
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, 2025 1

Prioritizing Test Gaps by Risk in Industrial Practice:
An Automated Approach and Multi-Method Study

Roman Haas, Michael Sailer, Mitchell Joblin, Elmar Juergens, and Sven Apel

Abstract—Context. Untested code changes, called test gaps,
pose a significant risk for software projects. Since test gaps
increase the probability of defects, managing test gaps and their
individual risk is important, especially for rapidly changing
software systems.

Objective. This study aims at gaining an understanding of
test gaps in industrial practice establishing criteria for precise
prioritization of test gaps by their risk, informing practitioners
that need to manage, review, and act on larger sets of test gaps.

Method. We propose an automated approach for prioritizing
test gaps based on key risk criteria. By means of an analysis
of 31 historical test gap reviews from 8 industrial software
systems of our industrial partners Munich Re and LV 1871,
and by conducting semi-structured interviews with the 6 quality
engineers that authored the historical test gap reviews, we
validate the transferability of the identified risk criteria, such
as code criticality and complexity metrics.

Results. Our automated approach exhibits a ranking perfor-
mance equivalent to expert assessments, in that test gaps labelled
as risky in historical test gap reviews are prioritized correctly, on
average, on the 30th percentile. In some scenarios, our automated
ranking system even outpaces expert assessments, especially for
test gaps in central code—for non-developers an opaque code
property.

Conclusion. This research underscores the industrial need of
test gap risk estimation techniques to assist test management and
quality assurance teams in identifying and addressing critical
test gaps. Our multi-method study shows that even a lightweight
prioritization approach helps practitioners to identify high-risk
test gaps efficiently and to filter out low-risk test gaps.

Index Terms—Software Testing, Test Gap Analysis, Risk-based
Testing

I. INTRODUCTION

FUNCTIONAL correctness is crucial for the success and
acceptance of a software product. A solid testing process

is imperative to uncover defects before they are deployed in the
field. Since resources are limited, especially for large software
systems, it is important that test efforts are allocated such
that the most critical defects are detected as soon as possible.
This requires an estimation of which parts of the system are
expected to be particularly defect-prone. Defect prediction re-
search aims at revealing faulty code, often using static program
analysis enhanced by heuristic search or machine learning [1].

This work was partially funded by the German Federal Ministry of
Education and Research (BMBF), grant “Q-SOFT, 01IS22001A”, and the
German Research Foundation (DFG), grant “AP 206/14-1”. The responsibility
for this article lies with the authors. R. Haas was with the Saarbrücken
Graduate School of Computer Science, Germany. R. Haas, M. Sailer and E.
Juergens were with CQSE GmbH, Germany. M. Joblin and S. Apel were with
Saarland University, Saarland Informatics Campus, Germany. (Corresponding
author: R. Haas.)

Manuscript received October 18, 2024; revised February 7, 2025; accepted
for publication March 24, 2025.

Even though a large variety of studies has been conducted in
this area, the results are often not generalizable [2], and the
approaches perform poorly in real-world settings [3], [4]. As a
consequence, they are rarely applied in practice [5], [6], with
notable exceptions, though [7].

Addressing the notorious issues of defect prediction of our
partners in industry (in particular, Munich Re and LV 1871),
we strive for an approach that is viable in practice and matched
the needs of our industry partners: a prioritization of test gaps
by their risk. A test gap is a method, function, or module that
has been modified during a specific period of time (e.g., start of
last development phase or iteration) and has not been executed
in its most recent version during testing (e.g., automated
unit test or manual acceptance test). Intuitively, defects are
introduced by code changes, and defects cannot be detected if
they were not tested. In this vein, the literature suggests that
modified code tends to be more defect-prone [8]–[11]. For
example, Eder et al. found in an industrial case study that (1)
despite a structured testing process, approximately half of the
changes went into production untested, and (2) that untested
changes contained up to five times more defects than other
parts of the system. This clearly emphasizes the value of test
gap analysis in the testing process. For this reason, test gaps
are taken into consideration by test management to decide
whether testing is completed.1

Problem Statement: The number of test gaps that need to
be investigated by test management and quality assurance
depends on many parameters, especially on the number of
code changes and the depth of testing. In practice, when test
management assesses test gaps as part of test-end criteria eval-
uation, there are typically dozens, hundreds, or even thousands
of test gaps [12] that have not been covered by any test run.
The risk of test gaps may vary greatly; for instance, test gaps
involving logic modifications or data manipulations might be
disguised among less critical changes such as refactorings [15].
Thus, obtaining an overview about test gaps and their risk
requires significant effort, and the results may be subjective.
Furthermore, in the context of large industrial software sys-
tems with changing development teams, it can be hard for
individuals to have sufficient knowledge about the system to
reliably assess the criticality of changes in the entire code
base. Clearly, an automatic prioritization of test gaps would
be most helpful to reduce the time necessary for the manual
inspection and the risk of missing critical ones, which is also
confirmed by our industrial partners.

1There are several test gap analysis tools available, for example, Team-
scale [12], [13] and Sealights [14].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, 2025 2

Research Gap: There is a lot of research in the field of
defect prediction, which aims for the identification of defec-
tive code [5], [16]–[18]. For our industrial research setting,
unfortunately, the costs of applying state-of-the-art approaches
outweigh the potential benefits—a notorious challenge for the
application of defect prediction in practice [4], [6]. Moreover,
state-of-the-art approaches typically do not consider prior
testing efforts that are focussed by test gap analysis [1], [7],
[18]. Another related field, test case prioritization, aims at
finding failures as quickly as possible by prioritizing tests by
their failure revelation probability [19]. Test case prioritization
addresses a different problem, though, since it orders test
cases, whereas test gap analysis reveals code which has not
been tested by existing test cases. In particular, our industrial
partners aim for a more general form of risk mitigation: While
the probability of introducing a defect is a key risk factor [20],
[21], the potential damage caused by a defect is an additional
risk factor that needs to be taken into account. That is,
core functionality needs to be tested particularly well because
potential defects can cause major damage, such as degradation
of core business processes—even though the probability of
introducing a defect may be comparatively low. Since there is
only little related work on prioritization or risk estimation of
test gaps in industrial practice, it is still unclear what makes
a test gap more risky than others. Hence, we seek to evaluate
the feasibility of a simple prioritization approach that fits the
setting and requirements of our industry partners and suggest
improvements for future deployment.

Approach: Based on key risk criteria identified from in-
dustrial developer experience and the defect prediction lit-
erature, we propose our score-based approach, called TEST-
GAPRADAR, to automatically derive a risk-based prioritization
of a set of test gaps. This way, a large list of open test gaps can
be sorted and, for example, test management can analyze the
riskiest test gaps first. To evaluate our approach, we conducted
a multi-method study: We compare the prioritization results of
our approach with manual test gap risk assessments that have
been made by experts in eight real-world industrial projects.
For this purpose, we use historic real-world risk assessments
from Munich Re and LV 1871, two large companies within
the financial domain, where quality assurance experts continu-
ously assessed eight well-established and maintained software
systems. We conducted semi-structured interviews with these
experts to better understand deviations between our automatic
ranking and their manual assessment. Overall, we found that
our approach yields a test gap ranking that is shown to be
correlated with risk (i.e., higher rank corresponds to more risk)
and that the approach can achieve human (domain expert) level
performance. Interestingly, quality engineers reported that
insights from TESTGAPRADAR allowed them to recognize
where their prior assessment missed risks, especially for cen-
tral code (i.e., code that is central in the program’s dependency
structure [22]–[24]). The quality engineers of our industrial
partners acknowledged the significance and relevance of our
test gap risk criteria and underline that TESTGAPRADAR
would help them in their daily work to identify risky test gaps
more efficiently.

Contributions: In summary, we contribute the following:
• Automated Prioritization of Test Gaps. We introduce

TESTGAPRADAR, an automated score-based approach
that prioritizes test gaps by estimated risk supporting in-
dustrial development teams—including test management
and quality assurance roles—in gaining a quick overview
about the riskiest gaps.

• Empirical Study. We conducted a field study of TEST-
GAPRADAR on thirty-one historical test gap reviews
of open test gaps for eight industrial software systems
providing insights into the applicability of risk criteria
and process in our industrial setting.

• Quality Assurance Expert Survey. We conducted eight
semi-structured interviews with six quality assurance ex-
perts that authored the test gap reviews of our industrial
partners, showing that the automatic ranking of TEST-
GAPRADAR is on par with expert rankings, and in some
cases, even outperforms the expert ranking.

II. BACKGROUND AND RELATED WORK

In this section, we describe concepts and terminology that we
use throughout the paper as well as relevant related work.

A. Test Gap Analysis

Test gap analysis is one possible answer to the question
of test resource allocation. It reveals untested changes in the
code, which are known to be particularly defect-prone [11]
and should receive special attention in the testing process [12].
The entity of interest for test gap analysis is often code at the
function or method level (see Sec. II-B). Figure 1 shows a
typical test gap analysis result for all code changes within a
release cycle of several months of a large software system
of our partner Munich Re (before they aligned their testing
activities along untested code changes). It visualizes the entire
code base as a tree map and depicts test gaps in orange and red
colors; in this case, there are thousands of test gaps. Due to
the enormous number of code changes and testing activities, it
is challenging in practice to identify the most risky test gaps,
which is needed to direct the limited testing resources to the
mitigation of the largest risks.

Test gap analysis is always performed for a certain time-
frame [b, t], defined by a baseline b and an end t. A function
is considered as changed if, at least, one line of code has
been altered within [b, t]. Note that some behavior-preserving
changes, such as the renaming of a variable, are ignored. Some
entities that can be considered too trivial to test, for example,
simple variable access functions (getter and setter), can also
be excluded [25].

A function is considered as tested if, at least, one line
of the function has been executed by a test after the latest
change in [b, t]. This is not meant as a test adequacy cri-
terion. That is, a function that is tested by means of test
gap analysis is not necessarily tested sufficiently. But, test
gap analysis is designed to highlight functions that have not
been tested at all. This simple notion of function coverage
is capable of providing a valuable high-level overview of
untested changes [12]. More fine-grained coverage criteria,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, 2025 3

Fig. 1. Test gap analysis results for an industrial business information system
of our partner Munich Re for all code changes within a release cycle of several
months. The tree map visualizes the hierarchical components, classes, and
functions of a software system. The size of rectangles corresponds to size
in lines of code; the color indicates ■ unchanged code, ■ tested changes,
■ untested modifications, and ■ untested new functions, where the latter two
are test gaps. In this example, there are thousands of test gaps.

for example, on the statement level, do not provide sufficient
benefits to outweigh their cost [12]. They may even be counter-
productive as they produce more complicated results, which
require more effort to interpret, especially for large software
systems with substantial code churn. Note that the claim is not
that unchanged and tested parts of the system do not contain
any errors, but that the chances are higher to detect defects in
untested changes than in other parts of the system.

B. Related Work

There is only little related work that is specific to test gap
prioritization. In addition, we discuss related work from the
broader field of software defect prediction.

1) Test Gap Prioritization: Sailer [26] conducted a struc-
tured online interview to shed light on developers’ criteria for
assessing the risk of test gaps. In their study, they randomly
selected a subset of test gaps from a six-week interval of the
developers’ application and asked the developers to assess and
reason about the risk of test gaps. These rationales provide
valuable insights for our work into what makes a test gap
appear risky. The most-mentioned reasons are change com-
plexity, centrality for high risk, and refactoring as rationale for
lower risk. In contrast to Sailer who evaluates their approach
on a single software system, we investigate the transferability
of risk criteria and their applicability for test gap prioritization
to other large and independent software systems from our
industry partners.

Brandt et al. [27] used a fuzzer to generate partial tests and
investigated whether developers from Mozilla would extend
those to functional tests. They found that developers do
not consider all test gaps test-worthy. To address this, they
implemented a filter function to only generate partial tests for
relevant test gaps. The filter function excludes test gaps that
are single-line or are early-return. They found that developers
consider test gaps irrelevant if the tested code is unlikely to be
reached, deemed bug-free, or already covered by other tests.

By means of the code centrality criterion, we also prioritize
code down that is unlikely to be reached, which is similar to
Brandt et al.’s approach. They focus on helping developers
close test gaps, while we focus on helping test managers
and quality assurance teams identify the most important ones.
Their filter function employs a simple prioritization strategy.
We present a more comprehensive approach for prioritizing
test gaps, focusing on different roles in the software develop-
ment process.

2) Software Defect Prediction: Test gaps are known to have
a higher probability of defect than unchanged code [11], so,
the field of software defect prediction [5], [16], [18] is related
to our work, with notable differences, though. While a test
gap could imply a defect, a defect is not necessarily a test
gap. For our prioritization of test gaps, we are focusing on
risk, namely, magnitude of impact and probability of event. In
contrast, defects may be classified by severity levels [28], but
these do not match test gap risk.

The respective models of defect prediction approaches
are based on manifold metrics, for instance, source code
complexity [29], code smells [30], history of changes [31],
commit messages [32] and defects [33], organizational [34],
process [35], or developer-centered metrics [36], ticket infor-
mation [37], [38], or static analysis results [39]. While our
prioritization approach relies on some of these metrics, the
focus of our work is different since our industry partners align
their testing process with untested code changes, for which we
aim at a risk-based prioritization.

Like with test gap analysis, it is an established best practice
to use function-level defect prediction, which shows better
performance than relying on coarse-grained units such as files
or modules [4], [40]: Despite a great number of studies in
this area, function-level defect prediction is still unsolved as it
provides low precision for cross-project classifiers and, when
evaluated under realistic circumstances, existing approaches do
not significantly outperform a random classifier [3], [4]. There
are also more fine-grained approaches for defect prediction,
for example, on the line-level [41], [42]. These cutting-edge
approaches are still experimental and therefore—from our
industrial partners’ perspective—not mature enough for im-
plementation in real-world development processes, yet. As of
now, our industrial partners need more actionable approaches
such as test gap analysis and prioritization of test gaps to direct
their testing efforts.

III. TESTGAPRADAR: A SCORE-BASED APPROACH

Test gap analysis yields an unsorted set of untested modi-
fied code units (functions, in our case). The goal of TEST-
GAPRADAR is to rank this set of test gaps by their estimated
risk. In what follows, we explain the selection criteria for the
metrics used for ranking test gaps. Furthermore, we provide
details on the metrics and their calculation and insights into
the normalization of metric values. Finally, we describe how
a risk score is computed, which is used to rank test gaps
amongst each other. In this section, we focus on our approach
in a general form; implementation details like weights and
the choice of parameters that we used for our evaluation are
outlined in Section IV-D.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, 2025 4

A. Selection Criteria for Metrics

The basis for ranking is a risk score, which is computed
for each test gap from a combination of metrics (see also
Sec. III-B). To simplify the setup for our industrial study
subjects (see also Sec. IV-B) and allow for comparison of
results, we aim for a lightweight, uniform approach for all
study subjects. To this end, we are interested in to which
extent a simple approach like ours is able to help practi-
tioners in identifying risky test gaps. We selected product
and process metrics that were also used by related work
(see also Sec. II-B) and which were feasible to obtain for
all of our study subjects. We had to decide against criteria
which did not meet the requirements of our industry partners.
Specifically, a broad spectrum of technologies and processes,
and diverse set of social and legal requirements needed to
be fulfilled. For example, ABAP—a programming language
used by several of our industry partners’ SAP systems—
comes with the limitation that there are no commit messages
available as they are known from popular version control
systems such as git. Furthermore, defect information is stored
heterogeneously, that is, in different bug tracking systems
using different bug reporting schemes, impeding its structured
analysis. Lastly, developer-centered metrics might not always
meet the compliance requirements of our industry partners, so
they could not be taken into consideration for our work. For
instance, the separation of responsibilities between internal and
external employees is mandated by European regulation [43].

B. Overview of Selected Metrics

Table I provides an overview of metrics that TEST-
GAPRADAR uses to estimate test gap risk. These product and
process metrics were available at our industrial partners, while
other data could not be obtained. They include different risk
factors, that is, code criticality and complexity and static code
analysis results. In the following, we discuss these risk factors,
the corresponding metrics, and their computation.

TABLE I
METRICS USED BY TESTGAPRADAR TO ESTIMATE TEST GAP RISK

Risk Factor Metric Short

Code Criticality Code centrality CEN
Changed functions CHF

Complexity

Length of reference function LEN
Changed lines of code CLI
Complexity of reference function COM
Complexity change COC

Static Code
Analysis Results

Added normal findings ANF
Unresolved normal findings UNF
Removed normal findings RNF
Added critical findings ACF
Unresolved critical findings UCF
Removed critical findings RCF

1) Risk Factor: Code Criticality: We implement two met-
rics for code criticality: code centrality and changed files.

Code Centrality: Sailer [26] found in their study that one
of the most often mentioned reasons for critical test gaps, that
is, gaps that need to be closed by testing, is code centrality.

This matches our notion of test gap risk since defects in central
code (e.g., core functionality) potentially cause great harm, and
therefore test gaps in central code are considered more risky.
For the purpose of test gap prioritization, TESTGAPRADAR
includes a metric for the centrality of the function. To compute
the centrality of the function at time t, we rely on static
analysis of dependencies between sources, as suggested in the
literature [22]–[24]. We apply the PageRank algorithm [44] on
the dependency graph of a software system to rank the nodes
by their relevance (i.e., centrality). The dependency graph is
traversed by either following a link or randomly jumping
to another node. We used the random jump probability of
0.0001, as suggested by Steidl et al. [22]. Additionally, we
take inverted edges into account to reflect that a function may
not only be important if many other functions depend on it, but
also if it depends on many important functions. For this paper,
we set the weight of an inverted edge to 1

3 as compromise
between the suggested values of 1

2 and 1
4 [23].

Changed Functions: In the context of our industrial partners,
large change sets, which affect many files, often occur in
system- or component-wide refactorings of the source code,
which do not contain functional changes. These refactorings
introduce less defects than smaller change sets and thus, the
defect density of large change sets is typically smaller than
for small change sets. This is in line with the literature in
which change sets with many changed files have been found
to introduce less defects [31]. Since we are working on the
more fine-granular level function level, we count the number
of changed functions per change set. We decided against using
more complex metrics as most of these have been shown to
have a high correlation with lines of code [45], [46].

We use a simple heuristic to implement this metric. The idea
is, the more functions are modified within a change set (e.g.,
issue, ticket, change request), the more likely it is a less risky
change, for example, a refactoring. For the change set that
contains the test gap, we calculate the function churn ci, that is,
the number of modified functions. The metric grows, damped
by the power function, up to a function churn threshold ct.
The metric is bound by 1 and calculated by

vref = min

((
ci
ct

)4

, 1

)
For the size of the change set, we define a custom normal-

ization function to model the influence on test gap risk. We
do not expect a linear correlation of size of the change set
and test gap risk. For instance, we consider the influence of a
medium and a big change set on the test gap risk as similar, but
the difference to a small change set is notable. Note that, for
our multi-method study (see Sec. IV), we manually validated
that this heuristic has assigned high changed functions metric
values only to test gaps arising from a refactoring activity.

2) Risk Factor: Complexity: We implement four metrics
to model the risk factor complexity: length of reference
function and changed lines of code serve as metrics for code
complexity, while test complexity is measured by complexity
of reference function and complexity change. The reference
function is the version of the function before it became a

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, 2025 5

test gap, that is, either the version at the baseline b or, if
the function has been tested after the baseline, the last-tested
version. If the function has been added after the baseline, the
reference state is the empty function ∅. We call the function
at version t the end state of the function.

Code Complexity: In accordance with several defect pre-
diction approaches [5], we use different metrics for the com-
plexity. The first two metrics refer to code complexity: length
of the reference function and the number of changed lines in
the function between reference and end state. We hypothesize
that long and complex functions are harder to understand and
change and, hence, more defect-prone. In addition, long and
complex changes are more defect-prone than small and simple
ones [47]. The length of the reference function is the number
of source lines of code, that is, excluding comments.

There are multiple ways of computing a metric value for
number of changed lines. Code changes are typically displayed
as unified diff, that is, the added and deleted lines between
both versions. A change to one line is represented as a
combination of one added and one deleted line. The same,
however, is true for a change that deleted one line and added
another, that is, two changed lines. Prior work used the sum
of deleted and added lines as value for this metric [33]. In
contrast, we doubled the weight of added lines to take our
industrial partner’s experience into account, which shows that
adding lines is more defect-prone then deleting lines (see also
Sec. IV-D).

Test Complexity: To obtain an indication of how many tests
might be needed to test a function [48], we use cyclomatic
complexity as defined by McCabe [49]. The complexity change
is the difference in cyclomatic complexity of the function
between end state and reference state. In particular, this means
that the value can be negative if the change reduced the
function’s complexity.

3) Risk Factor: Static Code Analysis Results: We use the
number of static code analysis results (i.e., findings) as a
proxy to gauge the diligence with which code changes were
made. Our industrial partners rely on Teamscale [50] for static
code analysis. Teamscale differentiates between new findings
and unresolved findings in modified code, both of which
are expected to be fixed in the contexts of our industrial
partners who have a quality control process in place [51].
Findings are categorized into critical quality deficits, such as
bug patterns, and normal quality deficits, such as incomplete
documentation. We distinguish between six different finding
metrics (the third character of metric abbreviations from this
risk factor in Table I is F), that is, the cross product of two
severity levels and three finding states. First, we distinguish
between the two severity levels critical (the first character is
C) and normal (N), because we consider critical findings to be
more risky than normal ones. Second, we separate the finding
states added (the second character is A), unresolved findings
in modified code (U), and removed findings (R). Hasty code
changes that have not been carefully reviewed (e.g., by a static
analysis tool) can introduce new defects, increasing the risk
of a test gap. This is the case for code changes that add new
findings, either critical or normal ones, or that do not remove
existing findings, where the latter ones are expected by our

industry partners to be less risky because their quality control
process ensures that unresolved findings are less relevant. In
contrast, changes that remove findings improve code quality
and therefore may be less risky. For each test gap, we count
the number of findings that were affected by the code changes
in that test gap.

C. Normalization of Metric Values

The selected metrics have different value ranges. To balance
their influence on a score-based test gap prioritization, it is
necessary to normalize them. We choose the value range of
[0, 1] for all metrics except COC. COC is capable of taking
negative values and, as such, is mapped to the interval [−1, 1].
For each metric, the set of values S is normalized with respect
to its maximum and minimum value. The normalization aims
at a relative prioritization of test gaps inside one set. However,
it is not possible to compare the metric values between
different sets of test gaps, as their normalization is based on
different maximum and minimum values. In particular, this
means that TESTGAPRADAR does not determine the risk of
single test gaps. Instead, we aim for an approach that ranks a
set of test gaps based on their estimated risk.

D. Computation of Risk Score

In the final step, the normalized values of all metrics are
combined into one risk score for every test gap. This is
used as basis for prioritization. Every test gap m has a set
of normalized metric values Vm. The set W contains the
corresponding metric weights (see also Sec. IV-D for details
on W we used in our multi-method study). Each metric has
exactly one weight, which is the same for all test gaps. Thus,
with the number of metrics k = |W | = |Vm| the risk score
rm for a test gap m is

rm =

k∑
i=1

Vm[i] ·W [i].

IV. MULTI-METHOD STUDY

We conduct a multi-method study to evaluate the practical ap-
plicability of TESTGAPRADAR, our score-based approach for
risk-based prioritization of test gaps presented in Section III,
in an industrial setting. Initially, in a field study2, we compare
the risk estimations with test gap reviews of eight software
systems across two industrial partners, and we use this data
set to compare our approach with a random ranking strategy
as baseline. Subsequently, through semi-structured interviews,
we discuss our approach with the industrial quality engineers
who were involved in the test gap reviews. We follow the
guidelines of Jedlitschka et al. [53] to report on our research.

2Following Stol and Fitzgerald [52], a field study “refers to any research
conducted in a specific, real-world setting to study a specific software
engineering phenomenon”.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, 2025 6

A. Research Questions

RQ1: How does TESTGAPRADAR perform as compared to
risk assessments of quality assurance experts? In RQ1, we
aim at comparing the risk assessments of TESTGAPRADAR
with historical risk assessments provided by two industry
partners in the form of test gap reviews. In these, quality
engineers analyze open test gaps for risky gaps and report
them in their review. We analyze whether test gaps, which
were labelled as risky by quality engineers, are highly ranked
by TESTGAPRADAR.

RQ2: Which metrics of the risk score are most important
and are the weights robust? Our approach calculates a risk
score that is influenced by numerous metrics. We study the
individual metric importances to learn which of the metrics
have the highest impact on detecting test gap risks. For this
purpose, we investigate which metrics of TESTGAPRADAR
are decisive to identify risky test gaps from the historical risk
assessments. To shed light on the robustness and reliability
of TESTGAPRADAR, we perform a sensitivity analysis and a
scenario analysis.

RQ3: How much better is TESTGAPRADAR compared to
a random ranking strategy? We compare our approach to a
random ranking strategy as baseline, to validate whether a
sophisticated approach like ours pays off by better test gap
prioritization results. That is, test gaps labelled as risky in
test gap reviews are assigned a higher rank, with the ranking
indicating a higher estimated level of risk.

RQ4: Do quality engineers find that the test gap prioritiza-
tion process can support them in their day-to-day work and
if so, how? We conducted semi-structured interviews with the
authors of the original test gap reviews, that is, six professional
quality engineers of our industry partners, to discuss the
practical value of our work. First, we investigate whether they
agree with the metrics used for the risk-based prioritization
of test gaps. Second, we explore the reasons and practical
implications behind deviations observed in RQ1. Third, we
query whether and in which ways our approach could support
them in their day-to-day work.

B. Industrial Study Subjects

For the purpose of our evaluation, we have selected eight
industrial study subjects from our industrial partners. An
overview of all study subjects of our multi-method study is
given in Table II; the provided contextual data meets the
criteria by Hall et al. [2]. All study subjects are industrial3,
closed-source systems which have been in successful use
for many years and are still actively developed and main-
tained. The subjects are internally used software systems
implementing core business processes or products, and are of
mediocre (100 K LOC) to large size (1,900 K LOC). Their
implementation relies on different technologies, all of which
are supported by our language-agnostic approach. For all study
subjects, a well-established issue tracking and testing process
is in place. Some subjects adopt automated testing in a CI
environment, others focus on manual testing in dedicated

3The names of the individual software systems have been anonymized on
request of the providing industry partners.

testing environments, and some adopt both approaches. All
subjects stem from two large, independent players in the
finance and insurance domain from Germany, which is strictly
regulated by the European Union [54]:

Munich Re is one of the world’s leading providers of
reinsurance, primary insurance and insurance related risk so-
lutions. It has about 43,000 employees, and a revenue of more
than 52.9 billion Euro. Conscious of the great responsibility
for software quality, they have a standardized development
process, which includes test gap analysis, but without priori-
tization of test gaps. A dedicated team is reviewing code and
test activities of all software systems in the portfolio manually,
resulting in the monthly assessment reporting. For our study,
we used the test gap review data from five systems within
Munich Re (no. 1–5).

LV 1871 is a German specialist for life and pension insur-
ance. It has ca. 500 employees, and generates 7 billion Euro in
revenue. Emphasizing code quality, the company works with
an external team of quality engineers for code retrospectives
and test gap analysis. For this study, we used test gap reviews
from three of their software systems (no. 6–8).

The development processes of both industry partners include
quality control metrics, including external, manual reviews of
test gap analysis results (see also Popeea-Simeth et al. [55]). In
fact, we chose the systems of our industrial partners as study
subjects because external quality assurance experts conduct
handcrafted test gap reviews that assess test gaps based on
risk. Our industrial partners implement test gap reviews for
many years already, so that we can use this valuable historic
information as reference data in our study. For our 8 subject
systems, we use a series of up to 7 test gap reviews from 2023
(see also Table II), pointing to 181 risky test gaps (out of a
total of 2,039 test gaps). We evaluate whether test gaps that
were identified as risky are ranked high by our score-based
approach. For transparency, we note that the external quality
assurance experts work for the same company as some authors.
No author was involved as interviewee in our semi-structured
interviews, though.

TABLE II
OVERVIEW OF STUDY SUBJECTS

Test Gaps

Company Subject LOC Lang. # Reviews Risky Total

Munich Re 1 1,600 K C# 5 59 77
2 140 K C# 7 29 161
3 370 K ABAP 3 21 29
4 560 K ABAP 4 9 32
5 1,900 K ABAP 4 26 53

LV 1871 6 310 K Java 3 5 622
7 100 K Java 3 28 1,052
8 150 K Java 2 4 13

C. Study Design & Operationalization

We apply multiple methods to answer our research ques-
tions of Section IV-A. Figure 2 provides an overview of the
study data we used to answer the research questions. In the
following, we provide an overview about our study data, that

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, 2025 7

Test Gap Analysis Quality Engineers TestGapRadar

Test gaps Test gap review
Ranking of
test gaps

Compare w/
reviews
(RQ1)

Metric
importance

(RQ2)

Compare to
baselines

(RQ3)

Assessment
(RQ4)

Deviations

1. 2. 3.

Fig. 2. Study data used to answer our research questions

2023-12: 58 test gaps. 39.2% of new or changed functions
appear untested. Some test gaps appear to be of minor
importance, but there are some relevant ones as well, for
example:

• Function foo in class A [Link1]
• Function bar in class B [Link2]

Fig. 3. Example for a test gap review of testing activities in December 2023
(highlighting indicates existence of risky gaps). The two anonymized functions
foo and bar are labelled as risky by the quality engineers that authored the
review.

is, historical test gap reviews, and explicate the study design
and operationalization for our research questions.

a) Historical Test Gap Reviews: We test the performance
of TESTGAPRADAR on study subjects from our industrial
partners. We use existing test gap reviews T as reference data
for our study (see Sec. IV-B). A test gap review refers to all
open test gaps since the review baseline b (cf. Sec. II-B1).
Typically, it spans over a period of 1–3 months, depending
on the amount of development activity. In all subject systems,
test gap reviews are conducted regularly by an external party,
to ensure neutrality. A review states the number of open
test gaps and the proportion of open vs. closed test gaps. In
addition, it lists test gaps that the reviewer considers risky and,
consequently, which they recommend being closed.

DEFINITION ”RISKINESS OF TEST GAPS“. A test gap is
classified as risky if it has been identified as pertinent in a
test gap review. Pertinent test gaps present a notable risk
of introducing defects and are advised by quality engineers
to be resolved by the relevant development and test teams.
Conversely, a test gap is categorized as less risky if it has
not been mentioned in a test gap review or if it has been
referenced in a review where the quality engineer indicated
a low risk of defect introduction.

An exemplary test gap review of the testing activities in
December 2023 from one of our study subjects is given in
Figure 3. Note that test gap reviews point to test gaps that are
considered (most) risky. So, this list may not include all test
gaps, and less risky test gaps are not mentioned.

b) RQ1: Comparison with Manual Assessments: To answer
RQ1, we adopt two methods. First, we conduct a correlation
analysis between the experts’ test gap risk assessments from

test gap reviews T and TESTGAPRADAR’s risk scores R. We
examine the correlation using Kendall’s τ and the associated
p value [56] (computed using SciPy [57]). Kendall’s τ is
defined for two rankings x and y with P concordant pairs,
Q discordant pairs, and T ties only in x and U ties only in y:

τ =
P −Q√

(P +Q+ T) · (P +Q+ U)

Second, we investigate the risk score rankings of risky
and less risky test gaps. For this purpose, we calculate an
agreement value v ∈ [0, 1], where values closer to 0 stand
for a better ranking agreement (that is, risky gaps are ranked
higher than less risky gaps). As basis for v, we sum up the
ranks rank(t) of risky test gaps t ∈ Gr ⊂ G, where G are all
test gaps of a test gap review, and divide them by the number
of test gaps |G| and the number of risky test gaps |Gr| to
obtain v′:

v′ =

∑
t∈Gr

rank(t)

|G| · |Gr|

The best possible minimum min (v′) is:

min (v′) =

|Gr|∑
i=1

i

|G| · |Gr|
All risky test gaps are ranked above all other test gaps. For

example, for |Gr| = 3 and |G| = 7, we obtain min (v′) =
(1/7 + 2/7 + 3/7)/3 = 0.29

The worst possible agreement value max (v′) is:

max (v′) =

|G|∑
i=|G|−|Gr|+1

i

|Gr| · |G|
All risky test gaps are ranked below all other test gaps. For

example, for |Gr| = 3 and |G| = 7, we obtain max (v′) =
(5/7 + 6/7 + 7/7)/3 = 0.86.

To obtain the agreement value v, v′ is min–max scaled to
v ∈ [0, 1] (with a mean of 0.5):

v =
v′ −min (v′)

max (v′)−min (v′)

We visualize the agreement values v for all test gap reviews
by means of a kernel density plot, and we explicate median
ranks of risky and less risky test gaps. For the purpose of
illustration, we report a false-low rate of test gap review
rankings by considering the fraction of test gap reviews
exhibiting a poor agreement value (v ≥ 0.5) against all test
gap reviews.

To investigate the ranking performance on the level of
individual test gaps, we plot the rankings of test gaps labeled
as risky and less risky as a kernel density plot. To allow
comparison between rankings of different test gap reviews, we
use relative ranks R̄ ∈ [0, 1], where the highest rank is mapped
to 0, and the lowest rank corresponds to 1. To provide the
reader with an intuitive means to compare the overall ranking
performance between risky and less risky test gaps, we depict
their median values. Lastly, we use the Mann-Whitney U test

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, 2025 8

to test the null hypothesis that the ranks of test gaps deemed
risky in the test gap reviews determined by their risk score
(∈ R) and the same ranks of less risky test gaps stem from
the same distribution.

c) RQ2: Metric Importance: We implement a multifactorial
ANOVA (analysis of variances) to answer RQ2. That is, we
employ ANOVA to assess the influence of the independent
variables (i.e., the score metrics) on the dependent variable (the
test gap risk assessments from T). The null hypothesis is that
there is no relation between an independent variable and the
dependent variable. If the p value is below α = 0.05, we reject
the null hypothesis and assume that there is a relationship
between the independent and the dependent variable. To this
end, we report the corresponding F and p values. In a post-
hoc analysis employing linear regression, we investigate the
strength of these relationships. In particular, we report the
p values, the coefficient values, and R2 for the regression
models. Additionally, we report results of the correlation
analysis in the form of a correlation heatmap.

We report global sensitivity indices as suggested by
Sobol´ [58], since they allow for decomposition of ranking
contributions from individual parameters [59]. We implement
the sensitivity analysis using SALib [60] and use N×(2D+2)
model evaluations, where N = 2, 039 is the number of
samples and D = 12 is the number of metrics. The first-order
sensitivity indices S1i represent the effect of each metric on the
risk score variance when all other factors remain constant. The
total-order sensitivity indices S tot

i capture both the individual
effects and the interactions with other metrics. For the scenario
analysis, we iteratively vary weights of parameters with the
highest and lowest influence on the risk score and report the
scenario performance that we measure by the median relative
test gap ranking of risky test gaps R̃ ∈ [0, 1] (see also RQ1).

d) RQ3: Comparison to Random Baseline: To answer RQ3,
we compare the ranking performance of our score-based ap-
proach TESTGAPRADAR with a random strategy: The random
strategy simulates 1,000 test gap analysis sessions for all test
gap reviews without any indication about the risk available.
That is, we assign all test gaps from the test gap reviews
a random risk score in [0, 1] and rank them by this random
score. From the 1,000 simulations, we calculate the average
rank of risky gaps and the ranking variance. To assess the
ranking performance, we consider the median relative ranks
R̃ ∈ [0, 1] of test gaps deemed risky and their variance var(R).
Additionally, we use a Mann-Whitney U test to test the null
hypothesis that test gaps deemed risky in the test gap reviews
(∈ T), ranked by the risk score (∈ R) of TESTGAPRADAR
and the ranks determined by the baseline stem from the same
distribution.

e) RQ4: Expert Assessment: We answer RQ4 based on semi-
structured interviews with the six industrial quality engineers
who conducted the original test gap reviews used in the earlier
research questions. Details of the interview questions can be
found on our supplementary website (see also Sec. IX). All
interviewees are experts in the field of software quality. Their
professional experience in coding, software testing, and quality
consulting activities ranges from 4 to 20 years. All of them

have a Master’s degree in software engineering, two of them
even have a PhD in software engineering. They are experts in
test gap analysis tools and have been using them in their daily
work for years.

For each study subject, we chose the test gap review with the
lowest agreement between the review and the risk-score-based
ordering of test gaps for our interview. We ensured that the set
of chosen test gaps is as diverse regarding associated change
types and risks as possible. To foster a lively conversation
allowing for deep dives into the data, we conducted for each
study subject a joint semi-structured interview with author
and reviewer of the test gap review between April and June
2024. Our primary goals were to shed light on the experts’
reasoning behind risk assessments, to gain insights into reasons
for deviations between R and D, and to collect feedback on
practical applicability of our approach.

Each semi-structured interview consisted of three parts:
First, we asked the participants to construct a pairwise com-
parison of 3–4 test gaps of the assessment based on their
subjective risk. For this task we selected test gaps where the
professional assessment did not match the automatic ranking.
Second, we discussed our test gap prioritization, in general,
and specifically the TESTGAPRADAR’s generated ranking for
the 3–4 test gaps. Third, we ask about the expert’s background
and their feedback on our research. The interview sessions
took ca. 30 minutes, each.

We applied qualitative content analysis methods [61] to
systematically analyze the data from the semi-structured inter-
views. This involved employing the QCAmap tool by Mayring
et al. [61] for qualitative content analysis and applying induc-
tive techniques for data categorization.

D. Implementation and Calibration

We have implemented TESTGAPRADAR and used a data-
driven approach to tune the weights of the risk score function
(see also Sec. III-D) For this, we used preliminary (training)
data of former test gap reviews (pre-2023) from our industrial
partner Munich Re that we obtained in the initiation phase
of our research effort. In this pilot study, we fine-tuned the
weights of our approach so that risky test gaps from pre-2023
test gap reviews are ranked highly. We considered our sample
size too small for automated fine-tuning mechanisms, so we
used manual fine-tuning instead. Manual fine-tuning helps us
provide rationales for the weights, which increases trust in the
tool and makes the prioritization results more understandable,
which is key for broad adoption in practice. To mitigate the
risks of subjectivity and potential biases in weight selection,
we investigate the robustness and reliability of weights as part
of RQ2, and provide guidelines for practitioners to integrate
TESTGAPRADAR into their testing process (see Sec. V).
Generally, we applied the risk score function consistently for
all study subjects. We avoided overfitting by using separate
training and test data sets.

Initially, all weights were assigned a default value of 1.
The rationale behind weight selection, ensuring explainability
of the prioritization, includes:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, 2025 9

1) setting positive weights as defaults, while indicators of
improved code quality (e.g., readability) are allocated
negative weights (i.e., CHF, RCF, RNF);

2) assigning higher weights to factors frequently cited by
developers as critical in related studies on test gap
prioritization [26] receive a higher weight (i.e., CEN,
CLI, COC);

3) prioritizing code change metrics over reference function
metrics motivated by the notion that added complexity
signifies greater risk than existing complexity (i.e., CLI,
COC);

4) providing greater weight to metrics capturing critical
findings than those for normal findings, with new find-
ings deemed riskier than existing ones (i.e., ACF, ANF,
UCF, and RCF).

The final weight calibration is outlined in Table III.

TABLE III
OVERVIEW OF METRIC WEIGHTS USED FOR TESTGAPRADAR IN THE

EVALUATION

Metric Short Weight

Code centrality CEN 2
Changed functions CHF -1

Length of reference function LEN 1
Changed lines of code CLI 2
Complexity of reference function COM 1
Complexity change COC 2

Added normal findings ANF 2
Unresolved normal findings UNF 1
Removed normal findings RNF -1
Added critical findings ACF 4
Unresolved critical findings UCF 2
Removed critical findings RCF -2

The changed functions metric has a parameter, t, which
refers to the size of a change set so that it is considered as
less risky. In preliminary experiments, we found that t = 100
modified functions per change set are suitable to identify
refactorings for our study subjects.

E. Results and Discussion

In what follows, for each research question, we present the
results of our multi-method study and discuss them.

1) RQ1: Comparison with Manual Assessments: We use
Kendall’s τ to investigate whether the test gap assessments
from test gap reviews and the normalized risk scores correlate.
We find a small [62], negative monotonic correlation between
T and R (τ = .29, n = 2039, p < .001), meaning that risky
test gaps from test gap reviews receive higher rankings from
TESTGAPRADAR.

Figure 4 shows a kernel density plot of the agreement values
v from the 31 test gap reviews from our eight industrial study
subjects. Note that the distribution is right skewed, that is, most
of the test gaps from test gap reviews are correctly ranked. In
total, TESTGAPRADAR ranked risky test gaps for 3 out of 31
test gap reviews too low (i.e., “false-low”, v ≥ 0.5), so the
false-low rate is below 10%.

Figure 5 shows a kernel density plot of the relative ranks
R̄ of all 2,039 test gaps from the 31 test gap reviews from

0.0 0.2 0.4 0.6 0.8 1.0
Agreement values v

0

2

4

6

8

10

D
en

si
ty

Optimal
agreement

No
agreement

v of test gap reviews
(median: 0.27)

Fig. 4. Kernel density plot for agreement values (v) from 31 test gap reviews
of our 8 industrial study subjects

0.0 0.2 0.4 0.6 0.8 1.0
Relative rankings R of test gaps

0
25
50
75

100
125
150
175
200

D
en

si
ty

Best
rank

Worst
rank

Risky (median: 0.35)
Less risky (median: 0.52)

Fig. 5. Kernel density plot for relative ranks R̄ of 2,039 test gaps labelled
risky (red) or less risky (blue); from 31 test gap reviews of our 8 industrial
study subjects

our eight industrial study subjects. risky test gaps are ranked
higher (i.e., better) by TESTGAPRADAR than less risky test
gaps. The median ranking for risky test gaps R̃ = 0.35, while
less risky test gaps are ranked lower (median = 0.52); the
average ranking is 0.5. The distributions in the two groups
differed significantly (Mann–Whitney U = 127.5, nr = 181,
nlr = 1858, p < 0.05, less).

Overall, the accuracy of the results of our application
compared to the expert assessments appears rather good: An
average ranking of risky gaps on the 35th percentile and a low
false-low rate below 10% shows that risky test gaps are ranked
higher by TESTGAPRADAR than less risky test gaps. In the
discussion of RQ4, we explore reasons for deviations and their
implications for the practical use of TESTGAPRADAR.

SUMMARY RQ1 . Our approach achieves a good ranking
performance: Risky test gaps are significantly more likely
to be ranked higher by TESTGAPRADAR than non-risky
test gaps.

2) RQ2: Metric Importance: Figure 6 shows a correlation
heatmap among the risk assessment labels (“risky” or “less
risky” from the test gap reviews T), the risk score (deter-
mined by TESTGAPRADAR), and associated metrics (see also
Table I). Noteworthy correlations include a moderate positive
link between the risk score and CEN, CLI, and COC. LEN
is moderately negatively correlated with COC but strongly
correlated with COM. Additionally, COM has a moderate
negative correlation with COC.

Table IV shows the results of ANOVA with F statistics
and p value for the independent variables (metrics). There

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, 2025 10

la
be

l
sc

or
e

C
EN C
H

F
LE

N
C

LI
C

O
M

C
O

C
AN

F
U

N
F

R
N

F
AC

F
U

C
F

R
C

F

label
score
CEN
CHF
LEN
CLI

COM
COC
ANF
UNF
RNF
ACF
UCF
RCF 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Fig. 6. Correlation heatmap of the assessment label, the risk score, and the
score metrics

TABLE IV
ANOVA TABLE WITH F STATISTICS AND p VALUE PER INDEPENDENT

VARIABLE

Metric Short F p

Code centrality CEN 123 .000
Changed functions CHF 1.95 .163

Length of reference function LEN 39.7 .000
Changed lines of code CLI 482 .000
Complexity of reference function COM 12.0 .000
Complexity change COC 65.6 .000

Added normal findings ANF .68 .408
Unresolved normal findings UNF 15.0 .000
Removed normal findings RNF 2.44 .118
Added critical findings ACF 19.5 .000
Unresolved critical findings UCF .01 .936
Removed critical findings RCF .14 .706

are seven variables that have a strong relation (p < 0.05)
with the assessment label: CEN, LEN, CLI, COM, COC,
UNF, and ACF. For these, we ran a post-hoc analysis with
linear regression models; Table V shows the results. The p
value for all seven independent variables is well below the
significance level α = 0.05. This indicates a statistically sig-
nificant relation between each of the variables and the manual
risk assessment of test gap reviews. The largest coefficients
have CLI, ACF, and CEN, so they appear to have a strong
relationship with the manual risk assessment. Note that the
R2 values are relatively small across all models, suggesting
limited explanatory power and the presence of other factors
influencing the risk labels. This is expected in complex tasks
such as test gap risk estimation for several reasons. Firstly, the
subjectivity in risk label assignment by quality engineers is
a factor. Secondly, background knowledge, domain expertise,
and system familiarity influence the perceived risk of test gaps,
elements not easily generalized or captured by our heuristics.
Thirdly, there are diverse goals and risk factors in software
testing, spanning functional, technical, economical, legal, and
organizational aspects, which go beyond the scope of our work
and exceed current software engineering methodologies.

There are three further noteworthy observations from the
data. First, the correlation analysis suggests that longer func-
tion changes do not add as much complexity as new or small
functions, particularly in the context of grown systems (which

all of our study subjects are): Changes on existing—potentially
grown—functions tend to be small compared to new metrics—
added in new functions—that also add new, and on average,
more complexity. Second, the complexity of reference function
correlates strongly with function length and yields a modest F
statistic in the ANOVA. Consequently, a simplification of our
model might be to eliminate the COM metric. Third, from
the variables that we found most important for a suitable
risk score, that is, CLI, ACF and CEN, there is only a weak
correlation between CLI and CEN. Hence, they all contribute
significantly to the ranking performance of TESTGAPRADAR.

TABLE V
POST-HOC ANALYSIS WITH LINEAR REGRESSION

Metric Short p coef R2

Code centrality CEN .000 .465 .136
Length of reference function LEN .000 .180 .014
Changed lines of code CLI .000 .741 .187
Complexity of reference function COM .000 .207 .018
Complexity change COC .000 .380 .075
Unresolved normal findings UNF .000 .153 .004
Added critical findings ACF .000 .713 .015

The first-order sensitivity indices of COC and ACF are
the highest (S1i = 0.28), which confirms their significant
individual influence on the risk score. The five metrics LEN,
COM, ANF, RNF, and CHF have the lowest indices (S1i ≤
0.02), indicating that, individually, they have minimal impact
on the risk score when all other factors remain constant.
Similarly, COC and ACF have the highest total-order sen-
sitivity indices (S tot

i = 0.28). The close similarity to their
first-order indices suggests that these parameters have limited
interaction effects with other parameters, reaffirming their role
as primary contributors to output variance. The five metrics
mentioned before also have the lowest total-order sensitivity
indices (S tot

i ≤ 0.02), showing negligible differences between
first-order and total-order indices. This supports the conclusion
that their interactions with each other or with dominant metrics
are minimal.

We shed light on the robustness and reliability of TEST-
GAPRADAR by running a scenario analysis. First, we reduce
the weights of the most influential metrics COC and ACF
by a factor of 2. This results in a median relative rank of
risky gaps R̃ = 0.38, which indicates a deterioration in the
ranking performance of TESTGAPRADAR. Second, doubling
the weight of the most influential metrics by a factor of 2
results in R̃ = 0.3, which is a substantial improvement. Third,
we investigate simplification opportunities for our model by
setting the weights of the five least influential metrics (with
S1i ≤ 0.02) to 0. We consider different scenarios in this case:
(1) all five metrics receive a weight of 0, and (2) five other
models where each sets the weight another metric to 0. Our
results show that the ranking performance remains the same
as for the original model when leaving out all five metrics or
each metric individually (R̃ = 0.35). Only when LEN is left
out, the ranking performance of the original model improves
(R̃ = 0.32). We evaluated further scenarios, for example, with
doubled weights of the most influential metrics and leaving
out some of the least influential metrics, but those models

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, 2025 11

performed worse (R̃ > 0.3) than the model with doubled
weights of the most influential metrics. That is, in development
contexts similar to our study subjects, a model refinement with
slightly adjusted weights can even achieve better prioritization
than the approach implemented and calibrated for this study.

SUMMARY RQ2 . Changed lines, complexity change, added
critical findings, and code centrality are key metrics in our
model to predict test gap risk.

3) RQ3: Comparison to Random Baseline: Table VI shows
the median relative ranking of the risky test gaps R̃, the
ranking variance var(R), and the results of a U test of
our score-based approach and the random ranking strategy.
Our null hypothesis H0 can be rejected (marked with ✗ in
the table). The ranking of TESTGAPRADAR outperforms the
baseline with regard to the median relative ranking R̃ and
shows a lower ranking variance var(R). That is, the score-
based approach clearly outperforms the random baseline.

TABLE VI
BASELINE COMPARISON WITH A RANDOM BASELINE

Ranking Strategy R̃ var(R) U stat. p H0

TESTGAPRADAR .3 .05

Random .5 .06 235 .00 ✗

SUMMARY RQ3 . TESTGAPRADAR outperforms the base-
line in ranking risky test gaps.

4) RQ4: Expert Assessment: In our semi-structured inter-
views, we observed that all six quality engineers (Q1−6) found
the metrics we used for test gap prioritization meaningful
and representative of test gap risk. Q1,2,5,6 saw a special
value in the information about code centrality (CEN), since
they usually do not have this information at hand when
preparing test gap reviews, so TESTGAPRADAR can provide
valuable extra information to the experts in test gap reviews.
Additionally, Q1−5 explicitly agreed on our choice of putting
lower weight on test gaps that refer to simple refactorings
which we identify by the number of changed functions (CHF).
All experts Q1−6 underlined the importance of complexity
indicators for risk assessments, since code complexity makes
it harder for developers to implement code changes correctly,
thus requiring thorough testing. Also, Q1,2,5 emphasize their
commitment on code quality by verifying static analysis re-
sults, putting special focus on critical findings.

In two out of eight interviews, the quality engineers deviated
from their original sorting of the interviews after learning
about the prioritization of TESTGAPRADAR, so the tool pri-
oritization outperformed the original expert sorting. In both
cases, the information about code centrality was the decisive
factor. For example, Q1 stated “I have to agree with code
centrality of [this method], which looks pretty important to me.
In this case, I’d vote for ranking it higher because it is more
important than the other gaps”. That is, TESTGAPRADAR was
able to detect central test gaps that implied risky code changes,
for which the experts retrospectively agreed that they would

have considered code centrality if they had known about this
factor beforehand. Conversely, when the quality engineers did
not change their prioritization based on the reasoning of our
approach, they justified their stance by citing several factors.
These included the perceived higher risk associated with new
functions compared to modified functions due to their lack of
production history (2 cases). Additionally, they argued that the
type of code (e.g., test code or generated code) could mitigate
the risks associated with test gaps (2 cases). Furthermore, they
expressed concerns about the extensive deletion of logic (1
case) and considered placeholder implementations (function
stubs) to be less risky (1 case). In fact, they noted that an
automated tool—while clearly helpful to them—can hardly
capture all risk factors for test gaps, since risks can arise
from other levels than source code, such as usage information,
domain knowledge, or project context.

All quality engineers Q1−6 underline in the interviews that
they see this tool as part of a semi-automated process, which
still needs an expert in the loop. In this context, Q4 praises
that it can help to work in a “much more structured way and
identify relevant, risky test gaps much more quickly”, and as
Q3 articulates, “filtering out irrelevant gaps”. Q2 was quite
enthusiastic and stated “overall, the results here were exactly
in line with my assessment, especially for the riskier items,
which is a very exciting result”.

SUMMARY RQ4 . The experts consider TESTGAPRADAR
valuable, providing them with additional information such
as the centrality of test gaps, enhancing their daily work.
Identifying high-risk gaps and filtering out low-risk ones
improves their efficiency.

V. GUIDELINES FOR PRACTITIONERS

High code churn and limited testing resources are omnipresent
circumstances in active industrial software development and
contribute to large numbers of test gaps. TESTGAPRADAR ad-
dresses the problem of identifying the riskiest test gaps among
potentially large sets of test gaps by sorting them according
to estimated risk. A primary design goal of TESTGAPRADAR
was to ease practical adoption, and we outline guidelines for
practitioners in this section.

There are some requisites to implement our approach. First,
the development process should require code changes to be
successfully tested (e.g., in the definition of done). Second,
test gap analysis needs to be established, that is, source code
is under version control (e.g., using git) and all relevant testing
environments are profiled.

To adopt our sorting and risk estimation approach, metrics
and weights need to be chosen. For optimal ranking perfor-
mance, we recommend to use all metrics and adapt the weights
of ANF and ACF, as shown in Table VII (which summarizes
our results from the scenario analysis for RQ2 in Sec. IV-E2).
A detailed configuration is depicted in Table VII. Optionally,
the weights can be fine-tuned by means of context and domain
knowledge.

For a successful implementation of the risk-based sorting
of test gaps, the testing process needs to be enhanced. First,
it is necessary to be able to differentiate between test gaps

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, 2025 12

TABLE VII
OVERVIEW OF METRIC WEIGHTS FOR WHICH TESTGAPRADAR OBTAINED

THE BEST RANKING PERFORMANCE IN OUR MULTI-METHOD STUDY

Metric Short Weight

Code centrality CEN 2
Changed functions CHF -1

Length of reference function LEN 1
Changed lines of code CLI 2
Complexity of reference function COM 1
Complexity change COC 4

Added normal findings ANF 2
Unresolved normal findings UNF 1
Removed normal findings RNF -1
Added critical findings ACF 8
Unresolved critical findings UCF 2
Removed critical findings RCF -2

from finished development and work in progress. For example,
a branching scheme could be implemented in the version
control system such that stable code can be easily identified.
Alternatively, code changes could be mapped to issues and
the relevance of test gaps could then be inferred from the
mapped ticket state. Second, the test gap guard role needs to
be established. The test gap guard is responsible for checking
test gaps of finished code changes, for example, in a regular
interval or in the testing phase before a release. From our
experience, this role is taken either by test management, a
test lead, a tester, or developers. Our approach comes into
play when the test gap guard checks for open test gaps: They
sort all test gaps within the timespan [b, t] of their interest
by estimated risk. Every test gap from the sorted list is then
manually reviewed and risky test gaps need to be closed,
typically by adding new test cases. Our approach helps to
identify the most risky gaps early, allowing for more time
to close them, therefore increasing efficiency of the testing
process. When there are too many test gaps to review all of
them, effectivity is increased since review activities can be
focused on more risky gaps.

VI. THREATS TO VALIDITY

In this section, we discuss threats to internal and external
validity and explain our mitigation strategies.

A. Internal Validity

The limited availability of data for the metrics at our study
subjects represents a threat to internal validity because further
metrics might result in better ranking performance. However,
we have selected metrics that are related to well-known risk
factors and, based on our experience, are readily collectible in
highly regulated industrial projects employing test gap anal-
ysis. Consequently, prioritization can be readily incorporated
and anchored in the development process. Our multi-method
study results demonstrate that the ranking performance is
sufficient for practical application.

The selection of parameters for our implementation poses
a threat to internal validity, as the weights applied directly
impact the risk score and subsequent ranking. We manually

calibrated our selection using historical test gap reviews from
one industrial partner (refer to Sec. IV-D). Our focus on
evaluating a straightforward prioritization approach within an
industrial setting forced us to conduct a multi-method case
study under limited training data availability. Further refine-
ments, particularly weight adjustments, are deferred, offering
the potential for improved ranking outcomes.

Imbalance in data threatens internal validity. The data need
to contain an appropriate balance between safe and risky test
gaps. This is especially important as our approach estimates
the relative risk in the respective set. As discussed in Sec-
tion IV-E2, there is no universal definition of test gap risk.
Therefore, there is no objective way to assess the validity of
the set in this regard. However, a manual analysis showed that
the study subjects contain a wide variety of test gaps, including
complex and trivial ones.

B. External Validity

As true for most software engineering research, the huge
diversity of software systems, processes, and teams, threatens
the generalizability of our work [63]. All study subjects used
in our evaluation are industrial, closed-source systems (which
is not the case for most related work). While they implement
sophisticated testing processes, there is a tremendous variety
of testing in practice. For example, most open-source software
projects often implement substantially different testing pro-
cesses, for which TESTGAPRADAR might produce different
results. Nevertheless, with a technologically and process-
related diverse set of study subjects from different industry
partners, we share meaningful insights into the benefits and
limitations of our work in practical use.

VII. CONCLUSION

The prevalence of test gaps introducing new defects presents a
significant challenge in modern software development projects,
for example, for test management and quality assurance, which
need to review a large amount of test gaps. In this paper,
we propose TESTGAPRADAR, an automated approach for
prioritizing test gaps based on their individual risk. For the
risk estimation, we incorporated fourteen metrics reflecting
three major risk factors, that is, code criticality, complexity,
and static code analysis results. In a multi-method study,
we validated our approach across eight large-scale software
systems from two industry partners. Our study is based on
an analysis of 31 historical test gap reviews for their systems
and semi-structured interviews with the quality engineers who
wrote those reviews. Our study showcased the effectiveness
of TESTGAPRADAR in ranking risky test gaps significantly
higher than less risky test gaps, on average, at the 30th
percentile. In a quality assurance expert survey, the exter-
nal quality engineers of our industry partners underline the
meaningful representation and potential superiority of the au-
tomated risk assessment of TESTGAPRADAR over the expert
judgments in certain scenarios. Our study’s results underscore
the significance of test gap risk estimation for facilitating risk-
driven prioritization, empowering test management and quality
assurance teams to efficiently pinpoint and manage critical

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, 2025 13

test gaps. Our work enables practitioners to implement a risk-
focused safety net into their testing process to ensure that no
potentially risky code change is released untested. The quality
engineers at our industry partners are definitely planning to
implement our approach to prioritizing test gaps as part of
their quality assurance processes.

VIII. AVENUES OF FUTURE RESEARCH

There are different avenues of future research: Enhancements
of our work and practical needs to reduce risk in software
testing and development in general. The risk estimation could
be enriched by production usage data to filter test gaps which
are not used in production and highlight test gaps in heavily
used core features. Additionally, socio-technical analyses and
metrics [64], [65] could be considered to reflect additional
dimensions of risk. Also, natural-language processing of the
commit messages that resulted in a test gap could help to
estimate the associated risk. Future test gap risk estimation
methods could cluster test gaps and aggregate the risk of a set
of related test gaps. More sophisticated risk estimation meth-
ods, possibly including line-level defect prediction, may help
to identify risky test gaps without needing to compare them
with other test gaps. Key factors for practical adoption for any
sophisticated approach include to make them approachable and
understandable. For the adoption of artificial intelligence in the
field of defect prediction, explainability is crucial to convince
developers of potential problems, motivating them to fix the
underlying defect. Furthermore, practitioners could be guided
how to close risky test gaps, for example, by generating test
cases that close the gaps and finally mitigate their risk.

IX. DATA AVAILABILITY

The raw data obtained in our study cannot be shared because
of confidentiality agreements. For reproducibility, we publish
aggregated data and the analysis scripts, along with additional
details on our studies on a supplementary website:
https://github.com/se-sic/test-gap-risk-study.

REFERENCES

[1] S. Hosseini, B. Turhan, and D. Gunarathna, “A systematic literature
review and meta-analysis on cross project defect prediction,” IEEE
Transactions on Software Engineering, vol. 45, no. 2, pp. 111–147, 2017.

[2] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic
literature review on fault prediction performance in software engineer-
ing,” IEEE Transactions on Software Engineering, vol. 38, no. 6, pp.
1276–1304, 2012.

[3] L. Pascarella, F. Palomba, and A. Bacchelli, “Re-evaluating method-
level bug prediction,” in Proceedings of the International Conference
on Software Analysis, Evolution, and Reengineering. IEEE, 2018, pp.
592–601.

[4] ——, “On the performance of method-level bug prediction: A negative
result,” Journal of Systems and Software, vol. 161, pp. 1–15, 2020.

[5] Z. Li, X.-Y. Jing, and X. Zhu, “Progress on approaches to software
defect prediction,” IET Software, vol. 12, no. 3, pp. 161–175, 2018.

[6] Z. Wan, X. Xia, A. E. Hassan, D. Lo, J. Yin, and X. Yang, “Perceptions,
expectations, and challenges in defect prediction,” Transactions on
Software Engineering, vol. 46, no. 11, pp. 1241–1266, 2018.

[7] S. Stradowski and L. Madeyski, “Industrial applications of software
defect prediction using machine learning: A business-driven systematic
literature review,” Information and Software Technology, vol. 159, 2023.

[8] V. Y. Shen, T.-j. Yu, S. M. Thebaut, and L. R. Paulsen, “Identifying error-
prone software—an empirical study,” IEEE Transactions on Software
Engineering, vol. SE-11, no. 4, pp. 317–324, 1985.

[9] T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and N. Goel, “Early
quality prediction: a case study in telecommunications,” IEEE Software,
vol. 13, no. 1, pp. 65–71, 1996.

[10] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting the location
and number of faults in large software systems,” IEEE Transactions on
Software Engineering, vol. 31, no. 4, pp. 340–355, 2005.

[11] S. Eder, B. Hauptmann, M. Junker, E. Juergens, R. Vaas, and K.-H.
Prommer, “Did We Test Our Changes? Assessing Alignment Between
Tests and Development in Practice,” in Proceedings of the International
Workshop on Automation of Software Test. IEEE, 2013, pp. 107–110.

[12] E. Juergens and D. Pagano, “Did We Test the Right Thing? Experience
with Test Gap Analysis in Practice,” 2016. [Online]. Available:
https://teamscale.com/2016-did-we-test-the-right-thing

[13] J. Rott, “Test Intelligence: How Modern Analyses and Visualizations
in Teamscale Support Software Testing,” in Proceedings of the Interna-
tional Workshop on Visualization in Testing of Hardware, Software, and
Manufacturing. IEEE, 2022, pp. 15–21.

[14] A. Schwartz, “How to use analytics to eliminate the risk of your
team’s technical debt,” 2019. [Online]. Available: https://www.sealights.
io/learn/how-to-maintain-low-risk-technical-debt-using-analytics/

[15] G. Rodrı́guez-Pérez, G. Robles, A. Serebrenik, A. Zaidman, D. M.
Germán, and J. Gonzalez-Barahona, “How bugs are born: a model to
identify how bugs are introduced in software components,” Empirical
Software Engineering, vol. 25, pp. 1294–1340, 2020.

[16] Y. Kamei and E. Shihab, “Defect Prediction: Accomplishments and
Future Challenges,” in Proceedings of the International Conference on
Software Analysis, Evolution, and Reengineering, vol. 5. IEEE, 2016,
pp. 33–45.

[17] F. Matloob, T. M. Ghazal, N. Taleb, S. Aftab, M. Ahmad, M. A.
Khan, S. Abbas, and T. R. Soomro, “Software Defect Prediction Using
Ensemble Learning: A Systematic Literature Review,” IEEE Access,
vol. 9, 2021.

[18] Y. Zhao, K. Damevski, and H. Chen, “A Systematic Survey of Just-in-
Time Software Defect Prediction,” ACM Computing Surveys, vol. 55,
no. 10, pp. 1–35, 2023.

[19] M. Khatibsyarbini, M. A. Isa, D. N. Jawawi, and R. Tumeng, “Test case
prioritization approaches in regression testing: A systematic literature
review,” Information and Software Technology, vol. 93, pp. 74–93, 2018.

[20] A. Mockus and D. M. Weiss, “Predicting risk of software changes,” Bell
Labs Technical Journal, vol. 5, no. 2, pp. 169–180, 2000.

[21] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” IEEE Transactions on Software Engineering, vol. 39, no. 6,
pp. 757–773, 2012.

[22] D. Steidl, B. Hummel, and E. Juergens, “Using network analysis for
recommendation of central software classes,” in Proceedings of the
Working Conference on Reverse Engineering. IEEE, 2012, pp. 93–
102.

[23] I. Sora, “A pagerank based recommender system for identifying key
classes in software systems,” in Proceedings of the International Sympo-
sium on Applied Computational Intelligence and Informatics, A. Szakál,
Ed. IEEE, 2015, pp. 495–500.

[24] R. Haas, R. Niedermayr, T. Roehm, and S. Apel, “Is Static Analysis Able
to Identify Unnecessary Source Code?” ACM Transactions on Software
Engineering and Methodology, vol. 29, no. 1, 2020.

[25] R. Niedermayr, T. Röhm, and S. Wagner, “Too trivial to test? an inverse
view on defect prediction to identify methods with low fault risk,” PeerJ
Computer Science, vol. 5, no. 2, p. e187, 2019.

[26] M. Sailer, “Grouping and Prioritization of Test Gaps,” Master’s Thesis,
Technical University of Munich, 2019. [Online]. Available: https:
//teamscale.com/2019-grouping-and-prioritization-of-test-gaps

[27] C. Brandt, M. Castelluccio, C. Holler, J. Kratzer, A. Zaidman, and
A. Bacchelli, “Mind the Gap: What Working With Developers on Fuzz
Tests Taught Us About Coverage Gaps,” in Proceedings of the Inter-
national Conference on Software Engineering (Software Engineering in
Practice). ACM, 2024, pp. 157–167.

[28] T. Menzies and A. Marcus, “Automated severity assessment of software
defect reports,” in Proceedings of the International Conference on
Software Maintenance. IEEE, 2008, pp. 346–355.

[29] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-
oriented metrics on open source software for fault prediction,” IEEE
Transactions on Software Engineering, vol. 31, no. 10, pp. 897–910,
2005.

[30] F. Palomba, M. Zanoni, F. A. Fontana, A. de Lucia, and R. Oliveto,
“Smells like teen spirit: Improving bug prediction performance using the
intensity of code smells,” in Proceedings of the International Conference

https://github.com/se-sic/test-gap-risk-study
https://teamscale.com/2016-did-we-test-the-right-thing
https://www.sealights.io/learn/how-to-maintain-low-risk-technical-debt-using-analytics/
https://www.sealights.io/learn/how-to-maintain-low-risk-technical-debt-using-analytics/
https://teamscale.com/2019-grouping-and-prioritization-of-test-gaps
https://teamscale.com/2019-grouping-and-prioritization-of-test-gaps

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 00, NO. 0, 2025 14

on Software Maintenance and Evolution. Los Alamitos, California:
IEEE, 2016, pp. 244–255.

[31] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of
the efficiency of change metrics and static code attributes for defect
prediction,” in Proceedings of the International Conference on Software
Engineering. ACM, 2008.

[32] T. Hoang, H. K. Dam, Y. Kamei, D. Lo, and N. Ubayashi, “DeepJIT:
an End-to-End Deep Learning Framework for Just-in-Time Defect
Prediction,” in Proceedings of the International Conference on Mining
Software Repositories. IEEE, 2019, pp. 34–45.

[33] S. Kim, E. J. Whitehead, and Y. Zhang, “Classifying software changes:
Clean or buggy?” IEEE Transactions on Software Engineering, vol. 34,
no. 2, pp. 181–196, 2008.

[34] N. Nagappan, B. Murphy, and V. Basili, “The influence of organizational
structure on software quality,” in Proceedings of the International
Conference on Software Engineering. ACM, 2008, p. 521.

[35] S. Dalla Palma, D. Di Nucci, F. Palomba, and D. A. Tamburri, “Within-
project defect prediction of infrastructure-as-code using product and
process metrics,” IEEE Transactions on Software Engineering, vol. 48,
no. 6, pp. 2086–2104, 2021.

[36] D. Di Nucci, F. Palomba, G. de Rosa, G. Bavota, R. Oliveto, and
A. de Lucia, “A developer centered bug prediction model,” IEEE
Transactions on Software Engineering, vol. 44, no. 1, pp. 5–24, 2018.

[37] P. Tourani and B. Adams, “The Impact of Human Discussions on Just-
in-Time Quality Assurance: An Empirical Study on OpenStack and
eclipse,” in Proceedings of the International Conference on Software
Analysis, Evolution, and Reengineering, vol. 1. IEEE, 2016, pp. 189–
200.

[38] H. D. Tessema and S. L. Abebe, “Enhancing Just-in-Time Defect
Prediction Using Change Request-Based Metrics,” in Proceedings of the
International Conference on Software Analysis, Evolution and Reengi-
neering. IEEE, 2021, pp. 511–515.

[39] A. Trautsch, S. Herbold, and J. Grabowski, “Static Source Code Metrics
and Static Analysis Warnings for Fine-Grained Just-in-Time Defect
Prediction,” in Proceedings of the International Conference on Software
Maintenance and Evolution. IEEE, 2020, pp. 127–138.

[40] D. Falessi, S. M. Laureani, J. Çarka, M. Esposito, and D. A. d. Costa,
“Enhancing the defectiveness prediction of methods and classes via JIT,”
Empirical Software Engineering, vol. 28, no. 37, 2023.

[41] C. Pornprasit and C. K. Tantithamthavorn, “ DeepLineDP: Towards
a Deep Learning Approach for Line-Level Defect Prediction ,” IEEE
Transactions on Software Engineering, vol. 49, no. 01, pp. 84–98, 2023.

[42] S. Yin, S. Guo, H. Li, C. Li, R. Chen, X. Li, and H. Jiang, “Line-level
defect prediction by capturing code contexts with graph convolutional
networks,” IEEE Transactions on Software Engineering, 2024.

[43] European Parliament and of the Council, “Directive 2008/104/ec of
the european parliament and of the council of 19 november 2008 on
temporary agency work,” Official Journal of the European Union, 2022.
[Online]. Available: https://eur-lex.europa.eu/eli/dir/2008/104/oj

[44] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web,” Technical Report, Stanford InfoLab,
1999.

[45] J. C. Munson and T. M. Khoshgoftaar, “The detection of fault-prone
programs,” IEEE Transactions on Software Engineering, vol. 18, no. 5,
pp. 423–433, 1992.

[46] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting
fault incidence using software change history,” IEEE Transactions on
Software Engineering, vol. 26, no. 7, pp. 653–661, 2000.

[47] A. E. Hassan, “Predicting faults using the complexity of code changes,”
in International Conference on Software Engineering. IEEE, 2009, pp.
78–88.

[48] A. H. Watson, D. R. Wallace, and T. J. McCabe, Structured Testing:
A Testing Methodology using the Cyclomatic Complexity Metric. US
National Institute of Standards and Technology, 1996, vol. 500, no. 235.

[49] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering, vol. SE-2, no. 4, pp. 308–320, 1976.

[50] R. Haas, R. Niedermayr, and E. Juergens, “Teamscale: Tackle technical
debt and control the quality of your software,” in Proceedings of the
International Conference on Technical Debt. IEEE, 2019, pp. 55–56.

[51] D. Steidl, F. Deissenboeck, M. Poehlmann, R. Heinke, and B. Uhink-
Mergenthaler, “Continuous software quality control in practice,” in In-
ternational Conference on Software Maintenance and Evolution. IEEE,
2014, pp. 561–564.

[52] K.-J. Stol and B. Fitzgerald, “The ABC of Software Engineering Re-
search,” ACM Transactions on Software Engineering and Methodology,
vol. 27, no. 3, 2018.

[53] A. Jedlitschka, M. Ciolkowski, and D. Pfahl, “Reporting Experiments
in Software Engineering,” in Guide to Advanced Empirical Software
Engineering. Springer, 2008, pp. 201–228.

[54] European Parliament and of the Council, “Regulation on digital
operational resilience for the financial sector and amending regulations
(ec) no 1060/2009, (eu) no 648/2012, (eu) no 600/2014, (eu) no
909/2014 and (eu) 2016/1011,” Official Journal of the European Union,
2022. [Online]. Available: https://eur-lex.europa.eu/eli/reg/2022/2554

[55] C. Popeea-Simeth. (2018) Monthly assessments: How often to inspect
the code quality in a code quality control process? Last retrieved
2024-01-16. [Online]. Available: https://teamscale.com/blog/en/news/
blog/monthly-assessments

[56] M. Kendall, “The treatment of ties in ranking problems,” Biometrika,
vol. 33, no. 3, pp. 239–251, 1945.

[57] P. Virtanen, R. Gommers, and T. e. a. Oliphant, “SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python,” Nature Methods,
vol. 17, pp. 261–272, 2020.

[58] I. M. Soboĺ, “Global sensitivity indices for nonlinear mathematical
models and their monte carlo estimates,” Mathematics and Computers
in Simulation, vol. 55, no. 1, pp. 271–280, 2001.

[59] E. Borgonovo and E. Plischke, “Sensitivity analysis: A review of recent
advances,” European Journal of Operational Research, vol. 248, no. 3,
pp. 869–887, 2016.

[60] J. Herman and W. Usher, “SALib: An open-source Python library for
sensitivity analysis,” Journal of Open Source Software, vol. 2, no. 9,
p. 97, 2017.

[61] P. Mayring, Qualitative Content Analysis: A Step-by-Step Guide. SAGE,
2021.

[62] J. Cohen, Statistical power analysis for the behavioral sciences—2nd
ed. Lawrence Erlbaum Associates, 1988.

[63] J. Siegmund, N. Siegmund, and S. Apel, “Views on internal and
external validity in empirical software engineering,” in Proceedings of
the International Conference on Software Engineering. IEEE, 2015,
pp. 9–19.

[64] M. Joblin, S. Apel, and W. Mauerer, “Evolutionary trends of developer
coordination: A network approach,” Empirical Software Engineering,
vol. 22, pp. 2050–2094, 2017.

[65] M. Joblin and S. Apel, “How do successful and failed projects differ?
a socio-technical analysis,” ACM Transactions on Software Engineering
and Methodology, vol. 31, no. 4, 2022.

https://eur-lex.europa.eu/eli/dir/2008/104/oj
https://eur-lex.europa.eu/eli/reg/2022/2554
https://teamscale.com/blog/en/news/blog/monthly-assessments
https://teamscale.com/blog/en/news/blog/monthly-assessments

	Introduction
	Background and Related Work
	Test Gap Analysis
	Related Work
	Test Gap Prioritization
	Software Defect Prediction

	 TestGapRadar: A Score-based Approach
	Selection Criteria for Metrics
	Overview of Selected Metrics
	Risk Factor: Code Criticality
	Risk Factor: Complexity
	Risk Factor: Static Code Analysis Results

	Normalization of Metric Values
	Computation of Risk Score

	Multi-Method Study
	Research Questions
	Industrial Study Subjects
	Study Design & Operationalization
	Implementation and Calibration
	Results and Discussion
	RQ1: Comparison with Manual Assessments
	RQ2: Metric Importance
	RQ3: Comparison to Random Baseline
	RQ4: Expert Assessment

	Guidelines for Practitioners
	Threats to Validity
	Internal Validity
	External Validity

	Conclusion
	Avenues of Future Research
	Data Availability
	References

