TUTl

SCHOOL OF COMPUTATION, INFORMATION AND
TECHNOLOGY — INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

An Investigation on the Usage of Source
Code Embeddings in Test Case
Prioritization and Selection

Alessandro Escher

0

TUT

SCHOOL OF COMPUTATION, INFORMATION AND
TECHNOLOGY — INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

An Investigation on the Usage of Source Code
Embeddings in Test Case Prioritization and Selection

Eine Untersuchung zur Verwendung von
Quellcode-Embeddings in der Testfall-Priorisierung
und -Auswahl

Author: Alessandro Escher
Examiner: Prof. Dr. Alexander Pretschner
Supervisor: Raphael Nommer

Submission Date: ~ April 22, 2025

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, April 22, 2025 Alessandro Escher

Acknowledgments

I would first like to thank my advisor, Raphael Noemmer, for his consistent support
and guidance throughout the development of this thesis. His feedback and willingness
to invest time in discussing ideas and reviewing my work were a great help, and I
sincerely appreciate his involvement in this process. I also thank my friends and family
for proofreading and giving valuable feedback to improve this thesis. I am especially
grateful to the CQSE GmbH and Prof. Alexander Pretschner along with Jakob Rott for
allowing this collaboration to happen. CQSE GmbH also generously provided access to
their project and its source code, which was an important component for the practical
part of this thesis. They also offered a virtual machine for running my experiments
which allowed me to process and evaluate a larger number of projects and commits.
Additionally, they granted access to a paid third party API service which added to the
diversity of embedding models I was able to evaluate. Their support made a significant
contribution to the success of this thesis, and I am very grateful for their involvement.

Abstract

Regression testing is a critical process in modern software development, ensuring
that new changes do not introduce unintended bugs. However, as software grows,
executing an entire test suite after every modification becomes increasingly expensive.
Test Case Prioritization (TCP) addresses this challenge by reordering test cases so that
fault-revealing tests execute earlier, reducing feedback time and debugging effort.

In this thesis, we investigate the use of source code embeddings generated by
Large Language Models for TCP as an alternative to traditional coverage-based and
information retrieval (IR) techniques. In particular, we propose a Code Embedding-
based Test Case Prioritization (CETCP) approach and evaluate its performance against
established baselines, including a BM25-based IR method and a TimeSort baseline.

The evaluation consists of experiments on Defects4] projects, as well as a large-scale
industry project called Teamscale, employing both the Average Percentage of Fault
Detection (APFD) metric and its cost-aware variant (APFDc) to assess failure detection
performance. We conclude that, when incorporating test execution time into the TCP
calculation, our approach using the CodeXEmbed model significantly outperforms both
a TimeSort baseline and a BM25-based IR method in terms of APFDc. However, results
based on APFD alone indicate only marginal improvements on open source projects and
inferior performance on the industry project, with no statistically significant differences
observed.

These findings suggest that, while embedding-based techniques offer promising
advantages for cost-aware test prioritization, their effectiveness may depend on the
evaluation context and the characteristics of the underlying project. Further improve-
ments in the information collection and embedding generation are required to make
our approach more competitive and robust.

v

Contents

Acknowledgments
Abstract
Abbreviations

1. Introduction

2. Terms and Background
2.1. Version Control Systems and Continuos Integration Pipelines
2.2. Test Suite Optimization Techniques,
221. Faultsand Failures
2.2.2. Regression Testing Approaches
2.3. Information Retrieval
2.4. Code Model Embeddings

3. Related Work
3.1. Coverage Based Test Case Prioritization,
3.2. Information Retrieval Based Test Case Prioritization
3.3. Other Test Case Prioritization Techniques

4. Code Embeddings Based Test Case Prioritization
4.1. Source Code Collection.
42. Embedding Generation.
4.3. Test Case Prioritization

5. Empirical Evaluation
5.1. Research Questions it
52. Objectsof Study
53. Methodology
5.3.1. Baselines
5.3.2. Evaluation Metrics
5.3.3. Collecting EvaluationData
5.3.4. Dimensionality Reduction for Visualization

N Ul = W W W W

o

Contents

54. Results e 22
55. DISCUSSION v i e 25
55.1. RQI: BestCodeModel 25

55.2. RQ2:IRvsCodeModels 29

5.5.3. RQ3: Impact of ExecutionData 30

5.5.4. RQ4: Computation Time Comparison 31

5.6. Threats to Validity 32
56.1. Internal Threats 33

5.6.2. External Threats 33

6. Future Work 35
6.1. Expanding the Implementation 35
6.2. Expanding the Evaluation 36

7. Conclusions 37
A. Code Snippets 39
A.l. CodeXEmbed 39
A.2. UMAP Dimensionality Reduction 40
Bibliography 41

Vi

Abbreviations

RQ Research Question

VCS Version Control System

Cl Continuous Integration

LoC Lines of Code

LLM Large Language Model

RNN Recurrent Neural Network
MLM Masked Language Modelling
CLM Causal Language Modeling
AST Abstract Syntax Tree

TSO Test Suite Optimization

TCS Test Case Selection

TCP Test Case Prioritization

TSM Test Suite Minimization
CETCP Code Embeddings-Based Test Case Prioritization

APFD Average Percentage of Failure Detection

vii

Abbreviations

APFDc Average Percentage of Failure Detection per Cost
IR Information Retrieval

LDA Latent Dirichlet Allocation

TF-IDF Term Frequency-Inverse Document Frequency
BM25 Best Matching 25

UMAP Uniform Manifold Approximation and Projection

t-SNE t-Distributed Stochastic Neighbor Embedding

viii

1. Introduction

Software systems evolve constantly, with frequent changes introducing new features
and bug fixes. To ensure that these changes introduce as few regressions as possible,
extensive regression testing is required. However, having to wait for the full test suite
to complete after every commit to get feedback or not being able to run the whole test
suite due to its size raises issues. Especially in large-scale projects with many thousands
of test cases, test suites can take hours or even days to complete and often require
a substantial amount of resources [1-4]. This challenge has led to the development
of various Test Suite Optimization (TSO) techniques in order to better handle large
test suites. One of these techniques is Test Case Prioritization (TCP), which aims to
reorder test cases such that any failures are detected as early as possible. By prioritizing
fault-revealing test cases, TCP improves feedback time for developers.

Traditional TCP techniques often rely on code coverage-based heuristics, prioritizing
tests that execute the modified code or those that produce a lot of coverage [5]. While
effective in some cases, these approaches have limitations. They may not always
correlate with fault detection capability and require detailed and up to date coverage
information, which is not always available and often requires a high maintenance effort
[6-8]. The whole system has to be instrumented and profiled after every major change
and the coverage data has to be stored for each version of the system. Additionally, TCP
approaches using the coverage information rely on old information gathered from the
previous version of the code base, missing newly added code and tests [6]. To address
these limitations, recent research has explored Information Retrieval (IR) methods
and machine learning-based approaches that leverage textual or structural similarities
between test cases and the modified code. In particular, code embeddings—vectorized
representations of source code—may offer a promising alternative for TCP by capturing
semantic relationships between test cases and code changes without requiring explicit
coverage data or expensive training procedures.

In this thesis we investigate whether embeddings generated by pre-trained code
models can serve as an effective alternative to traditional TCP techniques. We develop
a prototype implementation of a Code Embeddings-Based Test Case Prioritization
(CETCP) approach that ranks test cases based on their similarity to code modifications
using vectorized representations called embeddings. To evaluate the effectiveness
of this approach, we conduct an extensive empirical study on both Defects4] [9]—a

1. Introduction

well-known benchmark dataset of real-world software defects—and Teamscale, a large-
scale industry project. The evaluation compares CETCP against various baselines,
including a random ordering, a BM25-based [10] IR approach, and a time-based sorting
strategy. Performance is measured using Average Percentage of Failure Detection
(APFD) and APFDc (cost-aware APFD) to assess fault detection efficiency and the
impact of execution time.

The rest of this thesis is structured as follows. Chapter 2 gives insight into concepts
and terminology required for this topic, Chapter 3 gives an overview of alternative
and established TCP approaches. Chapter 4 explains how the prototype developed in
this thesis works while Chapter 5 contains the empirical evaluation in terms of fault
detection capabilities. Lastly, Chapter 6 and Chapter 7 contain our suggestions for
possible future work based on this work and our concluding thoughts, respectively.

2. Terms and Background

This section explains terminology required to understand the topics that are discussed
in this thesis and also gives an overview over the concepts that are applied.

2.1. Version Control Systems and Continuos Integration
Pipelines

Most projects use a Version Control System (VCS) such as Git!. VCSs are a tool that
help manage changes to source code, allowing multiple developers to collaborate in
parallel while maintaining a complete history of the modifications made to the system.
It enables tracking of code changes, reverting the code base to previous states, and
resolving conflicts when multiple contributors work on the same code.

Most VCSs utilize Continuous Integration (CI) pipelines, which automate the process
of building and validating code changes. When developers push updates to the remote
repository, CI pipelines automatically run a predefined test suite to detect any issues
with the changes. This ensures that faulty code is identified before being merged into
the main development branch.

2.2. Test Suite Optimization Techniques

Test Suite Optimization is a very generic umbrella term that encompasses many different
research areas and techniques. In this thesis we focus on a subset of techniques known
as regression testing. This section explains the concept of regression testing and gives
an overview of different approaches and explains some of the terminology.

2.2.1. Faults and Failures

When discussing test suite optimization techniques it is important to distinguish
between the terms faults, failures and errors. A fault describes a mistake in the
source code which causes the system to behave in an unintended manner. This state
of unexpected behaviour is called an error. Should this error state lead to wrong

Ihttps://git-scm.com/about/

https://git-scm.com/about/

2. Terms and Background

output—whether that be incorrect output data or a crash of the system—then a failure
has occurred. The goal of test suite optimization techniques like TCP is to prioritize
those test cases that produce a failure in the system so that the underlying fault can
be identified and fixed before being integrated into the system. One fault can produce
multiple failures, in which case fixing the underlying fault may resolve multiple failing
test cases at once.

2.2.2. Regression Testing Approaches

In regression testing, a test suite is run whenever modifications are made to a system,
e.g. by a commit to the VCS, to ensure no breaking changes are introduced. If the
test suite passes without failures, then the changes can be fully integrated into the
code base. Should one or more tests fail, the changes are rejected and a developer
needs to investigate the failing test cases and fix the underlying issues. TCP, Test
Case Selection (TCS) and Test Suite Minimization (TSM) are techniques that aim to
optimize a test suite by temporarily or permanently changing it. The main goal of all
these approaches is to reduce the time required for the modified test suite to provide
teedback on whether the newly introduced changes contain a fault. This is done while
preserving as much of the full test suite’s fault detection capability as possible. For
smaller systems where execution time of the whole test suite is not a concern, running
the whole test suite is usually a preferable approach. In practice however, where
industry systems have large test suites that can take many hours or even days to run [1],
much of a project’s cost is spent on testing [2, 3, 5]. The goal of approaches like TCP,
TCS and TSM is to minimize the time it takes for the developer to get this valuable
teedback. TCS and TSM aim to achieve this by reducing the number of tests that are
run. TCS does so by selecting a subset of test cases depending on the current changes
and letting only those tests be executed, whereas TSM permanently removes redundant
or unnecessary test cases from the test suite, independent from any specific set of
changes. TCP does not reduce the number of tests that are run, ensuring that the whole
test suite is always executed, but instead reorders them such that the most relevant test
cases are executed first. This way, the developer will see any failing test cases at the
beginning of the test suite and can already start working on a fix while the rest of the
suite completes. Choosing which tests are important for a given change is a difficult
task and relevant test cases might be missed in an approach like TCS, resulting in a
lower fault detection capability [5]. This could make TCP a favorable approach to TCS
when it comes to industry adoption, since the former does not incur the risk of missing
any failing tests.

2. Terms and Background

2.3. Information Retrieval

IR deals with search problems on unstructured data such as natural language texts and
finds many applications in everyday activities such as web searching [10]. Given a large
set of documents and a query, the goal is to find the documents that best answer or
relate to this query [10]. This process starts with the collection and preprocessing of
the documents which includes tokenization, the removal of very common words called
stop words and the normalization of tokens to reduce variations caused by linguistic
differences, such as verb conjugations and plural forms [10]. Stop words are frequently
occurring words—such as "the," "is," "and" and "of"—that typically do not contribute
meaningful information for distinguishing relevant documents. Since these words
appear so frequently across documents, they add little value in differentiating between
them during retrieval [10].

Once the preprocessing stage is finished, the documents in the collection are indexed.
In this phase, data such as the frequency and position of a term is collected and stored
for each document. This makes the querying phase much more efficient than a simple
linear scan of the text, at the cost of a higher storage overhead [10]. The last stage of
IR is the retrieval and ranking phase. First, relevant documents are retrieved from the
overall document corpus based on the query. These selected documents are then sorted
in descending order of relevance to the query [11].

Traditional retrieval models, such as Term Frequency-Inverse Document Frequency
(TF-IDF), score words based on their importance in a document relative to the entire
collection. TF-IDF assigns higher weights to terms that appear frequently in a document
but penalizes those that are common across many documents [10]. It does so by
computing the product of two values: term frequency (TF), which represents how often
a term appears in a specific document, and inverse document frequency (IDF), which
reduces the weight of terms that appear in a large number of documents. Equation 2.1
shows the different components of TF-IDF, where t represents a term, d a document of
a set of documents D and f; ; the number of times the term t appears in document d.

TE-IDE(t,d) = TF(t,d) x IDF(¢)

fud (D]) 2.1)
TF(t,d) = =——— IDF(t)=log| ==~ | DF(t)=[{deD|ted

(t4) = =4 IDF(t) = log s) DE()=HaeDted
While effective for basic retrieval, it does not capture deeper semantic relationships
between words and is susceptible to duplicated content in documents [10].

A more advanced and widely applied ranking function is Best Matching 25 (BM25)
[10, 11]. Unlike TF-IDF, which assumes term importance increases linearly with
frequency, BM25 introduces a saturation function, meaning that repeated occurrences
of a term in a document contribute less additional relevance beyond a certain point.

2. Terms and Background

Additionally, BM25 normalizes document length, addressing the issue where longer
documents tend to contain more query terms simply due to their size, which can skew
rankings in TF-IDF. BM25 achieves this by using tuning parameters k; and b, where k;
controls term frequency saturation and b determines the degree of length normalization
[10, 11]. Equation 2.2 shows a widely used version of the BM25 formula [10], where d
is a document, g the query and avgd! the average document length of the corpus.

BM25(d,q) = Y IDF(t) fra- (ki +1)

= fra+ki- (1_b+b'a\‘7§dl>

2.2)

However, both TF-IDF and BM25 primarily rely on exact word matching. To enable
more conceptual retrieval, Latent Dirichlet Allocation (LDA) applies topic modeling,
assuming that documents are mixtures of topics which in turn are distributions over
words. By identifying hidden topic structures within a document collection, LDA
allows retrieval based on conceptual similarity instead of exact keyword matching [10,
11].

2.4. Code Model Embeddings

Recent advancements in machine learning techniques have enabled significant improve-
ments in the embeddings based representation of source code [12]. Code embeddings
are vector representations of code snippets that capture syntactic and semantic infor-
mation, making them useful for various software engineering tasks [13, 14]. Large
Language Models (LLMs) are deep learning models trained on massive amounts of
text and/or code to understand and generate natural language or structured text like
source code. These models are usually based on the Transformer [15] architecture. A
Transformer consists of multiple layers of attention heads and feed-forward networks,
enabling it to learn complex relationships between tokens in an input sequence [12, 15].
In contrast to previous methods like Recurrent Neural Networks (RNNs), Transformers
process input in parallel, which makes them highly scalable and a much more powerful
alternative [16].

Researches often publish pre-trained versions of their model, which are first trained
on large generic datasets and can then be fine-tuned for specific downstream tasks,
such as code search, summarization, or clone detection. Popular pretraining objectives
for LLMs include Masked Language Modelling (MLM), where parts of the input
are hidden and then predicted, and Causal Language Modeling (CLM), where the
model predicts the next token in a sequence. Code embeddings can be extracted
from these models by passing a code snippet through the Transformer and retrieving
the corresponding hidden state representations from specific layers, often using the

2. Terms and Background

output from a special classification token or an average pooling over all output token
embeddings [12, 17]. Several specialized LLMs have been developed for processing
source code. The following is an overview over the models that are used in this thesis:

CodeBERT A transformer-based model pre-trained on source code and natural lan-
guage for tasks like code search and summarization. It is trained with MLM and
Replaced Token Detection (RTD) to understand both syntax and semantics in
source code. [18]

UniXcoder An improvement on traditional encoder-decoder architectures that adds
bidirectional attention mechanisms, enabling more effective comprehension of
code structure. It also integrates structural information through Abstract Syntax
Tree (AST) based representations in the training phase, improving performance
in code understanding tasks such as clone detection and code search. [19]

CodeT5+ A generative Transformer model based on T5 (Text-to-Text Transfer Trans-
former) that supports both encoding and decoding tasks. It uses an encoder-
decoder architecture with a variety of different components that can be combined
depending on the downstream task [20]. In this thesis we use the CodeT5+
Embedding® variant.

CodeXEmbed A family of open-source embedding models designed for code and text
retrieval tasks [21]. The 2B variant used in this thesis is called SFR-Embedding-
Code-2B_R, contains approximately 2.61 billion parameters and is initialized from
the Gemma [22] model. It was specifically designed for code embedding and has
been found to perform better than other open source models when it comes to
various retrieval scenarios, including text-to-code, code-to-text, and code-to-code
retrieval [21]. We opted for the 2B variant as a compromise between accuracy and
computational efficiency, as the overall performance improvement between the
smallest 400M and the 2B variant is much more significant than the difference
between the 2B and 7B versions [21].

OpenAl’s text-embedding-3 A more recent closed-source embedding model offered
by OpenAl®, optimized for both text and code representations. It provides em-
beddings optimized for retrieval-based applications (based on work by Kusupati
et al. [23]). In this thesis we use the text-embedding-3-small variant®.

2https://huggingface.co/Salesforce/codet5p-110m- embedding
Shttps://openai.com/index/new-embedding-models-and-api-updates/
‘https://platform.openai.com/docs/guides/embeddings/#embedding-models

https://huggingface.co/Salesforce/codet5p-110m-embedding
https://openai.com/index/new-embedding-models-and-api-updates/
https://platform.openai.com/docs/guides/embeddings/#embedding-models

2. Terms and Background

Model Architecture # Parameters Embedding Size
CodeBERT Encoder-only Transformer 125M 768
UniXcoder Unified Encoder-Decoder Transformer 125M 768
CodeT5+ Embedding Encoder-only Transformer 110M 256
SFR-Embedding-Code-2B_R Encoder-only Transformer 2.6B 2304
OpenAl Embedding Small Transformer Not specified 1536

Table 2.1.: Overview of code models used in this thesis

Table 2.1 contains an overview of the models and their parameters. By leveraging code
model embeddings, we hope to improve upon traditional IR techniques by capturing
more complex semantic relationships and being less reliant on exact keyword matches
and lexical similarity.

3. Related Work

Optimizing a test suite entails maximizing its effectiveness. This is commonly measured
by the achieved code coverage and fault detection rate for a given cost in execution time
[3]. With this goal, a wide variety of techniques have been suggested and evaluated
over time. This section gives an overview of popular TCP approaches that have been
extensively researched as well as newer techniques that have been gaining popularity
in recent years.

3.1. Coverage Based Test Case Prioritization

Coverage based TCP techniques aim to maximize the coverage, whether that be on
the statement, branch or method level, as early as possible [24]. The idea of a high
coverage being desirable is intuitive, as a fault can only be detected if a test is executed
that triggers it. This is especially true for changed code, where the likelihood of a
fault is much higher, especially if it remains untested [25]. The type of coverage that
is used for TCP can vary in granularity, from statement level to function level. Yoo et
al. [24] and DiNardo et al. [26] found that with a coarser granularity, such as function
coverage, the fault detection capability of the TCP approach worsens. However, using
more fine-grained coverage comes at the cost of lower scalability [26].

Another variable that has been examined is the prioritization technique, i.e. the
logic by which the tests are ordered. Researchers differentiate between total, additional
and modified coverage. Prioritization by total coverage means that for each test, all
the statements or functions it covers are counted. In contrast, additional coverage
prioritization considers only the new coverage that a test contributes—meaning it
accounts only for statements or functions that have not been covered by any previously
prioritized tests [24, 26]. Lastly, modified coverage prioritization only considers the
coverage of changed code. Di Nardo et al. [26] examined the impact of using different
granularities and prioritization approaches on an industrial software projects. They
confirmed that more fine grained coverage information performs better and also
found that additional coverage prioritization techniques significantly outperform the
total coverage approach. Using modification information did not result in significant
improvements and was therefore not deemed worth the additional effort [26].

3. Related Work

Coverage TCP techniques are among the most researched approaches and have been
popular for some time [5, 24, 27]. However with the high effort and maintenance cost
required to gather the necessary coverage data, researchers have been steadily looking
to find cheaper and easier to manage alternatives [5].

3.2. Information Retrieval Based Test Case Prioritization

IR is a technique that has seen extensive research and application on natural language
problems such as querying information from a large collection of documents [10]. Saha
et al. were the first to apply this concept to TCP in the regression testing stage by
introducing REPiR [28]. By treating the test classes and methods in the test suite as a
collection of documents and the changed code as the query, they were able to apply
the same principles that had been studied for natural language documents to source
code. They examined different granularities for the document collection, i.e. on the
class and on the method level, as well as various change collection approaches for
the query construction [28]. REPiR outperformed all evaluated coverage-based TCP
techniques, regardless of the document or change retrieval technique [28]. Saha et al.
tried to further improve upon these results by incorporating structural information but
found that this did not lead to any improvement in fault detection.

Peng et al. developed an IR approach that prioritizes test classes [29]. They experi-
mented with different additional sources of information such as test execution time
and historical failure frequencies and examined the impact of different IR retrieval
models, among them TF-IDF, BM25 and LDA [29], which we explained in Section 2.3.
The evaluation was performed on almost 3000 CI jobs from 123 Java projects. The
results show that when using optimal parameters, their IR-only approach was able
to outperform coverage-based techniques, although not by a statistically significant
margin and fell short of outperforming an execution time-only based prioritization
when using a cost-cognizant metric such as the Average Percentage of Failure Detec-
tion per Cost (APFDc) [29]. However, when adding test execution time and historical
failure information alongside IR, the new approach was able to outperform their other
techniques and baselines [29].

3.3. Other Test Case Prioritization Techniques

Classic TCP approaches use coverage, execution times and historical failure information
to prioritize test suites [5, 30]. However, a wide variety of techniques from different
computer science domains have been used and applied to the problem of TCP.

10

3. Related Work

Miranda et al. equate test suite optimization to a "big data problem" [4] and applied
approaches from this domain such as Shingling, Minhashing and Locality-Sensitive
Hashing. Their core idea relies on the notion that TCP techniques should strive for
diversity, i.e. dissimilarity between test cases, and on the fact that highly efficient
algorithms exist in the big data domain to find dissimilar elements in a large set. They
evaluated their FAST approach on C projects and some Java projects from the Defects4]
[9] dataset and found that this approach is more efficient and scalable with no loss in
effectiveness when compared to other popular baselines such as coverage and other
similarity based TCP techniques [4].

Genetic algorithms have also been applied to TCP. The general idea is to have
an initial starting population, where each element is an ordered test suite. Each
member of the population is assessed by a fitness function, often using information
such as code or requirements coverage [31]. The most fit members are kept onto the
next generation and new members are created from them by applying crossover and
mutation operations in hopes of creating even better candidates, mimicking the natural
process of evolution. Genetic algorithms have the potential to perform better than
greedy coverage approaches [32], however they can suffer from a bad initial population,
leading to long convergence times and getting stuck in local minima unable to find the
optimal test case ordering [33].

Mattis et al. attempted to use code embedding models as well as generative LLMs
for TCP [34]. They used the UniXcoder [19] model to generate embeddings of tests and
changes and use these in a similar manner to the IR concepts outlined in Section 3.2.
They also attempted to use generative LLMs to gather how likely the LLM would
have been to generate any of the test suite’s tests as an adequate test case for a given
change. This likelihood is then used as the test’s priority. They evaluated both of
these approaches on a small dataset consisting of three small python projects and
found that their embedding approach was able to slightly outperform a BM25 baseline,
whereas the LLM approach did not perform well. We aim to expand upon this work
by evaluating a larger number of code models, including newer and larger models
than UniXcoder, and also by using a bigger and more representative dataset such as
Defects4] [9] and an industry project.

11

4. Code Embeddings Based Test Case
Prioritization

This chapter illustrates the prototype that was implemented in this thesis. It is a
regression TCP approach, meaning the prioritization is always run in the context of
one or more VCS commits with code changes. The goal is to find test cases that
are most similar to a code change, and have those tests be run first. The prototype is
implemented inside the software Teamscale!, which is a software quality tool developed
by CQSE GmbH?2. In the context of our research it is used for syntax and static analysis,
such as identifying code changes and test case implementations as well as storing and
analyzing test execution data.

Figure 4.1 shows an overview of the pipeline, consisting of collecting the source code
of both tests and changed methods, generating embedding vectors and using those
to rank the tests cases for TCP. Details about each step can be found in the following

sections.
Changed
) tchhaangeé:l g Method Code
ethods Code Embeddings

Embedding
Generation

Source Code
collection

Similarity Based
Prioritization

Test Method
Code
Embeddings

Test Methods
Code

Figure 4.1.: An overview showing the pipeline of the prioritization approach. Orange
elements are performed in Java code whereas blue elements are executed
in Python.

Prioritized
Test Suite

Ihttps://teamscale.com/
2https://teamscale.com/about-us

12

https://teamscale.com/
https://teamscale.com/about-us

4. Code Embeddings Based Test Case Prioritization

4.1. Source Code Collection

There are two components for which code embeddings have to be generated, the code
changes of the target commit and the source code of the tests. The change information
is gathered from the underlying VCS, in this case Git®. For each line of code that
has been changed, the surrounding method is determined by parsing the syntax tree
of the code file. The whole code of the method including its signature is saved in
a dictionary mapping from the method path to its source code. This way, there is
always a syntactically complete context for each change, which is important for many
code models due to their pre-training objective* [35]. If there are two or more disjoint
changed regions within the same method, they are merged and the method source
code is only saved once. Changes to comments are ignored, as they do not represent a
possible source for faults. Changes such as module imports are not considered, as any
breaking change would most likely already be discovered in the system’s build phase
and not by a test case. Any other changes outside of a method, e.g. to class attributes,
are not considered due to scoping issues. Most of the time such changes also come
with changes inside method bodies, such as the renaming of a variable or the changing
of its type, meaning the change would still be partially included.

The second group of source code that has to be collected are the test cases. This
is dependent on the language of the system and the testing framework that is used.
In this thesis the focus is set on projects written in Java, for which the most popular
testing framework is JUnit>. JUnit 4 and 5 tests are usually annotated with the @Test
annotation, making it easy to detect them and to collect the test implementations. JUnit
3 tests are detected by parsing through methods that are in the project’s test folder and
looking for methods that start with the keyword "test".

4.2. Embedding Generation

All vector representations are generated using Python by applying a pre-trained code
model like the ones described in Section 2.4. The size of this embedding can vary
in length depending on the model, from 768 floating point values for CodeBERT [18]
and UniXcoder [19] to 2304 for the CodeXEmbed [21] model. An embedding vector is
generated for every single code block, which in this case are changed methods and
test methods as described in Section 4.1. For open source models, the model data and

Shttps://git-scm.com/
“see e.g. MLM or CLM in Section 2.4
Shttps://junit.org/

13

https://git-scm.com/
https://junit.org/

4. Code Embeddings Based Test Case Prioritization

the tokenizer are retrieved from the Huggingface® library via its python module’. The
model is loaded locally in its pre-trained state and is then used to generate embeddings
according to the available documentation.
For CodeBERT [18], the embeddings are extracted from the [CLS] token®.
UniXcoder [19] offers a custom python class that contains functionality for tokenization
and embedding retrieval® by averaging over the last hidden layer output of each token.
For CodeT5+ [20] a version of the model is used called codet5p-110m-embedding'® which
was specifically made for the purpose of embeddings generation.
SFR-Embedding-Code-2B_R offers a custom class!! intended to be used to reproduce the
results of Liu et al [21] on the Coir benchmark [36]. The queries —which in this case
are the changed methods—are prepended with an instruction formulated in natural
language. The documents in the corpus —in this case the test implementations—are
structured such that the test’s path is prepended to the method source code, which is
analogous to the title and text body in the IR context. Figure A.1 shows the relevant
code snippets.
For the closed source model from OpenAl, the corresponding python module!? is
used according to the official documentation!®. The API can handle batches of up to
2048 inputs, which in our case are code methods, with a maximum length of 8096
tokens for each input. The price is calculated based on the amount of tokens that are
embedded and currently stands at 0.02$ per 1,000,000 tokens for the text-embedding-3-
small variant!?.

The generated embedding vectors are then stored in a JSON file as a dictionary
mapping from the path of the code entity to the embedding vector.

4.3. Test Case Prioritization

Once all code objects have been embedded, the sorting phase of the TCP approach is
comparable to that of IR approaches as laid out in Section 3.2, where the changed code

®https://huggingface.co

"https://pypi.org/project/huggingface-hub/

8https://github.com/microsoft/CodeBERT/tree/cOde43d3aaf38e89290f 1efb771£8de845e7a4897
tab=readme-ov-file#codebert

Shttps://github.com/microsoft/CodeBERT/tree/cOde43d3aaf38e89290f 1efb771f8de845e7a489/
UniXcoder#1-code-and-nl-embeddings

Ohttps://huggingface.co/Salesforce/codet5p-110m- embedding#how-to-use

Mhttps://huggingface.co/Salesforce/SFR-Embedding- Code-2B_R/discussions/9#
67a10598ce3af048c276787b

2https://pypi.org/project/openai/

Bhttps://platform.openai.com/docs/guides/embeddings

4phttps://platform.openai.com/docs/pricing#embeddings

14

https://huggingface.co
https://pypi.org/project/huggingface-hub/
https://github.com/microsoft/CodeBERT/tree/c0de43d3aaf38e89290f1efb771f8de845e7a489?tab=readme-ov-file#codebert
https://github.com/microsoft/CodeBERT/tree/c0de43d3aaf38e89290f1efb771f8de845e7a489?tab=readme-ov-file#codebert
https://github.com/microsoft/CodeBERT/tree/c0de43d3aaf38e89290f1efb771f8de845e7a489/UniXcoder#1-code-and-nl-embeddings
https://github.com/microsoft/CodeBERT/tree/c0de43d3aaf38e89290f1efb771f8de845e7a489/UniXcoder#1-code-and-nl-embeddings
https://huggingface.co/Salesforce/codet5p-110m-embedding#how-to-use
https://huggingface.co/Salesforce/SFR-Embedding-Code-2B_R/discussions/9#67a10598ce3af048c276787b
https://huggingface.co/Salesforce/SFR-Embedding-Code-2B_R/discussions/9#67a10598ce3af048c276787b
https://pypi.org/project/openai/
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/pricing#embeddings

4. Code Embeddings Based Test Case Prioritization

sections are compared (or queried) against the test implementations. The goal is to
prioritize those test cases that show a strong correlation to the current changes by being
similar in the latent embedding space. This similarity calculation is achieved by using
the cosine similarity between two embedding vectors, where c is the embedding vector
of the code change and t that of the test implementation.

c-t
el Il

First, the embedding vectors generated in Section 4.2 are loaded. Then, for each
test embedding, its similarity to every collected change is measured, as explained
in Section 4.1. Each test is then placed into a change bucket to which it shows the
strongest match. After processing all tests, the test cases within each bucket are
ranked in descending order based on their similarity score to the corresponding change.
Finally, tests are selected from the buckets in a round-robin fashion until all buckets
are depleted. This technique will be referred to as CETCP and is further illustrated
in Algorithm 1. A second approach also uses the execution time of a test case in the
similarity score calculation. This is achieved by dividing the cosine similarity by the
test’s runtime in seconds, adding 1 to avoid division by 0 for tests that have executions
times that might be rounded to 0, such as unit tests.

s(c, t) = (4.1)

s(c, t)

=77 4.2
time; + 1 (4.2)

Stime(cz t)

15

4. Code Embeddings Based Test Case Prioritization

Algorithm 1 Code Embeddings-Based Test Case Prioritization (CETCP)

Require: Set of test embeddings T, Set of change embeddings C
return List of Prioritized test cases

1: foreacht € T do
2 best_match <— arg max.ccs(c, t)
3 Bbest_match <~ Bbest_match U {t}
4: end for
5: for each bucket B do
6 Sort B by s(c, t) in descending order
7. end for
8: Initialize P <— @
9: while 3B # @ do

10: for each B # @ in round-robin order do

11: t < argmax;eps(c, t)
12: B + B\ {t}
13: P+ PU{t}

14: end for
15: end while
16: return P

16

5. Empirical Evaluation

This chapter presents the Research Questions (RQs) that we aim to answer and illus-
trates the methodology that was used to achieve this. We evaluate a CETCP approach
and compare it to a set of baselines, including a BM25 based IR approach. The evalua-
tion is performed on a dataset of open source Java projects and a closed source industry
project.

5.1. Research Questions

The aim of this thesis is to evaluate whether embeddings from code models with a
greater focus on the semantics of code are a viable alternative to other TCP techniques
like IR and to determine which code models work well for this goal. Therefore we
formulate the following research questions.

RQ1 Which of the selected code models delivers the best results for TCP?
RQ2 How does CETCP compare to a traditional IR TCP approach?
RQ3 How does the CETCP approach perform in a cost aware environment?

RQ4 How do the different approaches scale in regards to computation time?

5.2. Objects of Study

The main study object of this thesis is the Defects4] dataset published by Just et al. [9].
It consists of a set of curated Java projects that contain various faults in source code.
Each fault has its own revision where all code changes that are unrelated to the fault
have been removed. Additionally, flaky tests have been manually filtered out such that
all occurring test failures are caused by the underlying fault. This is important because
such non-deterministic failures cannot be reliably detected by code changes and would
therefore skew the results. All faults present in the dataset occurred naturally, i.e. there
are no seeded or synthetically added bugs, allowing for a more realistic and diverse set
of bugs. The faults were collected by parsing open source repositories for commits that
mentioned fixing bugs in the commit message. By inspecting the commit and locating

17

5. Empirical Evaluation

the code changes that contributed to the fix and reverting them, the authors of the
dataset were able to create a buggy version for each code fix found this way [9].

The second set of failures is collected from a large industry project called Teamscale?,
which is also used in the implementation of the prototype as described in Chapter 4.
Teamscale consists of a frontend written in Javascript/Typescript and a backend written
in Java. Failing tests were collected from the project’s CI pipeline in GitLab?. The tests
were then programmatically filtered to weed out most flaky failures by checking if a
test case had multiple failing runs followed by a passing run for the same commit and
by seeing if the test failed on other branches at the same time, indicating a flaky failure
possibly related to network connectivity issues. Due to the size and complexity of the
system, a manual inspection of failures such as the one performed by the Defects4] [9]
team was not feasible. Relevant information about the projects of the dataset used in
this thesis can be found in Table 5.1.

Project LoC Buggy Commits Tests ~ Failing Tests
Chart 329K 26 2200 3.54
Closure 601K 174 18,400 3.13
Jsoup 29K 93 750 1.56
Lang 169K 65 2300 1.92
Math 305K 106 3600 1.66
Mockito 93K 38 1500 3.11
Time 142K 26 4100 2.85
Teamscale ‘ 1.6M 48 11,600 4.15

Table 5.1.: Information about the projects used to evaluate the prototype of this thesis.
Lines of Code (LoC) and the number of tests are retrieved from the most
recent commit in the dataset. The number of failing tests is the average over
all evaluated commits.

5.3. Methodology

This section explains how we collect the necessary data for our empirical evaluation
and which metrics and baselines we use to evaluate our prototype’s performance.

Ihttps://teamscale.com/
2https://about.gitlab.com/

18

https://teamscale.com/
https://about.gitlab.com/

5. Empirical Evaluation

5.3.1. Baselines

To put our results into context, we perform TCP with three baselines.

Random This baseline simply sorts the test cases in a random order, using the Java
Collections.shuffle method. Since it does not apply any prioritization strategy, it
provides a lower bound for performance evaluation. Comparing CETCP against
this baseline helps assess whether the learned embeddings provide meaningful
prioritization beyond random chance. To minimize the impact of outliers, we
run this baseline 100 times and only report the average performance across all
iterations.

IR This technique uses an IR approach based on the BM25 method as described in
Section 2.3. The implementation is based on the Apache Lucene® package. This
baseline represents a strong, well-established heuristic for test prioritization and
is particularly relevant for answering RQ 2, as it allows us to compare CETCP
against a non-learning-based method. This baseline can also be combined with
test execution data, where the IR score is divided by the execution time of a test
similar to the formula used by the CETCP approach in Equation 4.2.

Time Sort This baseline sorts tests in ascending order by their execution time, prior-
itizing faster tests. This approach assumes that running faster tests earlier can
provide quicker feedback. The performance of CETCP when incorporating execu-
tion time information (RQ 3) can be compared against this baseline to determine
whether CETCP can produce a meaningful improvement upon it, as time-sort
has been found to be a powerful baseline not trivial to outperform when using a
cost-aware evaluation metric [8, 29].

The Random and IR baselines are directly used to evaluate RQs 1 and 2, while the Time
Sort baseline is particularly relevant for RQ3, as it isolates the impact of test execution
time on prioritization performance.

5.3.2. Evaluation Metrics

To quantify the effectiveness of a TCP approach in prioritizing failing test cases earlier,
we use the widely adopted APFD metric [5, 24]. APFD evaluates how early on failing
tests are executed by considering their position in the prioritized test suite. With n as
the total number of test cases in the test suite, m as the total number of faults and T; as
the position of a failing test case revealing fault i, the APFD formula is as follows [24]:

moT1
APFD =1- =120 — (5.1)
nm 2n

Shttps://lucene.apache.org/

19

https://lucene.apache.org/

5. Empirical Evaluation

To answer RQ1, we perform a test suite prioritization for each code embedding
model from the ones outlined in Section 2.4. We then compare the APFD values of the
resulting prioritized test suites, both on the open source dataset as well as the industry
project.

For RQ2 we additionally perform a test suite prioritization using the BM25 IR
approach. The APFD is then compared to the results of the CETCP approach from
RQ1.

Lastly, for RQ3 we perform a test suite prioritization using execution data as ex-
plained in Section 4.3. This is done for both the code models as well as the IR baseline.
Since the APFD metric has no notion of test execution times and implicitly assumes
that each test case has the same execution cost, we use the APFDc metric to answer
RQ3. APFDc is an extension of the APFD metric which also considers the cost of a test,
which in our case is the test execution time, and also adds a notion of severity for each
fault [5, 24]. Let n be the number of test cases in the test suite, m the number of faults,
T; the position of the test that reveals fault i, ¢; the execution cost of test case j and f;
the severity of fault i, then the formula of the APFDc is given as [24]:

APFD. i (fi X (j=1, i — %tﬂ)) 52)
o Yicy ti X XLy fi '
For our evaluation we do not quantify the severity of faults, so we set all f; to 1.
For RQ3, we only utilize the open source projects as collecting the necessary execution

data from the industry project for the whole test suite proved to be too time consuming.

5.3.3. Collecting Evaluation Data

To evaluate the effectiveness of different TCP techniques, we automate the collection of
evaluation data using a Python script. This script systematically processes all commits
for a given Defects4] [9] project and performs TCP using all code models outlined in
Section 2.4 and the baselines from Subsection 5.3.1. Computations were performed
on a g2-standard-8 Google Cloud VM*. The evaluation for the Defects4] projects follows
these steps:

1. Checkout of Buggy Versions: Using the Defects4] executable’, we employ its
checkout® functionality to retrieve the buggy version of each commit locally. The
list of all bug IDs for a project is obtained via the query’” command.

“https://cloud.google.com/compute/docs/gpus#lé-gpus

Shttps://github.com/rjust/defectsd;j/blob/88c6225ee54c4fa0c7c00c50762333Fe64d1426f/
framework/bin/defects4j

®http://defectsdj.org/html_doc/d4j/d4j- checkout .html

"https://defects4j.org/html_doc/d4j/d4]-query.html

20

https://cloud.google.com/compute/docs/gpus#l4-gpus
https://github.com/rjust/defects4j/blob/88c6225ee54c4fa0c7c00c50762333fe64d1426f/framework/bin/defects4j
https://github.com/rjust/defects4j/blob/88c6225ee54c4fa0c7c00c50762333fe64d1426f/framework/bin/defects4j
http://defects4j.org/html_doc/d4j/d4j-checkout.html
https://defects4j.org/html_doc/d4j/d4j-query.html

5. Empirical Evaluation

2. Test Suite Prioritization Execution: A new Teamscale project is created for each
buggy commit revision. The script executes TCP on this revision using the selected
prioritization technique. The prioritized test suite and associated metadata are
stored in a JSON file.

3. Running Baseline Prioritization: After storing the initial TCP results, the base-
lines (Random, IR) are executed on the same revision. Their outputs, including
prioritized test orders and metadata, are similarly stored.

4. APFD Calculation: To compute the APFD, we use the Defects4] query function to
retrieve the triggering_tests attribute. This provides the set of failing test cases for
each buggy version, allowing us to measure how quickly faults are detected by
the different prioritization methods.

5. APFDc and Execution Time Data Collection: The checkout and test® functionalities
of Defects4] are used to run the full test suite. To extract execution times, the
defects4j.build.xml’ file is modified to generate a JUnit test report containing
timing information. The generated report is uploaded to Teamscale, making test
execution times accessible for all prioritization methods. This execution time data
is stored alongside the prioritized test suite results in the JSON files to be later
used in the APFDc calculation.

The evaluation on the industry project follows a similar pattern, with the exception
that all commits appear in the same repository and the failing tests are gathered from
the CI platform.

5.3.4. Dimensionality Reduction for Visualization

In order to showcase the information that is contained within embedding vectors for
our discussion Section 5.5, we can visualize each embedded element in a coordinate
system. To achieve this, we generate embeddings for the commit and code model in
question, normalize them using the L2 norm and use Uniform Manifold Approximation
and Projection (UMAP) [37], a novel dimensionality reduction technique, to reduce
the embedding vectors to two dimensions. This allows us to plot all embeddings
in a coordinate system, as shown in Figure 5.2. We use the implementation of the
python module umap-learn'® and plotly!! for the plot, for details see Figure A.2. UMAP

8https://defects4j.org/html_doc/d4j/d4j-test .html
Shttps://github.com/rjust/defectsdj/blob/88c6225ee54c4fa0c7c00c50762333Fe64d1426f/
framework/projects/defects4j.build.xml
Ohttps://umap-learn.readthedocs.io/en/latest/index.html
Hhttps://plotly.com/python/plotly-express/

21

https://defects4j.org/html_doc/d4j/d4j-test.html
https://github.com/rjust/defects4j/blob/88c6225ee54c4fa0c7c00c50762333fe64d1426f/framework/projects/defects4j.build.xml
https://github.com/rjust/defects4j/blob/88c6225ee54c4fa0c7c00c50762333fe64d1426f/framework/projects/defects4j.build.xml
https://umap-learn.readthedocs.io/en/latest/index.html
https://plotly.com/python/plotly-express/

5. Empirical Evaluation

attempts to keep both local and global structure from the higher dimensional data
into lower dimensions, making it a more adequate choice for our application than
other state of the art visualization techniques such as t-Distributed Stochastic Neighbor
Embedding (t-SNE) that loose the global structure [37, 38].

5.4. Results

Project ‘Random IR | CodeBERT CodeT5+ UniXcoder OpenAl CodeXEmbed

Chart 4997 9773 | 5111 94.93 91.3 98.19 98.15
Closure 4973 8222 | 6036 76.01 745 83.17 89.83
Jsoup 50.04 8866 | 5135 88.56 81.65 90.54 91.7
Lang 4979 98.02 | 5286 95.48 86.43 95.47 97.07
Math 4997 957 56.43 89.89 86.87 95.48 97

Mockito 4989 8351 | 6153 86.04 89.61 88.63 92.21
Time 4985 90.08 | 5323 88.33 76.77 90.67 91.83
Teamscale | 5261 8577 | 67.81 79.41 78.23 80.37 76.19
Average | 5023 9146 | 56.84 87.33 83.17 90.32 91.75

Table 5.2.: APFD results for the open source and industry projects, scaled to an interval
of [0,100]. The best performing method is highlighted in bold for each
project.

Table 5.2 showcases the APFD results over both the open source projects and the
industry project as well as an average APFD over all projects for the baselines and all
code models. The best performing TCP approach is highlighted in bold. The APFD
values were scaled to an interval of [0,100] and rounded to two decimal digits for
formatting and spacing purposes.

For every Defects4] project, we map all failures to one fault, meaning we assume
that all failing test cases are caused by the same bug. This is because all commits in
the Defects4] dataset were filtered down to contain only changes related to a single
bug and all failing tests are caused only by the fault [9]. For our APFD and APFDc
calculations (see Equation 5.1 and Equation 5.2 respectively), this means that m = 1 and
T; is the position of the first failing test. We discuss consequences of this approach in
Section 5.5 and Section 5.6. For the industry project, we assume each failure is caused
by a separate fault, as we do not filter out any code changes or failing tests and have
no information about the number of bugs that were introduced in a commit.

Figure 5.1 shows a plot for each TCP technique. The dots represent the APFD values
from Table 5.2 and the lines show the minimum and maximum range of APFD values

22

5. Empirical Evaluation

IR CodeBERT CodeT5+
1007%] I o O L Y A R
D I
[
A~ 50 8 50 |- 8 50 |- .
<
{“l sz %1&\1 ol el\el 0 PR o‘ ‘Z/‘\Q/l 0 &\‘1 erx %1&\1 ol e\el
S L8 & S & €
cgei%*‘if\u 7 SRV gx&«gy (%30%0%@%&&&«:;@
&@ &Q; &Q/
UniXcoder OpenAl CodeXEmbed
100 T T T 100fe F L LT 1007\3 T T 1T T 1 T 1]
(o
~ 50 s 50 - - 50 - -
<
0 \’l Ql% Il Il Il O \’l lQl%l Il Il Il Il \‘l quol Il Il Il
5 SUIRO L0 ¥ A RO ¥ RO RO @
\Q’o 00\;0 ’D\Qf&x o el 00\)@ ’0\9&\ & NG 0%0\)@ @\Q&} [
C/OQ%\% %Oc&e @,{6\% CJOQ%\% ioc&e (&6\% C/OO%\ %Oc&z’b'&%

Figure 5.1.: Mean APFD values (dots) with bars showing the min/max range of APFD
values achieved over the commits of each project.

that were achieved across the commits of each project. The random baseline was left out
of this figure as the variance of APFD values is between 0 and 100 as is to be expected
from such an approach.

Table 5.3 contains the APFDc values of the baselines and the two open source code
models that performed best in terms of APFD. Once again the APFDc values were
scaled to an interval of [0,100] and rounded to two decimal digits. The best performing
approach is highlighted in bold for each project.

In Table 5.4 we write down measured computation time results of all evaluated
approaches. The values were measured during the evaluation for RQ1 and include
the time it takes to gather the changed and test method source code as well as the
model loading time for the CETCP approaches. Computational performance was not
considered during the development of the prototype, so these results serve only to get
a general idea of how long each technique takes to generate a prioritized test suite. It is
also important to note that values depend strongly on the project, as the computation
time scales with the number and LoC of test cases in the project’s test suite.

23

5. Empirical Evaluation

Project ‘Random Time-Sort IR | CodeT5+ CodeXEmbed

Chart 50.26 87.96 94.41 95.17 96.62
Closure 49.95 75.98 87.12 82.91 92.92
Jsoup 49.97 80.49 90.65 90.02 93.67
Lang 50.12 96.61 99.27 98.17 98.63
Math 49.89 89.07 96.89 92.87 97.4
Mockito 49.66 84.96 90.97 88.27 95.43
Time 50.18 86.58 91.79 88.36 93.5
Average 50.00 85.95 93.01 \ 90.82 95.45

Table 5.3.: APFDc results for the open source projects, scaled to an interval of [0, 100].
The best performing method is highlighted in bold for each project.

Project IR CodeBERT CodeT5+ UniXcoder OpenAl CodeXEmbed

Chart 8.2 76.2 66.7 204.9 138 639.4
Closure 719 212.9 216.5 593.8 257 1635.2
Jsoup 2.6 16.9 16.1 41.7 12.2 117.9
Lang 17.6 55.9 51.8 138.2 31.5 623.7
Math 16.2 64.8 56.3 186.9 176.3 884.8
Mockito 28.1 25.8 23 103 15.1 202.8
Time 60.9 317.8 314.4 579.2 400.2 1547.2
Teamscale | 23.2 207.6 216.5 768.3 339.5 3085.8

Table 5.4.: Computation times in seconds for relevant TCP techniques across all projects,
rounded to one digit.

24

5. Empirical Evaluation

The random and time sort baselines were left out from Table 5.4 since their computation
times are negligibly small and are not the focus of this thesis.

5.5. Discussion

This section gives our interpretation and thoughts on the results showcased in Sec-
tion 5.4 as well as our answers to our research questions posed in Section 5.1.

5.5.1. RQ1: Best Code Model
Code Model Comparisons

When looking at the APFD results from Table 5.2 it becomes clear that newer models
outperform older models. E.g. CodeBERT [18], which is the oldest model examined
in this thesis, performs poorly and is not always able to convincingly outperform
the random baseline. From Figure 5.1 we can also see that the variance is between
[0,100], similar to that of a random baseline, showing that CodeBERT tends to regularly
struggle in extracting meaningful embeddings.

Newer but similarly sized models in terms of parameter count such as CodeT5+
[20] and UniXcoder [19] perform much better and are often closer to the IR baseline
and sometimes to the top performing code models. Still, neither of them performs the
best for any of the projects. Between these two models, CodeT5+ usually outperforms
UniXcoder, often by a large margin, sometimes even being close to the top performers
such as e.g. for the Defects4] [9] projects Jsoup, Lang and Time. This is most likely due to
the fact that CodeT5+ is a newer variation of the CodeT5 family, having been released a
year after UniXcoder, and that the variant we used in this thesis was specifically made
to generate code embeddings'?. Judging by the min/max bars from Figure 5.1, both
models show a similar variance in performance, albeit across different projects. Overall
between these two models, CodeT5+ [20] could be considered as an alternative to larger
or more expensive models, trading accuracy for model size and computation cost.

The two best performing models are OpenAl’s text-embedding-3-small and SFR-
Embedding-Code-2B_R from the CodeXembed [21] family. They consistently outperform
all other code models, albeit on a smaller margin for Defects4] projects Mockito and
Time. The superior performance of these models when compared to the other code
models can be attributed to two facts. The CodeXEmbed model is by far the largest
model in this lineup, with ~ 2.6 billion parameters compared to the other much smaller
open source models, which have a parameter count in the neighbourhood of ~ 120

2https://huggingface.co/Salesforce/codet5p-110m-embedding

25

https://huggingface.co/Salesforce/codet5p-110m-embedding

5. Empirical Evaluation

million. A larger parameter count has been found to generally lead to increased per-
formance [39]. Additionally, CodeXEmbed was designed with retrieval tasks in mind,
including code-to-code retrieval. The CodeXEmbed model we used is the 2B variant,
however a larger version with ~ 7 billion parameters exists'> which performs slightly
better than the 2B variant in the evaluation performed by Liu et al. [21]. This larger
variant comes at the cost of taking much more GPU memory and producing bigger
embedding vectors, further increasing computational cost. We opted for the 2B variant
as a compromise between accuracy and computational efficiency (see Section 2.4 for
details).

For the closed source OpenAl embedding model we can make no definitive con-
clusions as to why it performs better, as we have no details about the model such as
its architecture or parameter count. The only available publications about OpenAl’s
embedding models we could find at the time of writing is their research on the usage
of contrastive pre-training by Neelakantan et al. [40], however that paper related to a
previous version of the embedding models and it is unclear what changes were made to
the newer iterations. It should be noted that another embedding variant exists, namely
OpenAl’s text-embedding-3-large, which performs slightly better on natural language
benchmarks than the smaller variant used in this thesis, according to OpenAl’s own in-
ternal research!4. We chose the smaller variant in this thesis due to it being significantly
cheaper.

Most code models perform better on the Defects4] projects than on the industry
project. One reason for this is that the buggy commits in the Defects4] projects contain
only changes that are related to the fault [9], whereas the industry projects contains
unfiltered changes. This removes a lot of noise and irrelevant information from the
change data, making it easier to focus on the relevant code changes and find suitable
test cases. Indeed, the best performing code models CodeXEmbed [21] and the OpenAl
embedding model achieve extremely high APFD values on Defects4] project like Chart,
Lang and Math. The performance is so good on these projects that it would be difficult
to measure any general improvements of an approach, possibly making these projects
less adequate for future evaluations. We discuss this issue further in Section 5.6 and
Section 6.2. Looking at Figure 5.1 we also notice that projects with many bug ids tend
to showcase a larger variance in performance, such as for the projects Closure and
Jsoup. This suggests that, to obtain more generalizable results, the number of evaluated
commits per project is a more important metric and should be prioritized over simply
including a large number of projects, especially since entire projects such as Chart and
Lang can offer limited interpretive value.

Bhttps://huggingface.co/Salesforce/SFR-Embedding-Mistral
4https://openai.com/index/new-embedding-models-and-api-updates/

26

https://huggingface.co/Salesforce/SFR-Embedding-Mistral
https://openai.com/index/new-embedding-models-and-api-updates/

5. Empirical Evaluation

In conclusion for RQ1, the best performing open source model out of the ones we
evaluated is the 2B variant of the CodeXEmbed [21] family, with the closed source
OpenAl embedding model performing almost as good. However the most appropriate
code model can depend on the use case. If the model should be self-hosted, e.g. due to
privacy issues, then the CodeXEmbed or CodeT5+ [20] models are the most suitable.
The CodeXEmbed model is quite large, with ~ 2.6B parameters at 32 bits per parameter,
it takes up about 10 GB of GPU memory. Users may choose to load the model at lower
precisions (8 or 16 bit), which significantly reduces the memory requirements but
still makes the loaded model quite large. The CodeT5+ model has a much smaller
memory footprint while still maintaining reasonably good performance. If privacy is
not an issue, then the OpenAl text-embedding-3 variants make for a computationally
faster solution without sacrificing accuracy, albeit with the downside of having to pay
depending on the amount of embedded tokens'.

Performance Breakdown on Industry Commits

To gain a better understanding on why some code models perform better or worse
on certain projects, we take a closer look at a small subset of commits. For Teamscale,
we first look at the worst performing commit in terms of APFD for the CodeXEmbed
model. CodeXEmbed achieved an APFD of only 5.47 for the commit in question. Since
Teamscale is a closed source industry project, we cannot share direct code snippets.
However, it is possible to share anonymized information such as a visualization of the
embeddings. Dimensionality reduction and the visualization of embedding vectors is
performed as outlined in Subsection 5.3.4 and the result for this commit can be seen in
Figure 5.2. Since UMAP keeps both local and global structure, we can draw conclusions
from local neighbourhoods we find in the visualized data as well as the global distances
of elements.

The commit contained changes to various generic type-parameterized getter methods
inside an index class in the persistent storage module. These methods are used in many
different places throughout the project and don’t contain a lot of useful information
in their definition on the context they might be used in, which can be seen by the fact
that they do not seem to belong to any distinct cluster or group of test methods in
the visualization of Figure 5.2. Furthermore, the failing test case is an end-to-end Ul
test. The group of tests surrounding it are all end-to-end tests that test a Ul component
which allows the user to create and change which rules and checks should be used for
the project being monitored with Teamscale. The failing test performs a set of UI actions
to make changes to a setting and saves these changes. The only connection to any
method relating to persistence is hidden behind a helper method in the superclass that

https://platform.openai.com/docs/guides/embeddings/#embedding-models

27

https://platform.openai.com/docs/guides/embeddings/#embedding-models

5. Empirical Evaluation

Figure 5.2.: A visualization of CodeXEmbed embeddings for a Teamscale test suite
using UMAP as a reduction technique. The dots represent Test Methods,
and Failing Tests. Arrows highlight the changed

code and failing test elements

is invoked inside the test, meaning no actual reference to any of the changed methods
is made. These references would also be hidden behind different layers of abstraction,
since the test is written to interact with the frontend, whereas the changed code is in
the backend. Teamscale uses the PageObject pattern'®, where pages of a website are
represented as Java objects which offer methods to perform UI actions. This introduces
another layer of abstraction, since many low level method calls are now hidden inside
multiple helper methods. While it has many advantages for maintainability and code
reusability [41], it also makes it increasingly difficult to gather semantic information
about a test case using only its immediate source code. This is an inherent problem
that large projects with an intricate architecture are bound to encounter. While adding
additional context can alleviate this issue, it is difficult to predict which information
has to be added since the failing tests are not known beforehand in a real application
scenario.

To also give an opposing example, we pick the best performing commit for CodeXEm-
bed on Teamscale, which achieved an APFD of 99.99. The code changes in this commit
related to a method that determines the binary size of an object and was part of a utility
class. The failing test case creates such an object and then checks various attributes,

1ohttps://martinfowler.com/bliki/PageObject.html

28

https://martinfowler.com/bliki/PageObject.html

5. Empirical Evaluation

among them the binary size. In this case, the relation between code change and failing
test is much more immediate, which can be confirmed by looking at the embedding
plot of the CodeXEmbed model shown in Figure 5.3. This commit contained none of

Figure 5.3.: A visualization of CodeXEmbed embeddings for a Teamscale test suite
using UMAP as a reduction technique. The dots represent Test Methods,
and Failing Tests. The arrows highlights the

changed code and failing test elements

the difficulties of the worst performing commit, namely the changes and failing test
did not belong to different layers, the test case had less nested helper functions and
there was a more direct correlation between the changed code method identifiers and
the failing test method.

5.5.2. RQ2: IR vs Code Models

When comparing the APFD values of the IR baseline to the best performing code model
CodeXEmbed in Table 5.2, we see that CodeXEmbed outperforms the baseline in most
projects. The only other code model that is able to achieve higher APFD values than
IR is OpenAl’s embedding model. However, the difference in APFD between the code
models and the baseline is sometimes very small, such as e.g. for projects Chart, Lang
and Time. Only the industry project stands out in this regard, with the IR baseline
performing well and better than the code models, especially CodeXEmbed. A possible
explanation for this is that the Apache Lucene implementation collects more context

29

5. Empirical Evaluation

information such as the surrounding class declaration, which can help with heavily
nested code as is the case for the industry project.

To assess whether the differences between the IR baseline and the code models
are statistically significant, we perform two Wilcoxon signed-rank tests comparing
IR with the two best-performing models, namely the OpenAl embedding model and
CodeXEmbed. The Wilcoxon signed-rank test is a non-parametric test used to compare
two related samples, without assuming a normal distribution [42]. This makes it
well-suited for our APFD data, which is collected across multiple projects and may not
be normally distributed. The test outputs a p-value, which indicates the probability
of observing the measured difference between the approaches if there were no true
underlying performance difference. A low p-value (typically below 0.05) suggests that
the difference is statistically significant. By applying this test, we can evaluate whether
the improvements of CodeXEmbed and the OpenAl embedding model over the IR
baseline are meaningful. We implement the test using the Python library SciPy'”.

The result of the Wilcoxon signed-rank test between the IR baseline and the CodeX-
Embed results is p = 0.3125 and p = 0.7422 for the IR and OpenAl embedding model.
Both values are well above the p = 0.05 threshold commonly required for statistical
significance [42]. Therefore we conclude for RQ2 that we were not able to measure a
statistically relevant improvement from our CETCP approaches to a BM25 based IR
baseline based on APFD.

5.5.3. RQ3: Impact of Execution Data

A purely execution time based prioritization strategy has been found to be a strong
baseline, especially when evaluating with a cost aware metric such as APFDc [8, 29].
To determine whether code embeddings can improve upon such a baseline, we use
the APFDc values from Table 5.3. Looking at the APFDc values per TCP approach, we
notice that CodeXEmbed performs very good across all of the Defects4] [9] dataset,
with the lowest APFDc value being 92.92. It is also the best performing approach for
all projects except for Lang, where the IR baseline is the best with an extremely high
APFDc of 99.27. However, all approaches seem to achieve good APFDc performance on
this project since even the TimeSort baseline has an APFDc of 96.61. This suggests that
most failures in this project occur mainly in unit tests with extremely low execution
times. Indeed, many of the tests of the Lang project had a recorded execution time of 0
milliseconds because they were too quick for the test framework to measure. Every test
with such an execution time can be seen as free since they have a cost of 0 in the APFDc
calculation. However, this is rather an exception in the dataset. The TimeSort baseline
can be seen as an indicator for this phenomenon, as a high APFDc score would indicate

7https://docs.scipy.org/doc/scipy/reference/stats.html

30

https://docs.scipy.org/doc/scipy/reference/stats.html

5. Empirical Evaluation

sorting tests by execution time is enough to almost immediately find all failures. We
use the Closure project as an opposing example to this, where the TimeSort baseline
performs comparatively poor as opposed to the CodeXEmbed approach, which still
achieves a good APFDc value. In this project, the test suite is much larger with more
longer running tests and less test cases that have a recorded execution time of 0.

As introduced in Subsection 5.5.2, we perform another set of Wilcoxon signed
rank tests. The results of this statistical test is p = 0.0156 for the comparison of the
TimeSort baseline and the CodeXEmbed model. Since the value is well below the
p = 0.05 significance level, we can confidently reject the null hypothesis that the
median difference in performance is not significant. Therefore we can conclude that
the embeddings of the CodeXEmbed model add significant value to the execution time
information. When comparing the IR to CodeXEmbed, we get p = 0.0469 which, while
barely below the significance level, allows us to reject the null hypothesis again. In
contrast to the result of Subsection 5.5.2, we can therefore conclude that our CETCP
approach with the CodeXEmbed model is able to outperform the IR baseline when
using the execution time as a cost metric. One possible reason for this general trend
is that, while BM25 has hyperparameters to control term saturation and document
length normalization as explained in Section 2.3, the IR approach will inevitable tend to
prioritize tests that are larger in terms of LoC, since these tests contain many different
terms and are therefore counted as relevant for a much larger spectrum of queries.
Longer test methods can tend to have longer execution times, although this is not
universally the case. Code models do not suffer from this issue, since they do not work
on the basis of term frequency. A tuning of hyperparameters k; and b (see Equation 2.2)
could combat this issue but they would most likely not be able to completely get rid of
this problem

For Table 5.3, it is also important to note that the APFDc values did not include the
industry project, as collecting this data was not feasible in our time frame. Since the
IR baseline outperformed the CodeXEmbed model on Teamscale in terms of APFD, it
might have also done so in terms of APFDc which could influence the outcome of the
statistical test. More evaluations on industry projects would be required to conclusively
examine this, which we also mention in Section 6.2.

5.5.4. RQ4: Computation Time Comparison

When looking at Table 5.4 it is immediately noticeable that IR is quicker by a large
margin than all code model approaches. This is no surprise, as the IR approach uses the
open source library Lucene'8, which as a project of the Apache Foundation'® that has been

18https://lucene.apache.org/
Phttps://www.apache.org/

31

https://lucene.apache.org/
https://www.apache.org/

5. Empirical Evaluation

worked on and refined for many years and is still actively maintained. Considerable
research?’ and thought has gone into performance optimization, among other areas.

Comparing the computation times between the various code models, we notice that
for CodeBERT [18], CodeT5+ [20] and UniXcoder [19] there is no clear correlation
between model size or performance and computation time. All models have a similar
parameter count (see Table 2.1 for reference) yet UniXcoder runs for significantly longer
than both CodeBERT and CodeT5+. CodeT5+, despite being the best performing
model out of those three in terms of APFD, is the fastest one. The OpenAl embedding
variant we used is also very fast. However, since the model is closed source, we can
only speculate that this performance is likely due to the use of highly optimized,
computationally powerful servers handling the API requests. The CodeXEmbed [21]
model is the slowest one by often a huge margin, which can be most likely traced back
to its large parameter count and to the fact that we load the model into memory for
each request, and do so with a full precision of 32 bit per parameter.

Improvements in this regard can be achieved by two ways. Firstly, the model has to
only be loaded once and can be reused for concurrent requests, regardless of the project
or commit chosen. We loaded the model on each new request due to implementation
details, as we had to regularly switch between different models in the implementation
and evaluation phase. In addition to this, most of the models support being loaded
with a lower precision, 16,8 or even 4 bit per parameter through a process known
as quantization [43]. This way, the smaller model can be loaded faster, takes up less
memory and the inference takes less time [43], i.e. the embeddings are generated
quicker. Of course, this lowered precision leads to a degradation in accuracy, however
most often a reduction to 16 and even 8 bits doesn’t have particularly noticeable effects
[39, 43].

The second source for optimization is batching, a practice where multiple inputs are
placed into a multidimensional vector and given as input to the LLM. This utilizes GPU
memory more efficiently and limits unnecessary copying of data between different
memory sections or caches [16, 44].

5.6. Threats to Validity

In this section, we discuss potential threats to the validity of our evaluation and the
steps taken to mitigate them. We differentiate between internal and external threats to
validity.

Ohttps://cwiki.apache.org/confluence/display/lucene/LucenePapers

32

https://cwiki.apache.org/confluence/display/lucene/LucenePapers

5. Empirical Evaluation

5.6.1. Internal Threats

Internal validity concerns factors that could affect the correctness of our results and
conclusions. One potential threat is the implementation of the TCP techniques and
their evaluation. Errors in the experimental setup, such as incorrect processing of
test execution results or incorrect implementation of the prioritization logic, could
influence our results. To mitigate this, we base parts of our approach on an already
proposed technique by Mattis et al. [34] and we ensure that all baselines and the CETCP
approach are executed using the same automated pipeline, reducing the likelihood
of inconsistencies. For processing of change and execution data, we use Teamscale, a
software quality tool that has been developed and refined for a long time and sees a lot
of commercial use by different companies®!.

Another internal threat is the use of Defects4] as an evaluation dataset. Defects4]
isolates bug-related changes, meaning that test cases are only evaluated on controlled
modifications rather than full-scale, real-world software changes [9]. While this setup
may not capture all complexities of real projects, it ensures that our prototype can focus
specifically on the fault inducing changes rather than unrelated changes. It is useful
for an initial baseline performance evaluation, so that core issues in the prioritization
approach can be detected in the early stages of the prototype. If a TCP technique fails to
correlate code changes to test cases on a filtered dataset like Defects4], it is unlikely to
perform any better on real unadjusted projects. Additionally, Defects4] is widely used
in the research community, making it a reasonable benchmark for empirical evaluation
and ensuring the reproducibility of our results.

5.6.2. External Threats

External validity concerns the generalizability of our findings beyond the specific
datasets and settings used in this study. One key threat is that Defects4] may not fully
represent the challenges of real-world software development, where code changes are
often larger and contain non-bug-related modifications (e.g. refactorings or documen-
tation updates). To address this, we complement our evaluation with a large-scale
industry project, where test cases are prioritized without any pre-filtering of changes.
This additional dataset helps assess the effectiveness of CETCP in a more realistic
environment.

Another external threat is that our results depend on the specific test suites and
fault characteristics of the evaluated projects. Different software systems may have
varying fault distributions and test suite behaviors, possibly affecting how well CETCP
generalizes to other domains. However, by evaluating multiple projects from Defects4]

Zlhttps://teamscale. com/updates-and-publications

33

https://teamscale.com/updates-and-publications

5. Empirical Evaluation

as well as an industry-scale project, we aim to provide a broader understanding of the
approach’s performance. As with any empirical evaluation, the generalizability of our
results is not guaranteed since the possible combinations of programming languages,
frameworks and testing methodologies is too vast to cover at once [45]. While in this
research we only focused on tests written in Java, we tried to diversify our testing
data by using industry as well as open source projects of varying sizes and application
domains. Further empirical results for different projects and programming languages
would be required to improve on this. Practical options for this are given in Section 6.2.

34

6. Future Work

This chapter contains ideas for future work that could be done based on our implemen-
tation and evaluation results.

6.1. Expanding the Implementation

One key area for future work is improving the quality of code embeddings used for test
case prioritization. Currently, we rely on pre-trained models, but fine-tuning encoder
models on more specialized datasets could improve their ability to extract information
from code for the purpose of similarity calculations. Although code similarity isn’t
a typical downstream task and creating a dataset for it is an inherently difficult task
[40], datasets for related tasks such as code search or clone detection could be used.
Alternatively, a code similarity dataset could be created by selecting a subset of entries
from a larger source code dataset such as CodeNet [46], similar to what Guo et al. did
for UniXcoder [19] in their published fine-tuning code!.

Furthermore, our study is limited to specific embedding models. Future work could
explore new code models as well as the larger versions of OpenAl’s embedding model
or CodeXEmbed mentioned in Subsection 5.5.1, which may provide better embedding
representations at the cost of increased computational overhead.

Another important aspect is computational performance optimization. The current
approach processes test cases sequentially, and prioritization can become computa-
tionally expensive for large test suites. Potential improvements include batching to
allow parallel processing of multiple test cases and quantization methods to reduce the
memory and computation cost of embedding models. Applying these optimizations
would make CETCP more scalable, particularly for large-scale industry projects.

Besides improving the code embeddings, the source code collection and prioritization
process, outlined in Section 4.1 and Section 4.3 respectively, can also be improved. More
context, such as the surrounding class definition or the inclusion of helper methods,
could add further information to the embeddings of both the changed methods and test
methods. This could help bridge contextual gaps created by programming patterns and

Ihttps://github.com/microsoft/CodeBERT/tree/cOde43d3aaf38e89290f 1efb771£8de845e7a489/
UniXcoder/downstream-tasks/zero-shot-search

35

https://github.com/microsoft/CodeBERT/tree/c0de43d3aaf38e89290f1efb771f8de845e7a489/UniXcoder/downstream-tasks/zero-shot-search
https://github.com/microsoft/CodeBERT/tree/c0de43d3aaf38e89290f1efb771f8de845e7a489/UniXcoder/downstream-tasks/zero-shot-search

6. Future Work

encapsulation, however care has to be put into choosing the right amount of context
to add, as many code models have a token input length limit. Next, the prioritization
approach, which follows a round robin principle, could be adapted to the changes that
are being evaluated. One example for this would be to assign different weights and
importance to each change bucket, e.g. determined by its size in LoC. This way, more
tests relating to larger changed methods will be prioritized earlier than tests relating
to shorter methods such as e.g. getter or setter functions, where the former would
presumably have a higher risk of introducing faults.

6.2. Expanding the Evaluation

The evaluation in this thesis is primarily based on Defects4] [9] and the industry project
Teamscale. While these datasets provide valuable information, expanding the evaluation
would improve the generalizability of our results.

One immediate extension is to consider more projects from Defects4] to increase the
diversity of software systems used in the evaluation. Additionally, datasets such as
Bugs.jar [47] could provide access to a broader range of real-world defects and test
failures, allowing us to validate CETCP’s performance on a more diverse set of software
projects. These datasets need to fulfill certain criteria in order to be applicable to our
type of research, namely there have to be fault-inducing code changes, at least one
failure and ideally some filtering of flaky failures. We found other datasets such as
Bugswarm [48] which have a similar structure do Defects4] [9], however we concluded
that it lacked enough projects with multiple commits that fit our criteria.

Beyond open-source datasets, increasing the number of industry projects in the
evaluation would provide better insights into CETCP’s practical applicability, especially
given the fact that the code models underperformed on the industry project compared
to the IR baseline. Industry projects often contain different testing and development
practices, larger test suites, and more complex failure patterns, which makes them
an essential component of any benchmark for real-world applicability. Furthermore,
industry projects regularly have test suites that take hours or even days to complete [1],
making the issue of TSO all the more relevant.

36

7. Conclusions

In this thesis, we investigated the use of code embeddings for TCP as an alternative to
traditional IR and coverage-based approaches. We developed a prototype implementa-
tion of CETCP, which ranks test cases based on their similarity to code modifications
using vectorized representations from pre-trained code models. To evaluate CETCP, we
applied it both with and without the inclusion of test execution data. In the evaluation
we compared our approach against three baselines: random ordering, a traditional IR
method using BM25, and an execution time-based sorting strategy.

To assess the effectiveness of CETCP, we conducted an empirical study on both
Defects4] [9], a widely used benchmark dataset, and Teamscale, a large-scale industry
project. The evaluation measured performance using APFD and APFDc to analyze
fault detection efficiency and the impact of execution time.

Our findings show that larger pre-trained code models, such as CodeXEmbed [21],
perform better than smaller models in the context of TCP. However, despite this
performance, we found no statistically significant advantage of code embeddings over
the BM25-based IR baseline when relying only on the generated embeddings and not
considering the execution costs of tests. This suggests that while code embeddings
are able to capture meaningful semantic information, their advantage in TCP remains
limited compared to more established and polished IR techniques.

When incorporating test execution times into the prioritization process, CodeXEmbed
significantly outperformed both the BM25-based IR and TimeSort baselines in terms of
APFDc, as confirmed by a Wilcoxon signed-rank test. This indicates that prioritization
based on code model embeddings may be particularly beneficial in environments where
test execution time is an important factor, such as for large projects with longer running
test suites.

These results highlight the potential of embedding-based approaches for TCP but also
show the need for further improvements. Future work could explore larger models or
attempt to improve the performance of pre-trained models through fine-tuning and by
providing more context to the code models. Additionally, expanding the evaluation to
larger and more diverse datasets could provide deeper insights into the generalizability
of embedding-based TCP methods.

Overall, this thesis contributes to the ongoing research on machine learning-based
software testing and provides a comprehensive evaluation of code embedding ap-

37

7. Conclusions

proaches in the context of TCP. While our initial prototype and its results do not
immediately demonstrate a clear and decisive advantage over IR-based methods, they

provide a foundation for future research into the role of code models in test prioritiza-
tion.

38

A. Code Snippets

A.1. CodeXEmbed

10

11
12
13

14
15
16

def get_detailed_instruct(task_description: str, query: str) -> str:
return f'Instruct: {task_description}\nQuery: {query}'

class CustomCodeXEmbedModel2B(base_model.__class__):
def __init__(self, *args, **kwargs):

super () .__init__(*args, *xkwargs)

def encode_queries(self, queries: List[str], batch_size: int = 12,

max_length: int = 1024, **kwargs) -> np.ndarray:

task_description = "Given Code or Text, retrieve relevant

— content."

all_queries = [get_detailed_instruct(task_description, query) for
— query in queries]

return self.encode_text(all_queries, batch_size, max_length)

def encode_corpus(self, corpus: List[Dict[str, str]], batch_size: int

= 12, max_length: int = 1024, **kwargs) -> np.ndarray:
all_texts = [doc["title"] + " " + doc["text"] for doc in corpus]
return self.encode_text(all_texts, batch_size, max_length)

Figure A.1.: Code Snippet showing how queries and the corpus are structured for the

embeddings generation of SFR-Embedding-Code-2B_R. Taken and adjusted
from https://huggingface.co/Salesforce/SFR-Embedding-Code-2B_R/
discussions/9#67a10598ce3af048c276787b

39

https://huggingface.co/Salesforce/SFR-Embedding-Code-2B_R/discussions/9#67a10598ce3af048c276787b
https://huggingface.co/Salesforce/SFR-Embedding-Code-2B_R/discussions/9#67a10598ce3af048c276787b

A. Code Snippets

A.2. UMAP Dimensionality Reduction

1 from sklearn.preprocessing import normalize
2 import umap.umap_ as umap

4 def get_reduced_embeddings(embeddings: np.array, n_components=2):

5 normalized_embeddings = normalize(embeddings, norm='12', axis=1)

6 reducer = umap.UMAP(n_components=n_components, n_neighbors=15,
< min_dist=0.1, metric='cosine', random_state=42)

7 return reducer.fit_transform(normalized_embeddings)

Figure A.2.: Code Snippet showing the dimensionality reduction parameters for UMAP

40

Bibliography

5]

S. Amann and E. Jiirgens, “Change-Driven Testing,” in The Future of Software
Quality Assurance, S. Goericke, Ed., Springer Verlag, 2019, ch. 1.

K. Herzig, “Testing and continuous integration at scale: Limits, costs, and expec-
tations,” in Proceedings of the 11th International Workshop on Search-Based Software
Testing, ser. SBST 18, Gothenburg, Sweden: Association for Computing Machinery,
2018, p. 38, 1sBN: 9781450357418. DO1: 10.1145/3194718.3194731.

R. Kazmi, D. N. A. Jawawi, R. Mohamad, and I. Ghani, “Effective regression test
case selection: A systematic literature review,” ACM Comput. Surv., vol. 50, no. 2,
May 2017, 1ssN: 0360-0300. po1: 10.1145/3057269.

B. Miranda, E. Cruciani, R. Verdecchia, and A. Bertolino, “Fast approaches
to scalable similarity-based test case prioritization,” in Proceedings of the 40th
International Conference on Software Engineering, ser. ICSE "18, Gothenburg, Sweden:
Association for Computing Machinery, 2018, pp. 222-232, 1sBN: 9781450356381.
DOI: 10.1145/3180155.3180210.

R. Mukherjee and K. S. Patnaik, “A survey on different approaches for software
test case prioritization,” Journal of King Saud University - Computer and Information
Sciences, vol. 33, no. 9, pp. 1041-1054, 2021, 1ssN: 1319-1578. po1: https://doi.
org/10.1016/3 . jksuci.2018.09.005.

H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and G. Rothermel, “A static
approach to prioritizing junit test cases,” IEEE Transactions on Software Engineering,
vol. 38, no. 6, pp. 1258-1275, 2012. por: 10.1109/TSE.2011.106.

E. Cruciani, B. Miranda, R. Verdecchia, and A. Bertolino, “Scalable approaches for
test suite reduction,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), 2019, pp. 419-429. por: 10.1109/ICSE.2019.00055.

J. Chen, Y. Lou, L. Zhang, J. Zhou, X. Wang, D. Hao, and L. Zhang, “Optimiz-
ing test prioritization via test distribution analysis,” in Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, ser. ESEC/FSE 2018, Lake Buena
Vista, FL, USA: Association for Computing Machinery, 2018, pp. 656-667, ISBN:
9781450355735. po1: 10.1145/3236024.3236053.

41

https://doi.org/10.1145/3194718.3194731
https://doi.org/10.1145/3057269
https://doi.org/10.1145/3180155.3180210
https://doi.org/https://doi.org/10.1016/j.jksuci.2018.09.005
https://doi.org/https://doi.org/10.1016/j.jksuci.2018.09.005
https://doi.org/10.1109/TSE.2011.106
https://doi.org/10.1109/ICSE.2019.00055
https://doi.org/10.1145/3236024.3236053

Bibliography

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing faults to
enable controlled testing studies for java programs,” in Proceedings of the 2014
International Symposium on Software Testing and Analysis, ser. ISSTA 2014, San
Jose, CA, USA: Association for Computing Machinery, 2014, pp. 437-440, 1sBN:
9781450326452. por: 10.1145/2610384.2628055.

C. D. Manning, P. Raghavan, and H. Schiitze, Introduction to Information Retrieval.
Cambridge University Press, 2008.

K. Hambarde and H. Proenga, “Information retrieval: Recent advances and
beyond,” IEEE Access, vol. PP, pp. 1-1, Jan. 2023. por: 10.1109/ACCESS . 2023.
3295776.

Y. Wan, W. Zhao, H. Zhang, Y. Sui, G. Xu, and H. Jin, “What do they capture? a
structural analysis of pre-trained language models for source code,” in Proceedings
of the 44th International Conference on Software Engineering, ser. ICSE '22, Pittsburgh,
Pennsylvania: Association for Computing Machinery, 2022, pp. 2377-2388, ISBN:
9781450392211. por: 10.1145/3510003.3510050.

B. Thi-Mai-Anh and N. Nhat-Hai, “On the value of code embedding and im-
balanced learning approaches for software defect prediction,” in Proceedings of
the 12th International Symposium on Information and Communication Technology,
ser. SOICT 23, Ho Chi Minh, Vietnam: Association for Computing Machinery,
2023, pp. 510-516, 1sBN: 9798400708916. DO1: 10.1145/3628797 . 3628963.

S. Kotsiantis, V. Verykios, and M. Tzagarakis, “Ai-assisted programming tasks
using code embeddings and transformers,” Electronics, vol. 13, no. 4, 2024, 1sSN:
2079-9292. por: 10.3390/electronics13040767.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.
Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings of the 31st
International Conference on Neural Information Processing Systems, ser. NIPS’17,
Long Beach, California, USA: Curran Associates Inc., 2017, pp. 6000-6010, 1sBN:
9781510860964.

B. Fu, F. Chen, P. Li, and D. Zeng, “Tcb: Accelerating transformer inference ser-
vices with request concatenation,” in Proceedings of the 51st International Conference
on Parallel Processing, ser. ICPP "22, Bordeaux, France: Association for Computing
Machinery, 2023, 1sBN: 9781450397339. por: 10.1145/3545008.3545052.

Y. Zhao, L. Gong, H. Zhang, Y. Yu, and Z. Huang, “How to get better embeddings
with code pre-trained models? an empirical study,” 2023. por: https://doi.org/
10.48550/arXiv.2311.08066. arXiv: 2311.08066 [cs.SE].

42

https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1109/ACCESS.2023.3295776
https://doi.org/10.1109/ACCESS.2023.3295776
https://doi.org/10.1145/3510003.3510050
https://doi.org/10.1145/3628797.3628963
https://doi.org/10.3390/electronics13040767
https://doi.org/10.1145/3545008.3545052
https://doi.org/https://doi.org/10.48550/arXiv.2311.08066
https://doi.org/https://doi.org/10.48550/arXiv.2311.08066
https://arxiv.org/abs/2311.08066

Bibliography

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu,
D. Jiang, and M. Zhou, “Codebert: A pre-trained model for programming and
natural languages,” 2020. arXiv: 2002.08155 [cs.CL].

D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and]. Yin, “Unixcoder: Unified
cross-modal pre-training for code representation,” arXiv preprint arXiv:2203.03850,
2022.

Y. Wang, H. Le, A. D. Gotmare, N. D. Q. Bui, J. Li, and S. C. H. Hoi, “Codet5+:
Open code large language models for code understanding and generation,” 2023.
arXiv: 2305.07922 [cs.CL].

Y. Liu, R. Meng, S. Joty, S. Savarese, C. Xiong, Y. Zhou, and S. Yavuz, “Codexem-
bed: A generalist embedding model family for multiligual and multi-task code
retrieval,” 2024. arXiv: 2411.12644 [cs.SE].

G. Team, T. Mesnard, C. Hardin, et al., “Gemma: Open models based on gemini
research and technology,” 2024. arXiv: 2403.08295 [cs.CL].

A. Kusupati, G. Bhatt, A. Rege, M. Wallingford, A. Sinha, V. Ramanujan, W.
Howard-Snyder, K. Chen, S. Kakade, P. Jain, and A. Farhadi, “Matryoshka repre-
sentation learning,” 2024. arXiv: 2205.13147 [cs.LG].

S. Yoo and M. Harman, “Regression testing minimization, selection and prioriti-
zation: A survey,” Softw. Test. Verif. Reliab., vol. 22, no. 2, pp. 67-120, Mar. 2012,
1ssN: 0960-0833. por: 10.1002/stv.430.

S. Eder, B. Hauptmann, M. Junker, E. Juergens, R. Vaas, and K.-H. Prommer,
“Did we test our changes? assessing alignment between tests and development in
practice,” in 2013 8th International Workshop on Automation of Software Test (AST),
2013, pp. 107-110. por: 10.1109/IWAST.2013.6595800.

D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche, “Coverage-based test
case prioritisation: An industrial case study,” in 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation, 2013, pp. 302-311. por:
10.1109/ICST.2013.27.

G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Prioritizing test cases for
regression testing,” IEEE Transactions on Software Engineering, vol. 27, no. 10,
pp- 929-948, 2001. por: 10.1109/32.962562.

R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry, “An information retrieval
approach for regression test prioritization based on program changes,” in 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, vol. 1, 2015,
pp. 268-279. por: 10.1109/ICSE.2015.47.

43

https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/2411.12644
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2205.13147
https://doi.org/10.1002/stv.430
https://doi.org/10.1109/IWAST.2013.6595800
https://doi.org/10.1109/ICST.2013.27
https://doi.org/10.1109/32.962562
https://doi.org/10.1109/ICSE.2015.47

Bibliography

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Q. Peng, A. Shi, and L. Zhang, “Empirically revisiting and enhancing ir-based
test-case prioritization,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2020, Virtual Event, USA:
Association for Computing Machinery, 2020, pp. 324-336, 1sBN: 9781450380089.
DOI: 10.1145/3395363.3397383.

R. Pan, M. Bagherzadeh, T. A. Ghaleb, and L. Briand, “Test case selection and
prioritization using machine learning: A systematic literature review,” Empirical
Software Engineering, vol. 27, no. 2, Dec. 2021, 1ssN: 1573-7616. por: 10 . 1007/
s10664-021-10066-6.

A. Bajaj and O. P. Sangwan, “A systematic literature review of test case prioritiza-
tion using genetic algorithms,” IEEE Access, vol. 7, pp. 126 355-126 375, 2019. por:
10.1109/ACCESS.2019.2938260.

H. Huynh, N. Pham, T. N. Nguyen, and V. Nguyen, “Segment-based test case pri-
oritization: A multi-objective approach,” in Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA "24, ACM, Sep.
2024, pp. 1149-1160. po1: 10.1145/3650212.3680349.

Y. Yang, L. Wang, N. Cha, and H. Li, “A test case prioritization based on genetic
algorithm with ant colony and reinforcement learning improvement,” in 2023
IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC),
2023,pp.1588—1593.DOI:10.1109/COMPSAC57700.2023.00245.

T. Mattis, L. Bohme, E. Krebs, M. C. Rinard, and R. Hirschfeld, “Faster feedback
with ai? a test prioritization study,” in Companion Proceedings of the 8th International
Conference on the Art, Science, and Engineering of Programming, ser. Programming
24, Lund, Sweden: Association for Computing Machinery, 2024, pp. 3240, 1sBN:
9798400706349. por1: 10.1145/3660829.3660837.

F. F Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic evaluation
of large language models of code,” in Proceedings of the 6th ACM SIGPLAN
International Symposium on Machine Programming, ser. MAPS 2022, San Diego, CA,
USA: Association for Computing Machinery, 2022, pp. 1-10, 1sBN: 9781450392730.
DOIL: 10.1145/3520312.3534862.

X. Li, K. Dong, Y. Q. Lee, W. Xia, Y. Yin, H. Zhang, Y. Liu, Y. Wang, and R. Tang,
“Coir: A comprehensive benchmark for code information retrieval models,” 2024.
arXiv: 2407.02883 [cs.IR].

L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold approximation
and projection for dimension reduction,” 2020. arXiv: 1802.03426 [stat.ML].

44

https://doi.org/10.1145/3395363.3397383
https://doi.org/10.1007/s10664-021-10066-6
https://doi.org/10.1007/s10664-021-10066-6
https://doi.org/10.1109/ACCESS.2019.2938260
https://doi.org/10.1145/3650212.3680349
https://doi.org/10.1109/COMPSAC57700.2023.00245
https://doi.org/10.1145/3660829.3660837
https://doi.org/10.1145/3520312.3534862
https://arxiv.org/abs/2407.02883
https://arxiv.org/abs/1802.03426

Bibliography

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of
Machine Learning Research, vol. 9, no. 86, pp. 2579-2605, 2008.

R. Jin, J. Du, W. Huang, W. Liu, J. Luan, B. Wang, and D. Xiong, “A comprehensive
evaluation of quantization strategies for large language models,” 2024. arXiv:
2402.16775 [cs.CL].

A. Neelakantan, T. Xu, R. Puri, A. Radford, J. M. Han, J. Tworek, Q. Yuan, N.
Tezak, J. W. Kim, C. Hallacy, J. Heidecke, P. Shyam, B. Power, T. E. Nekoul,
G. Sastry, G. Krueger, D. Schnurr, F. P. Such, K. Hsu, M. Thompson, T. Khan,
T. Sherbakov, J. Jang, P. Welinder, and L. Weng, “Text and code embeddings by
contrastive pre-training,” 2022. arXiv: 2201.10005 [cs.CL].

M. Leotta, D. Clerissi, F. Ricca, and C. Spadaro, “Improving test suites maintain-
ability with the page object pattern: An industrial case study,” in 2013 IEEE Sixth
International Conference on Software Testing, Verification and Validation Workshops,
2013, pp. 108-113. por1: 10.1109/ICSTW.2013.19.

F. Wilcoxon, “Individual comparisons by ranking methods,” in Breakthroughs
in Statistics: Methodology and Distribution, S. Kotz and N. L. Johnson, Eds. New
York, NY: Springer New York, 1992, pp. 196-202, 1sBN: 978-1-4612-4380-9. por:
10.1007/978-1-4612-4380-9_16

R. Gong, Y. Ding, Z. Wang, C. Lv, X. Zheng, J. Du, H. Qin, J. Guo, M. Magno,
and X. Liu, “A survey of low-bit large language models: Basics, systems, and
algorithms,” 2024. arXiv: 2409.16694 [cs.AI].

S. M. Nabavinejad, M. Ebrahimi, and S. Reda, “Throughput maximization of dnn
inference: Batching or multi-tenancy?,” 2023. arXiv: 2308.13803 [cs.DC].

L. Briand, D. Bianculli, S. Nejati, F. Pastore, and M. Sabetzadeh, “The case for
context-driven software engineering research: Generalizability is overrated,” IEEE
Software, vol. 34, no. 5, pp. 72-75, 2017. po1: 10.1109/MS.2017.3571562.

R. Puri, D. S. Kung, G. Janssen, W. Zhang, G. Domeniconi, V. Zolotov, J. Dolby, J.
Chen, M. Choudhury, L. Decker, V. Thost, L. Buratti, S. Pujar, S. Ramji, U. Finkler,
S. Malaika, and E. Reiss, “Codenet: A large-scale ai for code dataset for learning a
diversity of coding tasks,” 2021. arXiv: 2105.12655 [cs.SE].

R. K. Saha, Y. Lyu, W. Lam, H. Yoshida, and M. R. Prasad, “Bugs.jar: A large-scale,
diverse dataset of real-world java bugs,” in Proceedings of the 15th International
Conference on Mining Software Repositories, ser. MSR "18, Gothenburg, Sweden:
Association for Computing Machinery, 2018, pp. 10-13, 1sBN: 9781450357166. poI:
10.1145/3196398.3196473.

45

https://arxiv.org/abs/2402.16775
https://arxiv.org/abs/2201.10005
https://doi.org/10.1109/ICSTW.2013.19
https://doi.org/10.1007/978-1-4612-4380-9_16
https://arxiv.org/abs/2409.16694
https://arxiv.org/abs/2308.13803
https://doi.org/10.1109/MS.2017.3571562
https://arxiv.org/abs/2105.12655
https://doi.org/10.1145/3196398.3196473

Bibliography

[48] D. A. Tomassi, N. Dmeiri, Y. Wang, A. Bhowmick, Y.-C. Liu, P. T. Devanbu,
B. Vasilescu, and C. Rubio-Gonzalez, “Bugswarm: Mining and continuously
growing a dataset of reproducible failures and fixes,” in 2019 IEEE/ACM 41st

International Conference on Software Engineering (ICSE), 2019, pp. 339-349. por:
10.1109/ICSE.2019.00048.

46

https://doi.org/10.1109/ICSE.2019.00048

	Acknowledgments
	Abstract
	Contents
	Abbreviations
	Introduction
	Terms and Background
	Version Control Systems and Continuos Integration Pipelines
	Test Suite Optimization Techniques
	Faults and Failures
	Regression Testing Approaches

	Information Retrieval
	Code Model Embeddings

	Related Work
	Coverage Based Test Case Prioritization
	Information Retrieval Based Test Case Prioritization
	Other Test Case Prioritization Techniques

	Code Embeddings Based Test Case Prioritization
	Source Code Collection
	Embedding Generation
	Test Case Prioritization

	Empirical Evaluation
	Research Questions
	Objects of Study
	Methodology
	Baselines
	Evaluation Metrics
	Collecting Evaluation Data
	Dimensionality Reduction for Visualization

	Results
	Discussion
	RQ1: Best Code Model
	RQ2: IR vs Code Models
	RQ3: Impact of Execution Data
	RQ4: Computation Time Comparison

	Threats to Validity
	Internal Threats
	External Threats

	Future Work
	Expanding the Implementation
	Expanding the Evaluation

	Conclusions
	Code Snippets
	CodeXEmbed
	UMAP Dimensionality Reduction

	Bibliography

