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Abstract

Background Software underpins the digital infrastructure that sustains modern societies.
The importance and complexity of software systems necessitate rigorous testing to ensure
their quality and, in particular, their correctness. In industrial contexts, humans play a sig-
nificant role in software testing. They plan and conduct manual tests, make critical deci-
sions about test completion, and monitor for risks, for example, arising from untested code
changes. As software systems become more complex, the challenges of testing increase, con-
suming more time amidst limited resources. At the same time, compiling a test plan and
deciding when all risks have been mitigated are particularly demanding tasks for the hu-
mans involved.

Objective In this dissertation, we seek to optimize human-in-the-loop testing processes in
industrial practice by enhancing their efficiency and effectiveness. We target two optimiza-
tion levers: (1) adopting automated test optimization techniques to improve manual testing;
(2) supporting test management and quality assurance in the labor-intensive task of allo-
cating test effort and assessing test completion. To accomplish the former, we explore opti-
mization opportunities in manual testing, in particular, established optimization techniques
from automated testing. We strive to understand the prerequisites and limitations for their
transferability to existing manual testing processes, and how effective these techniques can
be. To realize the latter, we prioritize untested code changes according to estimated risk.

Methods and Results To achieve our objective, we have conducted a series of empirical
studies on human-in-the-loop testing, using methods such as field experiments and sam-
ple studies with industry partners. Manual test suites offer great optimization opportuni-
ties, since they often suffer from long run times—up to five person-months for our industry
partners. Based on historical data and stakeholder interviews with our industry partners,
we demonstrate the transferability and effectiveness of optimization techniques from auto-
mated to manual testing. Our results show that applying test case selection and prioritization
to manual testing captures up to 81% of failures while reducing execution time by 43%.

The second optimization lever addresses the labor-intensive code and test reviews which
our industry partners conduct to mitigate the risks of untested code changes. We explore
risk factors for code changes and propose a simple risk-based prioritization approach for
untested code changes. In our evaluation using historical quality assurance documents from
our industry partners, this approach was able to prioritize risky changes significantly higher
than less risky changes. Our studies have demonstrated the suitability and effectiveness of
the proposed solutions in practice, and after our studies, many subjects have been convinced
to adopt our solutions by embedding them in their testing process.
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Conclusion We demonstrate a variety of optimization opportunities and levers for human-
in-the-loop software testing. Our empirical studies provide evidence of the feasibility and ef-
fectiveness of our optimization techniques in industry contexts. This dissertation constitutes
a solid foundation for future research on human-in-the-loop testing processes and facilitates
adoption by practitioners through detailed optimization guidelines. Both are crucial contri-
butions to the future of software engineering.
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Zusammenfassung

Hintergrund  Software bildet das Fundament der digitalen Infrastruktur, auf der moderne
Gesellschaften aufbauen. Um die Softwarequalitdt und in erster Linie die Korrektheit dieser
bedeutenden und komplexen Softwaresysteme sicherzustellen, sind griindliche Tests uner-
lasslich. Im industriellen Kontext spielen Menschen im Softwaretesten eine wichtige Rolle.
Sie planen und fithren manuelle Tests durch, sie treffen kritische Entscheidungen tiber den
Testabschluss und sie tiberwachen Risiken, die beispielsweise durch ungetestete Codednder-
ungen entstehen. Mit der zunehmenden Komplexitidt von Softwaresystemen wachsen auch
die Herausforderungen beim Testen. Das Testen wird dadurch zeitaufwendiger, wahrend
die verfligbaren Ressourcen begrenzt bleiben. Besonders anspruchsvolle Aufgaben fiir die
beteiligten Personen sind das Erstellen eines Testplans und die Entscheidung, wann das
Testen abgeschlossen ist.

Ziele In dieser Dissertation zielen wir darauf ab, menschengestiitzte Testprozesse aus der
Industrie zu optimieren, indem wir die Effizienz und Effektivitdt des Testens steigern. Wir
konzentrieren uns auf zwei Hebel fiir die Optimierung: (1) die Ubertragung von Testoptimie-
rungstechniken fiir automatisierte Tests auf das manuelle Testen; (2) die Unterstiitzung des
Testmanagements und der Qualitdtssicherung bei der arbeitsintensiven Steuerung des Test-
aufwands und der Bewertung, ob das Testen abgeschlossen werden kann. Um Ersteres zu
erreichen, untersuchen wir Optimierungsméglichkeiten fiir das manuelle Testen, insbeson-
dere etablierte Optimierungstechniken aus dem automatisierten Testen. Wir versuchen zu
verstehen, unter welchen Voraussetzungen und mit welchen Einschrankungen sie auf beste-
hende manuelle Testprozesse tibertragen werden und wie effektiv diese Techniken dabei sein
koénnen. Fiir Zweiteres setzen wir auf eine risikobasierte Priorisierung ungetesteter Codedn-
derungen.

Methodik und Ergebnisse  Um unser Ziel zu erreichen, haben wir eine Reihe empirischer
Studien zu menschengestiitzten Testprozessen durchgefiihrt. Dabei kamen Methoden wie
Feldexperimente und Fallstudien mit Industriepartnern zum Einsatz. Manuelle Testsuiten
bieten vielfaltige Optimierungsmoglichkeiten, denn sie leiden hdufig unter langen Laufzei-
ten — bei unseren Industriepartnern dauert die Ausfithrung einer manuellen Testsuite bis zu
fiinf Personenmonate. Auf Grundlage historischer Daten und Stakeholder-Befragungen mit
unseren Industriepartnern zeigen wir, dass Optimierungstechniken wirksam vom automati-
sierten auf das manuelle Testen tibertragen werden kénnen. Unsere Ergebnisse demonstrie-
ren, dass die Auswahl und Priorisierung von Testféllen bis zu 81 % der Fehler bei manuellen
Tests erfasst und gleichzeitig die Ausfithrungszeit um 43 % reduziert.

Der zweite Hebel fiir die Optimierung adressiert arbeitsaufwendige Code- und Testre-
views, die unsere Industriepartner durchfiihren, um das Risiko ungetesteter Codednderun-



gen zu mindern. Hierfiir untersuchen wir Risikofaktoren fiir Codednderungen und schlagen
auf dieser Grundlage einen einfachen risikobasierten Priorisierungsansatz fiir nicht getestete
Codednderungen vor. Bei der Evaluierung anhand historischer Qualitédtssicherungsdoku-
mente unserer Industriepartner war unser Ansatz in der Lage, risikoreiche Anderungen
signifikant hoher zu priorisieren als weniger risikoreiche. Unsere Studien haben die Praxis-
tauglichkeit und Wirksamkeit der vorgeschlagenen Losungen bestétigt. Viele der Beteiligten
waren nach unseren Studien so {iberzeugt von unseren Losungen, dass sie diese in ihren
Testprozess integriert haben.

Schlussfolgerung  Wir demonstrieren eine Vielzahl von Optimierungsmoglichkeiten und
dort ansetzende Hebel fiir menschengestiitzte Testprozesse. Unsere empirischen Studien
belegen die Anwendbarkeit und Effektivitit unserer Optimierungstechniken im Indus-
triekontext. Diese Dissertation bildet eine solide Grundlage fiir zukiinftige Forschung im
Bereich menschengestiitzter Testprozesse und erleichtert Praktikern die Implementierung
durch detaillierte Optimierungsrichtlinien. Beide Aspekte liefern einen entscheidenden Bei-
trag zur Zukunft des Software Engineerings.
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Introduction

I This chapter shares material with prior publications [53, 56, 57].

Software is nearly ubiquitous in our daily lives, underpinning the very infrastructure that
sustains modern societies. From the seamless operation of global communication networks
to mobility and advancements in healthcare, software serves as the invisible, yet indispens-
able force driving innovation and functionality. This infrastructure is run by large software
systems for which the requirements evolve over time. Their complexity and change frequency
are two of manifold reasons why these systems are prone to errors; making software testing
crucial to ensure expected functionality. Testing ensures high software quality, including its
correctness, by uncovering potential defects.

As the complexity of software systems increases, the challenge of adequately testing them
escalates. In industrial practice, limited resources necessitate optimizing the testing process
to maximize efficiency and effectiveness. This involves strategically selecting, prioritizing,
and executing an as small as possible set of tests to achieve maximum test coverage, fault
detection, and risk mitigation while minimizing time, cost, and effort. The ultimate goal is
to ensure a lightweight testing process without compromising software quality, allowing
timely identification of defects to maximize user satisfaction on production environments
and reduce developer effort.

In this thesis, we focus on two optimization levers of industrial software testing where
humans are in the loop: First, testing is sometimes conducted by humans. In fact, manual
testing is a de-facto industry standard to test software and is very resource-intensive, offer-
ing vast potential for optimization. Still, from the literature on test optimization, it remains
mostly unclear how to leverage this potential. While there is considerable research on op-
timization techniques for automated testing, their applicability in manual testing remains
unclear. Having shown to be effective for automated testing, it appears promising to apply
their core ideas in manual testing. To address this issue, we investigate the transferability of
optimization techniques from automated testing to manual testing.

Second, it is often humans, such as test managers, who allocate test efforts and assess test
completion. Our industrial partners focus their testing efforts on untested code changes—
also known as test gaps—because they are known to be more likely to contain defects, and
their test management completes testing as soon as all relevant changes are tested. Unfor-
tunately, the defect-proneness of changes varies, making it harder for test management to
decide which gaps are relevant and need to be closed. Furthermore, potential defects are
not the only risk factor that needs to be considered, but their impact is also relevant. That is,
potential defects within business critical software components could result in tremendous
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costs, which is why they need to be tested more thoroughly. To support test management
and quality assurance roles in identifying relevant test gaps, we propose a risk-based priori-
tization of test gaps that considers likelihood and impact of potential defects.

1.1 Optimization of Industrial Manual Software Test-
ing Processes

Software testing can be conducted automatically or manually. It is almost a rule that software
test suites grow with their systems under test [169]; consequently, large software systems
have large test suites [128]. Regardless of whether testing is automated or manual, these
extensive test suites take considerable time to execute. Beyond the execution cost, lengthy
run times hinder early and meaningful feedback to developers [32, 67, 168]. For instance,
our industry research partners’ test suites (see Section 4.2.2) take, on average, a week for
automated tests to run, 5 person-months for manual tests; they struggle with late feedback
and insufficient resources to complete tests promptly. Manual testing is especially tedious,
costly, and involves significant human effort, yet it remains widely used in industry [7].

Despite advanced test automation techniques, manual software testing often complements
automated testing in practice [36, 91]. Manual testing strategies can arguably detect faults
that automated methods might miss [19]. Depending on the project’s context, automation
can be prohibitively costly [163], complex [157], or even infeasible [152], making manual
testing indispensable in the foreseeable future. The increasing number of test cases and fre-
quency of execution, driven by shorter release cycles, exacerbates the issue of long-running
test suites hindering the software development process [67, 168].

Significant research has focused on optimizing automated testing, for example, regres-
sion test optimization [29-31, 46, 61, 62, 90, 96, 127], but few efforts have aimed to apply
techniques such as regression test case selection [28, 111], prioritization [66, 87], or failure
prediction [67] to manual software testing. Several barriers, including the lack of data (e. g.,
code coverage information [66]), impede this transfer. Unlike automated testing, manual
testing processes are not always integrated with version control, continuous integration sys-
tems, test frameworks, or build tools. Furthermore, it remains unclear whether and to what
extent humans in the loop limit the applicability of test optimization techniques for auto-
mated testing in manual contexts. In general, manual tests often slow down development,
making their optimization even more crucial [66, 67]. Additionally, varied test processes, en-
vironments, and test suite run times dictate how ambitiously optimization techniques must
be applied to deliver fast feedback while maintaining high fault detection rates.

1.2  Prioritization of Test Gaps in Industrial Software
Testing Processes

As said previously, resources in software development are limited, particularly for large soft-
ware systems. Therefore, it is critical to allocate test efforts to detect the most serious defects



1.3 Thesis Goal

as early as possible. This requires estimating which parts of the software are particularly
prone to defects. The area of defect prediction seeks to identify faulty code, for example,
through static program analysis, possibly enhanced by heuristic search or machine learn-
ing [70, 79, 92, 98, 172]. Despite numerous studies, results often lack generalizability [59],
and current approaches frequently perform poorly in real-world applications [121, 122]. So
it does not surprise that they are rarely applied in practice [92, 122, 160], with notable excep-
tions, though [151].

Addressing the notorious issues of defect prediction of our industry partners (in particu-
lar, MunicH Re and LV 1871), we strive for an approach that is viable in practice and aligns
with their needs: prioritizing test gaps by their risk. A test gap is any method, function, or
module that has been modified during a specific timeframe (e. g., start of last development
phase or iteration), yet has not been executed in its most recent version during testing (e.g.,
automated unit test or manual acceptance test). Intuitively, defects are introduced by code
changes, and defects cannot be detected if they were not tested. In this vein, the literature
suggests that modified code tends to be more defect-prone [27, 84, 115, 140]. Eder et al. found
that, despite structured testing processes, about half of all changes go untested into produc-
tion, with untested changes harboring up to five times more defects than others [27]. This
underscores the importance of test gap analysis, which test management uses to allocate
testing efforts and assess test completion, for example, for a release.

The number of test gaps requiring investigation by test management and quality assur-
ance hinges on numerous factors, especially the number and size of code changes and the
testing scope (i. e., the number and diversity of test cases). Typically, dozens, hundreds, or
even thousands of test gaps need to be investigated [77]. In Section 2.2.4.1, we show an
example for a test gap analysis result from our industrial partner Munich Re yielding thou-
sands of test gaps, each varying in risk. Risky test gaps such as logic modifications or data
manipulations may be obscured by less critical changes, for example, refactorings [134]. In
the context of this thesis, the risk of a test gap refers to the probability of the test gap being
defect-prone and the magnitude of impact of a potential defect. Assessing test gaps and their
risks demands considerable effort and may yield subjective results, and it can be challenging
in large systems with evolving teams. Clearly, an automatic prioritization of test gaps would be
most helpful to streamline manual inspections and reduce the risk of overlooking critical test
gaps, which is also supported by our industrial partners.

1.3 Thesis Goal

This thesis aims to enhance the feedback provided by human-in-the-loop testing processes
in industrial contexts by increasing their efficiency and effectiveness, thereby reducing de-
fects and improving software quality for users. To achieve this, we explore in this thesis two
essential levers for optimization of industrial testing where humans are involved: inherently
resource-intensive manual testing and assessing test completion without overlooking risky
untested changes. Both fields offer open research questions we aim to answer within this
thesis, and adopting both measures promises the highest efficiency and effectiveness gains
for human-in-the-loop testing processes.
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Automated and manual testing are similar in many ways: they pursue the same goal, in
that they ensure the quality of a system under test, they involve running test cases to iden-
tify defects, and automated and manual test suites both may suffer from too large and long-
running test suites, necessitating optimization. Given the many effective optimization tech-
niques available for automated testing, the question arises under what circumstances can
these techniques be effectively transferred to manual testing? Existing research on manual
testing optimization often targets specific techniques in narrow contexts. Existing results
are often not generalizable due to the wide diversity of manual testing processes. We need a
better understanding of manual testing processes to derive the benefits and limitations of ap-
plying optimization techniques from automated testing. It remains unclear which automated
techniques are suitable for existing manual processes: What data can be leveraged, and how?
In the same vein, practitioners need clarity on what techniques are applicable and how to in-
corporate them into their existing processes and infrastructures. Additionally, there is a lack
of evidence of the extent to which test optimization techniques for automated testing can be
adapted to manual testing in industrial practice, and what limitations need to be accepted.
We aim for extensive guidance for manual testing practitioners in choosing optimization
techniques, making prerequisites, potential benefits and limitations of specific approaches
transparent, and providing evidence on the effectiveness of manual test optimization from
practice.

The aim regarding effort allocation and completion assessment in testing is to optimize
the process so that risky changes are tested as early as possible. This contributes to our ma-
jor thesis goal in two ways: First, allocating resources to mitigate the risks from these changes
increases testing effectiveness. Second, testing efficiency increases when testing is finished
once all relevant test gaps have been addressed. The decision of when to complete testing
is much easier when test gaps are sorted by estimated risk. We are seeking an alternative
solution to defect prediction because the costs of state-of-the-art approaches outweigh the
potential benefits for our industry partners. Moreover, state-of-the-art approaches typically
do not consider prior testing efforts that are focussed by test gap analysis [70, 151, 172], which
our industry partners rely on for the purposes of test effort allocation and test completion as-
sessment. To support test managers in scanning large numbers of test gaps with varying risk,
we aim for an automatic risk-based prioritization of test gaps. As there is only little related
work on prioritization or risk estimation of test gaps in industrial practice, it is still unclear
what makes a test gap more risky than others. Therefore, we seek to evaluate the feasibility
of a simple prioritization approach that fulfills our industry partner’s requirements and that
is designed to be easily adaptable in other contexts. This dissertation strives to bridge the gap
between the challenging task to identify defects from code modifications and the practical
limitation of testing resources by an automated risk-based prioritization of test gaps.

1.4 Contributions

In this thesis, we make several contributions to enhance feedback from industrial human-in-
the-loop testing processes to developers. Our major contributions include:

1. Exploration of Optimization Technique Transferability from Automated to Manual
Testing: Our first contribution is an analysis of the transferability of optimization tech-
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niques from automated testing to manual contexts. A survey of 38 testing professionals
across 16 companies provides insights into their testing processes and identifies opti-
mization opportunities. We identify nine optimization techniques applicable to man-
ual testing and discuss the circumstances under which they can be implemented in
practice. Our synthesis includes an annotated model of manual software testing pro-
cesses and guidelines for practitioners on selecting suitable optimization techniques.
This model allows practitioners to pinpoint optimization levers in their specific con-
texts and the guidelines facilitate the adoption of optimization techniques (Chapters 3
and 4).

2. Evidence on Optimization Effectiveness for Manual Testing: Our second contribu-
tion provides evidence on the effectiveness of optimization techniques from automated
testing when applied in industrial manual testing processes. We conducted two in-
dustrial case studies on test suites from MunicH Re and IVU Trarric TECHNOLOGIES,
demonstrating improvements in fault detection probability, test feedback time and test
creation efforts by following our guidelines (Chapter 3). To research on commonalities
and differences in optimization, we implemented two optimization techniques for auto-
mated and manual testing processes. Our empirical study involved five subjects from,
inter alia, BAYERISCHE VERSORGUNGSKAMMER, DoLBy, ILP, and CArL Zgiss Microscory.
Our results show that optimized automated test suites detect, on average, 80% of fail-
ures while saving 66% of execution time, compared to 81% failure detection and 43%
time savings for manual tests. Despite inherent manual testing limitations, we provide
evidence for the effectiveness of these techniques in industrial settings (Chapter 4).

3. Risk-based Prioritization of Test Gaps: Our third contribution is a risk-based priori-
tization approach for test gaps, evaluated using a multimethod study. This approach
targets test management and quality assurance roles that (1) allocate test efforts or
(2) assess test-end criteria. Our prioritization considers the magnitude of impact and
defect probability, measured by code criticality (e.g., code centrality) and complexity
metrics/static code analysis results. Through a multimethod study involving 31 histor-
ical quality assurance reports from eight industrial software systems of MunicH Re and
LV 1871, and semi-structured interviews with six quality engineers that authored the
reports, we were able to validate the risk criteria’s transferability. Our automated ap-
proach exhibits a ranking performance equivalent to expert assessments. That is, test
gaps labelled as risky in historical quality assurance reports are prioritized significantly
higher than less risky ones at the 30th percentile, on average. This study shows that a
lightweight prioritization method like ours is suitable to efficiently highlight high-risk
test gaps while filtering low-risk ones (Chapter 5).

In general, our proposed solutions are designed for high adoptability. For example, we im-
plemented our analyses in a language-agnostic way to maximize impact. Employing empiri-
cal research methods, including field and sample studies [150], we investigate optimization
potential in extensive industrial human-in-the-loop testing processes across domains such as
finance, audio, and optics. Our studies draw on historical static and dynamic testing data, re-
sults from static code analysis, quality assurance data, and semi-structured interviews with
testers, test managers, and quality assurance experts. This thesis provides a solid foundation
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to identify optimization potentials in extensive and long-running testing processes in indus-
try, which often conduct manual testing, and need to mitigate risks from untested changes
in an as cost-effective way as possible. Our contributions offer help to practitioners to shape
lightweight human-in-the-loop testing processes without compromising software quality,
focussing on a timely identification of defects.

1.5 Outline

This thesis is structured as follows: Chapter 2 provides necessary background on software
testing, interfaces, and optimization terminology. Chapter 3 examines manual testing pro-
cesses in industrial settings through a developer survey and evaluates the transferability of
automated test optimization, presenting optimization guidelines for practitioners. It includes
case studies from two industrial software projects, discussing benefits and limitations. Chap-
ter 4 explores the optimization of automated and manual software tests in industrial practice
through a multimethod study, revealing insights on their commonalities and differences. It
includes a field experiment implementing two test optimization techniques in five industrial
study subjects, with a historical analysis. Chapter 5 targets the automated prioritization of
test gaps, introducing a method to prioritize them by risk and evaluating it in a multimethod
study involving real-world quality assurance data from eight industrial subjects. Chapter 6
summarizes findings and suggests future research directions based on our contributions.
Appendix A contains links to supplementary Web sites with additional material, facilitating
reproduction of the empirical studies.
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I This chapter shares material with prior publications [53, 56, 57].

This chapter provides an introduction into the foundations that this dissertation is built upon.
At the beginning, we give an overview of basic software engineering terminology, includ-
ing software testing, which is used throughout this work. This is followed by an extensive
overview of the research area on software test optimization and its research fields.

2.1 Basic Concepts for Software Testing

We introduce software engineering terminology which we use to discuss the optimization
of human-in-the-loop software testing processes in industrial contexts. Initially, we define
terms related to software testing processes to establish a common foundation for testing pro-
cess optimization. Subsequently, we examine concepts from the interface between software
testing and development which are crucial for the optimization discussions in this work.

2.1.1 Software Testing Process

Testing terminology can vary based on context. In this thesis, we primarily adhere to the
standard terminology of ISO/IEC/IEEE 29119-1 [1]. In this section, we delve into this termi-
nology, enriching our discussion with examples and contextual insights from our research.

2.1.1.1  Goals of Software Testing

Software testing aims to uncover potential quality issues within a software system [ 44]. Fol-
lowing ISO/IEC/IEEE 29119-1, we formally define it as follows:

Definition “SOFTWARE TESTING”
Software testing is a verification process that ensures high quality of software systems.

Correctness, a primary quality attribute, is often addressed by identifying faults, com-
monly referred to as bugs or defects (see also Sec. 2.1.1.3). Testing also positively influences
software’s accessibility, maintainability, reliability, scalability, and usability. Throughout
this thesis, the term system under test refers to the software being evaluated. The term test
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item may relate either to an entire software system being tested or a subset of such a system,
for example, single software components or classes.

Testing supports two processes: verification and validation. Verification focuses on the test
item’s conformance to specifications, such as requirements or change requests. Validation,
in contrast, assesses the test item’s acceptability in meeting stakeholder needs. Simply put,
verification focuses on building the software product right and validation deals with building
the right product [10].

In the context of this thesis, testing primarily serves two purposes—defect detection and in-
formation gathering—as per the standard [1]. Detecting defects allows for their resolution,
thereby enhancing software quality, such as correctness. Additionally, the information gath-
ered supports decision-making in the test process, for example, (test) managers can make
information-based decisions on when to end testing.

2.1.1.2  Testing Forms, Testing Levels, and Test Activities

Testing can be conducted in various ways, at different abstraction levels, and aiming for dif-
ferent objectives. We first distinguish between static and dynamic testing, as well as manual
and automated testing. We then present an overview of test levels that implement verifica-
tion across abstraction layers and discuss several testing objectives pursued by test activities.

ISO/IEC/IEEE 29119-1 differentiates between two forms of testing: static and dynamic. Static
testing refers to activities such as reviews, model verification, and static analysis, which do
not require execution. Conversely, dynamic testing involves executing code through test
cases. This thesis focuses on dynamic testing.

We use the terms manual testing and automated testing to differentiate between software
verification processes where test cases are either “run manually by a human test executor, or
[are] executed by a test automation tool” as per the IEEE standard [1]. In this thesis, manual
tests typically occur at higher abstraction levels, such as system tests, while automated tests
range from unit to system levels. To collect testing processes for which substantial activities
are carried out by humans, we define:

Definition “HUMAN-IN-THE-LOOP TESTING PROCESS”’
A human-in-the-loop testing process contains at least one activity from test planning and
execution which is conducted by a human.

Examples for human-in-the-loop testing processes include manual testing or those which
involve humans for activities, such as, the allocation of testing efforts or the assessment of
test end criteria. Automated testing involves humans in designing test cases, maintaining the
test suite, and debugging, that is the identification of root-cause(s) of a test failure (see also
Sec. 2.1.1.3), but are not considered human-in-the-loop testing processes in the context of
this thesis.

Exhaustive testing involves dynamic testing to prove that a specific system under test meets
all requirements under all given circumstances, that is, all possible input values in all pos-
sible states. The standard points out that exhaustive testing is “impractical” and in practice
“not possible”. Instead, sampling is employed to derive test suites from the vast set of pos-
sible input values and states. The standard notes, “[c]hoosing the subset of possible tests
that are most likely to uncover issues of interest is one of the most demanding tasks of a
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tester”. [1] This thesis focuses on comprehensive test processes, often involving large test
suites, which are too large to provide quick and actionable feedback. To address this, we out-
line optimization levers in testing processes, test execution, and test suite maintenance (see
also Chapter 3).

In general, software testing can be conducted on different abstraction layers, or test levels,
see also Table 2.1. The most specific level, unit testing, verifies a single or a set of related
software units. Depending on the context of the system under test, a unit typically refers to
a method, class, or package. Integration testing refers to testing a set of units, especially to
verify their interfaces. The verification of the entire system under test is called system testing,
or end-to-end testing. Since software systems are often integrated into ecosystems of systems
or are required to run on various devices, networks and surrounding systems, interoperability
testing aims to uncover risks on this high level of abstraction.

Table 2.1: Test levels and their objectives with typical stage in development process

Lo Stage in
Test Level Objective Development
Process
Unit Verify that individual test items, e. g., single
. . Development
testing classes or methods, function correctly.
. Ensure that combined components of the
Integration . . )
testing system under test interact correctly and After unit testing
interface properly.
System Verify the complete integrated system under test ~ After integration
testing against specified requirements. testing

Interoperability ~ Ensure that the system under test can interact

testing and functions correctly with other systems. After system testing

The ISO/IEC/IEEE standard requires a test plan which “describes the objectives of the test-
ing, and the activities to be performed to achieve those objectives” [1]. The selection of ac-
tivities (also called test type in ISO/IEC/IEEE 29119-1) is based on the risks associated with
the objectives, which are largely concerned with meeting product and project requirements.
Various test activities exist, and their suitability depends on specific objectives and stages of
the development process, see also Table 2.2. Regression testing, aimed at revealing failures in
unmodified system parts, is typically conducted early in development. Smoke testing helps
to control build resources in a continuous integration environment since resource- and time-
intense build steps are only run when a small test set did not reveal any failures. Performance,
Security, and Usability testing refer to different quality attributes and are usually run after sys-
tem testing. Exploratory testing refers to intuitive and undocumented testing by developers
and testers, and can already be done during development but is often conducted separately
after system testing. To ensure that a large set of changes can be released (or deployed), user
acceptance tests can be defined in advance and completed before building the release of the
system under test. In Chapters 3 and 4, we explore which test activities are employed in
industrial automated and manual testing processes.



Background

Table 2.2: Test activities and their objectives with typical stage in development process

L. L Stage in
Test Activity Objective Development
Process
Regression Verity the absence of failures in unmodified
. . Development
testing parts in the system under test.
Perform preliminary tests to ensure the basic
Smoke . o : :
testin functionalities of a system under test are Early in testing phases
& working correctly.
Performance Assess the system under test’s responsiveness,
testin stability, scalability, and robustness under load After system testing
& and stress.
. Identify security defects (vulnerabilities) in the
Security .
testing system under test to ensure data and resource After system testing
protection.
s Manually assess the system under test’s user
Usability . : o .
: interface and user experience for intuitiveness After system testing
testing
and ease of use.
Exploratory Identify defects through unscripted, intuitive Throughout testing
testing human testing. phases
Validate that the software meets business
Acceptance . . End of development;
. requirements and is ready for release through
testing pre-deployment

documented human testing.

2.1.1.3  Test Cases, Test Cycles, and Defects

Throughout this thesis, we describe optimization techniques for heterogenous testing pro-
cesses that target various optimization levers. This section introduces key testing artifact
terminology crucial for detailed discussion. These techniques operate at either a test case or
test-suite level, defined as follows:

Definition “TEsT case”
A test case t consists of a set of preconditions Py, inputs I;, and expected results E;.

For automated test cases, the inputs I; are function calls, while for manual test cases, they
are test steps documented in natural language. A test case is denoted as t,, if it passed in the
most recent run or f¢ if it failed. The fault revelation capability Py (t) of a test case t represents
its probability to fail in the presence of a fault f € F in the system under test, where F is the
(obviously unknown) set of all faults in the system under test. The fault revelation function
R(t) returns the set of faults revealed by f: R(t) = {f € F | t fails because of f }.

Definition “TEst surte”
A collection of test cases {f1, ..., t,,} forms a test suite T = {t, ...t }.

Similar to individual test cases, Py.(T) denotes the fault revelation capability of T, indicat-
ing the probability that any test case within T will fail in the presence of a fault: St € T : ;.
Automated and manual testing processes have a different nature. To investigate the trans-
ferability of optimization techniques from automated to manual testing, we must capture



2.1 Basic Concepts for Software Testing

src/test/../FooBarTest.java
01.01.2023 12:17:43

5 {line coverage info}
01:45:590

v| PASSED

TC-42

Figure 2.1: Example of a test report; test reports consist of test identifier, source path, execution time-
stamp, line coverage information, duration, and the result

diverse test execution processes, such as verifying one software version via a continuous in-
tegration pipeline (see also Sec. 2.1.2) or conducting a full test phase during manual release
testing. For this purpose, we introduce the term test cycle:

Definition “TEst cYcLE”
A test cycle refers to the execution of test cases with the same test goal.

The test optimization techniques considered in this work require data about each test case,
which is collected from test reports generated during the execution of test suites. Figure 2.1
shows a stylized test report comprising an identifier, source path, execution timestamp, line
coverage information, duration, and the result (e.g., pass or failure). Using Pretschner’s ter-
minology [132], we define the following terms:

Definition “FaiLure”, “ErRroR”, “Faurr”

A failure describes the deviation between the expected result and the actual behavior of
the system under test. An error is the incorrect internal state of the system under test that
leads to a failure. A fault is semantically incorrect code that may result in a failure.

The three terms—failure, error, and fault—are collectively referred to as defects.

2.1.2 Interfaces between Software Testing and Development

The system under test is central to the testing process and, consequently, plays a pivotal role
for test optimization. This section introduces concepts from software development and static
code analysis, which are key for optimization techniques discussed later.

2.1.2.1  Software Development Workflow with Code Collaboration Platforms

In modern software development, a version control system is essential for managing the code
history including all changes and facilitating collaboration among developers. At the heart
of a version control system is the repository, a storage location that maintains source- and non-
source files along with their complete revision history. The most prominent version control
system is git', which is why, we follow the terminology from this version control system.
Each time a developer makes a set of changes to the codebase, they create a commit, which is
a snapshot of those changes, stored with a unique identifier (also called hash), author infor-
mation, and a timestamp. Commits are organized into branches, which allow developers to
work on different features or bug fixes independently without affecting the main line of devel-
opment. When a branch is ready to be integrated back into the main line, a merge operation

1 https://git-scm.com
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is performed to combine the changesets, resolving any conflicts that may arise. Once local
changes are committed and finalized, they can be pushed from the local clone to the remote
repository, making them available for verification in the continuous integration pipeline and
accessible for the rest of the development team.

Continuous integration enhances the development workflow by automatically building and
testing code changes as they are integrated into the remote repository. A continuous inte-
gration pipeline consists of automated jobs that run during each integration event, for ex-
ample, each push to a feature branch. These jobs can include tasks such as compiling code
and running automated tests—which produces a test report for each test execution. To ob-
tain continuous deployment, tasks can also deploy built applications to staging environments.
Information from the version control system and continuous integration provide valuable
information for test optimization, for example, the change history of a system under test or
historical test reports.

Nowadays, version control systems, combined with continuous integration and deploy-
ment, form the backbone of code collaboration platforms. These platforms further enhance the
development process. For instance, pull requests may require a reviewer’s approval before
merging branch changes into the main line. Pull requests also gather additional data on
branch changes, including build and test results, reviewer comments, and annotations from
static code analysis tools.

Figure 2.2 illustrates a code collaboration platform setup hosting a version control system
(Remote Repository) and continuously integrating changes through build and test pipelines.
Two developers clone the remote repository. Developer 1 (Dev 1) works on Feature B, while
Developer 2 (Dev 2) works on Feature C. They persist local changes in their local repository
(working copy) using the git commit command and share them with the remote repository
via git push. Synchronization from the remote repository to the local working copy occurs
through the git pull command. In this example, continuous integration is configured for the
most recent commits on both main and feature branches. Thus, if Dev 1 pushes changes from
his local copy of Feature B to the remote repository, a pipeline automatically runs, building
and testing the application. The test task stores test reports for future test optimization.
Upon completing Feature B, Dev 1 submits a pull request, which Dev 2 might approve to
merge the changes from Feature B into the main branch.

In test optimization, version control systems and code collaboration platforms serve as
essential data sources. Many optimization techniques depend on historical data from these
systems. For instance, Chapters 3 and 4 explore optimization techniques for both automated
and manual testing processes that rely on source history and test execution records. The
prioritization of test gaps introduced in Chapter 5 is strongly dependent on versioning in-
formation and historic coverage information, as test gap analysis requires source code and
execution history for accurate test gap calculation.

2.1.2.2  Static Code Analysis

Static code analysis tools evaluate source code without execution, functioning as static test-
ing tools (see also Sec. 2.1.1). The goals of these tools range from identifying simple bug pat-
terns to conducting sophisticated security analyses [ 109 |. Developers benefit from static code
analysis through immediate feedback on code changes, improving code quality [155] and re-
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Figure 2.2: Exemplary development setup with code collaboration platform, including continuous
integration and continuous delivery (CI/CD), and two local repository clones for Devel-
oper 1 (Dev 1) and Developer 2 (Dev 2)
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ducing bugs [58]. We refer to static analysis results as findings (also known as static analysis
warnings), which are classified by criticality—either critical or normal—based on severity and
urgency.

Static analysis facilitates the measurement of quality indicators [155], such as the code size,
either measured in lines of code (LOC) (including comments and blank lines) or source lines
of code (SLOC) (excluding code comments and blank lines). Since software systems evolve,
the evolution of quality is of interest, too. For instance, the findings churn summarizes the
number of findings added, unfixed in modified code, and resolved across a set of commits.

Static analysis can also be employed to identify central code (e.g., classes or features) of
a software system [55, 147, 149], which are arguably more important to test. To achieve this,
a graph representation known as a dependency graph G = (V,E) represents the source code,
with V = {vy, ---,v,} as the set of vertices (such as classes or implementation files). The
edges e;; = (v;,v;) € E signify dependencies between vertices v; and v;, like import or using
dependencies. Various methods, including the PageRank algorithm [116], can identify the
most central vertices within G.

We utilize findings and code centrality measures as risk indicators to prioritize test gaps
(see also Chapter 5).

2.2 Optimization Techniques for Software Testing

The central goal of this thesis is to explore methods for reducing time-to-feedback from test-
ing environments in industrial development contexts. To this end, the broad research field
of test optimization tackles manyfold levers to reduce time to feedback. Before delving into
specific optimization approaches in Chapters 3, 4, and 5, we provide an overview of test opti-
mization techniques categorized by their targets: single (i. e., current or next) test cycle, test
cases, and entire test suites. By summarizing techniques aimed at defect risks, we discuss
how testing effectiveness can be enhanced. This section frames the bigger picture of test op-
timization before discussing differences between automated and manual testing and their
impact on optimization techniques.

2.2.1 Optimization Techniques for a Single Test Cycle

We explicate optimization techniques for a single test cycle. Typically, the results of these op-
timizations are re-evaluated for every cycle, such as a test task in the continuous integration
pipeline or a manual testing phase. The most prominent optimization techniques for single
test cycles are test case prioritization and test case selection, which we discuss first. We then
introduce test impact analysis, which combines the principles of these two techniques.

2.2.1.1 Test Case Prioritization

Test case prioritization aims at ordering a test suite T = {t1,...,ty} to optimize the execution
order of test cases with respect to a specific optimization goal. In this thesis, test case priori-
tization aims at optimizing the time to feedback by executing fault-revealing tests t; as early
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as possible. Technically, test case prioritization approaches strive for an optimally ordered
set Oycp € T where all failing tests are executed before all passing tests:

Otep = {ti | Vi, €T, 1<i,j<n : t fails A t; passes = i <j} (2.1)

As test results may be unpredictable, heuristics have been devised to predict failing tests and
to derive prioritization approaches from these [83]. Typically, heuristics approximate the
fault revelation capability P (t) of the test cases. Prioritization becomes especially essential
in manual testing, where strict resource constraints (such as time and work force) necessitate
early fault detection.

2.2.1.2  Test Case Selection

Test case selection strives for choosing a subset Ty, from a test suite T with the goal of saving
testing efforts. It involves gathering test cases deemed execution-worthy based on a heuristic.
While various criteria, such as high code coverage or testing critical code segments, could
define the worthiness of a test case, we concentrate our selection process on tests anticipated
to potentially yield failures:

VteTy CT : Pr(t)>0 (2.2)

This approach is unsafe, potentially missing some failing tests. In large and complex software
systems, safe selection techniques are often infeasible or ineffective [31, 34, 127]. So, state-
of-the-art selection techniques are unsafe [33], for example, because of dynamic dependen-
cies [90], language boundaries [16], or non-code changes [112]. There has been substantial
research on test case selection [81, 171]. Usually, an approximation of the single test case
fault revelation capability is used to identify potential failures. In practice, the approxima-
tions are often based on source code changes [81]. Intuitively, a test case that covers changed
code might reveal new faults that have not been found by previous test runs. A previously
passing test case that runs through unmodified code is expected not to change its behavior.
However, this is not always true, as seen with flaky tests (see also Sec. 2.2.5).

2.2.1.3  Test Impact Analysis

Test impact analysis combines test case selection and prioritization to quickly identify test
failures based on code changes within a specific timespan [tpase, tend |- It aggregates the code
changes from the last release or sprint and produces an ordered set of test cases which—
according to a heuristic—maximize the fault revelation capability Pf.. Formally, test impact
analysis calculates an ordered set Oy, C T such that

Oria = {ti|Vti,t; €T, 1<i,j<n : Py(t;) > Pe(t;)) = i<j} (2:3)

In the literature, there are several approaches that combine a test case selection and priori-
tization strategy. For example, Greca et al. [49] propose a hybrid test optimization approach,
which combines the tools Ekstazi for test case selection [46] and FAST for test case prioritiza-
tion [103]. A systematic literature review summarizes the field of machine-learning-based
test case selection and prioritization [118]. We evaluate a variant of test impact analysis in
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automated and manual testing contexts from industry in Chapter 4 (see Section 4.1.2.1 for
variant details).

2.2.2 Optimization Techniques for Test Cases

In the previous section, we discussed optimization techniques for a single test cycle. Here,
we focus on techniques that optimize individual test cases, independent of test cycles: test
case reduction, test case refactoring, and test quality monitoring.

2.2.2.1 Test Case Reduction

Smaller test cases promise many benefits, such as, faster execution times, improved under-
standability, and enhanced debugability [170]. Like test suite minimization (discussed in
Section 2.2.3.1), test case reduction aims to decrease the size of a test case while maintaining
its fault detection capability [3]. Formally, it minimizes the test inputs i € I; of a test case ¢
and identifies a reduced test case 4 such that

Viel; : iEItrengt == 3_](6[: fER(t) /\f$R(tred) (24)

where R(t) is the fault revelation function of t (see also Sec. 2.1.1.3). Depending on the test-
ing process, that is, automated or manual testing, test case reduction works differently: For
automated test cases, statements such as function calls are removed. For manual test cases,
test steps are eliminated.

2.2.2.2 Test Case Refactoring

Test case refactoring focuses on improving the internal structure and quality of test cases
without modifying their functionality [8]. Its goal is to make test cases more readable, main-
tainable, and reusable. Formally, test case refactoring transforms test cases ¢ into t..¢ such
that

tret = (P, D1 (1), Bk (Er)) (2:5)

where A; and A are behavior-preserving modification functions for inputs and expected
results. Since the behavior of the refactored test case ¢, is intended to remain unchanged,
R(t) = R(t,ef)- Refactoring examples include reusing test steps to eliminate redundancy or
parameterizing test cases to avoid duplication.

2.2.2.3  Test Quality Monitoring

Test quality monitoring is an activity within the development process [53] to identify fest
smells in manual test cases [65]. Similar to smells in automated tests [23, 120] smells in man-
ual tests refer to quality deficits that adversely affect the comprehensibility and maintainabil-
ity of the test suite. Soares et al. [145] collect the following test smells for manual test case
descriptions:
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e ambiguous test case

e conditional test case

e eager action

e misplaced action

e misplaced precondition

e misplaced verification

As a result of test quality monitoring, test smells in input values I; and expected results
E; are resolved by applying cleanup functions c; (I;) and o (E¢), resulting in a deodorized
test case fye0:

taeo = (P, 01 (I1), 0k (1)) (26)

The cleanup functions ¢ may alter the behavior of test cases, that is, the deodorized test
cases tqe, are not necessarily refactored versions of the original test cases t. In fact, this prop-
erty of ¢ is required to address some tests smells, for instance, the ambiguity of test cases.

2.2.3 Optimization Techniques for Test Suites

Beyond optimizing test cycles (see Sec. 2.2.1) and individual test cases (see Sec. 2.2.2), opti-
mization levers arise from the relationships among test cases, such as redundant test cases
or those with an optimal cost-benefit relationship. Here, we discuss two optimization tech-
niques based on these relationships: test suite minimization and Pareto testing.

2.2.3.1  Test Suite Minimization

Test suite minimization aims to identify a minimal test suite Tpnin Wwhich minimizes the test
suite size of the original test suite T, while maintaining its fault detection effectiveness [168].
Thus, the fault revelation capability of both test suites T and Tpin are identical: Py (T) =
P¢.(Tmin), if a safe minimization approach is used. For this purpose, redundant test cases or
similar test cases that are unlikely to detect different faults are eliminated from the test suite.
Formally,

VFEF:3teET AfER(E) = B €ETmin CT A f ER(H) (2.7)

where R(t) refers to the fault revelation function (see Section 2.1.1.3).

Test suite reduction [133] is closely related with test suite minimization, with the terms of-
ten used interchangeably in literature. However, there is a subtle difference in their goals: test
suite size reduction versus minimization. In their systematic review on test suite reduction,
Rehman Khan et al. [133] discuss four approaches: greedy, search, clustering, and hybrid.
Large-language models can also be used to minimize test suites [119].

2.2.3.2  Pareto Testing

Pareto testing is deduced from the Pareto principle, which often suggests an 8o/20 rule: for
instance, 20% of code might contain 80% of faults [131]. Similarly, a small percentage of
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time (less than 20%) can detect a substantial portion of failures (more than 80%) [26]. For-
mally, Pareto testing calculates an ordered subset T}, of a test suite T containing  test cases
that runs within a specified cost limit of L. Each test case t has a cost function C(t), represent-
ing execution costs, such as time or human effort. Initially, test case prioritization is applied
(see Sec. 2.2.1.1), then the maximal number k of test cases fitting within the cost limit of L is
determined:

k:argmax(( Z C(tl)) SL) (2.8)

Isisn A <<

We evaluate a variant of Pareto testing in Chapter 4 and introduce a specific instance in
Section 4.1.2.2.

2.2.4 Reducing Risk of Defects

This next set of optimization technique targets a different objective than earlier techniques.
Test gap analysis, test gap prioritization, and defect prediction aim to enhance testing effec-
tiveness by optimizing defect identification.

2.2.4.1 Test Gap Analysis

Test gap analysis is one possible answer to the question of test resource allocation. It reveals
untested changes in the code of the system under test, which are known to be particularly
defect-prone and should receive special attention in the testing process. The entity of interest
for test gap analysis is often code at the function or method level (see Sec. 5.1.2).

Figure 2.3 illustrates a typical test gap analysis result for code changes within a multi-
month release cycle of a large software system of our partner Municu Re (before they aligned
their testing activities along untested code changes). The entire code base visualized as a tree
map highlights test gaps in yellow and red; in this instance, there are thousands of test gaps.
The sheer volume of code changes and testing activities makes identifying the most critical
test gaps challenging, which is needed to direct the limited testing resources to the mitigation
of the largest risks.

Test gap analysis is conducted over a designated timeframe [b, t], defined by a baseline b
and an endpoint ¢. It identifies test gaps, which we define as:

Definition “Test gap”
A test gap is a function or method which has been changed within a timeframe [b,¢] and
its most recent version within [b, t] has not been tested.

A function is deemed changed if at least one line of code is modified within [b, f]. This
excludes behavior-preserving changes, such as variable renaming, and entities too trivial to
test, such as simple variable access functions (getter and setter) [113]. A function is consid-
ered as tested if, following the most recent change in [b,t], at least one line of the function
has been executed by a test.
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Figure 2.3: Test gap analysis results for an industrial business information system of our partner Mu-
NicH RE for all code changes within a release cycle of several months. The tree map visu-
alizes the hierarchical components, classes, and functions of a software system. The size
of rectangles corresponds to size in lines of code; the color indicates = unchanged code,
m tested changes, = untested modifications, and m untested new functions, where the lat-
ter two are test gaps. In this example, there are thousands of test gaps.
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Formally, test gap analysis calculates a set G4 consisting of all methods m; added or
modified within [b,¢] that have not been executed in test since the last change:

G, = {mi | 31astMod (m;, b, t) A

(2.9)
AlastExec(m;, b,t) : b <lastMod(m;,b,t) < lastExec(m;,b,t) < t}

where lastMod (m;, b, t) returns the timestamp of the last modification of a method m; within
[b,t], and lastExec(m;, b, t) returns the timestamp of the last execution of m; during testing
within that period.

Experience in practice has shown that this simple notion of function coverage is capable of
providing a valuable overview of untested changes [77]. Stricter test criteria, which take into
account how thoroughly a function was tested, do not provide sufficient benefits to outweigh
their cost [77]. They may even be counter-productive as they produce more complicated
results, which require more effort to interpret. Note that the idea behind test gap analysis
does not claim that unchanged and tested parts of the system do not contain any errors, but
that the chances are higher to detect defects in untested changes than in other parts of the
system.

2.2.4.2 Test Gap Prioritization

Test gap prioritization determines which test gaps m; € G = {my,...,my,} should be ad-
dressed first, because they pose the largest risks. Technically, once the risk r;,;, of a test gap
m; is established, G can be ordered by test gap risk:

Vm;,m; € G1<i,j<n: Py > Ty = 1< (2.10)

The most prominent risk of test gaps arises from faults that could not have been detected
because no test executed the faulty code. Other risk factors may also be considered; for in-
stance, in Chapter 5, we discuss prioritizing test gaps by factoring in the centrality of untested
code changes.

2.2.4.3  Software Defect Prediction

If we already knew where faults are buried in the code, testing to ensure correctness would
diminish. This forms the basis of software defect prediction: forecasting which code entities
c; € C ={cq,...,c} are most likely to contain a defect f € F. To achieve this, a defect proba-
bility estimation Pg(c;) is employed to rank code entities:

Ve,c;€C,1<i,j<n : Pp(c;) > Pp(c;) = i<j (2.11)

A crucial decision in the evaluation of defect prediction techniques is the ground truth of
defects. Pearson et al. [123] report that artificial faults are not sufficient to mimic real faults.
Instead, they show that real faults need to be used to evaluate the performance of defect
prediction research meaningfully.

Like with test gap analysis, it is an established best practice to use function-level defect
prediction, which shows better performance than relying on coarse-grained units such as
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files or modules [40, 122]: Despite a great number of studies in this area, function-level de-
fect prediction is still unsolved as it provides low precision for cross-project classifiers and,
when evaluated under realistic circumstances, existing approaches do not significantly out-
perform a random classifier [121, 122]. As of now, our industrial partners need more action-
able approaches such as test gap analysis and prioritization of test gaps to direct their testing
efforts.

2.2.5 Bigger Picture of Test Optimization

In this chapter, we have explored several test optimization techniques relevant for the forth-
coming chapters. To broaden the scope, we outline the bigger picture of test optimization by
briefly introducing additional research areas and discussing their relevance to our work.

Mutation Testing Mutation testing is a technique used to evaluate the quality of software
tests by automatically introducing small changes, so-called mutations, to the source code of
the system under test [22, 60]. These mutations are designed to simulate common errors
or mistakes developers might make, for example, an off-by-one error or usage of a wrong
operator. The goal is to determine if the existing test suite can detect these changes, thereby
assessing the suite’s effectiveness. If the tests fail to catch the mutations, it indicates areas
where the tests may be insufficiently rigorous or comprehensive. Our work on test gap prior-
itization (see also Chapter 5) is related to mutation testing since it also aims to identify gaps
in testing. But the fault model of both techniques is different: mutation testing assumes that
the mutations correspond to common programming mistakes of the system under test’s de-
velopers, while the prioritization focuses on untested code changes because they are known
to be more error-prone than unchanged code. Mutation testing is much more expensive and
often considered infeasible in practice [175], with notable exceptions for tech-savvy organi-
zations like Google [125, 126].

Detection of Flaky Tests A failing test is intended to send developers the clear signal of a

mismatch between expected and actual system behavior, which they need to fix. Ideally, they

either need to fix a fault—addressing the system under test behavior to match requirements—
or the expected result of the test needs to be adjusted to reflect latest requirement changes

which the system under test already complies with. Unfortunately, test cases may fail spo-
radically for reasons that lie outside of the system under test’s source code. Such tests are

called flaky tests, which are defined as:

Definition “FLaky TEST”
A test is flaky if it yields inconsistent results, that is, passing or failing unpredictably with-
out changes to the code or test environment.

Flaky tests can be observed for all major languages, for example, C, Java, JavaScript, Python,
Go [6, 50, 63]. The detection of flaky tests involves identifying and analyzing these tests to de-
termine the root causes of their unreliability. Techniques to detect flaky tests improve testing
reliability by ensuring that test failures indicate genuine defects rather than environmental
issues or test brittleness. The detection of flaky tests is no test optimization technique per se,
but it aims to save developer time by avoiding confirmation of flaky tests and tries to main-
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tain software engineers’ confidence in automated test results [41, 173]. Test optimization
techniques that rely on historical test failures need to filter flaky tests—if there are any—to
obtain meaningful results.

Fuzzing Fuzzing is an automated software testing technique that involves providing in-
valid, unexpected, or random data inputs to a program to discover security vulnerabilities
and bugs [11, 93]. The purpose is to identify how the software behaves under stress and if it
can manage incorrect inputs gracefully. Fuzzing is particularly useful for detecting vulner-
abilities associated with buffer overflows, memory leaks, and crashes, thus improving the
software’s robustness and security profile [51]. So, fuzzing targets specific quality attributes
which are beyond the scope of this work. In this thesis, we focus on enhancing effectiveness
and efficiency of human-in-the-loop testing.

Al in Software Testing The integration of Al in software testing aims to enhance many-
fold test concepts. For instance, there are studies on applying Al on different testing levels
(unit, integration, and system testing), supporting various test activities (e.g., regression
testing, mutation testing). Al can be applied in all steps of the testing process, for example,
test case generation, test planning, test case design and specification. [4] Al is applied to
many existing problems in the software engineering domain, and this also applies for soft-
ware testing. In this thesis, we apply different methodology which can be applied more easily
in industry contexts. For example, our methodology does not require to share business se-
crets like code or test data with foreign AI models and it requires less computing resources
than common Al approaches.

2.2.6 Optimization of Automated vs. Manual Testing

Software testing processes exhibit significant variability, impacting the available optimiza-
tion levers. One of the major differences in testing processes is whether testing is conducted
automatically or manually. While exploring the differences between automated and manual
testing is a central aspect of our work [53, 56] and is discussed in detail in Chapters 3 and 4
in this dissertation, here we outline key differences between the two methodologies and im-
plications for the optimization techniques previously discussed.

The test execution mechanism fundamentally differs between automated and manual soft-
ware testing. In automated testing, a test framework runs test cases within a predefined en-
vironment, such as a continuous integration pipeline or, with more degrees of freedom, an
integrated development environment. Conversely, manual testing involves human testers
inspecting the system under test in a potentially non-standardized test environment, such
as a test stand or in a spontaneous exploratory test session. This complicates data collection:
versioning information may be absent in manual test environments, coverage information re-
trieval requires significant effort, and mapping coverage information to test cases poses chal-
lenges because manual test cases often have implicit begin and end events. In Chapters 3 and 4,
we explore the differences between automated and manual software testing processes within
industrial contexts examining both organizational differences, such as, testing resources, and
process-related differences, such as implemented test levels and activities.
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While test optimization is a large research field that predominantly focuses on automated
testing, the resource constraints of manual testing are even more compelling; manual test
execution costs in terms of time and money are typically orders of magnitude higher (see
also Chapter 4.3). Thus, optimizing manual testing processes is even more crucial than for
long-running automated test suites. However, manual testing’s inherent nature presents bar-
riers to adopting the optimization techniques discussed in this chapter. These barriers often
relate to the human in the loop, which can impact the quality of data required for optimization.
Chapters 3 and 4 discuss the prerequisites, benefits, and limitations of various test optimiza-
tion techniques. Most of them were initially proposed in the literature for automated testing,
and adapted in our research for manual testing.
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Optimization Levers

I This chapter shares material with a prior publication [53].

This thesis aims for optimization of industrial human-in-the-loop testing processes. In this
chapter, we focus on manual testing processes, which are inherently costly and slow, ne-
cessitating their optimization. The literature discusses only few, highly tailored optimiza-
tion approaches for manual testing. For another testing process, that is automated testing,
a plethora of literature on various optimization techniques exists, but the general transfer-
ability to manual testing remains unclear. This chapter investigates the transferability of op-
timization techniques from automated testing to manual contexts and how to leverage their
ideas and concepts in human-in-the-loop testing processes. To maximize impact, we develop
guidelines for practitioners on selecting suitable optimization techniques, and share results
of two industrial case studies demonstrating improvements in fault detection probability,
test feedback time, and test creation efforts when following our guidelines.

Background Manual software testing is tedious, costly, and involves significant human
effort. Yet, according to a survey, it is still widely applied in industry [7]. Despite the avail-
ability of advanced test automation techniques, previous research reports that manual soft-
ware testing often complements automated testing [ 36, 91]. In fact, manual testing strategies
can arguably detect other software faults than automated strategies [19]. Depending on the
project’s context, automation might be too costly [163], too complex [157], or even impossi-
ble [152], so there is no way around manual testing in the foreseeable future.

With an increasing number of test cases and execution frequency, due to shortening release
cycles, long-running test suites impede the software development process [67, 168]. There
has been significant research effort on optimizing automated testing, for example, on regres-
sion test optimization [29-31, 46, 61, 62, 90, 96, 127]. Still, only few research efforts attempt
to transfer techniques such as regression test selection [28, 111], regression test case priori-
tization [66, 87], or failure prediction [67] to manual software testing. Transfer is hindered,
among other things, by missing required data (e. g., unavailability of code coverage infor-
mation [66]): In contrast to automated testing, manual testing processes are not necessarily
integrated with version control or continuous integration systems, test (reporting) frame-
works, and build or code instrumentation tools. In fact, it is often precisely manual tests that
hamper the rapid development of systems, so optimizing them is even more important |66,

67].

25



26

Manual Testing Process and Optimization Levers

Research Gap  While the few existing studies on optimizing manual testing investigate
the design and evaluation of specific techniques in specific contexts, it is unclear for which
automated technique(s) an existing manual testing process is an eligible target: What data
are available, easily producible, and can be leveraged in which ways? Consequently, to foster
adoption of manual test optimization, practitioners need to understand what techniques are
applicable and how to integrate them in their existing processes and infrastructure.

Solution  To address this gap, we qualitatively analyze the prevalence, characteristics, and
problems of manual testing activities and processes by surveying 38 test practitioners from
16 companies and different project contexts. The goal is to discover and systematize char-
acteristics of manual testing that deviate from automated testing and that hinder or enable
optimization of manual testing. We aim at deriving an actionable set of guidelines that em-
powers practitioners to quickly identify potential for optimization in their own context and
reveal what researchers shall address. For this purpose, we investigate the transferability of
optimization techniques from the literature and further derive techniques based on levers
identified in our survey. We synthesize our findings as guidelines in the form of an annotated
model of manual software testing processes, which highlights integration points for optimization
techniques and summarizes associated prerequisites and caveats. By means of case studies
on two industrial software projects from different domains we show that, using our guide-
lines, test feedback time and test suite maintainability can be improved.

Contributions  Our contributions in this chapter are the following:

o Developer Survey. Evidence that manual testing is deliberately employed without the
intention of full automation, underlining the need for optimizing manual testing. We
provide quantitative and qualitative insights on how software is tested manually in
practice.

o Optimization Guidelines. A set of guidelines rooted in an annotated process model and
derived from our developer survey to implement nine optimization techniques for
manual testing. We explain how to leverage existing processes and highlight integra-
tion points.

o Industrial Case Studies. Demonstration of the guidelines” usefulness in two industrial
case studies. We pinpoint levers that can reduce test feedback time and test creation
efforts.

3.1 Related Work on Optimizing Manual Testing

Studies from 2011 and 2013 on the state of software testing practice report that more than
90% of survey participants test their software manually [ 35, 45]. While participants of these
studies see room for improvement with regard to their testing strategy (e. g., through better
automation), they lack the resources to implement these. We have argued that optimization
of manual software testing processes requires attention, as it addresses such scenarios where
manual testing is inevitable [152, 157] or deliberately employed [36, 91].
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Test optimization is widespread in automated testing [29-31, 46, 61, 62, 90, 96, 127], but
techniques are often not transferable to manual testing due to missing data (e. g., code cov-
erage information) [67] or unsuitable testing processes (e. g., only black-box access during
testing) [66]. Despite these difficulties, several researchers have applied techniques to opti-
mize different aspects of manual testing [8, 28, 66, 67, 76, 87, 111]. For example, Hemmati
et al. [66] studied prioritization for manual regression tests on releases of Mozilla Firefox.
In general, these techniques are often tightly coupled to specific testing processes or rely on
specific data whose availability depends on the context.

We aim at guidelines for developers and testers that identify where existing optimization
techniques can be used in practice based on their associated prerequisites. In addition, we
pinpoint the challenges that arise in manual testing guiding further research in this area.
Therefore, in what follows, we thoroughly review existing work and collect prerequisites
and caveats for common optimization techniques, as shown in Table 3.1. The optimization
techniques are later consolidated with findings from our empirical study in Section 3.2.4 to
provide a holistic view on manual test optimization.

Table 3.1: Prerequisites and caveats of existing techniques to optimize manual testing

Ref. Prerequisites Caveats

1. Test Case Prioritization

[66] Textual test descriptions, Less effective in traditional
test failure history development approaches

[87]  Textual test descriptions, test failure Labels and links are hard to obtain
and execution history, expert labels in retrospective and, if available,

to prioritize tests, test-requirement links maintenance requires discipline

2. Test Case Selection

[76]  Test traces, familiarity of testers Under-specification of tests
with code base leads to unstable traces

[28] Textual test descriptions, static code Accuracy of static analysis low (90%)
analysis tool, program profiler

[111] Test traces, adjustment of system to Unsuitable in the case of large
separate traces for parallel testing or frequent changes

3. Test Gap Analysis

[15]  Test traces, version control data Up-to-date test traces are costly,
data granularity is critical

4. Test Case Reduction

[67] Textual test descriptions, Test cases need to have similar
test failure history textual descriptions and there must not
exist flaky tests to enable reduction

5. Test Case Refactoring

[8]  Textual test descriptions, individual test ~ Varying effectiveness
steps, expert labels for test suites depending on the test suite

6. Test Quality Monitoring

[65] Textual test descriptions Parameterization requires experience
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Test Case Prioritization Hemmati et al. [66] were the first to study regression test case
prioritization (see also Sec. 2.2.1.1) for manual black-box system testing on releases of Mozilla
Firefox. They found that in agile development environments, historical riskiness (i. e., how
often test cases have detected faults before) is an effective surrogate for prioritizing tests
when compared to approaches based on text mining test-case descriptions. Lachmann et
al. [87] proposed to use machine learning to learn from test execution history (i. e., failures
and execution time), requirements coverage, and test case descriptions to prioritize manual
system tests. Their approach is more effective than random ordering, but requires labels,
reflecting how important a test case is, which are obtained from test experts.

Test Case Selection Juergens et al. [76] report on an industrial case study that demon-
strates challenges of applying test case selection (see also Sec. 2.2.1.2) to manual system tests
based on method-level test traces. They suggest to use a semi-automated process, where
testers could reduce the set of tests with domain knowledge. However, one caveat of this
strategy is that testers need to know how to map code modifications to test cases, which, in
general, is not the case. In addition, the common under-specification of manual tests leads
to unstable test traces, which reduces the effectiveness of the technique. Eder et al. [28] pro-
pose an approach for regression test case selection that harnesses static analyses of the tested
system’s source code and manual system tests written in natural language to recover trace
links between the two. Their evaluation, performed on one system and four test cases, indi-
cates that their technique outperforms random selection of test cases, but even 90% correctly
linked source code methods may be insufficient in practice. However, calibrating and evalu-
ating the approach still involves a program profiler, which limits its transferability. In a case
study on manual end-to-end testing of legacy Web applications, Nakagawa et al. [111] show
that their simple test case selection approach based on method-level test traces yields test
effort reductions compared to manual selection. However, it is not suitable in the presence
of frequent or large code changes due to the performance penalty of dynamic analysis.

Test Gap Analysis Buchgeher et al. [15] describe a semi-automated approach for manual
regression test case selection. Although their selection technique reveals deficiencies in ef-
fectiveness, it provides practical benefits for test gap analysis (see also Sec. 2.2.4.1), that is,
finding modifications not covered by tests. Alongside, Buchgeher et al. state that selecting
tests solely by code coverage leads to unnecessarily large sets of test cases, version control
data is too coarse grained for their purposes, and keeping up-to-date coverage data for man-
ual tests is costly.

Test Case Reduction Hemmatietal. [67] investigate text mining-techniques coupled with
failure history-based analysis for failure prediction of system-level manual acceptance tests.
Their technique can be used for test case reduction (see also Sec. 2.2.2.1), that is, for test
suite maintenance by minimizing the test suite permanently, but also for selection and pri-
oritization. Accordingly, their technique outperforms a naive history-based model. It is the
only work we found that explicitly states applicability for test case reduction, although such
techniques are often overlapping with prioritization and selection [168].
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Test Case Refactoring Bernard et al. [8] aim at improving tool support for refactoring
manual test cases (see also Sec. 2.2.2.2) increase test suite maintainability, (e.g., through
guided test suite minimization). For this purpose, they employ various text mining and ma-
chine learning algorithms on test steps in test case descriptions and report time reductions
for refactoring and for execution of the refactored test suite. To apply the technique to a test
suite, testers have to supply complexity estimates of the test suite and refactoring objectives;
results vary depending on these objectives and the maturity of the test suite.

Test Quality Monitoring Hauptmann et al. [65] motivate test quality monitoring (see
also Sec. 2.2.2.3) since they show that manual tests written in natural language often suf-
fer from quality deficits, leading to decreased maintenance and comprehension. Their case
study results show that their language models are able to detect test smells, yet require pa-
rameterization based on experience with the maintenance of natural language tests.

In summary, we are unaware of any previous work that investigates which optimization tech-
niques (see Table 3.1) are applicable in practice, given an arbitrary existing manual testing
process. Moreover, empirical studies on the state-of-practice in manual testing are relatively
outdated with the most recent one being from 2013 [45].

3.2 Developer Survey and Guidelines

In this section, we provide details of our semi-structured online interview, following the
suggestions of Jedlitschka et al. [73], and we derive a set of guidelines for optimization of
manual testing processes that synthesize our findings.

3.2.1 Research Areas and Questions

With our interviews, we target several research questions from three research areas: We are
interested in the reasons for the implementation of manual testing processes, outline their
characteristics, and derive viable optimization techniques.

RA,: Rationale behind Manual Testing

First, we need to understand what kind of manual testing processes are implemented in
practice, why practice relies on this resource-intense way of testing, and what hinders test
automation.

RQ;.1: Why is software tested manually and what technological and organizational challenges hinder
test automation? To be able to identify suitable optimization potential, we need to summarize
why practitioners rely on manual testing. Additionally, there might be technological and
organizational reasons for why test automation—as one of the more obvious optimization
approaches—is not used.

RQ;..: Which testing activities are carried out manually in practice? There are many different
kinds of testing which can be performed manually. We survey what testing activities (e. g.,

29



30

Manual Testing Process and Optimization Levers

exploratory and regression testing) are carried out manually to be able to tailor optimization
approaches to different needs.

RA,: Characteristics of Manual Testing

Second, we investigate characteristics of manual software testing, how much effort is actu-
ally invested into manual testing, and which optimization techniques are already applied in
practice.

RQ,.1: How much effort is invested into manual software testing? This research question aims at
determining the optimization potential with respect to testing accuracy and costs.

RQ..,: How does manual software testing integrate with the development process? We want to shed
light on the interfaces and interdependencies of manual testing with the development pro-
cess to uncover related optimization potentials.

RQ, 5: How are test cases selected for execution and how are tests assigned to testers? Test case se-
lection is a well-known optimization technique for automated tests, and we investigate in
which circumstances it can be used in practice. The assignment of tests to testers needs to
be understood because this reveals optimization constraints that might not be relevant for
automated tests.

RQ. 4: What are technical and organizational characteristics of (sub-) systems that are tested manu-
ally? We would like to understand patterns that encourage or hinder manual testing.

RQ,5: Do flaky tests exist in manual test suites and, if so, how do testers handle them? Flaky tests
are a well-known problem for automated tests [ 94 |. If flaky tests are also an issue for manual
testing, an optimization goal would be to reduce the test flakiness, possibly with techniques
different from automated testing.

RA;: Optimization Techniques in Manual Testing

Finally, we aim at summarizing optimization techniques for manual testing.

RQ;.1: Do manual test teams aim at test automation? How much time do they plan to invest? We
investigate whether test practitioners strive for automation of their test suite and how much
effort is expected and invested for it.

RQj;..: What potential for optimization of manual software testing exists and what are its prerequisites?
This is our core research question. In Section 3.1, we summarize existing optimization tech-
niques and their prerequisites. With this research question, we enrich our research-oriented
perspective by collecting actively used optimization techniques reported by our participants.
Following our previous discussion on the eligibility of optimization techniques, we also sum-
marize associated prerequisites and caveats in practice.

3.2.2 Participants

In August 2020, we contacted 115 test engineers, testers, developers, test architects, test leads,
and test managers of industry partners. We followed the strategy of closed invitations [159]
to choose respondents based on their roles. N = 38 responded to our survey within two
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months. The response rate of 32.5% is relatively high, and we lead this back to our close part-
nership with our research partners. Most of our participants work in Germany, but there
are also several participants from Canada (1), Italy (1), Romania (1), Switzerland (1), and
the US (2). The participants work for organizations of different sizes, including medium-
sized companies with a few dozen employees, as well as large organizations with tens of
thousands employees. Their business domains include communication, network security,
finance, health technology, public transportation, information technology, manufacturing,
and hardware development.

3.2.3 Questionnaire and Conduct

We designed a questionnaire to address the above research questions. In Table 3.2, we list all
survey questions, map them to our research questions, and mark open ([3) and closed (i)
questions. Most of our survey questions were open so that the participants could explain
their context. We used SoSci Survey to host our questionnaire and provided it in English and
German (the native languages of most of our participants). All questions were optional.

3.2.4 Results

To analyze the answers of the survey, we used an open card-sorting technique [71]. To this
end, we looked iteratively for higher-order patterns in the open answers of participants for
each question. Overall, we spent 25 x 2 hours (per open question [&) = 50 hours on catego-
rizing 633 answers.

We structure our discussion along our research areas and questions. For each research
question, we present descriptive statistics of our closed survey questions (if applicable), fol-
lowed by a summary of the identified categories and how often these were mentioned by
participants. To enrich our discussion, we weave in quotations of responses where appropri-
ate. We conclude this section with interpretations and insights we gained.

RA,: Rationale behind Manual Testing

In the following, we delineate why manual testing is still applied in industry and what pre-
vents practitioners from automating tests.

RQ;.1: Why is software tested manually and what technological and organizational challenges hinder
test automation? Figures 3.1a and 3.1b summarize the frequencies of given answers about
reasons for why software is tested manually. They are grouped into advantages of manual
testing and disadvantages of automated testing. We found that manual testing is deliberately
employed not only because of comparatively low ramp-up costs and high flexibility, but also
due to its broader scope: its exploratory character and the often associated intentional under-
specification of tests. Accordingly, practitioners deem manual testing to be “closer to reality,
more context-specific, and up-to-date” and more suitable when “complexity is high and re-
quirements are blurry.” Moreover, certain industries, such as the medical technology sector,
prescribe manual testing.
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Table 3.2: Survey questions to answer the research questions

RQ

Survey question

Type

1.1
1.1
1.1
1.2
2.1
2.1
2.1
2.1
2.1
2.1
2.2
2.2
2.2
2.2
2.3
2.3
2.3
2.4
2.4
2.4
2.4
2.5
2.5
3.1
3.1
3.1
3.1
3.2
3.2

What advantages do you see in manual compared to automated software tests?
What factors force you to test manually?

What conditions and obstacles make test automation difficult or impossible?
Which test activities are performed manually?

How large is the manual test suite overall?

How many testers are there in your project?

How many test cycles take place per year?

How many test cases are executed per cycle?

How long does it take on average to run a test case?

How long does it take to execute the entire test suite?

Which events trigger the execution of a test case?

Is a successful test execution an acceptance criterion for change requests?
How do developers find out about test failures?

When is a failed test case retested?

Is the entire test suite executed in every test phase?

If not, how are test cases selected and prioritized for a test plan?

How are test cases assigned to individual testers?

Which interfaces are used to test the system under test technically?

Which technology-related challenges exist?

How is the System Under Test organizationally tested?

What organizational challenges are there?

Are there flaky manual test cases?

How do you deal with flaky tests?

How should your testing process develop in the coming years?

Are there considerations or specific plans to carry out tests more automatically?
By when should the automation be completed?

How much time is currently invested in the automation of manual test cases?
Which steps need to be taken for each test case?

Is the execution time recorded for each test case? If yes how?
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Regarding technological and organizational challenges that hinder test automation, we
find the following obstacles to be prevalent (number of mentions in parentheses): Lack of
time (8), lack of budget (6), limited know-how (6), limited technology (6), for example
unstable testing tools or tedious creation of test data in SAP systems, interfaces to external
systems (4), and high change frequency (4). One participant stated that the evolution of
the software forced them to return to manual regression testing “because the [technical]
environment of test automation is outdated.”

RQ; »: Which testing activities are carried out manually in practice? Figure 3.1c shows the frequen-
cies of different testing activities that are carried out manually. Except for exploratory testing
(e. g., including test-as-you-code), manual tests are specified in natural language. Manual test-
ing seems to take place at higher levels of abstraction (integration- or system level); only two
participants report conducting manual tests on the unit level.

SumMmARY RA,. According to our participants, manual tests are more flexible than automated tests
in what is tested and easier to set up. They are mostly used for regression and acceptance testing.

RA,: Characteristics of Manual Testing

Next, we explore the characteristics of manual testing processes of our participants.

RQ,.1: How much effort is invested into manual software testing?

Figure 3.2 shows the distribution of manual test suite sizes and test team sizes, number
of test cycles per year, number of tests per cycle, and duration of a single manual test and
the entire manual test suite. The test suite sizes show a large bandwidth, between 5 and
30,000 (sic!) test cases. Interestingly, the company with the largest test suite builds software
for medical devices and does not follow agile development practices. A test manager with
a small test suite stated that “this is much too little. Since the construction as well as the
recording of the test results costs a lot of time, some things are [...] tested quickly and only
bugs are reported to DEV accordingly.”

Also, the testing teams are of different sizes, with a median of 6 testers. The teams run
from 1 to up to 40 test cycles per year, with a median of 4.5 cycles. Still, some testers indicate
that these numbers may vary because “we claim to be an agile company, so it’s difficult to
give a number of times this process happens.” Each cycle contains, at least, 2 and up to 4,500
manual test cases, with a median of 300 test cases per cycle, sometimes this “depends on the
number of change requests—for each cycle, the number of test cases differs.” The median for
the duration of executing a single test case is 20 minutes, and the median for running the
whole test suite is 235 person hours, with a maximum of 992 man hours.

Overall, the survey responses reveal that our participants invest a lot of resources into
manual testing.

RQ,.»: How does manual software testing integrate with the development process?

Triggers for test execution are: scheduled test phases (17), finished feature tickets (16), and
deployments to test environments (14). Surprisingly, more than 25% of the participants (8
out of 31 answers) state that successful test executions are not always a necessary acceptance
criterion for change requests. That is, in some cases, change requests are closed even though
tests failed, which might render test execution useless.
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If a test has failed, 27 teams re-test directly after the code fix, while 10 teams re-test in the
next test phase.

RQ, ;: How are test cases selected for execution and how are tests assigned to testers?

While 15 participants always execute the whole test suite, for example, because “from a cus-
tomer point of view, we MUST run the 52 validation tests (which are appropriate to them),
otherwise our software is potentially not valid for their use,” some teams clean up their test
suite before running it to avoid executing outdated tests, as one participant proposes: “all test
cases that are not obsolete are performed in the annual test. This selection is performed every
year.” 20 other participants manually select particular test cases for execution. Their selection
is based on code changes (6), tester experience (6), feature criticality (6), requirements (4),
time constraints (4), or test failure history (3). Only 3 participants prioritize their selection
explicitly, based on experience (2), or based on licensing or hazard relevance (1).

Figure 3.1d shows how test cases are assigned to testers, where tester experience (18) and
areas of responsibility (17) dominate other assignment criteria.

RQ, ,: What are technical and organizational characteristics of (sub-) systems that are tested manu-
ally?

Most of our participants run their manual tests using the system under test’s GUI (28).
There are also other testing environments, for example, a browser (14), hardware in the
loop (3), external systems (2), and simulators (1). Regarding tooling for running man-
ual tests, participants adopt network communication tools (6), for example, curl, SoapUl,
and Postman. Other tools mentioned by our participants are LoadRunner (1), Tosca (1),
scripts (1), and Excel (2), which might also be used to manage their manual test cases.

According to our participants, the largest technology-related challenge is interference with
other test environments (17), for example, because of non-isolated test systems which are
used concurrently by multiple testers. Frequently, there are issues because of interactions
of the system under test with other systems or applications (15), and remote test environ-
ments (12). Furthermore, different hardware combinations (4), legacy technologies (2), sev-
eral test environments (2), hardware in the loop tests (1) and network latency (1) were high-
lighted as technology-related challenges.

Figure 3.1e shows how manual software testing is organizationally arranged. In many
cases, several groups are responsible for manual tests, for example, developers test their
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changes in a first stage locally on their machine before a dedicated test team verifies the
changes in a later stage. Some participants report that, during a test phase, people from busi-
ness departments take part in testing, still, “they all come with different enthusiasm for test-
ing”, which makes it harder for test managers to plan test activities thoroughly.

Our participants highlight many organizational challenges. One major issue is lack of
time in business departments for running tests (10). Furthermore, participants point out
that there is a lack of domain knowledge or testing skills (7). Additional challenges are dif-
ferent time zones between test and development teams (6), as well as communication and
documentation challenges due to different native languages (6). For some participants, the
organizational spread between test and development over different organizations (2) is an-
other challenge. In the case of fixed release cycles, a participant complains that there is lack
of time for testing (3) “because we are the last but the release schedule is fix.” That is, if
anything delays the test execution, less time can be invested into solid validation. Another
participant claims that—because different organizations are responsible for test and produc-
tion environments—"the test environments do not match production environment enough,
meaning it’s possible that tests are passing but failing in production.”

Other organizational challenges include different languages in specification, code and test
cases (2), lack of time for training (1), coordination of testing (1), long time-to-fix (1), re-
stricted testing environment (1), varying service providers over time (1), and, transforming
development processes (1). Moreover, the domain can also pose challenges, for example,
“medical technology is a strictly regulated domain”, or might require special testing ap-
proaches “if I need a parallel test, there is a team session and everyone clicks on ‘1-2-3" at
the same time.” Perhaps interestingly, in the context of regulated medical technology, “agile
development teams test on lower test levels”, whereas manual testing is performed after-
wards by the “test center for system test”, implying a rather rigid (non-agile) development
process such as the V-Model.

RQ, 5: Do flaky tests exist in manual test suites and, if so, how do testers handle them?

Flaky tests—tests that may non-deterministically fail and pass with the same program
version—are a well-known problem for automated tests [88, 94]. They are commonly first
detected if a previously passing test, that is clearly unrelated to code changes introduced to
the system, suddenly fails [ 88, 89]. Most of our participants report that they do not encounter
flaky tests (20), while others report that flaky results appear from time to time (11)—five
participants are not sure whether there are flaky tests in their test suite. Only five participants
answered the question about how they deal with flaky tests: two participants re-run tests
that are deemed flaky. Three do nothing, because deviating results are “explained away”,
another participant puts this more diplomatically, “most of the time, the deviation turns out
to be an unnoticed ditference in the procedure or in the data. The tests are intentionally de-
scribed vaguely in the procedure in order to cover different procedures that are supposed to
produce the same result.”



3.2 Developer Survey and Guidelines

SummMmARY RA,. Our participants use manual tests extensively. More than half of the participants
manually select only subsets of tests for execution. Tests are often assigned on the basis of expe-
rience of testers and areas of responsibility. There are many technological challenges including
non-isolated test environments and the interaction of the system under test with other systems.
Moreover, there are organizational challenges including lack of domain knowledge in testing teams
and lack of testing skills in business departments.

RA;: Optimization Techniques in Manual Testing

Finally, we summarize our findings on optimization potentials for manual testing and how
to leverage them.

RQj;.1: Do manual test teams aim at test automation? How much time do they plan to invest?

Finally, we report on automation and optimization potentials identified in our survey. Fig-
ure 3.1f shows how our participants expect their manual testing process to evolve. Most fre-
quently, a higher degree of automation is desired (12) and lower manual test efforts are
expected (8). One of our participants appears to be quite frustrated about low investments
into software testing, because she feels that “testing is somehow out. Nowadays, everyone
tells us that a bug will simply be fixed when it appears in production.” But there are also
many participants who expect more targeted testing with the same effort (6) or even higher
manual test efforts (2). The participants mentioned two process optimizations: implementa-
tion of a selection strategy (2) and a change of responsibility for testing (1), that is, a “shift
left of our automated test cases from downstream quality assurance to development.” Only
a few participants (3) expect no change.

In our survey, we explicitly asked whether our participants aim at automation of their
manual tests so that it becomes clear whether the implementation of additional optimiza-
tion techniques can pay off in the long run. Only very few aim at automation of the entire
manual test suite (2). Most participants aim at automation of some manual tests only (20).
One participant points out that their goal is the “optimization of test efforts—this can mean
automation, but does not have to be.” Some participants also aim at no automation at all (9).
Contrary to our intuition, even though most of our participants are repeatedly testing their
system under test via its GUI, there are technical and organizational reasons for not automat-
ing manual tests: For instance, “frequent changes on the GUI” that disallow maintaining au-
tomated GUI tests and, according to a participant, it is “difficult to predict how much effort
automation will cause because sometimes a small thing only works with extreme effort and
therefore makes it difficult to plan.”

For those who aim at (partial) automation of their test suite, we asked two additional
questions to learn about their automation schedule and investments into test automation.
21 participants answered the question on when the automation is planned to be finished,
but most of them have no specific plan when automation will be finished (18). The three
participants who have a schedule plan to finish the automation of their test suite within the
next 1-3 years.

Regarding the resources that are currently invested into test automation, only few invest,
at least, one full-time equivalent (4). The other participants claim that, at least, one person
works one day per week (5) or, at least, one day per month (5) on test automation. A hand-
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ful of participants is investing no effort into test automation (5), even though they plan to
automate tests in the future.

RQ;.,: What potential for optimization of manual software testing exists and what are its prerequi-
sites?

In Section 3.1, we have approached this question from a scientific perspective by reviewing
existing work on manual testing. This way, we have identified six techniques listed with their
associated prerequisites and caveats in Table 3.1.

From our empirical study—taking a practical perspective—we identify further levers for op-
timization and derive respective optimization techniques: First, several participants report
that there are test steps that need to be taken for each test case. Among these login to the
system under test (14), creating and loading test data (10), and setting up the system un-
der test (5) are the most common. However, only a single participant noted that they have
“tests for which recurring activities are modeled with shared steps.” Hence, we identify an
optimization lever as the prevalence of repeated, similar test steps, which could be tackled by re-
using test steps, (e. g., by means of shared test steps). This can reduce duplication and increase
test suite maintainability.

Second, we found that g participants track the test duration either manually (2) or auto-
matically (7). It would not make sense to track it if it did not vary among test cases and test
runs. RQ, ; suggests that there is, in general, a large spread in test duration. At the same
time, in RQ, 5, we found that time capacity is among the three most common test case as-
signment criteria. Consequently, we deem the prevalence of varying test duration between
tests to be an optimization potential that can be exploited by test schedule optimization: If test
duration is recorded and varies, a test schedule can be generated that meets time capacity,
resource, or test precedence constraints, while minimizing total testing time. Since test exe-
cution scheduling has been studied for automated testing already [106], the most straight-
forward approach is to transfer these techniques to manual testing and to study their effec-
tiveness.

Third, throughout our survey and specifically in RQ, ,, we observed that non-exploratory
manual tests are often deliberately under-specified to nudge exploratory testing. This sounds
contradictory at first, because it potentially leads to non-determinism and false-negative or
false-positive test results; but it seems to be one of the most popular features in manual
testing, as one test case can express an entire equivalence class. Thus, one optimization lever
would be to implement flexible execution paths and test oracles that allow the design of under-
specified test cases which are still useful.

Table 3.3 lists the optimization levers that we identify, three derived optimization tech-
niques with associated prerequisites and caveats. Together with Table 3.1, these make up the
set of techniques that we integrate in a manual testing process model in the next section.

SummaRrY RA;. The overwhelming majority of our participants does not plan to automate their
entire manual test suite; GUI test automation is often no option for technical and organizational
reasons. Therefore, optimizing their manual testing processes is advisable. From our study, we
identify 3 optimization levers.
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3.2.5 Guidelines for Optimization

We aim at a set of actionable guidelines that empowers practitioners to quickly identify op-
timization potential in their context. Therefore, we have collected characteristics of manual
testing processes in our survey. In addition, we have collected and derived optimization tech-
niques for manual testing with associated prerequisites and caveats from related work and
practice (see Tables 3.1 and 3.3).

Table 3.3: Prerequisites and caveats of derived optimization techniques based on identified existing
levers in practice (extension of Table 3.1)

Levers Prerequisites Caveats

7. Re-use Test Steps

Repeated, similar Possibility to identify Over-use of shared
test steps and manage test steps test steps

8. Test Schedule Optimization

Varying test Measuring and docu- Time constraints, expert
duration menting of test duration =~ knowledge constraints

9. Intentional Under-specification

Flexible execution Deterministic test oracles False positive or negative
paths and test oracles per execution path test results, flaky tests

To embed these findings into an actionable set of guidelines, we devise an annotated em-
pirical process model for manual testing. We modelled the testing processes described in the
survey answers and merged them into one general manual testing process model. Although
based on the empirical findings from our study, we deliberately keep the process model
generic to allow practitioners to easily adopt it to their needs. We use a standard business
process modelling notation (BPMN) to model the specifics and variety of manual testing
processes that were described by our participants. Practitioners can instantiate the process
model by identifying events, actions, message flows, and artifacts of their testing process.
Based on this instantiation, practitioners are guided in the selection of the optimization tech-
niques that are most relevant to them, for example, because they address bottlenecks in their
process. Using Tables 3.1 and 3.3, specific optimization approaches can be selected, based on
prerequisites and acceptable caveats, and implemented in their process. For example, in the
case of manual regression testing, the trigger of the manual software testing process might
be an approaching release. In Figure 3.3a, this triggers the sub-process Create Test Plan, which
is unrolled in Figure 3.3¢, and its first activity is the identification of relevant test cases. The
annotation shows that test case selection techniques can be used to optimize this activity. Ta-
ble 3.1 collects prerequisites and caveats of three test case selection strategies, and it guides
practitioners in their assessment of the applicability of the strategies in their context.

Manual Testing Process Depending on the specific test process, there are different start
events ((Op) that trigger the manual testing process (i. e., acceptance criteria or a scheduled
regression test phase—other manual testing activities can also be covered by our model).
Activities in Figure 3.3a labelled with @ are sub-processes, which are explained in more detail
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in the following paragraphs and figures. The optimization techniques Test Case Refactoring
and Test Case Reduction can be applied most easily during test suite maintenance.

Test Case Creation Figure 3.3b depicts the Test Creation sub-process. Test steps can be Re-
Used when tests are specified and require the same steps that are already documented for an
existing test. When new test steps are defined, Intentional Under-Specification can be applied.
That is, the test can be defined generically such that several cases are covered. For example, if
there are multiple ways to trigger a functionality, the test can deliberately not specify which
way to use in the test. When the test case is stored in the test management system, the Test
Quality Monitoring can be triggered.

Test Plan Creation  Figure 3.3c shows the Test Plan Creation sub-process. Initially, the set of
test cases that should be executed needs to be identified, optionally using Test Case Selection.
Next, a prioritization of test cases needs to be done (which can be optimized using Test Case
Prioritization). Finally, tests need to be assigned to testers where Test Schedule Optimization
techniques can optimize matching testers and tests while considering relevant constraints.

Test Plan Execution Figure 3.3d shows the Test Plan Execution sub-process. The Test Gap
Analysis can be used to determine whether test end criteria have been fulfilled. For example, it
may reveal additional test opportunities from untested code changes. In case there are large
amounts of test gaps, a prioritization of test gaps might be of help. In Chapter 5, we present
an approach to prioritize test gaps by estimated risk.

3.3 Two Industrial Case Studies

To demonstrate the applicability and usefulness of our guidelines, we conducted two in-
dustrial case studies with testing teams from different contexts (i. e., domain, company size,
test process, and technologies). We instantiated the process models of Section 3.2.5 to iden-
tify applicable optimization techniques. Together with the test leads, we then validated the
suggested optimization techniques, and they decided which of these to implement. In the
following, for each case study, we first introduce the study subjects to provide necessary
background information. Then, we document the instantiation of the process model and, fi-
nally, we summarize the feedback of the test teams when we presented our results to them
in Table 3.4.

3.3.1 Case Study 1: User Acceptance Testing

Our first study subject adopts user acceptance testing. In what follows, we provide additional
background information, discuss the applicability of optimization techniques in their context
using our process model, and conclude with feedback from the testing team.
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3.3.1.1  Background Information

Our first study subject is owned by MunicH Rg', an international company in the finance
and insurance domain with approximately 40 thousand employees. The business informa-
tion system is customized in ABAP, the custom code base counts 2.1 million source lines
of code. At the time the interviews were conducted, a team of five testers did manual user
acceptance testing. There are approximately seven releases per year, each release has a pre-
defined duration of 6-8 weeks. For each release phase, the set of change requests (product
backlog items), which the product owner committed on and which were prioritized by the
users for the current release, needs to be tested. That is, the manual software test process is
triggered by new change requests, for example, by product management or users. The soft-
ware life cycle management platform Azure DevOps with the plugin Azure Test Plans? is
used to manage test cases and results.

3.3.1.2  Applicability of Optimization Techniques

Following our process model in Figure 3.3a, we were able to suggest five optimization tech-
niques for our first study subject, which we discuss next.

Test Case Creation Test steps are not re-used, but structurally identical test cases are typ-
ically filed as parameterized tests for which different input and expected output values are
given. This uncovers the first optimization potential: re-use of existing test cases and steps from
former releases that have checked change requests in the same code methods. The idea is
that test cases can be re-used entirely or with small modifications (e. g., new input values) if
they test changes in a method that a previous test already verified. This requires that testers
know which code is expected to be changed for the current change request, and testers need
to be able to identify former tests that have executed this code.

The second and third optimization technique during test case creation (see Fig. 3.3b) offer
no additional optimization potential: intentional under-specification of tests is not applicable
for user acceptance tests in this case study, as user acceptance tests are not meant to be re-
executed in future release phases per se. Test cases are already automatically checked for
documentation quality issues, for example, ambiguous formulations or redundancies3.

Test Plan Creation In the current testing process of the study subject, test cases are never
re-used, which prevents optimization techniques such as test case selection, test case priori-
tization, and test schedule optimization. Yet, test case selection would help to identify relevant
test cases if test cases or, at least, test steps are re-used. To benefit from test case prioritization
and better scheduling opportunities, a proxy for the costs of test executions needs to be moni-
tored, for example, the duration of test runs which is already tracked in the study subject’s
test management system.

CQSE is a contracting partner of Munich Rg, the background data provided is from 2021

Azure Test Plans: https://azure.microsoft.com/de-de/services/devops/test-plans/

At the time of conducting this study, the tool Scout from the company Qualicen has been used. In the
meantime, this tool is not available anymore. The last release was version 5.4-1: https://www.qualicen.de/
release-qualicen-scout-5-4-1/
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Test Plan Execution The optimization technique during test plan execution, a test gap
analysis, is already used by the team* to reveal untested changes that should not be deployed
to the production environment before a test happened.

Test Suite Maintenance Tests are currently not re-used, so, we see no benefit of test case
refactoring for this study subject. Some tests appear to be partially redundant, so test case
reduction is promising.

3.3.1.3  Developer Feedback

Based on our recommendations, the test lead decided to implement the re-use of test steps in
their manual testing process. Regarding the previously mentioned prerequisites, the devel-
opment process has been changed as follows. First, the development team passes information
on which code is planned to be changed to the test team. Second, the authors implemented
test-wise coverage recording for the team, so that similar former test cases can be identi-
tied. For this purpose, the non-isolated testing environment is profiled in a user-specific way,
which helps identify re-use opportunities. The testers highlighted that they like the newly
created “transparency regarding which code is being executed by their manual tests.” The
test lead pointed out that “it would have been great to have this tool from the very begin-
ning of the project, where even more tests were run.” Now, the system under test is so large
that many test runs (and thus, code changes) are needed until all actively maintained code
regions are profiled. The team has started to re-use test cases where possible, even though,
typically, not the entire test case can be re-used.

According to the test lead, at the end of a test phase, she again runs the test case selection on
changes of the current release. This outputs a set of test cases that contains usage scenarios
for the changed code, and thus, additional testing opportunities. Hence, she is not only using
the selection as originally intended, but uses it as inspiration for additional testing. She con-
siders this helpful because it “lowers the risk of missing relevant test cases” and increases the
likelihood of detecting faults before deploying the system under test to production. As far
as test case prioritization is concerned, the test lead stated that “the order of the selected tests
does not matter that much” because she “checks all selected tests to see if the team missed
testing opportunities.” She thinks that test schedule optimization “might be helpful for manual
testing in general”, but for her project, she doubts that “the input data is accurate enough.”
In contrast, she liked the idea of test case reduction because they often have to test similar
functionality via different interfaces, and she would like to “reduce [...] redundancies.”

3.3.2 Case Study 2: Regression Testing

Our second study subject pursues a different goal with their testing than the first study sub-
ject, that is, regression testing. The implications on applicable test optimizations of the dif-
ferent testing process become clear when instantiating our process model, as we will discuss
in the following.

4 Teamscale: https://teamscale.com/, see also Haas et al. [54]
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3.3.2.1  Background Information

Our second study subject is an application from IVU Trarric TEcHNOLOGIES, one of the
world’s leading providers of public transport software solutions. The company employs
more than 700 people worldwide. We focus on the manual regression testing process for one
software product (primarily written in C++, with more than 700 thousand source lines of
code) that is concerned with duty planning. At the time the interviews were conducted, one
tester was manually testing the product full time and thirteen additional testers provided
targeted testing support for releases. The test management software in use is TestLink®, an
open-source tool that is modified to suit the company’s needs.

Table 3.4: Developer feedback: v' has been implemented, ® can be implemented in the future, and
x will not be implemented

Study Subject 1

User acceptance tests 5 testers 6-8 week cycle 2.1 M SLOC ABAP

Applicable Optimization Techniques Feedback

Re-use of existing test cases and steps v
Test case selection
Test case prioritization

Test scheduling optimization

© x X X

Test case reduction

Study Subject 2

Manual regression tests 1+13 testers 12-16 week cycle 700 K SLOC C++

Applicable Optimization Techniques Feedback

Test case prioritization v
Test case selection

Test case reduction
Test case refactoring
Test quality monitoring

® ® @ x X

Test plan optimization

3.3.2.2  Applicability of Optimization Techniques

Again, following our process model of Section 3.2.5, we were able to suggest 6 optimization
techniques that are applicable for the second study subject.

Test Case Creation The test management software does not support the management of
individual test steps, which prevents a re-use of similar test steps. Furthermore, existing tests

5 TestLink: http://testlink.org/
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are already deliberately under-specified to enable more exploratory testing. The first applica-
ble optimization technique is test quality monitoring: Test cases of the subject are constructed
using natural language descriptions, which can easily be checked by automated monitoring
tools for textual quality analysis.

Test Plan Creation Minor releases are tested only with a set of manual smoke regression
tests (~30 test cases). For major releases, a larger test suite (~360 manual test cases) is exe-
cuted, in addition. In general, there is no individual prioritization or selection of test cases.
However, a subset of test cases called “developer tests”, which cover substantial functional-
ity, are first executed, to prevent blocking other test cases. As the name suggests, these tests
are executed by developers during development before the testing phase begins.

Testers implicitly create a test history by marking tests as “passing” or “failing” during
their execution. These test reports form a valuable artifact for optimization of the test plan.
Both test case selection and test case prioritization can benefit from failure prediction models that
solely rely on such information as shown by prior research on automated [31] and manual
testing [66, 67, 87]. In addition, the textual descriptions could further be leveraged using
natural language analyses [67, 87].

Test schedule optimization is not directly applicable, as the requirement of measuring test
duration is not fulfilled, yet. However, we still assume that there are two other levers for op-
timized test scheduling: First, test assignments can be easily automated as they are currently
manually derived from prior test plans. Second, test cases in the test management software
may contain links, which define precedence or resource constraints. We propose to use ex-
isting automated techniques for generating an optimized test schedule that satisfies these
constraints [106].

Test Plan Execution Test gap analysis is infeasible, as there are no test traces recorded
during testing.

Test Suite Maintenance Since test descriptions and test failure history are available, the
optimization techniques test case refactoring and test case reduction are applicable. They can be
applied to create a reduced test suite that is easier to maintain, query, and extend [8].

Developer Feedback Together with the test lead, we identified test case prioritization to be
the most promising of the proposed optimization techniques: Accordingly, it makes sense
to execute those tests first that found bugs before, “in the expectation that they will be more
likely to find bugs again and thus start fixing them sooner”. Therefore, we implemented
a simple prioritization strategy, where tests that have failed before are executed first. This
proof-of-concept already reduced the feedback time compared to the current random order-
ing of tests.

We decided to discard test case selection and test case reduction, as the test lead pointed out
that existing test cases “in principle already represent a rather coarse-meshed coverage of
the most important features”, making further selection or reduction unnecessary.

Closer consideration of test quality monitoring and test case refactoring is generally of inter-
est, as it is already known by the developers of the subject project that the “nature of test
case descriptions has evolved over time, test cases vary widely in the quality and scope of
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the descriptions”. However, implementing such techniques has lower priority than test case
prioritization inside the testing team. Finally, test schedule optimization is already informally
done in the subject project by manually keeping track of which test cases were executed by
which tester before. Yet, automated assistance in the test assignment could still be helpful: “It
would be conceivable to provide guidance to testers in selecting unknown test cases through
tags on the test cases (e. g., required specialized knowledge).”

3.4 Discussion

We discuss the lessons learned from our case studies as well as potential threats to validity.

3.4.1 Case Studies

Both test leads find the recommendations of our guidelines useful. For our first study subject,
the test process and environments were changed on our recommendation derived from our
optimization guidelines, so that test steps can be re-used, which saves test creation efforts.
Another optimization is employing more in-depth testing because selection of former test
cases is used as inspiration for additional tests. In the second case study, using our guidelines,
we were able to identify and exploit the potential of reducing test feedback times by test case
prioritization based on test failure history.

Overall, during the case studies, our guidelines provided a goal-oriented structure for the
discussion of bottlenecks in manual testing and helped the developers to focus on most rel-
evant optimization techniques. Thus, they are well suited for discussions with testing prac-
titioners to understand their process and tools, and help to communicate levers of optimiza-
tion techniques.

Our guidelines summarize optimization techniques that are suitable to address bottle-
necks in manual testing. From our case studies, we learned that the evaluation of techniques
for their practical applicability is guided well by the presented prerequisites and caveats.
In both case studies, the guidelines have shown to be effective: For the first study subject,
re-use of existing user acceptance tests has been improved, and a variety of tests has been
increased by test case selection. In the second case study, feedback time could be reduced by
prioritizing tests based on failure history.

Nevertheless, further research on optimization approaches for manual testing is neces-
sary. Our guidelines can be extended towards this goal, and we are happy to receive merge
requests in our supplementary repository (see also Sec. A.1).

3.4.2 Threats to Validity

Internal Validity A threat to internal validity arises from the Rosenthal effect [135]: The
framing of our survey questions could have influenced our participants, for example, by stat-
ing unbalanced advantages and disadvantages of manual testing. We chose the formulations
of our survey neutrally, and we did several rounds of pretests with academic experts as well
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as testing professionals from our target group to reveal potential misleading formulations
and misunderstandings. We refer the interested reader to our supplementary repository (see
Section A.1) for more information and replication.

The set of guidelines presented in Section 3.2.1 is not meant to be complete. We focus on
optimization techniques and levers that we have identified in our survey.

External Validity = We selected the participants of our survey from a small target group.
We deliberately chose this group because, this way, we could validate answers and clarify
open questions with participants to get a better and clearer understanding of manual testing
processes in industry. Nonetheless, manual testing might be used in other ways, which limits
the generalizability of our results—a common issue in empirical software engineering [144].
In particular, answers given in the survey indicate context-specific challenges, such as regula-
tions for the development of medical technology or complexity of GUI testing, which need to
be further investigated. Still, the different project backgrounds and processes provide deep
insights into the variety of manual testing.

From the survey answers, we derived an empirical process model, which might not be
applicable to every testing process. Yet, our two case studies show that the optimization
levers and techniques, as well as their prerequisites and caveats are helpful for practitioners
to identify optimization potentials in their testing processes.

In general, case study research [138] is not meant to generalize, but our two case studies
nonetheless demonstrate the potential of our guidelines to assist developers and test profes-
sionals in identifying useful optimization techniques for their manual testing process.

3.5 Conclusion

Manual testing is widely used in industry, despite the high cost of the human effort required.
With increasingly short software release cycles while operating large manual test suites, there
is a growing need for optimization of manual test processes. Yet, existing optimization tech-
niques from automated testing are often not directly transferable, because it is unclear how
to integrate them into manual testing processes and required data are often missing. Since
there is no precise understanding of the practices and processes of manual testing across
industry, pitfalls and optimization potential are generally unknown.

In this chapter, we have surveyed 38 testing professionals from 16 companies and differ-
ent project contexts to qualitatively analyze the prevalence, characteristics, and problems
of manual testing activities that enable or hinder optimization. The result of this empirical
study is a set of guidelines embodied in an annotated process model that implements nine
optimization techniques for manual testing. We discussed prerequisites and caveats for each
technique, as they have been described in the literature or reported by practitioners during
our study. We further demonstrated by means of two large-scale industrial case studies that
our guidelines are useful and actionable to identify untapped optimization potential. Our
two case study subjects implemented the re-use of tests, test case selection, and test case pri-
oritization techniques. According to the test leads of our study subjects, their teams benefit
from a higher likelihood of detecting faults, a reduced test feedback time, and an increased
re-use of manual test cases.
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I This chapter shares material with a prior publication [56].

In Chapter 3, we found that several optimization techniques for automated testing can be
transferred to manual testing, such as test case prioritization and test case selection. The two
case studies discussed before shed light onto benefits and limitations of several optimization
techniques, but further research is necessary to gather evidence of the effectiveness of specific
optimization techniques and their applicability in manual testing processes. To address this
gap, we conduct in this chapter a field experiment to gain deep insights into the practical
benefits and limitations of two specific test optimization approaches which combine test case
prioritization and selection for automated and manual testing.

Background Software test suites grow with their systems under test [169]. So, for large
software systems, the corresponding test suites are typically large [128]. Large test suites, no
matter whether for automated or manual testing, take substantial time to run. Besides being
expensive to execute, long test suite run times also prevent early and meaningful feedback
to developers [32, 67, 168]. In the study outlined in Chapter 3 among 38 testing teams of
industrial software projects, we found that a single execution of a manual test suite takes,
on average, 1.5 person months, in extreme cases even up to six person months [53]. The test
suites of our industry research partners for this study (see Section 4.2.2) run, on average, a
whole work week for automated tests, and, on average, five person months for manual tests.
They suffer from late feedback and lack of resources to run all tests in reasonable time.

In Chapter 2, we outlined several techniques for improving test feedback times for long-
running test suites. In this chapter, we focus on the two common techniques test case selection
(see also Chapter 2.2.1.2) and prioritization (see also Chapter 2.2.1.1). While test case selection
and prioritization are well-understood for automated tests [29-31, 46, 61, 62, 90, 96, 118, 127],
the transferability to manual testing is challenging. Inherently, manual tests are conducted
less frequently. This leads to substantial code changes between test cycles, and functional-
ity usually tested on the system level, resulting in each test covering a significant portion
of code. Beside their different nature, manual tests fail to fulfill prerequisites of existing op-
timization techniques [53], for example, manual tests may be under-specified, resulting in
different execution traces for multiple runs of the same test case. Additionally, execution
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traces may not be easily separable for different test runs if manual test environments are not
isolated. Finally, different test processes, software development and test environments, and
test suite run times dictate how aggressive an optimization technique needs to be to provide
fast feedback while still keeping the fault detection rate as high as possible.

Research Gap There is a lack of evidence of the extent to which test optimization tech-
niques for automated testing can be applied to manual testing processes in industrial prac-
tice, and what limitations need to be accepted.

Solution To address this research gap, we, first, analyze the processual differences be-
tween manual and automated testing in five large-scale industrial software projects, and we
investigate whether their different test processes require different optimization strategies.
Our aim is to discern the implications of the implemented test processes for the suitability
of different optimization approaches. Second, we conduct a field experiment [150] apply-
ing two optimization techniques to five industrial software projects that implement auto-
mated or manual testing. Specifically, we apply two general language-agnostic optimization
approaches to ease setup and allow for comparison of results between our study subjects:
(1) test impact analysis, a code-change-dependent test case selection and prioritization ap-
proach [78], and (2) Pareto testing, a technique that performs a static test case selection that
maximizes test coverage while minimizing test execution time.

Conduct and Results  To identify process differences between manual and automated test-
ing, we have conducted a survey among our industry research partners. In our field experi-
ment, we use historic test runs of our real-world study subjects to evaluate the costs and bene-
fits of two general and language-agnostic test optimization techniques. Our results show that
they are applicable in practice for automated and manual testing processes. For automated
tests, 80% of failures are detected by the optimized test suites, on average, while saving 66%
of execution time, compared to 81% failure detection rate for manual test suites and a time
saving of, on average, 43%. All five industry partners that participated in our empirical study
have adopted test impact analysis or Pareto testing into their processes following our results.

Contributions Our contributions in this chapter are the following:

o Field Experiment on Five Industry Projects. We investigate two language-agnostic test case
selection and prioritization techniques on a set of five test suites suffering from long ex-
ecution times from industrial software projects from various domains, using different
technologies, implementing manual and automated test processes.

o Differences between Automated and Manual Testing. We carve out differences that are rel-
evant for test suite optimization between automated and manual testing processes by
surveying five test engineers and by querying the corresponding test suites.

o Experiment on Test Optimization Applicability in Practice. We conduct a field experiment
to learn to which extent the optimization techniques are applicable to solve the issue
of long-running test suites.
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o Analysis of Test Histories. We analyze real data from more than 43,300 test cases, includ-
ing test-wise coverage and, in total, 2,622 test failures from the study subjects’ test his-
tories to gain insights on the effectiveness of the optimization techniques.

o Practice-oriented Guidelines. We provide a set of lessons learned enabling practitioners
to implement the most suitable optimization technique in their testing process.

4.1 Foundations for Our Study on Optimization of
Manual Tests

Our empirical study (see Section 4.2) pursues the goal to create transparency on testing
strategies in practice and investigates the applicability of two optimization techniques for
automated and manual testing. In this section, first, we discuss related work from the field
of manual test optimization, focussing on the transferability of automated testing, and the
typical study setups for manual test optimization research. Afterwards, we introduce spe-
cific variants of optimization techniques that we established in Section 2.2 and which we
implemented for our empirical study.

4.1.1 Related Work on Manual Test Optimization

We briefly extend the discussion on transferability of optimization techniques from auto-
mated to manual testing from Section 3.1 with a differentiation of the study presented in
Section 4.2 from related work. This is followed by a discussion on the scope of studies pre-
sented in related work and how our study differs from prior research.

4.1.1.1  Transferability of Optimization Techniques from Automated to Manual Testing

Although manual testing is widely used for large, complex, and regulated systems [ 53], prior
research on test optimization has primarily focused on automated test suites (see also Chap-
ter 3). As the execution time of a manual test case takes typically several orders of magnitude
longer than for an automated test, the underlying issue of unmanageable test suite run times
is even worse for manual testing [37, 53]. Consequently, there are several approaches that
transfer results from automated test optimization to manual testing. Test case selection tech-
niques [24, 28, 53, 76, 111, 174] as well as test case prioritization [5, 66, 87, 143] have been
discussed, but only on a single or several similar subjects. In our empirical study, we include
subjects from different domains relying either on automated or manual testing processes and
implementing their system under test in different languages. Other optimization techniques
refer to failure prediction [47, 67], test automation [86], and test suite reduction [24, 141].

4.1.1.2  Study Setups in Manual Test Optimization Research

In Section 2.2, we gave an overview about different test optimization techniques and pro-
vided references to core contributions of the field. Also, the optimization techniques we are
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using in this work are based on well-researched approaches. In this section, we delineate the
setups of our work from prior research.

Evaluation Focused on Open-Source Systems Most of the work evaluating the optimiza-
tion techniques discussed so far focused on seeded faults and open source systems. More
recent work incorporates other oracles, too, but still rely on open source systems as their
study subjects for availability reasons. Peng et al. investigated several approaches for test
case prioritization [124]. They combined and analyzed coverage, cost, historical failure, and
information-retrieval-based prioritization approaches, and evaluated them on a large set of
open source projects using faults from the projects histories. Cheng et al. prioritize test cases
for cloud configuration testing and evaluate their work on 5 open source docker images [18].
Wang et al. combine test case selection based on code and configuration changes, and use
the same subjects as Cheng et al. to evaluate their approach [161]. Yaraghi et al. prioritize
test cases in continuous integration contexts and evaluate their work on a set of more than
400 open source projects [165]. We conduct an empirical study on large industrial systems
which come with their own difficulties and might show different behavior from what has
been seen in open source projects.

Evaluation Based on Industry Systems There have been several publications focusing
on test case selection or prioritization for industry projects. In most cases, they are using a sin-
gle industrial subject, often complemented by additional open source or generated subjects.
For example, Marijan et al. apply a test case selection approach that focuses on coverage and
historical failures on an industry project that is supplemented by generated subjects based
on the industry project [97]. Their approach is based on eliminating redundancy, that is,
selecting tests that do not cover the same parts of the source code and do not fail together.
There are also some studies looking into Google’s [101] and Facebook’s [96] approaches to
test optimization. These studies deliver impressive results but are based on internal Google
and Facebook projects, respectively, and do not consider applicability in other contexts an
important factor. Recent work on cross-language regression test case selection for C++ bina-
ries [34] and on severity-aware prioritization of system-level regression tests [164 ] focuses
on specific technologies and evaluates them in one specific industrial context. In summary,
the focus of our work is different from most previous work in that we evaluate common test
optimization techniques that fit well with our industry partners. Collaborating with them,
we conducted a field experiment in a highly realistic environment across a wide range of
industry systems, encompassing various languages and technologies.

4.1.2 Optimization Techniques for our Field Experiment

For our field experiment, we selected two optimization techniques. First, we provide an
overview of the requirements that the techniques need to meet. These criteria were collab-
oratively defined with our study subjects, as discussed in Section 4.2.2. While all subjects
suffered from the same problem—Ilong-running test suites—there was a broad range of crite-
ria concerning technologies, processes, and diverse economic, social, and legal requirements.
We structured our field experiment to ensure some level of comparability across the subjects’
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contexts. Achieving this involved selecting optimization techniques that could be universally
applied. This posed a significant challenge for several reasons. Firstly, we aimed for program-
ming language-agnostic techniques to cater to the diverse range of real-world software sys-
tems. Secondly, our optimization techniques needed to be suitable for both automated and
manual testing processes, each presenting their unique challenges (as detailed in the intro-
duction of Chapter 4 and discussed in Section 4.4). Thirdly, our study subjects varied in size
and complexity, and had slightly different optimization goals. Some focused on reducing
test execution time by running a selective, change-focused subset of tests, while others pri-
oritized running a diverse subset of tests for smoke tests. Fourthly, our subjects demanded
well-established, intuitive optimization techniques that yield explainable and trust-worthy
results from their perspective. Additionally, compliance with regulations was vital for sys-
tems in highly regulated industries. For instance, adherence to data protection regulations
and stringent limitations on the processing of personal data (such as that of testers) based
on legislation were critical considerations.

Recent techniques based on machine learning (for example, Yaraghi et al. [165]) are ruled
out by these requirements, as many of the features are either not available for manual tests
or not applicable in industrial contexts. For manual tests, first, features based on test source
code are not available since the tests are documented in natural language. Second, since
manual tests are executed far less frequently than automated tests, the number of historic
test execution data available for each test case is limited. Third, in the case that historic test
executions are available, features such as execution time and coverage vary more widely than
they do for automated tests, which reduces their usefulness for a learning-based approach.
For automated tests, we faced the additional challenge of large data sizes with some of our
study subjects. In the case of TimE, the test coverage report for a single test run was 13 GB in
size. Since this accumulates quickly over many test executions each day, the developers only
keep historic data for a single week. This, again, limits the possibility of using these data for
learning-based test optimization. Finally, some data such as the committers for a file or the
experience of a developer cannot be used due to data protection regulations.

Given the resource-intensive nature of manual software testing, we limited the selection to
two optimization techniques for the field experiment to manage evaluation costs per study
subject effectively. We selected test impact analysis because—besides fulfilling the criteria
outlined above—it is based on selection and prioritization approaches that have demon-
strated effectiveness in the literature [9, 17, 43, 136]. In our preliminary experiments, exam-
ining test impact analysis mostly on much smaller and open-source subjects with automated
tests, we found that it performs well: For instance, the test suites optimized by test impact
analysis maintain more than 9o% of the original test detection capability, while saving 64%
of test execution time, and have a median relative time-to-first-feedback of 2% [78]. These
results encouraged us to investigate the applicability, benefits, and limitations of test impact
analysis in large industry contexts including automated and manual testing, which we focus
on in this work. It is important that the approaches are based on an intuitive fault model
so that their results are easily understandable by the testers of our industry partners: Most
bugs are introduced by code changes [134], so we assume that selecting all tests that cover
changed code is intuitive to most people who work in software development. On top of the
intuitive selection criteria, test impact analysis allows us to trace which tests were selected
for a single changed method which, again, can give testers confidence in the technique. In ad-

53



54

Optimization of Automated and Manual Software Tests in Industrial Practice

- - R e . R
Test Impact Analysis Pareto Testing
& Manual @ = & Manual =
— — - — — -
& Autom. D lj| Tes_t’DB & Autom. @ lj| TesTDB
- 1.8 & 1B S
= QQ - TIA ~ 20 Pareto — 2
VCS 3 & 3. EHo
Motivation: Motivation:
Reduce execution time while keeping Identify quick smoke test set that mimics
failure detection capability original test suite failure detection capability
Idea: Idea:
Select tests based on changes Select a diverse set of quick tests
Input: Input:
& Coverage per test E& Coverage per test
@ Execution time per test @ Execution time per test
[1 New tests
Failed tests
5 Code changes
Technique: Technique:
Select tests based on coverage Prioritize tests by coverage per time
\Prioritize tests by change coverage per time/ \Cut off after cost limit is reached )

Figure 4.1: Overview of the chosen test optimization techniques: test impact analysis (left) and Pareto
testing (right)

dition, our test impact analysis implementation is based on a tooling platform that allows us
to handle various programming languages and testing frameworks and environments [54,
137].

Our choice of Pareto testing was based on the existing implementation of test impact anal-
ysis, which provides a very solid basis. The idea of Pareto testing (i.e., we can only detect
faults in parts of a system that we cover with tests), is also easily understood. Pareto testing
reuses parts of the implementation but reduces the hardware and implementation require-
ments for data collection and processing that test impact analysis incurs, especially for very
large projects. This reduction was a requirement for continuous use for some of our indus-
try partners. Since its implementation is based on test impact analysis, it also benefits of
the above-mentioned wide support for popular languages, frameworks, and testing environ-
ments.

Details of the two techniques will be outlined in the following sections.

4.1.2.1  Test Impact Analysis

We instantiate a test impact analysis optimization technique from Section 2.2.1.3 as follows:
In our context, test impact analysis selects test cases that execute code that has been modified
within [f,,6e, tenq |, Which failed in their most recent run, or which are new. The prioritization
is based on a greedy cost-benefit calculation, where the costs C(t) refer to the test execution
time, opposing the benefit B(t) of additional change coverage [114, 137]. The algorithm cal-
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culates a prioritization where for each rank r € [1, 1] the test with the best cost-benefit ratio
is chosen iteratively: So, in every iteration i € [1,1], Oy;,[i] = t; is chosen such that

t; = argmax B(4)
l t; € T\Otiq C(t])

(41)
An overview of test impact analysis can be found on the left of Figure 4.1.

4.1.2.2  Pareto Testing

We use Pareto testing (see also Sec. 2.2.3.2) as a simpler alternative to test impact analysis,
since practical usage at industry partners showed that obtaining and processing the input
data for test impact analysis can be a substantial effort. For instance, a single test run at one
of our study subjects produces 13 GB of coverage data. They implement continuous integra-
tion for all feature branches, have a large monolithic system, and more than three hundred
active developers. Altogether, this setup leads to terabytes of coverage data that would need
to be processed on a daily basis to run test impact analysis. Moreover, executing only a dy-
namically calculated subset of tests (e. g., based on the results of test impact analysis) is not
always supported by the test runners implemented in industry, which can hinder the integra-
tion of test impact analysis in continuous integration setups. To overcome these drawbacks
of test impact analysis, Pareto testing provides a more simplistic approach that can be set
up and productively used with less effort. The Pareto test list T}, is not intended to be re-
calculated for every single test cycle, but less frequently (e.g., nightly or weekly), which
reduces the costs of continuous coverage collection and integration into build pipelines. As
a consequence, the underlying test case prioritization technique needs to be independent of
a particular changeset.

We provide a brief overview of Pareto testing on the right of Figure 4.1: Pareto testing
draws on ideas from the area of test suite minimization and test case prioritization [142,
168]: it collects a diverse set of quick tests. For this, it uses a prioritization technique that
orders tests to always include the one that adds the most additional coverage in the least
amount of time. Once everything has been covered, the existing coverage is reset and starts
again. The goal of this is to order the tests so that failing tests are run early. While the priori-
tization mechanism is the same as for test impact analysis (see Equation 4.1), Pareto testing
is independent of a timespan or change set, and it does not include recently failed or new
tests. Second, the highest prioritized tests from the list are picked and included in the test
case selection. Pareto testing is related to test suite minimization in that it selects a change-
independent set of most relevant tests. However, it is not quite the same, since the selection
does not aim at removing redundant tests permanently.

Formally, Pareto testing calculates an ordered subset T}, of a test suite T that runs within a
cost limit of L. Each test case f has a cost function C(t), representing its execution time. First,
a test case prioritization is applied, aiming for an ordering O such that failing test cases t,
are executed before passing ones t, (see Equation 2.1). Then, the maximal number k of test
cases fitting into the cost limit of L is determined:

k:argmax(( Z C(tl)) SL) (4.2)

1<i<n 1<I<i
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The selected test cases t; ..., that comprise T}, are then the first k elements of the ordered
tests O.

4.2 Empirical Study: Survey and Field Experiment

We conduct an empirical study consisting of (i) a survey of our subjects’ test leads and (ii)
a field experiment to evaluate the selected test optimization techniques on our subjects’ sys-
tems. By means of the survey, we collect insights into how testing is implemented in their
industry contexts and how they intend to evolve their processes. We use these results to high-
light differences between automated and manual testing. In our field experiment, following
Stol and Fitzgerald [150], we adhere to their definition where the study takes place in a natu-
ral setting, that is, a realistic software development environment, involving changes directly
impacting the studied entity, that is, the testing process. By this means, we investigate the
applicability of two test optimization techniques for both testing strategies.

4.2.1 Research Areas and Questions

We address research questions (RQ) from two research areas (RA): (1) differences between
automated and manual testing and (2) comparison of test impact analysis and Pareto testing.

RA,: Test Strategies

Our study subjects employ automated and manual software testing (see Section 4.2.2). As
the underlying processes are quite different—which might affect optimization potentials and
goals—we compare them on the basis of our subjects.

RQ..1: What test activities are performed and what are major characteristics of the test processes? We
collect relevant data and provide an overview over the testing activities of our subjects to
better understand their test processes and goals.

RQ;..: How much testing and maintenance effort is invested into automated and manual testing? We
investigate the divergent maintenance and execution efforts between automated and manual
testing in order to uncover optimization potential.

RQ,.5: What are major bottlenecks in the testing process? We aim to understand the bottlenecks
in our subjects’ lengthy test processes to identify the most effective optimization potentials.

RQ+.4: What are costs and benefits of the current testing process? We obtain a baseline for the evalu-
ation of our optimization approaches (RA,) and share quantitative data on the effectiveness
of individual test cases and test suites to shed light on the structural differences between
automated and manual tests.
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RA,: Test Optimization

We apply two optimization techniques, a test case selection and prioritization (test impact
analysis) and a minimization technique (Pareto testing), to automated and manual test suites
of our subjects to learn when to apply which approach.

RQ,.1: To what extent does the optimization technique influence the fault revelation capability of au-
tomated or manual tests? We focus on unsafe optimization techniques, which may not execute
all potentially failing tests. As discussed in Section 4.1.2, this is reasonable in an industry con-
text. Still, we strive for optimization techniques that preserve the fault revelation capability
of the test suites as much as possible.

RQ...: What reasons lead to missed test failures for the optimization techniques? To uncover the
reasons behind missed test failures by our optimization techniques, we aim to expose their
practical limitations. Additionally, we seek to determine if these limitations vary between
automated and manual testing.

RQ, ;: What are costs and benefits of the optimization techniques? Using this research question,
we aim to provide guidelines when to use what optimization technique in practice, possibly
including a differentiation between automated and manual testing.

4.2.2 Study Subjects

Our empirical study aims at improving our understanding of test optimization in industrial
practice. To obtain meaningful results, we work with data from private, public and even
public-sector companies from different fields relying on different implementation and testing
technologies, see also Table 4.1. The project sizes range from a few ten thousands lines of
code and teams with less than ten developers to several million lines of code with more than
a hundred developers. The third column of Table 4.1 on test processes denotes whether we
used their automated (A) or manual (M) test suite in our field experiment. Automated tests
refer mostly to lower test levels, that is, Unit (U) or Integration (I), while manual tests are on
the System (S) level. In the last column, we list the number of versions we analyzed for each
subject. Depending on the type of tests, that is, automated or manual, a version refers to a
different interval, as described in Section 4.2.5. The big differences in the number of versions
are caused by the very different testing processes. While the automated tests of our subjects
are in some cases run daily, the manual tests are only executed a few times a year and the
collection of data required continuous support from our side, which limited the number of
versions we were able to investigate. Also, the size and complexity of data of subject TimE
limited the number of versions we could analyze there.

Next, we introduce our subjects, their background, and their motivation for test suite op-
timization. We investigate the test processes in more detail in Section 4.3.

TiME is a software vendor (name changed for anonymization), has more than 600 employ-
ees, and a revenue of more than €100 million. In our field experiment, we are considering
one of their core products. For this product, they have a very large test suite of 80,000 test
cases, but even though they run their tests on 50 machines in parallel, it is not possible to test
all maintained versions every night.
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Table 4.1: Overview of study subjects

Company Domain  Test Test  Team SLOC Lang Versions
Proc Levels Size

TimEe? Time Mgt. A UILS 50 8M Java 2
BVK Finance A LS 20 300K Java 543
DoLsy Audio A U1 10 28K C 111
ILP ERP M S 5 831K C# 1
ZE1sS Optics M S 90 6M C# 1

* Subject anonymized due to NDA

BAYERISCHE VERSORGUNGSKAMMER (BVK) is Germany’s largest pension group under pub-
lic law and has about 1,490 employees. They build software for internal use and their cus-
tomers. The project we are working with is running fast unit tests frequently, but the inte-
gration tests take around 10 h. The teams run nightly automated regression tests and to get
faster feedback on their changes, they already employ Pareto testing during the day.

DoLy works in the audio domain and has approximately 2,330 employees worldwide and
offers a broad range of audio encoding, decoding and compression solutions. Some projects
are using tests which need to cover lots of different configurations of audio systems, which
opens up a large space of possible configurations for test cases. To avoid long feedback cycles,
they were already using test impact analysis to select only the tests and test configurations
that are relevant for recent changes.

ILP develops ENTRA®ERP, an enterprise resource planning system and is the smallest com-
pany among our study subjects with nine employees. They focus exclusively on manual test-
ing, which is continuously performed—with more change-focused testing before a release,
where the testing expert in the team selects tests that might be affected by the code change.
Their test process includes both structured manual tests via Azure DevOps [107] and ad-hoc
testing.

Carl Zeiss Microscopy (Zkiss) is a company that is manufacturing microscopes and has
approximately 3,000 employees. We are looking at their ZEN Microscopry Software which
interfaces with their microscopes and provides control and configuration options, as well as
visual results. They test their interfaces extensively with frequent automated tests, as well as
manual tests on the actual hardware. They aim to test changed code as it is more likely to re-
veal bugs. For this purpose, they perform a manual expert-driven selection and prioritization
of test cases.

On our supplementary Web site (see Section A.2), we present a table summarizing the
study subjects along with some key statistics, for example, team size, the system under test’s
size, and the main implementation language.

4.2.3 Operationalization

We employed two methods to answer our research questions. Firstly, we designed a question-
naire that we sent to representatives of the testing teams of our subjects (see also Sec. 4.2.4).
Secondly, we analyzed data from the subject’s test-suite management systems, including his-
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torical test results and coverage. The following section outlines how we utilized these data
sources to address our research questions. More details on the data analysis are available on
the supplementary Web site (see Sec. A.2).

RA,: Test Strategies

We conduct a survey targeting the test leads of our subjects to capture the automated and
manual testing processes currently in place. This includes the process characteristics as well
as its intended evolution. See Table 4.2 for an overview on the mapping between the ques-
tionnaire and our research questions.

Table 4.2: Survey questions to answer the research questions

RQ Survey question

1.2 How many test engineers (e. g., testers, test developers) are there in your project?
1.2 How many test engineers spend their whole working time on testing?
1.2 How many test engineers work with the automated test suite?

1.2 How many test engineers work with the manual test suite?

1.1 Which test activities are performed via automated tests?

1.2 How much time do you estimate is invested into maintaining the automated test suite?
1.3 What are bottlenecks in your automated test process?

1.3 Are there flaky automated test cases?

1.1 Which test activities are performed manually?
1.1 How big is the manual test suite overall?
1.2 How many manual test cycles take place per year?
1.2 Is the entire manual test suite executed in every test cycle?
1.2 How many test cases are executed per manual test cycle?
1.1 Which events trigger the execution of a manual test case?
1.2,1.4 How long does it take to execute the entire manual test suite?
1.2 How much time do you estimate is invested into maintaining the manual test suite?
1.3 What are bottlenecks in your manual test process?
1.3 Are there flaky manual test cases?

RQ;.1: What test activities are performed and what are major characteristics of the test processes? We
ask our survey participants about their automated and manual testing processes and what
specific testing activities they implement, for example, regression testing or user acceptance
testing. In addition, we consider the test suite size and the trigger events for test executions.
If a manual test suite is maintained, we query its size and test execution triggers in the survey.
For automated test suites, we obtain these data from the subjects’ test management systems.

RQ;.: How much testing and maintenance effort is invested into automated and manual testing?
We collect a set of statistics on our subjects” teams. To learn about the effort invested into
automated testing, we query the execution time per test case and per test cycle from the test
management systems. For manual tests, we ask in our questionnaire how often our subjects
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execute how many test cases as well as the time it takes to run a single test cycle. Additionally,
we ask about the efforts that are spent for maintaining the manual and automated test suites.

RQ;.;: What are major bottlenecks in the testing process? Our survey contains two open questions
on the bottlenecks our subjects perceive in their testing process, as well as two questions on
the existence of flaky tests. We cluster the responses systematically and report the relevant
insights.

RQ+.4: What are costs and benefits of the current testing process? To obtain a baseline for the evalu-
ation of the two optimization approaches, we approximate the testing costs by the execution
time per test case and test cycle. We measure the coverage per test suite as proxy for test
benefits, as well as the fault revelation probability per cycle, and the average number of test
failures revealed per cycle.

RA,: Test Optimization

To answer our research questions regarding test optimization, we rely on historic develop-
ment and test data of our subjects (Time, BVK, Dotsy, ILP, Zeiss). For this purpose, they
provided us access to their version control systems, test result history, historic test traces,
covering many months or even years of data.

RQ,.1: To what extent does the optimization technique influence the fault revelation capability of auto-
mated or manual tests? We run both optimization techniques on historic versions from our sub-
jects” test suites and investigate the fault revelation capabilities of the optimized test suites.
An ideal optimization technique would preserve the original fault revelation capability; that
is, previous test failures are still detected, while running only those tests that find faults. Still,
since the investigated optimization techniques are heuristics, missed test failures are possi-
ble. Section 4.2.5 explains in detail the measurement setup for automated and manual test
suites to obtain the fault revelation capabilities for test impact analysis and Pareto testing.

To answer RQ, , for test impact analysis, we determine the fault detection rate. For Pareto
testing, we obtain the same metric for a set of cost limits: As described in Section 4.1.2, Pareto
testing takes a cost limit L as input parameter. This parameter is given by the subject’s context.
For our evaluation, we run the optimization technique with a set of cost limits . = {1%, 2%,
3%, 5%, 10%, 15%,20%, 25%, 30%, 40%, 50%, 60%, 80%}.

For automated test suites, we report the detection rate of new failures (excluding subse-
quent failures), and we investigate whether applying test impact analysis and Pareto testing
to an automated test suite leads to missed failing builds (this would imply that developers
miss critical feedback as the optimized test suite passes while the original one failed). For
manual tests, we do not report new test failures because data on new failures was not avail-
able at our subjects.

RQ,.,: What reasons lead to missed test failures for the optimization techniques? To control the effort,
we randomly select for both test impact analysis and Pareto testing a sample of k = 10 missed
test failures (or all if there are fewer) for each subject and manually investigate why they
were not detected.

RQ,.5: What are costs and benefits of the optimization techniques? We quantify costs and benefits

of test impact analysis and Pareto testing to be able to contrast them. The costs refer to test
failures that were not detected by the approaches (see also RQ. ;) and to a potential loss in
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overall test suite coverage (see also RQ; ,). The benefits arise from saved execution time and
earlier feedback from failing tests, that is, we measure the time to first failure and calculate
by which factor the optimization approaches are faster than the baseline. Since the original
execution order was not available or was subject to change for subsequent runs (e.g., for
manual tests), for consistency reasons, we use a random selection, rather than the default
execution order, as a more challenging baseline for all subjects. To obtain the time to first
failure for the random baseline, we used a sample size of 1,000. For both optimization ap-
proaches, we distinguish between automated and manual testing, if applicable. As far as test
impact analysis is concerned, we state for each subject how much time is saved relatively to
the total execution time. For Pareto testing, the cost limit L relates directly to the time saving.
As we run our experiments with a set of cost limits .#, we first identify an optimal cost limit,
which balances the time investment ZL C (t;) and the detected failures F;, to answer this
research question. The optimal cost limit L, minimizes the euclidean distance to the theoret-
ical optimum, which detects all failures F without any costs, that is, in no time. In a plot of
cost limits L and their fault detection rates, L, would have the smallest distance to the top
left corner of the chart. Formally, L, can be written as:

P 2 2
L, = argmin (ZC(ti)) +( —%) (4-3)
i=1

Le¥

For Pareto testing, we additionally use the APFDc metric for our cost-benefit analysis, which
is a cost aware modification of APFD (Average Percentage of Faults Detected) that was in-
troduced by Rothermel et al. [136]. We do not evaluate test impact analysis using this metric,
since test suites optimized by test impact analysis violate the APFDc requirement of equal to-
tal execution times. While the original APFDc metric considers cost as well as fault severity,
we use a simplified version considering only cost, since we have no values for fault sever-
ities, as has been done in previous work [95, 124]. Also, like Peng et al., we assume the
worst-case, a one-to-one failure-to-fault mapping, since we lack the necessary access to our
subjects’ infrastructures. We compare the APFDc with a random approach based on a sam-
ple size of 1,000 (the highest sampling size found for similar studies [166]). APFDc indicates
how quickly faults can be found by a test suite in a specific order:

S ((Sfrr, € () - 3C (7))
> C (tj) xm
where 7 is the number of tests, m the number of test failures, and TF; is the first test that

reveals fault i. Again, we compare the APFDc value of Pareto testing to the more ambitious
random order.

APFDc =

(4-4)

4.2.4 Questionnaire and Conduct

With our survey, we collect experience from the responsible test leads at our subjects to bet-
ter understand how testing is currently done in the specific industrial contexts. We strive for
a detailed account of their testing processes and their real-world context, while exploring
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potential pathways or opinions for change. To this end, we designed a questionnaire to get
an overview about the currently implemented testing processes of our subjects, their specific
characteristics, and to elaborate their wishes for process changes addressing RA,. We asked
a representative of each of our five subjects, typically the corresponding test lead, to answer
the questionnaire beginning in February 2023; by May 2023 all subjects answered. On our
supplemental Web page, there is a table mapping our questionnaire’s questions to our re-
search questions. We used open-ended survey questions, allowing participants to describe
their context.

4.2.5 Measurement Setup

RQ,, is central for our field experiment. Our research is concerned with the application of
two optimization techniques, test impact analysis, and Pareto testing, across automated and
manual testing processes, each inherently distinct. Subjects with automated test suites typi-
cally execute the entire test suite at regular intervals, such as weekly or nightly. In contrast,
manual testing involves the phased execution of all tests amidst ongoing code changes. Tai-
lored measurement setups are essential for both processes to determine the fault revelation
capability of optimized test suites. Figure 4.2 illustrates which data we include in the calcu-
lation for automated test suites (a) and manual test suites (b). In what follows, we describe
the setup disparities between automated and manual testing, elucidating variations in data
collection methodologies for test impact analysis and Pareto testing.

[C x] Test phase 1 Test phase 2
ea|ES| [F9|[e=|En] [T
v V J v | I I | v Y I

(a) Automated test suite (b) Manual test suite

Project evolution

Commit

Test Report

Test impact analysis timespan

@ Pareto testing calculation

Figure 4.2: Measurement setup for RQ), , to determine the fault revelation capability of optimized test
suites

Automated Testing For automated testing, depicted on the left in Figure 4.2, we deter-
mine for each test run how many failing tests our optimization techniques would select if
applied prior to the run. The first test report is excluded from our evaluation because we
need an initial set of test coverage data to apply prioritization. We calculate a Pareto list for
all (but the very first) test executions, denoted by ® . For the calculation, we use the code
and coverage state right before the next test report. For test impact analysis, we select test
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cases based on the code changes starting from the first commit after the previous test report
up to the last commit before the next test report. In Figure 4.2, these commit intervals are
denoted as

Manual Testing For manual testing, illustrated on the right in Figure 4.2, full coverage
data is only available after the first test phase, as it requires, at least, one execution of all test
cases. The Pareto list is calculated (@) based on all test executions of the initial test phase.
Consequently, the test impact analysis timespan (. ) covers all changes for the subsequent
test phase. For both optimization approaches, the goal is to reveal as many test failures of the
subsequent test phase as possible. To obtain complete test reports, coverage recording per
test case is required. So, we integrated our tooling deeply into the subject’s test management
tools to trace test begin and end to trigger and stop coverage recordings appropriately. We
analyzed potential outliers with our subjects’ teams and excluded manual test executions
with implausible execution times (e. g., two seconds, or two weeks).

4.3 Results

In this section, we present our findings on the test processes of our study subjects (RA,) and
the cost and benefits of test impact analysis and Pareto testing (RA,).

RA,: Test Strategies

RQ;.1: What test activities are performed and what are major characteristics of the test processes?
Four subjects have an automated test suite used for regression testing (4), user acceptance
testing (2), performance testing (2), robustness testing (1), smoke testing (1), and compati-
bility testing (1). Four subjects rely on manual tests (where ILP has no automated tests) for
regression testing (3) and user acceptance testing (2). In addition, manual testing is used
for performance testing (1).

Table 4.3: Test suite and testing team sizes (numbers rounded)

Subject Test Cases Test Engineers

Automated Manual Automated Manual

TiME 36,000 10,000 5 15
BVK 3,500 unknown 9 9
DoLsy 2,000 0 4 0
ILP 0 800 0 3
ZE1Ss unknown 1,000 5 15

The test suite sizes vary greatly (second and third column of Table 4.3): the relevant sub-
jects have between two thousand and thirty-six thousand automated test cases. The manual
test suites count between eight hundred and ten thousand test cases. All automated test
suites are run regularly in a continuous integration pipeline, but the execution frequency
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ranges from runs per change to daily runs. Manual tests are run before scheduled releases,
sometimes in every sprint, and on-demand for acceptance testing.

SumMary RQ, ;. All of our subjects with automated tests run them for regression testing, some
perform additional automated test activities. The main purpose of manual tests are regression and
user acceptance tests. The subjects’ test suites tend to be large and are run frequently.

RQ,.»: How much testing and maintenance effort is invested into automated and manual testing?
Table 4.3, column four and five, list the number of test engineers (e.g., testers and test de-
velopers) involved in the software testing process. Overall, there are 3 to 20 test engineers
per subject. Automated test cases take, on average, 11's; the whole automated test suite, on
average, 40.9 h. Up to 30% of the development and testing efforts are dedicated to maintain-
ing automated tests. In contrast, most of the manual test suites are run only once per release,
and there are 2 to 10 releases per year. Between 10 and 10,000 test cases are run per test cycle.
Running the entire manual test suite takes between a few person-days and 225 person-days.
Maintenance efforts are relatively low, ranging between 1 and 18 person-days per year.

SuMMARY RQ, ». Our subjects invest considerable resources into automated and manual software
testing. For automated testing, maintenance efforts are relatively large; whereas, for manual testing,
the execution costs dominate maintenance costs.

RQ,.3: What are major bottlenecks in the testing process? For automated test suites, we found three
major bottlenecks in the testing processes: specifying test cases, poor test suite architecture,
and third-party components, which lack quick support of new framework versions. In what
follows, we illustrate them with quotes from individual participants. Related to specifying
test cases, Zeiss mentions, for example, the time-consuming “creation of tests” or at BVK it
takes much time to “define the test preconditions”. Regarding the test suite architecture, a
participant stated that they “have much more tests on system level than on unit level”, that
is, their test suite has the shape of an ice cream cone instead of a test pyramid [42]. ILP and
ZEr1ss report resource capacity as major bottlenecks in their manual testing process, and BVK
reports the test data configuration during test case creation as major bottleneck. Flaky tests
are perceived occurring more frequently for automated test suites (two out of four subjects);
no flaky tests are reported in manual test suites.

Summary RQ, 5. Our subjects identify the test suite design and the time-consuming creation of
test cases as major bottlenecks of automated test suites. Resource capacities and test case creation are
the major bottlenecks of manual testing. Flaky tests are bottlenecks only for automated test suites.

RQ,.,: What are costs and benefits of the current testing process? Figure 4.3 shows violin plots
of the execution times per test case and the execution time per test cycle (which does not
necessarily run the whole test suite). On average, a single automated test case takes 11s
to run, whereas a manual test runs for 29 min, on average. A test cycle for automated tests
requires between 4 h and 122 h, while manual test cycles require 16 h to 180 h. On average,
the test suites cover 69% of the methods of their respective systems; there is no substantial
difference between automated and manual test suites with regard to coverage. Notably, the
probability of, at least, one failing test per test cycle ranges from 13% to 89% for automated
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Figure 4.3: Statistics of our subjects’ current testing costs (execution time per test case and test cycle)
and benefits (coverage and failures) (RQ, ,)

tests, while all manual test cycles revealed, at least, one failure. Overall, the probability of a
failing cycle is 70%. On average, a test cycle revealed between 0.1 and 720 failures, where the
extreme value of 720 stems from an automated test suite.

Summary RQ, 4. An automated test cycle of our subjects runs up to 122 hours, while the longest
manual test cycle requires 180 hours. Automated and manual test suites cover approximately 69%
of the methods. 70% of all test cycles produce, at least, one test failure, all manual test cycles have
produced, at least, one failure.

RA,: Test Optimization

In what follows, we present the results of our field experiment where we implemented test
impact analysis and Pareto testing in the test processes of our five industrial subjects and
ran a historical analysis. Our subjects have recorded their test execution history including
test failure information and test-wise coverage information for, at most, three months up to
several years. As described in Section 4.2.5, this test history information allows us to answer
the research questions on the test optimization approaches.

RQ,.+: To what extent does the optimization technique influence the fault revelation capability of auto-
mated or manual tests? Figure 4.4 shows the fault revelation capability of test suites optimized
by test impact analysis for all subjects. For all subjects, almost all build failures are detected.
That is, when a build would fail with executing all tests, it would also fail with the optimized
test set of test impact analysis. Only for subject BVK, test impact analysis misses 4 out of 542
build failures. For newly appearing test failures, on average, 76% are detected; an outlier is
Dotsy with only 21%. Overall, on average, 93% of all failures are detected.

We show the results for Pareto testing in Figure 4.5. Since test case selection is not based on
changes, but on a chosen maximum execution time, we show failure detection over the range
of cost limits .Z (see Section 4.2.3). We observe that the number of detected build failures
is increasing very early with the test execution time, while the number of failures and new
failures increase a lot slower. For BVK and Dotsy, all build failures are detected fairly quickly
for a comparably small L < 10%. For Timg, which has 18 different build components, with
L = 1% all build failures from 16 components are detected. To detect all build failures for
TiMmE, we need to increase the test execution time limit to L = 50%.
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Figure 4.4: Fault revelation capability of test suites optimized by test impact analysis
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Figure 4.5: Fault revelation capability of Pareto testing-optimized test suites per cost limit L

The overall fault revelation capability varies: on the one hand, for DoLsy, the cost limit
L = 5% sulffices to detect all failures. For BVK, on the other hand, L = 80% does not suffice to
select all test failures. For BVK and DoLsy, the fault revelation capability for new failures is
similar to the overall fault revelation capability.

SuMMARY RQ, ;. For both automated and manual testing, test impact analysis detects, at least,
60% and up to 100% of historic failures (93%, on average). For Pareto testing, the cost limit L
influences the fault revelation capability considerably, up to 100%. On average, it detects 53% of
failures with L = 10%.

RQ..,: What reasons lead to missed test failures for the optimization techniques? As shown before,
both optimization techniques missed some historical test failures. We analyzed for each tech-
nique and subject, if possible, ten missed failures and why they were not selected. Below, we
summarize our findings and provide examples for illustration purposes.

Testimpact analysis detected all test failures for three out of five subjects. For the remaining
two subjects, 16 out of 20 investigated test failures are missed due to non-code changes of
the system under test, its test suite, or environment changes, which are beyond the scope
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of test impact analysis. It did not detect XML-specified test case changes or failures of an
infrastructure test, which only checks the testing environment.

For Pareto testing, we determined an optimal cost limit L, that balances test execution
time and failure revelation. Hence, missing some test failures, mostly from longer-running
test cases, is expected. We observed this in our subjects, with unselected test cases reveal-
ing failures taking 30%-250% longer than selected tests. For one subject, all missed failures
belonged to test cases for which the preceding run also failed. These failures may produce
incomplete coverage information if the execution was cancelled, which may impact the pri-
oritization of Pareto testing.

SumMaRrY RQ, .. For test impact analysis, 80% of missed test failures are related to a lack of
coverage information for build or configuration files, which cannot be easily collected during test
execution. For Pareto testing, some missed failures are to be expected due to the choice of L,, and
most missed test failures stem from long-running tests and previously failing tests.

RQ, ;: What are costs and benefits of the optimization techniques? In RQ, ;, we addressed the fault
revelation capability of test impact analysis (Figure 4.4) and Pareto testing (Figure 4.5). Fig-
ure 4.6 shows results regarding a cost-benefit analysis: (2) the relative coverage loss, (b) the
relative execution time savings, (c) the speedup of time to first feedback compared with a
random prioritization as baseline, and (d) the APFDc values of the optimized test suites. We
examine these numbers in detail, since they require additional context to provide insights:

Test impact analysis for automated tests results in an average of 88% fault revelation of the full
test suite. The main reason for the 12% loss in faults found are failures at BVK and Dotsy,
where tests fail for reasons unrelated to code changes. At BVK, this is mainly due to the
test descriptions, which are XML files and thus outside the scope of test impact analysis. At
Dovsy, we found that many failing tests were caused by changes in the build, not by changes
in the source code. The high loss of 43% coverage is mainly caused by many test runs at
BVK, where test impact analysis on average selects very few tests. While this means that very
little time has to be invested, it also results in very low coverage numbers. Since test impact
analysis does not optimize for overall coverage but for change coverage, this is expected,
when few changes happen in a time interval. In terms of benefits, test impact analysis saves
58% of test execution time, on average. Subject TimE has a big negative impact on this value.
The test executions that we analyze for TiMe have a longer interval of one week, even though
their development is very active. This leads to the selection of all test cases, which reduces
the overall time savings. In contrast, at BVK, we have short intervals and less development
activity which allows for more time to be saved. Finally, the median time to first failure is 185
times faster compared to the random baseline, highlighting the effectiveness of change-based
selection and, especially, prioritization in quickly identifying failures.

Test impact analysis for manual tests detects all historic failures and shows a negligible loss in
coverage of, on average, 1% because of a comparably ineffective selection of, on average, 92%
of the total test execution time. Test impact analysis selects this many test cases mainly be-
cause of two reasons. First, it needs to cover for both subjects a relatively long time span with
many code changes, more than for our subject’s automated test suites. Second, the manual
test cases are end-to-end-tests, which cover much more code than, for example, automated
unit tests. Since test impact analysis selects all test cases that cover code changes, a large set
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of code changes and test cases covering a lot of code lead to a large proportion of selected
tests. Compared to a random baseline, the time-to-first-feedback is 4.75-times faster.

Pareto testing for automated tests has a lower fault detection rate than test impact analysis
at 71%. Note that, for Pareto testing, this value depends on the optimal cost limits that we
calculated (see Section 4.2.3). As shown in Figure 4.5, the cost limits .%, are between 0.03
for DoLy and o.5 for BVK. Since test impact analysis selects tests based on code changes, it
is expected to deliver a higher fault detection rate. The very low coverage loss of, on average,
1% is due to the fact that Pareto testing optimizes for coverage per time. The time savings are
directly determined by our calculations, as mentioned in Section 4.2.3. For the automated
test suites, we achieve savings of, on average, 74%. Since this selection is based on overall
coverage, and not on change coverage, there is no risk of selecting all tests. The median time
to first failure is 5-times faster than for the random baseline. While still a solid improvement,
this is far lower than for test impact analysis. Finally, the average APFDc value of 0.79 is very
solid when comparing to results of Peng et al. [124].

Pareto testing for manual tests results in a fault revelation rate of 60%, while saving 70-85%
of execution time (%, is 0.15 for ILP and 0.3 for ZErss, see also Figure 4.5). We observe a small
coverage loss of, on average, 5%. The time to first failure is 2.2-times faster than a random
baseline, about half as fast as test impact analysis. The APFDc value of, on average, 0.7 is
weaker than for automated tests, but still shows a good cost-benefit ratio.

Summary RQ, 5. For automated tests, test impact analysis maintains 88% of the fault revelation
capability of the full test suite, while saving 58% of execution time. We observe a median speedup of
185 for the time to first failure compared to random ordering. For manual tests, test impact analysis
selects almost all test cases, so all failed tests are detected, but the time saving is only 8%. We
observe a median speedup of 4.75. For automated tests, Pareto testing detects 71% of the failures
while reducing the execution time by 74%. We observe a median speedup of 5. For manual tests,
Pareto testing detects 60% of the failures while reducing the execution time by 78%. We observe a
median speedup of 2.2.

4.4 Lessons Learned

In what follows, we summarize lessons learned supporting practitioners optimizing their
testing processes. Our results show that test impact analysis and Pareto testing help to reduce
testing efforts in industrial-scale automated and manual software testing processes, while
still revealing the vast majority of test failures (refer to results from RA,). We are convinced
that other industry projects can benefit from the investigated test optimization techniques
for their own testing processes. To assist practitioners in evaluating the applicability of these
techniques in their context, we enrich the following guidelines with insights into the test
strategies of our study subjects (as per RA,).

Test Optimization Technique Guidelines Testimpact analysis is more sophisticated than
Pareto testing; but it also comes with stricter requirements. Depending on the optimization
goal, Pareto testing might be the better choice. It suggests a prioritized, diverse list of test
cases within a given cost limit independently of code changes. This is useful to identify a
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(small) set of smoke tests, or (for very large test suites as for TiME) to identify a list of test cases
that can be run overnight. In both cases, it is advisable to schedule additional, less frequent
test executions of the whole test suite to update the coverage data of the test cases. Test impact
analysis, in contrast, suggests a list of test cases on the basis of code changes within a given
time range. This is useful for risk-based testing, as done at BVK and Dotsy, since modified
code is more likely to contain bugs, which can only be revealed by test cases that execute
the buggy code. It should be noted that, the more code has been changed, and the more
test cases are required to cover all changes, the less effective is the selection of test cases.
For example, for very large software projects with dozens or hundreds of developers on the
same repository, for example TivEg, the amount of code changes of one day might already
exceed the available time for a test cycle overnight. The results for RQ, ; have shown that
test impact analysis maintains a higher fault detection rate than Pareto testing for automated
and manual tests, which comes with the cost of collecting test-wise coverage information
regularly.

Importance of Prioritization for Manual Testing End-to-end tests (such as most man-
ual tests of our subjects) tend to cover more code regions per test than unit or integration
tests. Moreover, manual tests are less frequently executed (2-10 cycles per year instead of
daily or weekly runs, see RQ, ), which means that more changes need to be covered for test
impact analysis. As a consequence, test impact analysis selected a large proportion of tests
for both manual test suites in our subjects, which reduces the potential for time savings (see
results of ILP and Zgiss for RQ, ;). On the other hand, the subjects reported that the prioriti-
zation of test cases was very useful for them because it allows for great flexibility: The tests
are executed in descending order of their fault revelation probability until there is no time
left (e.g., end of planned test phase).

Variance in Manual Test Reports We observed for both subjects implementing manual
testing (ILP and Zeiss) that data derived from manual test reports exhibit greater variance
than those from automated tests. This is mainly due to the inconsistencies inherent with
manual testers in initiating, terminating, and executing test cases, for example, test cases can
be under-specified [53, 76]. For coverage- or time-based test optimization techniques, this
means that a slight variance in the results needs to be expected and that the exclusion of
outliers may produce more useful results.

Cost Limit Parameter for Test Impact Analysis In practice, for example, at BVK and
Zgrss, the available time is often the limiting factor to run tests (see also the results for RQ; ).
While Pareto testing has a cost limit by design, our implementation of test impact analysis
does not consider such a cost limit. To address the need of an explicit optimization goal,
we suggest for productive implementations of test impact analysis to add a cost limit input
parameter, which is taken into account after the selection and prioritization of tests.

Transferability of Optimization Techniques Our field experiment shows that optimiza-
tion techniques designed for automated testing can be applied for manual testing. To achieve
uniform and comprehensive data, it is crucial to integrate test measurement tools, like a
profiler, deeply into the tester’s workflow. While the selection of manual test cases is less
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effective for our subjects, they find the prioritization very helpful. Overall, the optimization
techniques provide useful results for automated and manual testing, and convinced our sub-
jects to permanently implement them in their testing process. Concluding, this underpins the
transferability of optimization techniques from automated testing to manual testing.

Post-study Optimization of Industrial Testing Processes  Prior to our collaboration, the
subjects were unaware of test optimization techniques, or there was no implementation avail-
able for their tech stack. Our language-agnostic implementations of test impact analysis and
Pareto testing helped them evaluate these techniques within their own testing process. No-
tably, our field experiment’s results convinced all five subjects to permanently implement an
optimization technique in their testing process. For them, the benefits of optimization (e.g.,
the substantial resource savings and earlier feedback from failing tests) outweigh the costs
(e.g., potentially missed failures and optimization data processing).

Recommendations for Researchers and Practitioners From our empirical study, we
draw a number of recommendations for researchers and practitioners interested in imple-
menting optimization techniques in large industrial software testing processes. Such pro-
cesses involve many stakeholders with different experiences and stakes all of whom need
to be on board and convinced of the benefits of the introduction of test optimization tech-
niques for a successful implementation. Thus, it is vital to first understand the current testing
process in detail (e.g., test strategies, tools, test environments, deployment strategies, test
frequencies) and to discuss the optimization goals with the test management. This helps
strengthen the understanding of people involved and to manage expectations, but also to
fine-tune the optimization parameters.

We also recommend anticipating and prepare for technical challenges. Depending on the
technical setup and the organization, these may be very different. Some likely issues that we
have encountered during this empirical study and in other industry contexts:

e Access restrictions within test environments that needed to be addressed.

e For large systems, processing the volume of data required for the test optimization
techniques poses a challenge.

e Non-isolated test environments can make it difficult to distinguish between concur-
rently running test cases.

Third, it is critical to involve the test teams that will be directly affected by the optimization
results. Especially in the context of manual testing, using these techniques can have a big
effect on the way teams perform their tests. They should be aware of the motivation for the
process change, get an overview of the technical details of the optimization approach, learn
about its impact on their testing process and have the opportunity to formulate their own
expectations. Our experience working with manual test teams, in particular, has shown that
there should be room for questions and suggestions for improvement, since the test teams
usually have an excellent practical understanding of the process.

Finally, before rolling out an optimization technique to a larger testing process, we found
that a dry run with a small subset of test cases or testers to identify potential blockers reduces
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the risk of major problems in the full rollout. In summary, we recommend treating the im-
plementation of an optimization technique as a process change that requires active change
and expectation management, as well as strong communication with all stakeholders.

4.5 Threats to Validity

Re-running failing tests threatens the construct validity of our field experiment. Our field ex-
periment is based on historic test runs of our study subjects. This real-world data set con-
tains some repeatedly failing test cases. Since test impact analysis selects previously failed
test cases for a re-run, repeatedly failing tests can influence the fault revelation capability of
optimized test suites in our field experiment. As re-running failing tests is part our subjects’
testing processes, we reflected this in the behavior of our test impact analysis implementa-
tion. We discuss the impact of re-running tests on our results in Section 4.4.

Data quality presents a threat to internal validity. Both optimization techniques rely on testing
data such as code coverage information. If this information is not accurate, it can lead to
inaccurate test case selection and worse performance for test case prioritization. Thus, data
quality is crucial for our field experiment. That is why we used field-tested tooling that is in
productive use to measure test coverage, and we validated the data carefully with partners
from our subjects to obtain meaningful results.

Non-code related failures threaten internal validity. For some subjects, automated test cases
are specified in XML, which cannot be profiled by the profilers implemented at our sub-
jects. As a consequence, test failures caused by test case modifications cannot be predicted
by the optimization techniques, as there is no mapping between the XML test cases and the
corresponding test executions. We encountered a similar situation with test cases that are
concerned with build- or other non-code artifacts. In RQ, ,, we have investigated limitations
of the optimization techniques and discuss the impact of missing test specification and con-
figuration data.

Flaky tests threaten the field experiment’s internal validity as they might influence test impact
analysis since it selects previously failed tests. While two subjects stated that they have flaky
tests for their automated test suite, they only occur in low numbers.

The low number of versions for manual testing threatens conclusion validity. Recording the in-
put data for manual test optimization proved to be a significant challenge in that we had to
continuously support our study subjects with setup and usage of the infrastructure to obtain
reliable results (see also Sec. 4.2.5). For both subjects with manual tests, it took several test
phases, each of which took several months, until we got complete and reliable data. Even
though the final number of versions for manual tests is low because of these constraints, the
data provide unique insights for optimizing manual testing processes that are inherently
challenging to study, which makes our study results all the more valuable for practitioners.

Variance in manual test times threatens internal validity. The time recordings of manually ex-
ecuted tests can be imprecise (see Section 4.4), which may impact both optimization tech-
niques. We mitigated the threat of human errors by integrating our tooling as closely as pos-
sible into the regular testing process, so no additional actions needed to be taken by testers
to record the data for the optimization techniques. In addition, we validated the manual test
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execution data carefully in close collaboration with our subjects to make sure that no invalid
data go into our results. For example, we excluded outlier test cases with too small (a few
seconds) or too large execution times (multiple days).

Generalizability of results in empirical software engineering research is often limited [144],
which is a threat to external validity. This applies to our empirical study as well: Our sub-
jects are not representative of all real-world software systems and their giant range of tech-
nologies and development and test processes. However, we considered a diverse set of five
industrial software projects from different companies, domains and building up on differ-
ent technologies. Our survey for RA, is meant to be a case study, so it does not claim to be
representative for all industrial software engineering projects, nor that its results are general-
izable across all industrial projects. We believe that it is important to understand the specific
contexts of our subjects so that other researchers and practitioners can judge to what extent
our results could also apply in their contexts, which is subject of an ongoing debate in the
software community [14]. Still, in contrast to prior work on industrial systems, our empirical
study on software testing optimization techniques is not tailored to individual subjects and,
hence, is likely to be more transferable to other contexts. Our results show that the optimiza-
tion techniques can be used for automated and manual testing processes, help to reduce time
to feedback, and, in general, maintain the test suite’s fault detection capability.

4.6 Conclusion

Software testing is a common practice in industry, including both automated or manual pro-
cesses. In this chapter, we investigated to what extent optimization techniques that are typ-
ically used for automated software testing can be transferred to manual software testing.
We have conducted an empirical study on five subjects from different domains, different
tech stacks, varying regulatory requirements, and implementing different testing strategies.
Their test processes are resource-intensive: up to twenty test engineers are involved in testing
and a single test cycle runs up to four weeks. To carve out differences in their automated and
manual testing processes, and their implications on optimizations, we conducted a survey
among the test leads of our subjects. Then, in a field experiment, we applied two optimiza-
tion techniques that select and prioritize test cases, test impact analysis and Pareto testing,
and compared their costs and benefits in a historical analysis on our subjects’ test suites. Our
results show that both optimization techniques are applicable and effective for automated
and manual testing, even on large industry systems, and yield execution time savings of up
to 98% for automated tests and 85% for manual tests, while preserving a fault detection ca-
pability of up to 96%. In conclusion, test optimization strategies—such as test case selection,
test case prioritization, and test minimization—traditionally used for automated tests can be
effectively transferred to manual testing, with only manageable limitations to be considered.
More importantly, our results have practical impact, since all of our subjects implemented
them in their software testing processes.
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Prioritization of Test Gaps by
Estimated Risk

I This chapter shares material with a prior publication [57].

Chapters 3 and 4 explored optimization potentials for manual testing processes. In this chap-
ter, we focus on different aspects of human-in-the-loop testing, that is, the risk-based allo-
cation of testing efforts and test completion assessment by test management and quality
assurance roles. Due to the large amount of changes that could potentially cause defects,
risky changes that might introduce a defect or affect mission-critical software can easily re-
main untested. At the same time, testing less risky changes is typically also less effective. The
identification of risky changes is a huge challenge, which we face in this chapter. In the fol-
lowing, we outline an empirical study prioritizing test gaps by estimated risk, aiming for an
as effective reduction of risks in the testing process as possible. For our study, we develop
a score-based approach for prioritizing test gaps, which we evaluate by means of a multi-
method study, consisting of a field study with our industrial partners and semi-structured
interviews with quality assurance experts.

Background Functional correctness is crucial for the success and acceptance of a software
product. A solid testing process is imperative to uncover defects before they are deployed in
the field. Since resources are limited, especially for large software systems, it is important that
test efforts are allocated such that the most critical defects are detected as soon as possible.
This requires an estimation of which parts of the system are expected to be particularly defect-
prone. Defect prediction research aims at revealing faulty code, often using static program
analysis enhanced by heuristic search or machine learning [70]. Even though a large variety
of studies has been conducted in this area, the results are often not generalizable [59], and
the approaches perform poorly in real-world settings [121, 122]. As a consequence, they are
rarely applied in practice [92, 160], with notable exceptions, though [151].

Addressing the notorious issues of defect prediction of our partners in industry (in par-
ticular, MunicH Re and LV 1871), we strive for an approach that is viable in practice and
matched the needs of our industry partners: a prioritization of test gaps by their risk. As de-
fined in Chapter 2.2.4.1, a test gap is a method, function, or module that has been modified
during a specific period of time (e. g., start of last development phase or iteration) and has
not been executed in its most recent version during testing (e. g., automated unit test or man-
ual acceptance test). Intuitively, defects are introduced by code changes, and defects cannot
be detected if they were not tested. In this vein, the literature suggests that modified code
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tends to be more defect-prone [27, 84, 115, 140]. For example, Eder et al. found in an in-
dustrial case study that (1) despite a structured testing process, approximately half of the
changes went into production untested, and (2) that untested changes contained up to five
times more defects than other parts of the system. This clearly emphasizes the value of test
gap analysis in the testing process. For this reason, test gaps are taken into consideration by
test management to decide whether testing is completed.*

Problem Statement The number of test gaps that need to be investigated by test manage-
ment and quality assurance depends on many parameters, especially on the number of code
changes and the depth of testing. In practice, when test management conducts a test plan or
and assesses test gaps as part of test-end criteria evaluation, there are typically dozens, hun-
dreds, or even thousands of test gaps [77] that have not been covered by any test run. The risk
of test gaps may vary greatly; for instance, test gaps involving logic modifications or data ma-
nipulations might be disguised among less critical changes such as refactorings [134]. Thus,
obtaining an overview about test gaps and their risk requires significant effort, and the re-
sults may be subjective. Furthermore, in the context of large industrial software systems with
changing development teams, it can be hard for individuals to have sufficient knowledge
about the system to reliably assess the criticality of changes in the entire code base. Clearly,
an automatic prioritization of test gaps would be most helpful to reduce the time necessary for
the manual inspection and the risk of missing critical ones, which is also confirmed by our
industrial partners. To ease adoption, we present guidelines for practitioners to implement
a risk-based prioritization of test gaps in their testing process.

Research Gap  Thereis a lot of research in the field of defect prediction, which aims for the
identification of defective code [79, 92, 98, 172]. For our industrial research setting, unfortu-
nately, the costs of applying state-of-the-art approaches outweigh the potential benefits—a
notorious challenge for the application of defect prediction in practice [122, 160]. Moreover,
state-of-the-art approaches typically do not consider prior testing efforts that are focussed
by test gap analysis [70, 151, 172]. Another related field, test case prioritization, aims at find-
ing failures as quickly as possible by prioritizing tests by their failure revelation probabil-
ity [83]. Test case prioritization addresses a different problem, though, since it orders test
cases, whereas test gap analysis reveals code which has not been tested by existing test cases.
In particular, our industrial partners aim for a more general form of risk mitigation: While
the probability of introducing a defect is a key risk factor [80, 104], the potential damage
caused by a defect is an additional risk factor that needs to be taken into account. That is,
core functionality needs to be tested particularly well because potential defects can cause
major damage, such as degradation of core business processes—even though the probabil-
ity of introducing a defect may be comparatively low. Since there is only little related work
on prioritization or risk estimation of test gaps in industrial practice, it is still unclear what
makes a test gap more risky than others. Hence, we seek to evaluate the feasibility of a simple
prioritization approach that fits the setting and requirements of our industry partners and
suggest improvements for future deployment.

1 There are several test gap analysis tools available, for example, Teamscale [77, 137] and Sealights [2].
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Approach  Based on key risk criteria identified from industrial developer experience and
the defect prediction literature, we propose our score-based approach, called TEsTGAPRADAR,
to automatically derive a risk-based prioritization of a set of test gaps. This way, a large list of
open test gaps can be sorted and, for example, test management can analyze the riskiest test
gaps first. To evaluate our approach, we conducted a multimethod study: We compare the
prioritization results of our approach with manual test gap risk assessments that have been
made by experts in eight real-world industrial projects. For this purpose, we use historic real-
world risk assessments from Munich Re and LV 1871, two large companies within the finan-
cial domain, where quality assurance experts continuously assessed eight well-established
and maintained software systems. We conducted semi-structured interviews with these ex-
perts to better understand deviations between our automatic ranking and their manual as-
sessment. Overall, we found that our approach yields a test gap ranking that is shown to be
correlated with risk (i. e., higher rank corresponds to more risk) and that the approach can
achieve human (domain expert) level performance. Interestingly, quality engineers reported
that insights from TestTGaPRADAR allowed them to recognize where their prior assessment
missed risks, especially for central code (i.e., code that is central in the program’s depen-
dency structure [55, 147, 149]). The quality engineers of our industrial partners acknowl-
edged the significance and relevance of our test gap risk criteria and underline that Test
GaprRapARr would help them in their daily work to identify risky test gaps more efficiently.

Contributions In summary, the contributions of the chapter are the following;:

o Automated Prioritization of Test Gaps. We introduce TesTGAPRADAR, an automated score-
based approach that prioritizes test gaps by estimated risk supporting industrial devel-
opment teams—including test management and quality assurance roles—in gaining a
quick overview about the riskiest gaps.

o Empirical Study. We conducted a field study of TestGAPRADAR on thirty-one historical
test gap reviews of open test gaps for eight industrial software systems providing in-
sights into the applicability of risk criteria and process in our industrial setting.

o Quality Assurance Expert Survey. We conducted eight semi-structured interviews with
six quality assurance experts that authored the test gap reviews of our industrial part-
ners, showing that the automatic ranking of TEstTGAPRADAR is on par with expert rank-
ings, and in some cases, even outperforms the expert ranking.

5.1 Related Work

There is only little related work that is specific to test gap prioritization. In addition, we
discuss related work from the broader field of software defect prediction.

77



78

Prioritization of Test Gaps by Estimated Risk

5.1.1 Test Gap Prioritization

We introduced test gap prioritization formally in Chapter 2.2.4.2. There are a couple of stud-
ies addressing the problem to prioritize test gaps, which we outline and discuss in the fol-
lowing.

Sailer [139] conducted a structured online interview to shed light on developers’ criteria
for assessing the risk of test gaps. In their study, they randomly selected a subset of test gaps
from a six-week interval of the developers” application and asked the developers to assess
and reason about the risk of test gaps. These rationales provide valuable insights for our work
into what makes a test gap appear risky. The most-mentioned reasons are change complexity,
centrality for high risk, and refactoring as rationale for lower risk. In contrast to Sailer who
evaluates their approach on a single software system, we investigate the transferability of
risk criteria and their applicability for test gap prioritization to other large and independent
software systems from our industry partners.

Brandt et al. [13] used a fuzzer to generate partial tests and investigated whether devel-
opers from Mozilla would extend those to functional tests. They found that developers do
not consider all test gaps test-worthy. To address this, they implemented a filter function to
only generate partial tests for relevant test gaps. The filter function excludes test gaps that
are single-line or are early-return. They found that developers consider test gaps irrelevant
if the tested code is unlikely to be reached, deemed bug-free, or already covered by other
tests. By means of the code centrality criterion, we also prioritize code down that is unlikely
to be reached, which is similar to Brandt et al.’s approach. They focus on helping developers
close test gaps, while we focus on helping test managers and quality assurance teams iden-
tify the most important ones. Their filter function employs a simple prioritization strategy.
We present a more comprehensive approach for prioritizing test gaps, focusing on different
roles in the software development process.

Ivankovic et al. [72] introduce the concept of productive coverage, a measure aimed at
enhancing the actionability of code coverage information by identifying untested yet test-
worthy code. This includes code that is unique within the codebase, not similarly tested
elsewhere, and frequently executed in production. Their results highlight that developers
consider the feedback from productive coverage beneficial; specifically, the visualization of
productive coverage during code reviews has a greater impact on code coverage than a tra-
ditional line coverage visualization. By identifying the most relevant untested code changes
within a changeset, their approach aligns with our goal of identifying most risky changes.
But their focus is much more narrow, since they investigate comparably small code changes
within a single changeset, while we focus on larger untested code regions, at least entirely
untested methods, and analysing a longer test cycle, for example, an entire sprint. While their
approach is designed Google’s extensive monolithic code base, our model used a broader set
of metrics and is suited for wide industrial application.

5.1.2  Software Defect Prediction

Test gaps are known to have a higher probability of defect than unchanged code [27], so,
the field of software defect prediction [79, 92, 172] (see also Sec. 2.2.4.3) is related to our
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work, with notable differences, though. While a test gap could imply a defect, a defect is not
necessarily a test gap. For our prioritization of test gaps, we are focusing on risk, namely,
magnitude of impact and probability of event. In contrast, defects may be classified by sever-
ity levels [102], but these do not match test gap risk.

The respective models of defect prediction approaches are based on manifold metrics, for
instance, source code complexity [52], code smells [117], history of changes [105], commit
messages [69] and defects [85], organizational [110], process [21], or developer-centered
metrics [25], ticket information [153, 154 ], or static analysis results [156]. While our prioriti-
zation approach relies on some of these metrics, the focus of our work is different since our
industry partners align their testing process with untested code changes, for which we aim
at a risk-based prioritization.

Like with test gap analysis, it is an established best practice to use function-level defect
prediction, which shows better performance than relying on coarse-grained units such as
files or modules [40, 122]: Despite a great number of studies in this area, function-level
defect prediction is still unsolved as it provides low precision for cross-project classifiers
and, when evaluated under realistic circumstances, existing approaches do not significantly
outperform a random classifier [121, 122]. There are also more fine-grained approaches for
defect prediction, for example, on the line-level [130, 167]. These cutting-edge approaches
are still experimental and therefore—from our industrial partners’ perspective—not mature
enough for implementation in real-world development processes, yet. As of now, our indus-
trial partners need more actionable approaches such as test gap analysis and prioritization
of test gaps to direct their testing efforts.

5.2  TestGAPRADAR: A Score-based Approach

Test gap analysis yields an unsorted set of untested modified code units (functions, in our
case). The goal of TeEsTGAPRADAR is to rank this set of test gaps by their estimated risk. In
what follows, we explain the selection criteria for the metrics used for ranking test gaps.
Furthermore, we provide details on the metrics and their calculation and insights into the
normalization of metric values. Finally, we describe how a risk score is computed, which
is used to rank test gaps amongst each other. In this section, we focus on our approach in a
general form; implementation details like weights and the choice of parameters that we used
for our evaluation are outlined in Section 5.3.4.

5.2.1 Selection Criteria for Metrics

The basis for ranking is a risk score, which is computed for each test gap from a combination
of metrics (see also Sec. 5.2.2). To simplify the setup for our industrial study subjects (see also
Sec. 5.3.2) and allow for comparison of results, we aim for a lightweight, uniform approach
for all study subjects. To this end, we are interested in to which extent a simple approach like
ours is able to help practitioners in identifying risky test gaps. We selected product and pro-
cess metrics that were also used by related work (see also Sec. 5.1) and which were feasible
to obtain for all of our study subjects. We had to decide against criteria which did not meet

79



8o

Prioritization of Test Gaps by Estimated Risk

the requirements of our industry partners. Specifically, a broad spectrum of technologies
and processes, and diverse set of social and legal requirements needed to be fulfilled. For
example, ABAP—a programming language used by several of our industry partners” SAP
systems—comes with the limitation that there are no commit messages available as they are
known from popular version control systems such as git. Furthermore, defect information
is stored heterogeneously, that is, in different bug tracking systems using different bug re-
porting schemes, impeding its structured analysis. Lastly, developer-centered metrics might
not always meet the compliance requirements of our industry partners, so they could not be
taken into consideration for our work. For instance, the separation of responsibilities between
internal and external employees is mandated by European regulation [38].

5.2.2 Overview of Selected Metrics

Table 5.1 provides an overview of metrics that TEsTGAPRADAR uses to estimate test gap risk.
These product and process metrics were available at our industrial partners, while other
data could not be obtained. They include different risk factors, that is, code criticality and
complexity and static code analysis results. In the following, we discuss these risk factors,
the corresponding metrics, and their computation.

Table 5.1: Metrics used by TeEstTGAPRADAR to estimate test gap risk

Risk Factor Metric (short)

Code centrality (CEN)

Code Criticality
Changed functions (CHF)

Length of reference function (LEN)
Changed lines of code (CLI)
Complexity of reference function (COM)
Complexity change (COC)

Complexity

Added normal findings (ANF)
Unresolved normal findings (UNF)
Static Code Removed normal findings (RNF)
Analysis Results  Added critical findings (ACF)
Unresolved critical findings (UCF)
Removed critical findings (RCF)

5.2.2.1  Risk Factor: Code Criticality

We implement two metrics for code criticality: code centrality and changed files.

Code Centrality Sailer [139] found in their study that one of the most often mentioned
reasons for critical test gaps, that is, gaps that need to be closed by testing, is code centrality.
This matches our notion of test gap risk since defects in central code (e.g., core functional-
ity) potentially cause great harm, and therefore test gaps in central code are considered more
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risky. For the purpose of test gap prioritization, TEstGaAPRADAR includes a metric for the cen-
trality of the function. To compute the centrality of the function at time ¢, we rely on static
analysis of dependencies between sources, as suggested in the literature [55, 147, 149]. We
apply the PageRank algorithm [116] on the dependency graph of a software system to rank
the nodes by their relevance (i.e., centrality). The dependency graph is traversed by either
following a link or randomly jumping to another node. We used the random jump probabil-
ity of 0.0001, as suggested by Steidl et al. [149]. Additionally, we take inverted edges into
account to reflect that a function may not only be important if many other functions depend
on it, but also if it depends on many important functions. For this work, we set the weight of
an inverted edge to % as compromise between the suggested values of % and % [147].

Changed Functions In the context of our industrial partners, large change sets, which af-
fect many files, often occur in system- or component-wide refactorings of the source code,
which do not contain functional changes. These refactorings introduce less defects than
smaller change sets and thus, the defect density of large change sets is typically smaller than
for small change sets. This is in line with the literature in which change sets with many
changed files have been found to introduce less defects [105]. Since we are working on the
more fine-granular level function level, we count the number of changed functions per change
set. We decided against using more complex metrics as most of these have been shown to
have a high correlation with lines of code [48, 108].

We use a simple heuristic to implement this metric. The idea is, the more functions are
modified within a change set (e. g., issue, ticket, change request), the more likely it is a less
risky change, for example, a refactoring. For the change set that contains the test gap, we
calculate the function churn c;, that is, the number of modified functions. The metric grows,
damped by the power function, up to a function churn threshold c;. The metric is bound by

1 and calculated by
(i)
Upef = Min ((C—;) , 1)

For the size of the change set, we define a custom normalization function to model the
influence on test gap risk. We do not expect a linear correlation of size of the change set and
test gap risk. For instance, we consider the influence of a medium and a big change set on
the test gap risk as similar, but the difference to a small change set is notable. Note that, for
our multimethod study (see Sec. 5.3), we manually validated that this heuristic has assigned
high changed functions metric values only to test gaps arising from a refactoring activity.

5.2.2.2  Risk Factor: Complexity

We implement four metrics to model the risk factor complexity: length of reference function and
changed lines of code serve as metrics for code complexity, while test complexity is measured
by complexity of reference function and complexity change. The reference function is the version of
the function before it became a test gap, that is, either the version at the baseline b or, if the
function has been tested after the baseline, the last-tested version. If the function has been
added after the baseline, the reference state is the empty function @. We call the function at
version ¢ the end state of the function.
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Code Complexity In accordance with several defect prediction approaches [92], we use
different metrics for the complexity. The first two metrics refer to code complexity: length of
the reference function and the number of changed lines in the function between reference and end
state. We hypothesize that long and complex functions are harder to understand and change
and, hence, more defect-prone. In addition, long and complex changes are more defect-prone
than small and simple ones [ 64 ]. The length of the reference function is the number of source
lines of code, that is, excluding comments.

There are multiple ways of computing a metric value for number of changed lines. Code
changes are typically displayed as unified diff, that is, the added and deleted lines between
both versions. A change to one line is represented as a combination of one added and one
deleted line. The same, however, is true for a change that deleted one line and added another,
that is, two changed lines. Prior work used the sum of deleted and added lines as value for
this metric [85]. In contrast, we doubled the weight of added lines to take our industrial
partner’s experience into account, which shows that adding lines is more defect-prone then
deleting lines (see also Sec. 5.3.4).

Test Complexity To obtain an indication of how many tests might be needed to test a func-
tion [162], we use cyclomatic complexity as defined by McCabe [100]. The complexity change is
the difference in cyclomatic complexity of the function between end state and reference state.
In particular, this means that the value can be negative if the change reduced the function’s
complexity.

5.2.2.3  Risk Factor: Static Code Analysis Results

We use the number of static code analysis results (i. e., findings) as a proxy to gauge the dili-
gence with which code changes were made. Our industrial partners rely on Teamscale [54]
for static code analysis. Teamscale differentiates between new findings and unresolved find-
ings in modified code, both of which are expected to be fixed in the contexts of our industrial
partners who have a quality control process in place [148]. Findings are categorized into
critical quality deficits, such as bug patterns, and normal quality deficits, such as incomplete
documentation. We distinguish between six different finding metrics (the third character of
metric abbreviations from this risk factor in Table 5.1 is F), that is, the cross product of two
severity levels and three finding states. First, we distinguish between the two severity levels
critical (the first character is C) and normal (N), because we consider critical findings to be
more risky than normal ones. Second, we separate the finding states added (the second char-
acter is A), unresolved findings in modified code (U), and removed findings (R). Hasty code
changes that have not been carefully reviewed (e. g., by a static analysis tool) can introduce
new defects, increasing the risk of a test gap. This is the case for code changes that add new
findings, either critical or normal ones, or that do not remove existing findings, where the lat-
ter ones are expected by our industry partners to be less risky because their quality control
process ensures that unresolved findings are less relevant. In contrast, changes that remove
findings improve code quality and therefore may be less risky. For each test gap, we count
the number of findings that were affected by the code changes in that test gap.
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5.2.3 Normalization of Metric Values

The selected metrics have different value ranges. To balance their influence on a score-based
test gap prioritization, it is necessary to normalize them. We choose the value range of [0, 1]
for all metrics except COC. COC is capable of taking negative values and, as such, is mapped
to the interval [-1,1]. For each metric, the set of values S is normalized with respect to its
maximum and minimum value. The normalization aims at a relative prioritization of test
gaps inside one set. However, it is not possible to compare the metric values between different
sets of test gaps, as their normalization is based on different maximum and minimum values.
In particular, this means that TEstGaAPRADAR does not determine the risk of single test gaps.
Instead, we aim for an approach that ranks a set of test gaps based on their estimated risk.

5.2.4 Computation of Risk Score

In the final step, the normalized values of all metrics are combined into one risk score for
every test gap. This is used as basis for prioritization. Every test gap m has a set of normalized
metric values V. The set W contains the corresponding metric weights (see also Sec. 5.3.4
for details on W we used in our multimethod study). Each metric has exactly one weight,
which is the same for all test gaps. Thus, with the number of metrics k = [W| = |V},| the risk
score 1, for a test gap m is

5.3 Multimethod Study

We conduct a multimethod study to evaluate the practical applicability of TEsTGAPRADAR,
our score-based approach for risk-based prioritization of test gaps presented in Section 5.2,
in an industrial setting. Initially, in a field study?, we compare the risk estimations with test
gap reviews of eight software systems across two industrial partners, and we use this data set
to compare our approach with a random ranking strategy as baseline. Subsequently, through
semi-structured interviews, we discuss our approach with the industrial quality engineers
who were involved in the test gap reviews. We follow the guidelines of Jedlitschka et al. [73]
to report on our research.

5.3.1 Research Questions

RQ;: How does TEsTGAPRADAR perform as compared to risk assessments of quality assurance experts?
In RQ;, we aim at comparing the risk assessments of TestGaPRapar with historical risk as-

Following Stol and Fitzgerald [150], a field study “refers to any research conducted in a specific, real-world setting
to study a specific software engineering phenomenon”.
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sessments provided by two industry partners in the form of test gap reviews. In these, quality
engineers analyze open test gaps for risky gaps and report them in their review. We analyze
whether test gaps, which were labelled as risky by quality engineers, are highly ranked by
TesTGAPRADAR.

RQ,: Which metrics of the risk score are most important and are the weights robust? Our approach
calculates a risk score that is influenced by numerous metrics. We study the individual metric
importances to learn which of the metrics have the highest impact on detecting test gap risks.
For this purpose, we investigate which metrics of TEstTGAPRADAR are decisive to identify risky
test gaps from the historical risk assessments. To shed light on the robustness and reliability
of TesTGAPRADAR, we perform a sensitivity analysis and a scenario analysis.

RQ;: How much better is TEsTGAPRADAR compared to a random ranking strategy? We compare
our approach to a random ranking strategy as baseline, to validate whether a sophisticated
approach like ours pays off by better test gap prioritization results. That is, test gaps labelled
as risky in test gap reviews are assigned a higher rank, with the ranking indicating a higher
estimated level of risk.

RQy: Do quality engineers find that the test gap prioritization process can support them in their day-
to-day work and if so, how? We conducted semi-structured interviews with the authors of the
original test gap reviews, that is, six professional quality engineers of our industry partners,
to discuss the practical value of our work. First, we investigate whether they agree with the
metrics used for the risk-based prioritization of test gaps. Second, we explore the reasons
and practical implications behind deviations observed in RQ,. Third, we query whether and
in which ways our approach could support them in their day-to-day work.

5.3.2 Industrial Study Subjects

For the purpose of our evaluation, we have selected eight industrial study subjects from our
industrial partners. An overview of all study subjects of our multimethod study is given in
Table 5.2; the provided contextual data meets the criteria by Hall et al. [59]. All study sub-
jects are industrial3, closed-source systems which have been in successful use for many years
and are still actively developed and maintained. The subjects are internally used software sys-
tems implementing core business processes or products, and are of mediocre (100 K LOC) to
large size (1,900 K LOC). Their implementation relies on different technologies, all of which
are supported by our language-agnostic approach. For all study subjects, a well-established
issue tracking and testing process is in place. Some subjects adopt automated testing in
a CI environment, others focus on manual testing in dedicated testing environments, and
some adopt both approaches. All subjects stem from two large, independent players in the
finance and insurance domain from Germany, which is strictly regulated by the European
Union [39]:

Munich Re# is one of the world’s leading providers of reinsurance, primary insurance and
insurance related risk solutions. It has about 43,000 employees, and a revenue of more than
52.9 billion Euro. Conscious of the great responsibility for software quality, they have a stan-

The names of the individual software systems have been anonymized on request of the providing industry part-
ners.
The data provided is from 2024
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dardized development process, which includes test gap analysis, but without prioritization
of test gaps. A dedicated team is reviewing code and test work of all software systems in the
portfolio manually, resulting in the monthly assessment reporting. For our study, we used
the test gap review data from five systems within Municu RE (no. 1-5).

LV 1871 is a German specialist for life and pension insurance. It has ca. 500 employees,
and generates 7 billion Euro in revenue. Emphasizing code quality, the company works with
an external team of quality engineers for code retrospectives and test gap analysis. For this
study, we used test gap reviews from three of their software systems (no. 6-8).

The development processes of both industry partners include quality control metrics, in-
cluding external, manual reviews of test gap analysis results (see also Popeea-Simeth et
al. [129]). In fact, we chose the systems of our industrial partners as study subjects because
external quality assurance experts conduct handcrafted test gap reviews that assess test gaps
based on risk. Our industrial partners implement test gap reviews for many years already,
so that we can use this valuable historic information as reference data in our study. For our
8 subject systems, we use a series of up to 7 test gap reviews from 2023 (see also Table 5.2),
pointing to 181 risky test gaps (out of a total of 2,039 test gaps). We evaluate whether test
gaps that were identified as risky are ranked high by our score-based approach. For trans-
parency, we note that the external quality assurance experts work for the same company as
some authors. No study author was involved as interviewee in our semi-structured inter-
views, though.

Table 5.2: Overview of study subjects

# Test Gaps

Company Subject LOC Lang. #Reviews Risky Total

MunicH Re 1 1,600K C# 5 59 77
2 140K C# 7 29 161
3 370K ABAP 3 21 29
4 560K ABAP 4 9 32
5 1,900K ABAP 4 26 53
LV 1871 6 310K Java 3 5 622
7 100K Java 3 28 1,052
8 150K Java 2 4 13

5.3.3 Study Design and Operationalization

We apply multiple methods to answer our research questions of Section 5.3.1. Figure 5.1
provides an overview of the study data we used to answer the research questions. In the
following, we provide an overview about our study data, that is, historical test gap reviews,
and explicate the study design and operationalization for our research questions.

Historical Test Gap Reviews We test the performance of TestGaPRaDAR on study sub-
jects from our industrial partners. We use existing test gap reviews T as reference data for
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Figure 5.1: Study data used to answer our research questions

Test Gap Review 2023-12: 58 test gaps.
39.2% of new or changed functions appear untested. Some test gaps appear to be of minor
importance, but there are some relevant ones as well, for example:

e Function foo in class A [Link1 |

e Function bar in class B [Link2]

Figure 5.2: Example for a test gap review of testing endeavor in December 2023 (highlighting indi-
cates existence of risky gaps). The two anonymized functions foo and bar are labelled as
risky by the quality engineers that authored the review.

our study (see Sec. 5.3.2). A test gap review refers to all open test gaps since the review
baseline b (cf. Sec. 5.1.1). Typically, it spans over a period of 1-3 months, depending on the
amount of development activity. In all subject systems, test gap reviews are conducted regu-
larly by an external party, to ensure neutrality. A review states the number of open test gaps
and the proportion of open vs. closed test gaps. In addition, it lists test gaps that the reviewer
considers risky and, consequently, which they recommend being closed.

Definition “RisKINESs OF TEST GAPs”

A test gap is classified as risky if it has been identified as pertinent in a test gap review.
Pertinent test gaps present a notable risk of introducing defects and are advised by quality
engineers to be resolved by the relevant development and test teams. Conversely, a test
gap is categorized as less risky if it has not been mentioned in a test gap review or if it
has been referenced in a review where the quality engineer indicated a low risk of defect
introduction.

An exemplary test gap review of the testing endeavor in December 2023 from one of our
study subjects is given in Figure 5.2. Note that test gap reviews point to test gaps that are
considered (most) risky. So, this list may not include all test gaps, and less risky test gaps
are not mentioned.

RQ,: Comparison with Manual Assessments To answer RQ;, we adopt two methods.
First, we conduct a correlation analysis between the experts’ test gap risk assessments from
test gap reviews T and TestTGaPRADAR’s risk scores R. We examine the correlation using
Kendall’s 7 and the associated p value [82] (computed using SciPy [158]). Kendall’s 7 is
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defined for two rankings x and y with P concordant pairs, Q discordant pairs, and T ties
only in x and U ties only in y:

T= P-0Q
V(P+Q+T)-(P+Q+U)

Second, we investigate the risk score rankings of risky and less risky test gaps. For this
purpose, we calculate an agreement value v € [0,1], where values closer to 0 stand for a
better ranking agreement (that is, risky gaps are ranked higher than less risky gaps). As
basis for v, we sum up the ranks rank(t) of risky test gaps t € G, C G, where G are all test
gaps of a test gap review, and divide them by the number of test gaps |G| and the number of
risky test gaps |G,| to obtain v":

> rank(t)

;_ teGy

|Gl |G|

The best possible minimum min (v") is:

Gl
i
i=1

Gl -Gyl

min (v') =

All risky test gaps are ranked above all other test gaps. For example, for |G,| =3 and |G| =7,
we obtain min (¢v") = (1/7 +2/7 +3/7)/3 = 0.29
The worst possible agreement value max (v") is:

|G|
i
i=|G| -G |+1
G|+ |G

max (v') =

All risky test gaps are ranked below all other test gaps. For example, for |G,| =3 and |G| =7,
we obtain max (v') = (5/7+6/7 +7/7)/3 = 0.86.
To obtain the agreement value v, v is min-max scaled to v € [0, 1] (with a mean of 0.5):

v —min (v")
" max (v') —-min (v')

We visualize the agreement values v for all test gap reviews by means of a kernel density
plot, and we explicate median ranks of risky and less risky test gaps. For the purpose of
illustration, we report a false-low rate of test gap review rankings by considering the fraction
of test gap reviews exhibiting a poor agreement value (v > 0.5) against all test gap reviews.

To investigate the ranking performance on the level of individual test gaps, we plot the
rankings of test gaps labeled as risky and less risky as a kernel density plot. To allow com-
parison between rankings of different test gap reviews, we use relative ranks R € [0,1],
where the highest rank is mapped to o, and the lowest rank corresponds to 1. To provide the
reader with an intuitive means to compare the overall ranking performance between risky
and less risky test gaps, we depict their median values. Lastly, we use the Mann-Whitney U
test to test the null hypothesis that the ranks of test gaps deemed risky in the test gap reviews
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determined by their risk score (€ R) and the same ranks of less risky test gaps stem from
the same distribution.

RQ.: Metric Importance We implement a multifactorial ANOVA (analysis of variances)
to answer RQ,. That is, we employ ANOVA to assess the influence of the independent vari-
ables (i. e., the score metrics) on the dependent variable (the test gap risk assessments from
T). The null hypothesis is that there is no relation between an independent variable and the
dependent variable. If the p value is below « = 0.05, we reject the null hypothesis and assume
that there is a relationship between the independent and the dependent variable. To this end,
we report the corresponding F and p values. In a post-hoc analysis employing linear regres-
sion, we investigate the strength of these relationships. In particular, we report the p values,
the coefficient values, and R? for the regression models. Additionally, we report results of
the correlation analysis in the form of a correlation heatmap.

We report global sensitivity indices as suggested by Sobol [146], since they allow for de-
composition of ranking contributions from individual parameters [12]. We implement the
sensitivity analysis using SALib [68] and use Nx(2D+2) model evaluations, where N = 2,039
is the number of samples and D = 12 is the number of metrics. The first-order sensitivity
indices Sy, represent the effect of each metric on the risk score variance when all other fac-
tors remain constant. The total-order sensitivity indices S/°! capture both the individual ef-
fects and the interactions with other metrics. For the scenario analysis, we iteratively vary
weights of parameters with the highest and lowest influence on the risk score and report the
scenario performance that we measure by the median relative test gap ranking of risky test
gaps R € [0,1] (see also RQ,).

RQ;: Comparison to Random Baseline To answer RQ;, we compare the ranking per-
formance of our score-based approach TestGarRapar with a random strategy: The random
strategy simulates 1,000 test gap analysis sessions for all test gap reviews without any indi-
cation about the risk available. That is, we assign all test gaps from the test gap reviews a
random risk score in [0, 1] and rank them by this random score. From the 1,000 simulations,
we calculate the average rank of risky gaps and the ranking variance. To assess the ranking
performance, we consider the median relative ranks R € [0, 1] of test gaps deemed risky and
their variance var(R). Additionally, we use a Mann-Whitney U test to test the null hypothesis
that test gaps deemed risky in the test gap reviews (& T'), ranked by the risk score (€ R) of
TestGaPRADAR and the ranks determined by the baseline stem from the same distribution.

RQ,: Expert Assessment We answer RQ, based on semi-structured interviews with the
six industrial quality engineers who conducted the original test gap reviews used in the
earlier research questions. Details of the interview questions can be found on our supple-
mentary Web site (see also Sec. A.3). All interviewees are experts in the field of software
quality. Their professional experience in coding, software testing, and quality consulting ac-
tivities ranges from four to twenty years. All of them have a Master’s degree in software
engineering, two of them even have a PhD in software engineering. They are experts in test
gap analysis tools and have been using them in their daily work for years.

For each study subject, we chose the test gap review with the lowest agreement between
the review and the risk-score-based ordering of test gaps for our interview. We ensured that
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the set of chosen test gaps is as diverse regarding associated change types and risks as pos-
sible. To foster a lively conversation allowing for deep dives into the data, we conducted for
each study subject a joint semi-structured interview with author and reviewer of the test gap
review between April and June 2024. Our primary goals were to shed light on the experts’
reasoning behind risk assessments, to gain insights into reasons for deviations between R
and D, and to collect feedback on practical applicability of our approach.

Each semi-structured interview consisted of three parts: First, we asked the participants to
construct a pairwise comparison of three to four test gaps of the assessment based on their
subjective risk. For this task we selected test gaps where the professional assessment did not
match the automatic ranking. Second, we discussed our test gap prioritization, in general,
and specifically the TEsTGaAPRADAR’s generated ranking for the three to four test gaps. Third,
we ask about the expert’s background and their feedback on our research. The interview
sessions took ca. 30 minutes, each.

We applied qualitative content analysis methods [99] to systematically analyze the semi-
structured interview data. This involved employing the QCAmap tool by Mayring et al. [99]
for qualitative content analysis and applying inductive techniques for data categorization.

5.3.4 Implementation and Calibration

We have implemented TestGaPRADAR and used a data-driven approach to tune the weights
of the risk score function (see also Sec. 5.2.4). For this, we used preliminary (training) data of
former test gap reviews (pre-2023) from our industrial partner Municu RE that we obtained
in the initiation phase of our research effort. In this pilot study, we fine-tuned the weights of
our approach so that risky test gaps from pre-2023 test gap reviews are ranked highly. We
considered our sample size too small for automated fine-tuning mechanisms, so we used
manual fine-tuning instead. Manual fine-tuning helps us provide rationales for the weights,
which increases trust in the tool and makes the prioritization results more understandable,
which is key for broad adoption in practice. To mitigate the risks of subjectivity and potential
biases in weight selection, we investigate the robustness and reliability of weights as part of
RQ,, and provide guidelines for practitioners to integrate TEsTGaPRaDAR into their testing
process (see Sec. 5.4). Generally, we applied the risk score function consistently for all study
subjects. We avoided overfitting by using separate training and test data sets.

Initially, all weights were assigned a default value of 1. The rationale behind weight selec-
tion, ensuring explainability of the prioritization, includes:

1. setting positive weights as defaults, while indicators of improved code quality (e.g.,
readability) are allocated negative weights (i.e., CHF, RCF, RNF);

2. assigning higher weights to factors frequently cited by developers as critical in related
studies on test gap prioritization [139] receive a higher weight (i. e., CEN, CLI, COC);

3. prioritizing code change metrics over reference function metrics motivated by the no-
tion that added complexity signifies greater risk than existing complexity (i.e., CLI,
COC);
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4. providing greater weight to metrics capturing critical findings than those for normal
findings, with new findings deemed riskier than existing ones (i. e., ACF, ANF, UCF, and
RCF).

The final weight calibration is outlined in Table 5.3.

Table 5.3: Overview of metric weights used for TestGaPRaDAR in the evaluation

Metric Short Weight
Code centrality CEN 2
Changed functions CHF -1
Length of reference function LEN 1
Changed lines of code CLI 2
Complexity of reference function COM 1
Complexity change coc 2
Added normal findings ANF 2
Unresolved normal findings UNF 1
Removed normal findings RNF -1
Added critical findings ACF 4
Unresolved critical findings UCF 2
Removed critical findings RCF -2

The changed functions metric has a parameter, f, which refers to the size of a change set so
that it is considered as less risky. In preliminary experiments, we found that t = 100 modified
functions per change set are suitable to identify refactorings for our study subjects.

5.3.5 Results and Discussion

In what follows, for each research question, we present the results of our multimethod study
and discuss them.

5.3.5.1  RQ,: Comparison with Manual Assessments

We use Kendall’s 7 to investigate whether the test gap assessments from test gap reviews and
the normalized risk scores correlate. We find a small [20], negative monotonic correlation
between T and R (7 = .29, n = 2039, p < .001), meaning that risky test gaps from test gap
reviews receive higher rankings from TesTGaPRADAR.

Figure 5.3 shows a kernel density plot of the agreement values v from the 31 test gap re-
views from our eight industrial study subjects. Note that the distribution is right skewed, that
is, most of the test gaps from test gap reviews are correctly ranked. In total, TEsTGaAPRADAR
ranked risky test gaps for 3 out of 31 test gap reviews too low (i.e., “false-low”, v > 0.5), so
the false-low rate is below 10%.

Figure 5.4 shows a kernel density plot of the relative ranks R of all 2,039 test gaps from
the 31 test gap reviews from our eight industrial study subjects. Risky test gaps are ranked
higher (i. e., better) by TEstGaAPRADAR than less risky test gaps. The median ranking for risky
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Figure 5.3: Kernel density plot for agreement values (v) from 31 test gap reviews of our eight indus-
trial study subjects

200
175
.. 150

% 125 I Risky (median: 0.35)
g 100 B Less risky (median: 0.52)
75
50
25

0 I

0.0 0.2 0.4 0.6 0.8 1.0

Best Relative rankings R of test gaps Worst
rank rank

Figure 5.4: Kernel density plot for relative ranks R of 2,039 test gaps labelled risky (red) or less risky
(blue); from 31 test gap reviews of our eight industrial study subjects
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Figure 5.5: Correlation heatmap of the assessment label, the risk score, and the score metrics

test gaps R = 0.35, while less risky test gaps are ranked lower (median = 0.52); the average
ranking is 0.5. The distributions in the two groups differed significantly (Mann-Whitney
U =127.5,n, =181, n;, = 1858, p < 0.05, less).

Overall, the accuracy of the results of our application compared to the expert assessments
appears rather good: An average ranking of risky gaps on the 35th percentile and a low
false-low rate below 10% shows that risky test gaps are ranked higher by TestGarRapar
than less risky test gaps. In the discussion of RQ,, we explore reasons for deviations and
their implications for the practical use of TESTGAPRADAR.

SumMAaRrY RQ;. Our approach achieves a good ranking performance: Risky test gaps are signifi-
cantly more likely to be ranked higher by TEsSTGAPRADAR than non-risky test gaps.

5.3.5.2  RQ.: Metric Importance

Figure 5.5 shows a correlation heatmap among the risk assessment labels (“risky” or “less
risky” from the test gap reviews T'), the risk score (determined by TesTGaPRADAR), and asso-
ciated metrics (see also Table 5.1). Noteworthy correlations include a moderate positive link
between the risk score and CEN, CLI, and COC. LEN is moderately negatively correlated
with COC but strongly correlated with COM. Additionally, COM has a moderate negative
correlation with COC.

Table 5.4 shows the results of ANOVA with F statistics and p value for the independent
variables (metrics). There are seven variables that have a strong relation (p < 0.05) with the
assessment label: CEN, LEN, CLI, COM, COC, UNF, and ACF. For these, we ran a post-hoc anal-
ysis with linear regression models; Table 5.5 shows the results. The p value for all seven in-
dependent variables is well below the significance level a = 0.05. This indicates a statistically
significant relation between each of the variables and the manual risk assessment of test gap
reviews. The largest coefficients have CLI, ACFE, and CEN, so they appear to have a strong
relationship with the manual risk assessment. Note that the R? values are relatively small
across all models, suggesting limited explanatory power and the presence of other factors
influencing the risk labels. This is expected in complex tasks such as test gap risk estima-



5.3 Multimethod Study

Table 5.4: ANOVA table with F statistics and p value per independent variable

Metric Short F p
Code centrality CEN 123 .000
Changed functions CHF 1.95 .163
Length of reference function LEN 39.7 .000
Changed lines of code CLI 482 .000
Complexity of reference function COM  12.0 .000
Complexity change coC 656 .000
Added normal findings ANF .68 .408
Unresolved normal findings UNF 15.0 .000
Removed normal findings RNF 2.44 118
Added critical findings ACF 19.5 .000
Unresolved critical findings UCF .01 .936
Removed critical findings RCF 14 706

tion for several reasons. Firstly, the subjectivity in risk label assignment by quality engineers
is a factor. Secondly, background knowledge, domain expertise, and system familiarity in-
fluence the perceived risk of test gaps, elements not easily generalized or captured by our
heuristics. Thirdly, there are diverse goals and risk factors in software testing, spanning func-
tional, technical, economical, legal, and organizational aspects, which go beyond the scope
of our work and exceed current software engineering methodologies.

There are three further noteworthy observations from the data. First, the correlation anal-
ysis suggests that longer function changes do not add as much complexity as new or small
functions, particularly in the context of grown systems (which all of our study subjects
are): Changes on existing—potentially grown—functions tend to be small compared to new
metrics—added in new functions—that also add new, and on average, more complexity. Sec-
ond, the complexity of reference function correlates strongly with function length and yields
a modest F statistic in the ANOVA. Consequently, a simplification of our model might be to
eliminate the COM metric. Third, from the variables that we found most important for a suit-
able risk score, that is, CLI, ACF and CEN, there is only a weak correlation between CLI and
CEN. Hence, they all contribute significantly to the ranking performance of TEsTGaAPRADAR.

Table 5.5: Post-hoc analysis with linear regression

Metric Short p coef R?
Code centrality CEN  .000 .465 .136
Length of reference function LEN .000 .180 .014
Changed lines of code CLI .000 741 187
Complexity of reference function CcomM  .ooo .207 .018
Complexity change coc  .000 .380 .075
Unresolved normal findings UNF .000 .153 .004

Added critical findings ACF .000 713 .015
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The first-order sensitivity indices of COC and ACF are the highest (S;, = 0.28), which
confirms their significant individual influence on the risk score. The five metrics LEN, COM,
ANF, RNF, and CHF have the lowest indices (S;, < 0.02), indicating that, individually, they
have minimal impact on the risk score when all other factors remain constant. Similarly, COC
and ACF have the highest total-order sensitivity indices (S/°! = 0.28). The close similarity to
their first-order indices suggests that these parameters have limited interaction effects with
other parameters, reaffirming their role as primary contributors to output variance. The five
metrics mentioned before also have the lowest total-order sensitivity indices (S/°' < 0.02),
showing negligible differences between first-order and total-order indices. This supports the
conclusion that their interactions with each other or with dominant metrics are minimal.

We shed light on the robustness and reliability of TestGaPRADAR by running a scenario
analysis. First, we reduce the weights of the most influential metrics COC and ACF by a factor
of 2. This results in a median relative rank of risky gaps R = 0.38, which indicates a dete-
rioration in the ranking performance of TesTGaPRaDAR. Second, doubling the weight of the
most influential metrics by a factor of 2 results in R = 0.3, which is a substantial improvement.
Third, we investigate simplification opportunities for our model by setting the weights of the
five least influential metrics (with S;, < 0.02) to 0. We consider different scenarios in this case:
(1) all five metrics receive a weight of 0, and (2) five other models where each sets the weight
another metric to 0. Our results show that the ranking performance remains the same as for
the original model when leaving out all five metrics or each metric individually (R = 0.35).
Only when LEN is left out, the ranking performance of the original model improves (R = 0.32).
We evaluated further scenarios, for example, with doubled weights of the most influential
metrics and leaving out some of the least influential metrics, but those models performed
worse (R > 0.3) than the model with doubled weights of the most influential metrics. That
is, in development contexts similar to our study subjects, a model refinement with slightly
adjusted weights can even achieve better prioritization than the approach implemented and
calibrated for this study:.

SumMAaRry RQ,. Changed lines, complexity change, added critical findings, and code centrality are
key metrics in our model to predict test gap risk.

5.3.5.3 RQ;: Comparison to Random Baseline

Table 5.6 shows the median relative ranking of the risky test gaps R, the ranking variance
var(R), and the results of a U test of our score-based approach and the random ranking
strategy. Our null hypothesis Hy can be rejected (marked with X in the table). The ranking
of TestGaPRADAR outperforms the baseline with regard to the median relative ranking R
and shows a lower ranking variance var(R). That is, the score-based approach clearly out-
performs the random baseline.

Table 5.6: Baseline comparison with a random baseline

Ranking Strategy R var(R) Ustat. p Hy

TesTGAPRADAR .3 .05

Random .5 .06 235 .00 X
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SummMaRrY RQj;. TEsTGAPRADAR outperforms the baseline in ranking risky test gaps.

5.3.5.4 RQ,: Expert Assessment

In our semi-structured interviews, we observed that all six quality engineers (Q;_¢) found
the metrics we used for test gap prioritization meaningful and representative of test gap risk.
Q12,56 saw a special value in the information about code centrality (CEN), since they usu-
ally do not have this information at hand when preparing test gap reviews, so TestGaAPRADAR
can provide valuable extra information to the experts in test gap reviews. Additionally, Q;_5
explicitly agreed on our choice of putting lower weight on test gaps that refer to simple refac-
torings which we identify by the number of changed functions (CHF). All experts Q;_¢ un-
derlined the importance of complexity indicators for risk assessments, since code complexity
makes it harder for developers to implement code changes correctly, thus requiring thorough
testing. Also, Q1 » 5 emphasize their commitment on code quality by verifying static analysis
results, putting special focus on critical findings.

In two out of eight interviews, the quality engineers deviated from their original sorting
of the interviews after learning about the prioritization of TEstTGaAPRADAR, so the tool pri-
oritization outperformed the original expert sorting. In both cases, the information about
code centrality was the decisive factor. For example, Q; stated “I have to agree with code
centrality of [this method], which looks pretty important to me. In this case, I'd vote for
ranking it higher because it is more important than the other gaps”. That is, TeEsTGaPRADAR
was able to detect central test gaps that implied risky code changes, for which the experts
retrospectively agreed that they would have considered code centrality if they had known
about this factor beforehand. Conversely, when the quality engineers did not change their
prioritization based on the reasoning of our approach, they justified their stance by citing
several factors. These included the perceived higher risk associated with new functions com-
pared to modified functions due to their lack of production history (2 cases). Additionally,
they argued that the type of code (e. g., test code or generated code) could mitigate the risks
associated with test gaps (2 cases). Furthermore, they expressed concerns about the exten-
sive deletion of logic (1 case) and considered placeholder implementations (function stubs)
to be less risky (1 case). In fact, they noted that an automated tool—while clearly helpful to
them—can hardly capture all risk factors for test gaps, since risks can arise from other levels
than source code, such as usage information, domain knowledge, or project context.

All quality engineers Q;_¢ underline in the interviews that they see this tool as part of a
semi-automated process, which still needs an expert in the loop. In this context, Q4 praises
that it can help to work in a “much more structured way and identify relevant, risky test
gaps much more quickly”, and as Qs articulates, “filtering out irrelevant gaps”. Q, was quite
enthusiastic and stated “overall, the results here were exactly in line with my assessment, es-
pecially for the riskier items, which is a very exciting result”.

SummaRry RQ,. The experts consider TEsTGAPRADAR valuable, providing them with additional
information such as the centrality of test gaps, enhancing their daily work. Identifying high-risk
gaps and filtering out low-risk ones improves their efficiency.
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5.4 Guidelines for Practitioners

High code churn and limited testing resources are omnipresent circumstances in active in-
dustrial software development and contribute to large numbers of test gaps. TEstGaPRaDAR
addresses the problem of identifying the riskiest test gaps among potentially large sets of test
gaps by sorting them according to estimated risk. A primary design goal of TEstTGaPRADAR
was to ease practical adoption, and we outline guidelines for practitioners in this section.

There are some prerequisites to implement our approach. First, the development process
should require code changes to be successfully tested (e. g., in the definition of done). Second,
test gap analysis needs to be established, that is, source code is under version control (e.g.,
using git) and all relevant testing environments are profiled.

To adopt our sorting and risk estimation approach, metrics and weights need to be chosen.
For optimal ranking performance, we recommend to use all metrics and adapt the weights
of ANF and ACF, as shown in Table 5.7 (which summarizes our results from the scenario
analysis for RQ, in Sec. 5.3.5.2). A detailed configuration is depicted in Table 5.7. Optionally,
the weights can be fine-tuned by means of context and domain knowledge.

Table 5.7: Overview of metric weights for which TestGarRapar obtained the best ranking perfor-
mance in our multimethod study

Metric Short Weight
Code centrality CEN 2
Changed functions CHF -1
Length of reference function LEN 1
Changed lines of code CLI 2
Complexity of reference function COM 1
Complexity change coc 4
Added normal findings ANF 2
Unresolved normal findings UNF 1
Removed normal findings RNF -1
Added critical findings ACF

Unresolved critical findings UCF 2
Removed critical findings RCF -2

For a successful implementation of the risk-based sorting of test gaps, the testing process
needs to be enhanced. First, it is necessary to be able to differentiate between test gaps from
finished development and work in progress. For example, a branching scheme could be im-
plemented in the version control system such that stable code can be easily identified. Alter-
natively, code changes could be mapped to issues and the relevance of test gaps could then
be inferred from the mapped ticket state. Second, the test gap quard role needs to be estab-
lished. The test gap guard is responsible for checking test gaps of finished code changes, for
example, in a regular interval or in the testing phase before a release. From our experience,
this role is taken either by test management, a test lead, a tester, or developers. Our approach
comes into play when the test gap guard checks for open test gaps: They sort all test gaps
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within the timespan [b,t] of their interest by estimated risk. Every test gap from the sorted
list is then manually reviewed and risky test gaps need to be closed, typically by adding new
test cases. Our approach helps to identify the most risky gaps early, allowing for more time
to close them, therefore increasing efficiency of the testing process. When there are too many
test gaps to review all of them, effectivity is increased since review activities can be focused
on more risky gaps.

5.5 Threats to Validity

In this section, we discuss threats to internal and external validity and explain our mitigation
strategies.

5.5.1 Internal Validity

The limited availability of data for the metrics at our study subjects represents a threat to
internal validity because further metrics might result in better ranking performance. How-
ever, we have selected metrics that are related to well-known risk factors and, based on our
experience, are readily collectible in highly regulated industrial projects employing test gap
analysis. Consequently, prioritization can be readily incorporated and anchored in the devel-
opment process. Our multimethod study results demonstrate that the ranking performance
is sufficient for practical application.

The selection of parameters for our implementation poses a threat to internal validity, as
the weights applied directly impact the risk score and subsequent ranking. We manually
calibrated our selection using historical test gap reviews from one industrial partner (refer
to Sec. 5.3.4). Our focus on evaluating a straightforward prioritization approach within an
industrial setting forced us to conduct a multimethod case study under limited training data
availability. Further refinements, particularly weight adjustments, are deferred, offering the
potential for improved ranking outcomes.

Imbalance in data threatens internal validity. The data need to contain an appropriate bal-
ance between safe and risky test gaps. This is especially important as our approach estimates
the relative risk in the respective set. As discussed in Section 5.3.5.2, there is no universal def-
inition of test gap risk. Therefore, there is no objective way to assess the validity of the set
in this regard. However, a manual analysis showed that the study subjects contain a wide
variety of test gaps, including complex and trivial ones.

5.5.2 External Validity

As true for most software engineering research, the huge diversity of software systems, pro-
cesses, and teams, threatens the generalizability of our work [144]. All study subjects used in
our evaluation are industrial, closed-source systems (which is not the case for most related
work). While they implement sophisticated testing processes, there is a tremendous vari-
ety of testing in practice. For example, most open-source software projects often implement
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substantially different testing processes, for which TestGarRapar might produce different
results. Nevertheless, with a technologically and process-related diverse set of study sub-
jects from different industry partners, we share meaningful insights into the benefits and
limitations of our work in practical use.

5.6 Conclusion

The prevalence of test gaps introducing new defects presents a significant challenge in mod-
ern software development projects, for example, for test management and quality assurance,
which need to review a large amount of test gaps to allocate testing efforts and assess test
completion. In this chapter, we proposed TestTGAPRADAR, an automated approach for pri-
oritizing test gaps based on their individual risk. For the risk estimation, we incorporated
fourteen metrics reflecting three major risk factors, that is, code criticality, complexity, and
static code analysis results. In a multimethod study, we validated our approach across eight
large-scale software systems from two industry partners. Our study is based on an analysis
of 31 historical test gap reviews for their systems and semi-structured interviews with the
quality engineers who wrote those reviews. Our study showcased the effectiveness of Test-
GaprRaDaR in ranking risky test gaps significantly higher than less risky test gaps, on average,
at the 30th percentile. In a quality assurance expert survey, the external quality engineers of
our industry partners underlined the meaningful representation and potential superiority of
the automated risk assessment of TEsTGAPRADAR over the expert judgments in certain scenar-
ios. Our study’s results underscore the significance of test gap risk estimation for facilitating
risk-driven prioritization, empowering test management and quality assurance teams to effi-
ciently pinpoint and manage critical test gaps. Our work enables practitioners to implement
a risk-focused safety net into their testing process to ensure that no potentially risky code
change is released untested. The quality engineers at our industry partners are definitely
planning to implement our approach to prioritizing test gaps as part of their quality assur-
ance processes.

5.7 Avenues of Future Research

There are different avenues of future research: Enhancements of our work and practical
needs to reduce risk in software testing and development in general. The risk estimation
could be enriched by production usage data to filter test gaps which are not used in pro-
duction and highlight test gaps in heavily used core features. Additionally, socio-technical
analyses and metrics [74, 75] could be considered to reflect additional dimensions of risk.
Also, natural-language processing of the commit messages that resulted in a test gap could
help to estimate the associated risk. Future test gap risk estimation methods could cluster test
gaps and aggregate the risk of a set of related test gaps. More sophisticated risk estimation
methods, possibly including line-level defect prediction, may help to identify risky test gaps
without needing to compare them with other test gaps. Key factors for practical adoption for
any sophisticated approach include to make them approachable and understandable. For
the adoption of artificial intelligence in the field of defect prediction, explainability is crucial
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to convince developers of potential problems, motivating them to fix the underlying defect.
Furthermore, practitioners could be guided how to close risky test gaps, for example, by
generating test cases that close the gaps and finally mitigate their risk.






Conclusion and Future Work

Human-in-the-loop software testing processes in industrial contexts frequently suffer from
slow test feedback and risks arising from untested code changes. Feedback to developers is
especially delayed in the context of manual testing because it can take weeks or even months
to execute extensive manual test suites. Risks from untested changes need to be assessed
by humans, for instance, to decide whether testing has completed since all relevant risks
have been mitigated—while the risk varies greatly between changes. This thesis sought to
resolve the aforementioned issues by means of enhancing the feedback provided by human-
in-the-loop testing processes in industrial contexts, thereby increasing their efficiency and
effectiveness.

In this dissertation, we conducted three different empirical studies on optimization strate-
gies for human-in-the-loop testing processes. Our research methodology incorporates a com-
bination of quantitative and qualitative research techniques, employing a multifaceted ap-
proach to analyze human-in-the-loop testing processes from various perspectives. This multi-
methodological approach is designed to develop a nuanced understanding of optimization
levers and their impact when applied effectively. This research opens different avenues for
future research, and guides practitioners in transferring our scientific results into industrial
practice.

In what follows, we briefly summarize our contributions. We conclude this thesis by offer-
ing insights into future research opportunities to further advance the optimization of soft-
ware testing.

6.1 Summary of the Contributions

In essence, based on the three empirical studies that we have presented in this thesis, our
contribution to optimization of human-in-the-loop testing processes is threefold:

1. Exploration of Optimization Technique Transferability from Automated to Manual
Testing: Our first contribution explored what optimization techniques from automated
testing are applicable in manual testing, how to integrate them in existing processes
and infrastructure, and which limitations need to be accepted. We discovered and sys-
tematized characteristics of manual testing processes that deviate from automated test-
ing and that hinder or enable optimization of manual testing. For this purpose, we
conducted two surveys and queried corresponding test suites, involving, in total, 43
testing professionals and their testing processes from 20 companies. Our results gath-
ered evidence that manual testing is employed extensively, and in many cases without
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the intention of full automation, underscoring the need for optimizing manual testing.
We identified nine optimization techniques applicable to manual testing, such as inten-
tional under-specification, test case selection and prioritization, and test gap analysis.
Our discussion centered around the question under which circumstances they can be
implemented in practice, making prerequisites and caveats of the individual optimiza-
tion techniques transparent. To facilitate the adoption of manual testing optimization in
other contexts, we synthesized our findings in an annotated model of manual software
testing processes, accompanied by two sets of guidelines for practitioners on selecting
suitable optimization techniques (see also Chapters 3 and 4).

. Evidence on Optimization Effectiveness for Manual Testing: Our second contribu-

tion builds up on the previous one: having shown that optimization techniques from
automated testing can in principle be transferred to manual testing, we investigated
the question to which extent such techniques can be applied to solve the issue of long-
running manual test suites in practice, and which limitations need to be accepted in
practical use. Two industrial case studies on test suites from Munica Re and IVU Trar-
rIc TECHNOLOGIES, demonstrated improvements in fault detection probability, test feed-
back time and test creation efforts by following our guidelines mentioned in the first
contribution (see also Chapter 3). We extended the insights from these two case stud-
ies substantially in another empirical study with five subjects from, inter alia, Bay-
ERISCHE VERSORGUNGSKAMMER, DoLBy, ILP, and CArL Zeiss Microscory, in which we
implemented two optimization techniques—test impact analysis and Pareto testing—
for their automated and manual testing processes. The former, test impact analysis,
is a common optimization approach combining test case selection and prioritization.
The latter, Pareto testing, is an optimization technique which collects test cases up to
a certain cost limit based on existing techniques from test case prioritization and min-
imization. In our second empirical study, we extracted relevant differences between
automated and manual testing processes for test optimization, such as differing test
activities, bottlenecks, and presence of flaky tests. For the field experiment, we ana-
lyzed industry data from more than 43,300 test cases and corresponding test-wise cov-
erage and, in total, 2,622 test failures from the study subjects’ test histories. Our results
showed that optimized automated test suites detect, on average, 80% of failures while
saving 66% of execution time, compared to 81% failure detection and 43% time savings
for manual tests. Despite inherent limitations of manual testing, such as less frequent
test execution and fewer historical data, we provide evidence for the effectiveness of
these techniques in industrial settings (Chapter 4).

. Risk-based Prioritization of Test Gaps: Our third contribution proposed a risk-based

prioritization approach for test gaps, which we evaluated using a multimethod study.
This approach targets the problem of the large number of test gaps with varying risk
which need to be inspected manually during (1) test planning or (2) assessing test-end
criteria. To solve this problem, we proposed TEstGaPRADAR, an automated, score-based
approach that prioritizes test gaps based on estimated risk, which considers the mag-
nitude of impact and defect probability. We validated the risk criteria’s transferability
through a multimethod study which involved historical quality assurance reports from
eight industrial software systems of MunicH Re and LV 1871, and semi-structured in-
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terviews with six quality engineers that authored the reports. Our results showed the
effectiveness of our approach from two perspectives: First, risky test gaps are ranked
significantly higher than less risky test gaps, on average, at the 3oth percentile. Second,
TesTGAPRADAR is on par with expert rankings, and in some cases, even outperforms
the expert rating. Our approach is suitable to empower test management and quality
assurance teams to efficiently recognize and manage risky test gaps, ensuring that no
potentially risky code change is released untested. To facilitate adoption, we presented
guidelines for practitioners to implement a risk-based prioritization of test gaps in their
testing process (Chapter 5).

Overall, this thesis contributes toward effective and efficient human-in-the-loop testing
processes in industry, including enhanced feedback, shorter test runtimes, and less remain-
ing risks when testing has completed. It presents various optimization levers to conquer slow
test feedback in manual testing and suggests specific optimization techniques to leverage
these optimization potentials. To overcome risks from untested changes, we suggest an ap-
proach to prioritize test gaps, enabling humans-in-the-loop to mitigate the largest risks from
untested changes as early as possible. Our studies have shown the suitability and effective-
ness of suggested solutions in practice and, after our studies, many study subjects decided
to anchor our solutions in their testing process. So, our results are of scientific and practical
value: Researchers can build upon our studies and methodologies to address further open
questions in the field of optimizing human-in-the-loop testing processes. Practitioners, such
as developers, testers, management, and quality engineers, can learn from the insights of our
empirical studies in industry contexts and adopt our work—following our practice-oriented
guidelines—to optimize human-in-the-loop testing processes in their contexts.

6.2 Future Work

While conducting the research presented in this dissertation, we have identified four promis-
ing avenues of further research.

Further Enhancements of Manual Testing Processes In practice, manual testing pro-
cesses show great variance. Our studies on optimization of manual testing presented in
Chapter 3 and Chapter 4 have covered only a fraction of possible testing process parameters.
Further research is needed to gather a more complete understanding of manual testing pro-
cess optimization. Collecting coverage of manual tests can be challenging, since end-to-end
tests typically involve multiple languages and frameworks, complicating the optimization
effort. Instead, future work should include further optimization techniques, possibly lever-
aging other data than code coverage information. In the era of Al, approaches building up on
information retrieval or large language models might facilitate manual test optimization. For
example, test cases might be selected on similarity measures between test cases and source
code: text/code embeddings or LLM-generated summaries of test cases and sources could
be used as similarity measure, so that the most similar test cases to changed source code can
be selected for test execution.
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Cross-Industry Analysis, Benchmarking, and Longitudinal Studies on Optimization
Impact In our research, we covered several manual testing processes from various do-
mains. Our data do not suffice to provide a cross-industry overview of manual testing pro-
cesses. For this purpose, comparative studies across different industries should be conducted
to identify domain-specific challenges and commonalities in test optimization. This data
could also be leveraged to benchmark the effectiveness of optimization techniques in various
industrial contexts. We see additional value in longitudinal studies to assess the long-term
benefits and evolution of manual testing process optimization. Such studies could evaluate
improvements in software quality, defect rates, and coding throughput.

Enhancements of Test Gap Risk Estimation and Mitigation Future work could enhance
our approach to estimate the risk of test gaps by taking additional risk factors into account,
such as production usage data, natural-language processing of commit messages, as well as
socio-technical analyses and metrics. Alternatively, approaches from the defect prediction
field applying Al could be transferred to assess the risk of individual test gaps. Addition-
ally, the accumulation of test gap risk opens an interesting field of research: by now, it re-
mains unclear how the information on test gap risk for code changes within different work
items should be aggregated and how to compare a set of work items with regards to their
accumulated risk. Also, there is need for guidance in closing test gaps, that is, collaboration
strategies between testers and developers. In manual testing, old test cases that formerly exe-
cuted changed but currently untested code could be suggested for execution by implement-
ing coverage-based optimization approaches. Future studies could apply test case generation
techniques from the literature to generate test cases from test gap information.

Real-Time Suggestions to Improve Manual Testing Effectiveness The research fields
discussed in this thesis, manual test optimization and risk mitigation of untested changes,
could be combined to mitigate test gap risks on-the-fly during manual test execution. For
this purpose, future work shall focus on the question of how to guide testers during testing
to close test gaps on-the-fly. This could involve an interaction-distance measure which ex-
presses the amount of necessary user interaction to trigger execution of a specific piece of
code, for example, a test gap, from the current system state. Thus, nearby-test gaps could be
suggested to manual testers, possibly also indicating which system-interaction is required
to close the gap. This kind of guided exploratory testing requires domain knowledge so that
testers can actually detect deviations between the system under test’s intended and actual
behavior.

In conclusion, this dissertation contributed on knowledge about human-in-the-loop test-
ing processes in industry and their optimization levers. There are many further directions for
research that can build upon our work, and opportunities to leverage untapped optimization
potential in practice, both shall serve toward better software. We are convinced that humans
will continue to play a decisive role in the future of software testing, and the question how
to make optimal use of the human skills will continue to drive us in the future.



Appendix

In this dissertation, we have presented three empirical studies on optimization of human-
in-the-loop testing processes to overcome slow feedback from manual testing and eliminate
risks of relevant test gaps for test completion assessment. For all studies, we share supple-
mental material on Web sites, that allow in-depth navigation through our study data, obtain
analysis and plotting scripts for traceability and reproducibility of our results. In some cases,
the raw data can not be shared because of restrictions by confidentiality agreements with
our research partners. Then, we published aggregated data to allow for traceability of our
conclusions. Some repositories share additional details on study setups, results and discus-
sions. In what follows, we briefly summarize the supplemental material of each study and
point to the corresponding Web sites.

A.1 Supplemental Material for Chapter 3

The survey results, analyses, and the optimization guidelines of our study [53] are publicly
available in our supplemental repository:
https://github.com/manual-testing-study/manual-testing-esec-fse-21/.

A.2 Supplemental Material for Chapter 4

The raw data obtained in our empirical study [56] cannot be shared because of confidential-
ity agreements. For reproducibility, we published aggregated data and the analysis scripts,
along with additional details on our subjects, our questionnaire, and a subject specific dis-
cussion of results on a supplementary Web site: https://zenodo.org/records/11502386.

A.3 Supplemental Material for Chapter 5

The raw data obtained in our study [57] cannot be shared because of confidentiality agree-
ments. For reproducibility, we published aggregated data and the analysis scripts, along
with additional details on our studies on a supplementary Web site:
https://github.com/se-sic/test-gap-risk-study.
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