

Different LLMs differ in architecture and training data,
and thus may vary in performance. Therefore, we evaluate
more than one LLM with our problem statement. The chosen
models are GPT-40, 03-mini, Claude 3.5 Sonnet, Claude 3.7
Sonnet, and Gemini 1.5 Pro. Furthermore, our LLM selection
was guided by two key properties. First, the context window
size had to be large enough to accommodate our prompts and
multiple Java files. Second, to answer RQ3, our selection was
driven by the need for models with specific knowledge cutoff
dates in 2023 and 2024, rather than simply choosing the latest
available model.

Access to the LLMs was provided through the official
APIs from the model providers. To minimize randomness
and improve reproducibility across all models, we set the
temperature parameter to 0.

IV. RESULTS

A. RQI: Dataset-Level Data Contamination Impact

As detailed in Table there was a significant performance
drop on the closed-source dataset. The F1 score was approxi-
mately 20 percentage points lower on the private dataset across
all models on average. This decline was not isolated to a



single model but was a consistent trend observed across all five
evaluated LLMs. The most significant decrease was observed
in Claude-3.5’s recall, which dropped from 0.75 on the public
benchmark to 0.40 on the private dataset, a relative decline of
approximately 47%.

A Wilcoxon-Mann-Whitney U test was used to assess the
statistical significance of these performance differences against
our null hypothesis Hy rg1, using a significance level of 0.05.
For Claude-3.5 and o3-mini, the drops in precision, recall,
and F1 score were all statistically significant (p < 0.05, thus
rejecting the null hypothesis). Although the change in recall
was not significant in Claude-3.7, the differences in precision
and F1 score were statistically significant (pp = 0.0209 and
pr1 = 0.0209, respectively). For GPT-4o, precision (pp =
0.0380) and recall (pr = 0.0351) differences were significant,
while the F1 score difference was not. Conversely, none of the
p-values were below the 0.05 threshold for Gemini-1.5 in all
metrics. We therefore did not reject the null hypothesis for
this model, meaning that none of the performance differences
for Gemini-1.5 were statistically significant.

B. RQ2: Class-Level Data Contamination Impact

We analyzed performance separately for Access Control and
Injection classes to understand if data contamination effects
varied by the type of vulnerability. The detailed results for
this comparison are presented in Table [V]

For the Access Control class, all evaluated LLMs demon-
strated a significant and consistent performance degradation on
the closed-source TS-Vuls dataset. The most substantial drop
was seen in GPT-40, whose F1 score fell from 0.80 to 0.45, a
44% relative decrease. Similarly, Claude-3.5’s recall dropped
by approximately 47% (from 0.76 to 0.40).

In contrast, the results for injection vulnerabilities were
more varied. While Claude-3.5, Gemini-1.5, and 03-mini ex-
perienced a performance drop on the closed-source dataset,
GPT-40 demonstrated a slight improvement across precision,
recall, and F1 score on the TS-Vuls samples.

In summary, the performance decline was considerably
greater for the Access Control than for the Injection class. The
average drop in F1 score for Access Control was 27 points,
whereas it was approximately 16 points for Injection. The gap
in recall was largest for Access Control, which decreased by
an average of 28.2 points, compared to only 14.8 points for
Injection.

C. RQ3: Temporal Data Contamination Impact

To analyze the temporal dimension of data contamination,
we partitioned the CWE-Bench-Java dataset into two subsets
based on the CVE reported year (before 2023 vs. 2023
onwards). As shown in Table all tested LLMs demon-
strated a consistent decline in performance when detecting
vulnerabilities recorded from 2023 onwards.

The most noticeable performance drops were observed in
03-mini and GPT-4o0. The F1 score in o3-mini fell by 26
percentage points (from 0.70 to 0.44), and that difference
was statistically significant (ppq1 = 0.0288). Similarly, its

recall decreased significantly by 25 points (pr = 0.0335). In
addition, GPT-40 exhibited a statistically significant decline
in recall (AR=0.22, pr = 0.0416). While the negative deltas
suggested a downward trend in Claude models, the evidence
was insufficient to reject the null hypothesis that performance
remains unchanged across the two temporal partitions. Further-
more, the recall in Gemini-1.5 Pro remained identical across
both temporal datasets, and none of the changes in its other
metrics were statistically significant.

In summary, while the negative deltas suggested a down-
ward trend, only GPT-40 and o3-mini exhibited statistically
significant degradation. This outcome contrasts with the find-
ings in RQ1, where performance degradation on the private
dataset was statistically significant for most of the evaluated
models on at least one metric. In other words, that temporal
data contamination affected fewer models than the dataset-
level contamination observed in RQ1.

V. DISCUSSION

A. Performance Inflation Through Data Contaminations in
Open-Source and Closed-Source Datasets

Our case study results from RQ1 and RQ2 provide strong
evidence that data contamination significantly inflates the per-
formance of LLMs in detecting vulnerabilities. We observed
a statistically significant decrease in detection effectiveness
across four evaluated LLMs when tested on the private, closed-
source TS-Vuls dataset, compared to the public CWE-Bench-
Java benchmark. Although our case study is limited to the
comparison between multiple open-source systems and our
closed-source system (Teamscale), this finding suggests that
assessing LLMs in vulnerability detection using open-source
benchmarks could be problematic by design and may yield
overly optimistic results.

B. The Limits of Temporal Cutoffs and Indirect Data Contam-
ination

Detection effectiveness was slightly better for CVEs re-
ported before 2023 than for those reported in 2023 and later
across our tested LLMs. Although there were a few differences
between models, those differences were marginal. Three of
the five evaluated LLMs showed no statistically significant
difference across this cutoff date boundary, whereas GPT-40
and 03-mini each exhibited a small but statistically significant
post-cutoff decline in specific metrics. When considering to-
gether, these outcomes present a mixed picture: a temporal
cutoff appears sufficient for some models, yet only partially
effective for others. This divergence likely stems from two
factors as follows.

First, the vulnerable code for some post-2023 CVE records
may have already existed in repositories before the knowledge
cutoff date, even though the CVE itself had not yet been
reported. The model may have been trained on these patterns
of vulnerable code, enabling it to detect the flaw even if it has
never seen the actual CVE record. Unfortunately, there was
no information available in terms of when a vulnerability was
exactly introduced in each sample in the CWE-Bench-Java



TABLE IV

DETAILED LLM PERFORMANCE COMPARISON: CWE-BENCH-JAVA (N=100) vs. TS-VULS (N=35).

CWE-Bench-Java TS-Vuls Delta p-value
LLM P R F P R Fl AP AR AF1 Pr PR Prl
Claude-3.5 0.46 0.75 0.57 0.22 0.40 0.28 0.24] 0.35) 0.29] 0.0002 0.0002 0.0002
Claude-3.7 0.39 0.74 0.51 0.26 0.57 0.35 0.13] 0.17) 0.15] 0.0209 0.0634 0.0209
GPT-40 0.67 0.76 0.71 0.45 0.57 0.51 0.21) 0.19] 0.20] 0.0380 0.0351 0.0851
Gemini-1.5 0.65 0.42 0.51 0.43 0.26 0.32 0.22] 0.16 0.19] 0.3242 0.0889 0.0957
03-mini 0.62 0.68 0.65 0.36 0.46 0.40 0.27] 0.22] 0.25] 0.0002 0.0199 0.0043
TABLE V C. Varying Susceptibility Across Vulnerability Types

CWE-BENCH-JAVA VS. TS-VULN IN CLASS-LEVEL.

Access Control

CWE-Bench-Java TS-Vuln Delta
LLM P R F1 P R F1 AP AR AFI
Claude-3.5 | 0.47 0.76 0.58 | 0.22 0.40 0.28 [0.25] 0.36] 0.30]
Claude-3.7 | 0.40 0.80 0.54 | 0.25 0.52 0.33 |0.16] 0.28) 0.20
GPT-40 0.76 085 0.80 | 0.39 0.52 0.45|0.37) 0.33] 0.36]
Gemini-1.5 | 0.64 0.50 0.56 | 0.44 0.32 0.37 |0.19/ 0.18] 0.19)
03-mini 0.68 0.70 0.69 | 0.34 044 0.39 |0.34] 0.26] 0.30)

Injection

CWE-Bench-Java TS-Vuln Delta
LLM P R F1 P R F1 AP AR AFI1
Claude-3.5 | 0.46 0.74 0.57 | 0.22 0.40 0.29 [0.24] 0.34] 0.28]
Claude-3.7 | 0.37 0.69 0.48 | 0.28 0.70 0.40 [0.09] 0.01/ 0.08]
GPT-40 0.59 0.69 063|064 070 0.67 |0.057 0.017 0.03
Gemini-1.5 | 0.66 0.35 0.46 | 0.33 0.10 0.15 [0.32] 0.25) 0.30)
03-mini 0.58 0.67 0.62 | 038 0.50 0.43]0.20, 0.17] 0.19)

dataset. Consequently, we cannot rule out that vulnerabilities
reported in 2023 or later were already present in the pre-
2023 code used for the models’ training. This means some
temporal contamination may persist. More specifically, while
the CVE reports and their corresponding fixed code for the
2023-onward group mostly appear after the models’ cutoff
dates, the vulnerable code itself may predate those cutoffs.
This is difficult to verify when the vulnerability-introducing
commit is unknown or the vulnerability emerged gradually
over time.

In addition, another plausible explanation is that a signif-
icant portion of the code created after 2023 may already be
influenced by content generated by LLMs, making it more
aligned with the training data of these models. The widespread
adoption of Al programming assistants like GitHub Copilot,
which was released in 2021, and ChatGPT, launched in late
2022, has likely accelerated this trend. Consequently, code
committed in 2023 and beyond may align more closely with
the training data distribution of these models, which could
obscure the true impact of using the knowledge cutoff date as a
strategy for mitigating data contamination in model evaluation.
The increasing popularity of these tools may worsen the risks
of data contamination, indicating that simply relying on more
recent data is not a guaranteed way to ensure a contamination-
free evaluation. Our findings also reinforce the conclusions of
previous studies in this field [21f], [22].

Our analysis reveals that the impact of data contamination is
not uniform across different types of vulnerabilities. GPT-4o,
the best-performing model on the public dataset with an F1
score of 0.71, experienced a significant 20-point drop on the
private dataset. A closer examination of the class-level results
indicates that this decline was primarily due to a considerable
drop in the F1 score, which fell by 35 percentage points (from
0.80 to 0.45) in Access Control vulnerabilities. Conversely,
the precision, recall, and F1 score for GPT-40 concerning
injection vulnerabilities showed a slight improvement on the
closed-source dataset. These differences suggest that data
contamination’s effects may be complex and vary between
vulnerability types, even for the same model.

VI1. THREATS TO VALIDITY

Like with any empirical study, while we attempted to design
the experiment in a way that controls a lot of variables, there
are still multiple potential threats to validity.

A. Internal Threats to Validity

A major threat is in the selection and design of the task
we analyzed. Due to the construction of LLMs, there is no
guarantee of continuity across tasks and prompts. We could
potentially get significantly different results for other tasks
from the software engineering domain or the same task stated
with a different prompt. Additionally, our prompt only includes
a subset of all files in the repository. Thus, while we include
all files in the prompt that were changed when fixing the
vulnerability, other potential files that are required to detect the
vulnerability could be missing. As the same task and prompt
construction have been used for both datasets, the specific
results remain valid. However, we cannot prove transferability
to other tasks from the same or similar domains.

B. External Threats to Validity

Most external threats are in the design of the dataset.
The main threat in dataset design is the selection of the
software systems from which the vulnerabilities have been
picked. While the open-source dataset covers a wider range
of repositories, the other dataset was assembled from a single
commercial system. In addition, while the commercial system
is large (over 1.7 million lines of code), the development team
and coding style are relatively consistent across the entire
codebase. Additionally, even though their development process
follows common best practices, like code reviews, usage of



TABLE VI
DETAILED LLM PERFORMANCE COMPARISON BETWEEN CVES RECORDED BEFORE 2023 (N=81) AND FROM 2023 (N=19) ONWARDS IN
CWE-BENCH-JAVA DATASET.

CVEs Pre-2023 CVEs 2023-Onwards Delta p-value
LLM P R F1 P R Fl1 AP AR AFI pp PR PF1
Claude-3.5 0.48 0.78 0.59 0.39 0.63 0.48 0.090 0.15] 0.11] 0.1352 0.1895 0.1352
Claude-3.7 0.39 0.75 0.52 0.35 0.68 0.46 0.04] 0.07, 0.054 0.3713 0.5438 0.3713
GPT-40 0.69 0.80 0.74 0.55 0.58 0.56 0.14] 0.22) 0.18) 0.2503 0.0416 0.0512
Gemini-1.5 0.68 0.42 0.52 0.53 0.42 0.47 0.15] 0.00 — 0.05. 1 0.9959 0.9879
03-mini 0.68 0.73 0.70 0.41 0.47 0.44 0.27] 0.25] 0.26 0.0898 0.0335 0.0288
g

SAST tools, and CI/CD, the commercial system could be
an outlier for completely different reasons. For example, the
contained vulnerabilities could be unusually complex, or the
system’s domain could be especially challenging for LLMs.

Consequently, the closed-source dataset cannot be assumed
to be representative of commercial development in general.
However, the results at least raise doubts about evaluations
that are based on samples only extracted from public sources
(like open-source systems). We cannot mitigate this threat, but
instead label our research as a case study and take care to not
overly generalize our findings.

Another threat is the choice of programming language
(namely Java). While the programming language for both
datasets was the same, results for other languages might differ,
especially if they are less strongly represented in the training
data of the LLMs.

Furthermore, a similar problem occurs in the distribution
across CWE classes, which is slightly different between the
two datasets. To mitigate this, we also report results for the
datasets split by CWE classes.

Finally, we included only a limited set of LLMs in our
evaluation and limited the experiment to a single prompt
template. While we used the same selection of LLMs and
prompts for all datasets, results could look different for other
LLMs (including future ones) or prompts. However, as we
included all of the so-called “frontier models” at the time of
the experiment, we expect results to only get worse when used
with other existing LLMs. The results might look different
when using an LLM that is specifically trained for security
analysis. However, our case study is explicitly about the usage
of general-purpose LLMs for vulnerability detection, as a lot
of work currently suggests the application of those to a wide
class of software engineering problems.

VII. RELATED WORK
A. LLM-Based Security Analysis

As mentioned in the introduction, using LLMs for the
detection of security vulnerabilities has been studied in mul-
tiple papers [2]-[6]], [30]. Those approaches rely on existing
LLMs, either from commercial providers or open-source/open-
weights LLMs, and use a detection pipeline similar to the one
in this paper. While those papers differ in the details, e.g.
some use additional fine-tuning on the models, there is one
commonality in the evaluation part. As can be seen in the
datasets used in those papers (which are listed in Table[VII), all

evaluations have been done purely on data from open-source
systems. Additionally, all but two of the datasets are publicly
available and could potentially be part of current or future
versions of LLM training data. Consequently, those papers
neglect the threat of data contamination (and most of them do
not even mention this threat). Contrarily, this paper focuses
on data contamination and introduces a closed-source dataset,
which is guaranteed to not be included in LLM training data.
This allows us to study and quantify the effect of assumed data
contamination when evaluating LLM-based security analysis.

B. The Effect of Data Contamination

Data contamination refers to test data having been part
of an LLM’s training dataset, which can lead to misleading
performance metrics due to overfitting. Additionally, if only
patterns from the training data are used for testing (due to data
contamination), we can not learn how an LLM will answer for
new patterns outside of the training data.

Many of the most powerful models have been trained
by commercial companies, with training data not publicly
disclosed. This makes it hard to estimate the amount of data
contamination when evaluating those models on different tasks
across research disciplines. Several publications have raised
concerns about the integrity of LLM evaluation approaches in
view of potential data contamination [31[|—[33|

To understand the true extent of the problem, re-
searchers started measuring data contamination effects quan-
titatively [21]], [34]]. For instance, it was found that LLMs
perform significantly better on publicly known coding assign-
ments than on new ones guaranteed not to have been part of
their training [35]. Similarly, there is proof that widespread
coding benchmarks such as MBPP or HumanEval have been
part of most LLMs training datasets [36]].

A similar study [37] compared the tasks of code completion
and code summarization between open-source and closed-
source code examples. In this study, no significant difference
was found for samples in the C# programming language, while
for C++, a statistically significant decline in performance for
the closed-source dataset was observed.

All the mentioned studies either explore tasks that are not
related to software engineering or focus only on source code
generation and summarization tasks. However, the extent and
effect of data contamination for analytical software engineer-
ing tasks and specifically vulnerability detection is largely
unexplored.



TABLE VII
DATASETS USED IN EXISTING RESEARCH

Name of dataset Reference  Public Based on Open Source Used in
OWASP benchmark [23] yes yes [21
SARD Juliet [24] yes yes [2]
CVEfixes [25] yes yes 21141
CWE-snippets 131 no yes [3]
JVD [26] no yes [31
Ponta et al. [27] yes yes [4]
VCMatch [28] yes yes [41]
Vul4) [29] yes yes [51
PrimeVul 6l yes yes (61
Real-Vul [30] yes yes [130]
Datasets for this paper o
CWE-Bench-Java [16] yes yes

TS-Vuls no no

This case study, in contrast, explicitly explores the effect
of data contamination on security vulnerability detection, as a
specific case of an analytical software engineering task. To do
this, we curated an industrial closed-source evaluation dataset
that is guaranteed to not have been part of the evaluated LLMs’
training data. Furthermore, we compare these results with per-
formance achieved on open-source CVEs to further contribute
to the understanding of LLMs’ generalization capabilities in
vulnerability detection.

VIII. CONCLUSION

This paper provides a case study on the performance of
LLMs for the task of security vulnerability detection. We com-
pared the results between two datasets, based on open-source
systems and a closed-source commercial system, respectively.
The outcome reveals a statistically significant difference in the
performance of the approach between those datasets across
four tested LLMs and observed metrics (precision, recall,
F1 score). While the extent of degradation varies between
the models and also between vulnerability classes, we see a
clear indication that performance on the selected closed-source
dataset is significantly worse, with a 0.2 drop in the F1 score
on average.

Obviously, comparing against a single system does not
allow generalization of these findings. Instead, we see this
as a first step for the community to get a better feeling for
the capabilities of LLMs in industrial contexts. Extending the
dataset with a more diverse set of closed-source systems and
re-evaluating with this extended dataset is an important next
step that we plan to pursue in future work.

To provide a second angle, we evaluated the performance
when filtering for vulnerabilities in the open-source system,
which were not known at the time the training data for the
LLM was assembled (cut-off date). The samples in this dataset
span more than 100 projects, and the same date was used for
all systems. Hence, the main difference in the dataset before
and after the cut-off date is the potential inclusion in the
LLMs’ training data. In our results, we observe a decline in

result quality for the samples published after the cut-off date.
Two out of five LLMs’ results were found to be statistically
significant.

Our temporal-split analysis based on the LLMs’ knowledge
cutoff date produced mixed results: some LLMs showed sta-
tistically significant performance declines in specific metrics,
while others exhibited no significant difference; thus, the
findings remain inconclusive. These results motivate a deeper
investigation into how much open-source-only benchmarks
might overstate real-world performance. The ultimate answer,
however, can only be given with more studies similar to ours.

DATASET AVAILABILITY

The open-source dataset we used is already available pub-
licly [16]. Contrary to common practice, we decided not to
publicly publish our closed-source dataset on the Internet.
The reason is not only that this dataset contains intellectual
property of CQSE GmbH, but also that by making the data
publicly available, we can no longer guarantee its exclusion
from LLM training data, which renders the dataset worthless
when it comes to measuring data contamination. However, to
allow reproduction and comparative studies, we will make the
dataset available to individual research groups. Please get in
touch with the author from CQSE to obtain the dataset.
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