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Optimization of Automated and Manual Software
Tests in Industrial Practice:

A Survey and Historical Analysis
Roman Haas, Raphael Nömmer, Elmar Juergens and Sven Apel

Abstract—Context: Both automated and manual software testing
are widely applied in practice. While being essential for project
success and software quality, they are very resource-intensive,
thus motivating the pursuit for optimization.
Goal: We aim at understanding to what extent test optimization
techniques for automated testing from the field of test case selection,
prioritization, and test suite minimization can be applied to manual
testing processes in practice.
Method: We have studied the automated and manual testing
process of five industrial study subjects from five different domains
with different technological backgrounds and assessed the costs
and benefits of test optimization techniques in industrial practice.
In particular, we have carried out a cost–benefit analysis of two
language-agnostic optimization techniques (test impact analysis
and Pareto testing a technique we introduce in this paper) on
2,622 real-world failures from our subject’s histories.
Results: Both techniques maintain most of the fault detection
capability while significantly reducing the test runtime. For
automated testing, optimized test suites detect, on average, 80%
of failures, while saving 66% of execution time, as compared to
81% failure detection rate for manual test suites and an average
time saving of 43%. We observe an average speedup of the time
to first failure of around 49 compared to a random test ordering.
Conclusion: Our results suggest that optimization techniques
from automated testing can be transferred to manual testing in
industrial practice, resulting in lower test execution time and
much lower time-to-feedback, but coming with process-related
limitations and requirements for a successful implementation.
All study subjects implemented one of our test optimization
techniques in their processes, which demonstrates the practical
impact of our findings.

Index Terms—Software testing, manual testing, test optimization

I. INTRODUCTION

SOFTWARE test suites grow with their systems under
test [1]. So, for large software systems, the corresponding

test suites are typically large [2]. Large test suites, no matter
whether for automated or manual testing, take substantial
time to run. Besides being expensive to execute, long test
suite run times also prevent early and meaningful feedback
to developers [3]–[5]. In a study among 38 testing teams of
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industrial software projects, Haas et al. found that a single
execution of a manual test suite takes, on average, 1.5 person
months, in extreme cases even up to six person months [6]. The
test suites of our industry research partners (see Section III-B)
run, on average, a whole work week for automated tests, and,
on average, 5 person months for manual tests. They suffer
from late feedback and lack of resources to run all tests in
reasonable time.

In the literature, there are several techniques for improving
test feedback times for long-running test suites. Two common
techniques are test case selection [7] and prioritization [8], on
which we focus in this work. While test case selection and
prioritization are well-understood for automated tests [9]–[18],
the transferability to manual testing is challenging. Inherently,
manual tests are conducted less frequently. This leads to
substantial code changes between test cycles, and functionality
usually tested on the system level, resulting in each test
covering a significant portion of code. Beside their different
nature, manual tests fail to fulfill prerequisites of existing
optimization techniques [6], for example, manual tests may
be under-specified, resulting in different execution traces for
multiple runs of the same test case. Additionally, execution
traces may not be easily separable for different test runs if
manual test environments are not isolated. Finally, different
test processes, software development and test environments,
and test suite run times dictate how aggressive an optimization
technique needs to be to provide fast feedback while still
keeping the fault detection rate as high as possible.

Research Gap: There is a lack of evidence of the extent to
which test optimization techniques for automated testing can
be applied to manual testing processes in industrial practice,
and what limitations need to be accepted.

Solution: To address this research gap, we, first, analyze
the processual differences between manual and automated
testing in five large-scale industrial software projects, and
we investigate whether their different test processes require
different optimization strategies. Our aim is to discern the
implications of the implemented test processes for the suitability
of different optimization approaches. Second, we conduct a
field experiment [19] applying two optimization techniques to
five industrial software projects that implement automated or
manual testing. Specifically, we apply two general language-
agnostic optimization approaches to ease setup and allow for
comparison of results between our study subjects: (1) test
impact analysis, a code-change-dependent test selection and
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prioritization approach [20], and (2) Pareto testing, a technique
we introduce in this paper that performs a static test selection
that maximizes test coverage while minimizing test execution
time.

Conduct and Results: To identify process differences
between manual and automated testing, we have conducted
a survey among our industry research partners. In our field
experiment, we use historic test runs of our real-world study
subjects to evaluate the costs and benefits of two general and
language-agnostic test optimization techniques. Our results
show that they are applicable in practice for automated and
manual testing processes. For automated tests, 80% of failures
are detected by the optimized test suites, on average, while
saving 66% of execution time, compared to 81% failure
detection rate for manual test suites and a time saving of,
on average, 43%. All five industry partners that participated
in our empirical study have adopted test impact analysis or
Pareto testing into their processes following our results.

Contributions: Our contributions are the following:
• Field experiment on five industry projects. We investigate two

language-agnostic test selection and prioritization techniques
on a set of five test suites suffering from long execution
times from industrial software projects from various domains,
using different technologies, implementing manual and
automated test processes.

• New optimization technique. We present a new optimization
technique called Pareto testing, which is based on existing
techniques from test prioritization and minimization and
which aims at being simpler than test impact analysis in
terms of set up and maintenance efforts.

• Differences between automated and manual testing. We carve
out differences that are relevant for test suite optimization
between automated and manual testing processes by survey-
ing five test engineers and by querying the corresponding
test suites.

• Experiment on test optimization applicability in practice.
We conduct a field experiment to learn to which extent the
optimization techniques are applicable to solve the issue of
long-running test suites.

• Analysis of test histories. We analyze real data from more
than 43,300 test cases, including test-wise coverage and, in
total, 2,622 test failures from the study subjects’ test histories
to gain insights on the effectiveness of the optimization
techniques.

• Practice-oriented guidelines. We provide a set of lessons
learned enabling practitioners to implement the most suitable
optimization technique in their testing process.

The questionnaire and details on the data analysis are available
on a supplementary Web site (see Section VIII).

II. BACKGROUND AND RELATED WORK

In this section, we describe terminology and notations that
we use throughout the paper as well as relevant related work.

A. Software Testing and Test Reports
We follow the standard terminology of ISO/IEC/IEEE 29119-

1 [21]. We use the terms manual testing and automated testing

src/test/…/FooBarTest.java
01.01.2023 12:17:43
{line coverage info}
01:45:590
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Fig. 1: Example of a test report; test reports consist of test
identifier, source path, execution timestamp, line coverage
information, duration, and the result

to differentiate between software verification processes where,
following the IEEE standard, test cases are either ”run manually
by a human test executor, or [are] executed by a test automation
tool” [21]. In the context of our empirical study, manual tests
are usually conducted at a high abstraction level, that is, they are
system tests, whereas automated tests span from unit to system
levels. Given that our industry partners use their test suites for
regression testing, performance testing, and user acceptance
testing (refer to Section IV for specifics), our research centers
on these test activities, also known as testing types per the IEEE
standard. We refer to a test cycle to describe the execution
of test cases with the same test goal (e.g., verification of
one software version in a CI pipeline run or an entire test
phase during manual release testing). For the test optimization
techniques we consider in this work, we need data about each
test case. For this, we use test reports, which are generated
while running the test suite. Figure 1 illustrates a stylized test
report and the stored data from each test run.

B. Test Case Prioritization

Test case prioritization aims at ordering a test suite T =
{t1, ..., tn} such that executing the tests ti finds faults as early
as possible. Technically, test case prioritization approaches
strive for an optimal order of T where all failing tf are executed
before all passing tp:

∀ti, tj ∈ T, 1 ≤ i, j ≤ n : ti fails ∧ tj passes ⇒ i < j (1)

As test results may be unpredictable, heuristics have been
devised to predict failing tests and to derive prioritization
approaches from these [22]. Typically, heuristics approximate
the fault revelation capability of the test cases: Pfr(t) denotes
the probability of t to fail in the presence of a fault in the
system under test. Especially, for manual testing, there are
typically strict resource constraints (time and work force), so
it is imperative to prioritize test cases to find as many faults
as early as possible.

C. Test Case Selection

Test case selection strives for choosing a subset Tfr from a
test suite T with the goal of saving testing efforts. It involves
gathering test cases deemed execution-worthy based on a
heuristic. While various criteria, such as high code coverage
or testing critical code segments, could define the worthiness
of a test case, we concentrate our selection process on tests
anticipated to potentially yield failures:

∀t ∈ Tfr ⊆ T : Pfr(t) > 0 (2)
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That is, we apply an unsafe technique, which might not
succeed in selecting all failing tests. In practice, for large
and complex software systems, safe selection techniques are
infeasible (or ineffective) [11], [17], [23]. So, state-of-the-art
selection techniques are unsafe [24], for example, because
of dynamic dependencies [15], language boundaries [25], or
non-code changes [26]. There has been substantial research on
test case selection [27], [28]. Usually, an approximation of the
single test case fault revelation capability is used to identify
potential failures. In practice, the approximations are usually
based on source code changes [27]. Intuitively, a test case that
covers changed code might reveal new faults that have not been
found by previous test runs. A previously passing test case
that runs through unmodified code is expected not to change
its behavior (which is not always true).

D. Optimization Techniques for our Field Experiment

For our field experiment, we selected two optimization
techniques. First, we provide an overview of the require-
ments that the techniques need to meet. These criteria were
collaboratively defined with our study subjects, as discussed
in Section III-B. While all subjects suffered from the same
problem—long-running test suites—there was a broad range
of criteria concerning technologies, processes, and diverse
economic, social, and legal requirements. We structured our
field experiment to ensure some level of comparability across
the subjects’ contexts. Achieving this involved selecting op-
timization techniques that could be universally applied. This
posed a significant challenge for several reasons. Firstly, we
aimed for programming language-agnostic techniques to cater
to the diverse range of real-world software systems. Secondly,
our optimization techniques needed to be suitable for both
automated and manual testing processes, each presenting their
unique challenges (as detailed in Section I and discussed
in Section V). Thirdly, our study subjects varied in size
and complexity, and had slightly different optimization goals.
Some focused on reducing test execution time by running
a selective, change-focused subset of tests, while others
prioritized running a diverse subset of tests for smoke tests.
Fourthly, our subjects demanded well-established, intuitive
optimization techniques that yield explainable and trust-worthy
results from their perspective. Additionally, compliance with
regulations was vital for systems in highly regulated industries.
For instance, adherence to data protection regulations and
stringent limitations on the processing of personal data (such as
that of testers) based on legislation were critical considerations.

Recent techniques based on machine learning (for example,
Yaraghi et al. [29]) are ruled out by these requirements, as
many of the features are either not available for manual tests
or not applicable in industrial contexts. For manual tests, first,
features based on test source code are not available since the
tests are documented in natural language. Second, since manual
tests are executed far less frequently than automated tests, the
number of historic test execution data available for each test
case is limited. Third, in the case that historic test executions
are available, features such as execution time and coverage
vary more widely than they do for automated tests, which

reduces their usefulness for a learning-based approach. For
automated tests, we faced the additional challenge of large
data sizes with some of our study subject. In the case of TIME,
the test coverage report for a single test run was 13 GB in
size. Since this accumulates quickly over many test executions
each day, the developers only keep historic data for a single
week. This, again, limits the possibility of using these data
for learning-based test optimization. Finally, some data such
as the committers for a file or the experience of a developer
cannot be used due to data protection regulations.

Given the resource-intensive nature of manual software
testing, we limited the selection to two optimization techniques
for the field experiment to manage evaluation costs per study
subject effectively. We selected test impact analysis because—
besides fulfilling the criteria outlined above—it is based on
selection and prioritization approaches that have demonstrated
effectiveness in the literature [30]–[33]. In our preliminary
experiments, examining test impact analysis mostly on much
smaller and open-source subjects with automated tests, we
found that it performs well: For instance, the test suites
optimized by test impact analysis maintain more than 90%
of the original test detection capability, while saving 64%
of test execution time, and have a median relative time-to-
first-feedback of 2% [20]. These results encouraged us to
investigate the applicability, benefits, and limitations of test
impact analysis in large industry contexts including automated
and manual testing, which we focus on in this work. It is
important that the approaches are based on an intuitive fault
model so that their results are easily understandable by the
testers of our industry partners: Most bugs are introduced by
code changes [34], so we assume that selecting all tests that
cover changed code is intuitive to most people who work in
software development. On top of the intuitive selection criteria,
test impact analysis allows us to trace which tests were selected
for a single changed method which, again, can give testers
confidence in the technique. In addition, our test impact analysis
implementation is based on a tooling platform that allows us to
handle various programming languages and testing frameworks
and environments [35], [36].

Our choice of Pareto testing was based on the existing
implementation of test impact analysis, which provides a very
solid basis. The idea of Pareto testing (i.e., we can only detect
faults in parts of a system that we cover with tests), is also easily
understood. Pareto testing reuses parts of the implementation
but reduces the hardware and implementation requirements
for data collection and processing that test impact analysis
incurs, especially for very large projects. This reduction was
a requirement for continuous use for some of our industry
partners. Since its implementation is based on test impact
analysis, it also benefits of the above-mentioned wide support
for popular languages, frameworks, and testing environments.

Details of the two techniques will be outlined in the
remaining section.

E. Test Impact Analysis

An overview of test impact analysis can be found on the
left of Figure 2. Test impact analysis combines test case
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Fig. 2: Overview of the chosen test optimization techniques:
test impact analysis (left) and Pareto testing (right)

selection and prioritization. It aims at identifying test failures
as quickly as possible on the basis of code changes in a given
timespan [tbase, tend]. It aggregates the code changes since the
last release or in the last sprint and provides an ordered set of
test cases which—according to a heuristic—have the highest
fault revelation capability, which is denoted as Pfr. Formally
speaking, test impact analysis calculates an ordered set O ⊆ T
such that

∀ti, tj ∈ T, 1 ≤ i, j ≤ n : Pfr(ti) > Pfr(tj) ⇒ i < j (3)

In our context, test impact analysis selects test cases that execute
code that has been modified within [tbase, tend], which failed in
their most recent run, or which are new. The prioritization is
based on a greedy cost–benefit calculation, where the costs C(t)
refer to the test execution time, opposing the benefit B(t) of
additional change coverage [36], [37]. The algorithm calculates
a prioritization where for each rank r ∈ [1, n] the test with
the best cost–benefit ratio is chosen iteratively: So, in every
iteration i ∈ [1, n], O[i] = ti is chosen such that

ti = argmax
tj ∈ T\O

B(tj)

C(tj)
(4)

In the literature, there are several approaches that combine
a test selection and prioritization strategy. For example, Greca
et al. [38] propose a hybrid test optimization approach, which
combines the tools Ekstazi for test selection [12] and FAST for
test prioritization [39]. A recent systematic literature review
summarizes the field of machine-learning-based test case
selection and prioritization [18].

F. Pareto Testing

We have developed Pareto testing as a simpler alternative to
test impact analysis, since practical usage at industry partners
showed that obtaining and processing the input data for test
impact analysis can be a substantial effort. For instance, a
single test run at one of our study subjects produces 13 GB of
coverage data. They implement continuous integration for all

feature branches, have a large monolithic system, and more than
three hundred active developers. Altogether, this setup leads to
terabytes of coverage data that would need to be processed on
a daily basis to run test impact analysis. Moreover, executing
only a dynamically calculated subset of tests (e.g., based on
the results of test impact analysis) is not always supported by
the test runners implemented in industry, which can hinder the
integration of test impact analysis in continuous integration
setups. To overcome these drawbacks of test impact analysis,
Pareto testing provides a more simplistic approach that can be
set up and productively used with less effort. The Pareto test list
Tp is not intended to be recalculated for every single test cycle,
but less frequently (e.g., nightly or weekly), which reduces the
costs of continuous coverage collection and integration into
build pipelines. As a consequence, the underlying test case
prioritization technique needs to be independent of a particular
changeset.

We provide a brief overview of Pareto testing on the right
of Figure 2: Pareto testing draws on ideas from the area of test
suite minimization and test prioritization [5], [40]: it collects
a diverse set of quick tests. For this, it uses a prioritization
technique that orders tests to always include the one that adds
the most additional coverage in the least amount of time. Once
everything has been covered, the existing coverage is reset
and starts again. The goal of this is to order the tests so that
failing tests are run early. While the prioritization mechanism
is the same as for test impact analysis (see Equation 4), Pareto
testing is independent of a timespan or change set, and it does
not include recently failed or new tests. Second, the highest
prioritized tests from the list are picked and included in the test
selection. Pareto testing is related to test suite minimization in
that it selects a change-independent set of most relevant tests.
However, it is not quite the same, since the selection does not
aim at removing redundant tests permanently.

Formally, Pareto testing calculates an ordered subset Tp of a
test suite T that runs within a cost limit of L. Each test case t
has a cost function C(t), representing its execution time. First,
a test prioritization is applied, aiming for an ordering O such
that failing test cases tf are executed before passing ones tp
(see Equation 1). Then, the maximal number k of test cases
fitting into the cost limit of L is determined:

k = argmax
1≤i≤n

(( ∑
1≤l≤i

C(tl)
)
≤ L

)
(5)

The selected test cases t1 . . . tk that comprise Tp are then the
first k elements of the ordered tests O.

G. Optimization of Manual Tests

Research on test optimization has focused on automated
test suites in the past. In practice, however, manual testing is
widely used for large, complex, and regulated systems [6]. As
the execution time of a manual test case is typically several
orders of magnitude longer than it is for an automated test,
the underlying issue of unmanageable test suite run times is
even worse for manual testing [6], [41]. Consequently, there
are several approaches that transfer results from automated test
optimization to manual testing. Test selection techniques [6],
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[42]–[46] as well as test prioritization [47]–[50] have been
discussed, but only on a single or several similar subjects. In
our empirical study, we include subjects from different domains
relying either on automated or manual testing processes and
implementing their system under test in different languages.
Other optimization techniques refer to failure prediction [4],
[51], test automation [52], and test suite reduction [44], [53].

H. Related Work

So far, we gave an overview about different test optimization
techniques and provided references to core contributions of
the field. Also, the optimization techniques we are using
in this work are based on well-researched approaches. In
this subsection, we delineate the setups of previous work to
distinguish them from our work.

Evaluation focused on open-source systems: Most of the
work evaluating the optimization techniques discussed so far
focused on seeded faults and open source systems. More
recent work incorporates other oracles, too, but still rely on
open source systems as their study subjects for availability
reasons. Peng et al. investigated several approaches for test case
prioritization [54]. They combined and analyzed coverage, cost,
historical failure, and information-retrieval-based prioritization
approaches, and evaluated them on a large set of open source
projects using faults from the projects histories. Cheng et al.
prioritize test cases for cloud configuration testing and evaluate
their work on 5 open source docker images [55]. Wang et al.
combine test selection based on code and configuration changes,
and use the same subjects as Cheng et al. to evaluate their
approach [56]. Yaraghi et al. prioritize test cases in continuous
integration contexts and evaluate their work on a set of more
than 400 open source projects [29]. We conduct an empirical
study on large industrial systems which come with their own
difficulties and might show different behavior from what has
been seen in open source projects.

Evaluation based on industry systems: There have been
several papers focusing on test selection or prioritization for
industry projects. In most cases, they are using a single
industrial subject, often complemented by additional open
source or generated subjects. For example, Marijan et al. apply
a test selection approach that focuses on coverage and historical
failures on an industry project that is supplemented by generated
subjects based on the industry project [57]. Their approach is
based on eliminating redundancy, that is, selecting tests that
do not cover the same parts of the source code and do not fail
together. There are also some studies looking into Google’s [58]
and Facebook’s [16] approaches to test optimization. These
studies deliver impressive results but are based on internal
Google and Facebook projects, respectively, and do not consider
applicability in other contexts an important factor. Recent work
on cross-language regression test selection for C++ binaries [23]
and on severity-aware prioritization of system-level regression
tests [59] focuses on specific technologies and evaluates them
in one specific industrial context. In summary, the focus of our
work is different from most previous work in that we evaluate
common test optimization techniques that fit well with our
industry partners. Collaborating with them, we conducted a

field experiment in a highly realistic environment across a wide
range of industry systems, encompassing various languages
and technologies.

III. EMPIRICAL STUDY: SURVEY AND FIELD EXPERIMENT

We conduct an empirical study consisting of (i) a survey of
our subjects’ test leads and (ii) a field experiment to evaluate the
selected test optimization techniques on our subjects’ systems.
By means of the survey, we collect insights into how testing
is implemented in their industry contexts and how they intend
to evolve their processes. We use these results to highlight
differences between automated and manual testing. In our field
experiment, following Stol and Fitzgerald [19], we adhere to
their definition where the study takes place in a natural setting,
that is, a realistic software development environment, involving
changes directly impacting the studied entity, that is, the testing
process. By this means, we investigate the applicability of two
test optimization techniques for both testing strategies.

A. Research Questions

We address research questions (RQ) from two research areas
(RA): (1) differences between automated and manual testing
and (2) comparison of test impact analysis and Pareto testing.

RA1: Test Strategies: Our study subjects employ automated
and manual software testing (see Section III-B). As the
underlying processes are quite different—which might affect
optimization potentials and goals—we compare them on the
basis of our subjects.
RQ1.1: What test activities are performed and what are major
characteristics of the test processes? We collect relevant data
and provide an overview over the testing activities of our
subjects to better understand their test processes and goals.
RQ1.2: How much testing and maintenance effort is invested into
automated and manual testing? We investigate the divergent
maintenance and execution efforts between automated and
manual testing in order to uncover optimization potential.
RQ1.3: What are major bottlenecks in the testing process? We
aim to understand the bottlenecks in our subjects’ lengthy test
processes to identify the most effective optimization potentials.
RQ1.4: What are costs and benefits of the current testing
process? We obtain a baseline for the evaluation of our
optimization approaches (RA2) and share quantitative data
on the effectiveness of individual test cases and test suites to
shed light on the structural differences between automated and
manual tests.

RA2: Test Optimization: We apply two optimization tech-
niques, a test selection and prioritization (test impact analysis)
and a minimization technique (Pareto testing), to automated
and manual test suites of our subjects to learn when to apply
which approach.
RQ2.1: To what extent does the optimization technique influence
the fault revelation capability of automated or manual tests?
We focus on unsafe optimization techniques, which may not
execute all potentially failing tests. As discussed in Section II,
this is reasonable in an industry context. Still, we strive
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for optimization techniques that preserve the fault revelation
capability of the test suites as much as possible.
RQ2.2: What reasons lead to missed test failures for the
optimization techniques? To uncover the reasons behind missed
test failures by our optimization techniques, we aim to expose
their practical limitations. Additionally, we seek to determine if
these limitations vary between automated and manual testing.
RQ2.3: What are costs and benefits of the optimization tech-
niques? Using this research question, we aim to provide
guidelines when to use what optimization technique in practice,
possibly including a differentiation between automated and
manual testing.

B. Study Subjects
Our empirical study aims at improving our understanding of

test optimization in industrial practice. To obtain meaningful
results, we work with data from private, public and even public-
sector companies from different fields relying on different
implementation and testing technologies, see also Table I. The
project sizes range from a few ten thousands lines of code and
teams with less than ten developers to several million lines of
code with more than a hundred developers. The third column
of Table I on test processes denotes whether we used their
automated (A) or manual (M) test suite in our field experiment.
Automated tests refer mostly to lower test levels, that is, Unit
(U) or Integration (I), while manual tests are on the System (S)
level. In the last column, we list the number of versions we
analyzed for the each subject. Depending on the type of tests,
that is, automated or manual, a version refers to a different
interval, as described in Section III-E. The big differences in
the number of versions are caused by the very different testing
processes. While the automated tests of our subjects are in
some cases run daily, the manual tests are only executed a few
times a year and the collection of data required continuous
support from our side, which limited the number of versions
we were able to investigate. Also, the size and complexity of
data of subject TIME limited the number of versions we could
analyze there.

TABLE I: Overview of study subjects

Company Domain Test Test Team SLOC Lang Versions
Proc Levels Size

TIME1 Time Mgt. A U, I, S 50 8 M Java 2
BVK Finance A I, S 20 300 K Java 543
DOLBY Audio A U, I 10 28 K C 111
ILP ERP M S 5 831 K C# 1
ZEISS Optics M S 90 6 M C# 1

1 Subject anonymized due to NDA

Next, we introduce our subjects, their background, and their
motivation for test suite optimization. We investigate the test
processes in more detail in Section IV.

TIME is a software vendor (name changed for anonymiza-
tion), has more than 600 employees, and a revenue of more
than C100 million. In our field experiment, we are considering
one of their core products. For this product, they have a very
large test suite of 80,000 test cases, but even though they run
their tests on 50 machines in parallel, it is not possible to test
all maintained versions every night.

Bayerische Versorgungskammer (BVK) is Germany’s
largest pension group under public law and has about 1,490
employees. They build software for internal use and their
customers. The project we are working with is running fast
unit tests frequently, but the integration tests take around 10 h.
The teams run nightly automated regression tests and to get
faster feedback on their changes, they already employ Pareto
testing during the day.

DOLBY works in the audio domain and has approximately
2,330 employees worldwide and offers a broad range of
audio encoding, decoding and compression solutions. Some
projects are using tests which need to cover lots of different
configurations of audio systems, which opens up a large space
of possible configurations for test cases. To avoid long feedback
cycles, they were already using test impact analysis to select
only the tests and test configurations that are relevant for recent
changes.

ILP develops ENTRA®ERP, an enterprise resource planning
system and is the smallest company among our study subjects
with nine employees. They focus exclusively on manual testing,
which is continuously performed—with more change-focused
testing before a release, where the testing expert in the
team selects tests that might be affected by the code change.
Their test process includes both structured manual tests via
Azure DevOps [60] and ad-hoc testing.

Carl Zeiss Microscopy (ZEISS) is a company that is manu-
facturing microscopes and has approximately 3,000 employees.
We are looking at their ZEN MICROSCOPY Software which
interfaces with their microscopes and provides control and
configuration options, as well as visual results. They test their
interfaces extensively with frequent automated tests, as well as
manual tests on the actual hardware. They aim to test changed
code as it is more likely to reveal bugs. For this purpose, they
perform a manual expert-driven selection and prioritization of
test cases.

On our supplementary Web site (see Section VIII), we
present a table summarizing the study subjects along with
some key statistics, for example, team size, the system under
test’s size, and the main implementation language.

C. Operationalization

We employed two methods to answer our research ques-
tions. Firstly, we designed a questionnaire that we sent to
representatives of the testing teams of our subjects (see also
Section III-D). Secondly, we analyzed data from the subject’s
test-suite management systems, including historical test results
and coverage. The following section outlines how we utilized
these data sources to address our research questions. More
details on the data analysis are available on the supplementary
Web site (see Section VIII).

RA1: Test Strategies: We conduct a survey targeting the test
leads of our subjects to capture the automated and manual
testing processes currently in place. This includes the process
characteristics as well as its intended evolution. See Table II
for an overview on the mapping between the questionnaire and
our research questions.
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TABLE II: Survey questions to answer the research questions

RQ Survey question

1.2 How many test engineers (e.g., testers, test developers) are there
in your project?

1.2 How many test engineers spend their whole working time on
testing?

1.2 How many test engineers work with the automated test suite?
1.2 How many test engineers work with the manual test suite?

1.1 Which test activities are performed via automated tests?
1.2 How much time do you estimate is invested into maintaining the

automated test suite?
1.3 What are bottlenecks in your automated test process?
1.3 Are there flaky automated test cases?

1.1 Which test activities are performed manually?
1.1 How big is the manual test suite overall?
1.2 How many manual test cycles take place per year?
1.2 Is the entire manual test suite executed in every test cycle?
1.2 How many test cases are executed per manual test cycle?
1.1 Which events trigger the execution of a manual test case?

1.2, 1.4 How long does it take to execute the entire manual test suite?
1.2 How much time do you estimate is invested into maintaining the

manual test suite?
1.3 What are bottlenecks in your manual test process?
1.3 Are there flaky manual test cases?

RQ1.1: What test activities are performed and what are major
characteristics of the test processes? We ask our survey
participants about their automated and manual testing processes
and what specific testing activities they implement, for example,
regression testing or user acceptance testing. In addition, we
consider the test suite size and the trigger events for test
executions. If a manual test suite is maintained, we query its
size and test execution triggers in the survey. For automated test
suites, we obtain these data from the subjects’ test management
systems.

RQ1.2: How much testing and maintenance effort is invested into
automated and manual testing? We collect a set of statistics
on our subjects’ teams. To learn about the effort invested
into automated testing, we query the execution time per test
case and per test cycle from the test management systems.
For manual tests, we ask in our questionnaire how often our
subjects execute how many test cases as well as the time it
takes to run a single test cycle. Additionally, we ask about the
efforts that are spent for maintaining the manual and automated
test suites.

RQ1.3: What are major bottlenecks in the testing process?
Our survey contains two open questions on the bottlenecks
our subjects perceive in their testing process, as well as
two questions on the existence of flaky tests. We cluster the
responses systematically and report the relevant insights.

RQ1.4: What are costs and benefits of the current testing
process? To obtain a baseline for the evaluation of the two
optimization approaches, we approximate the testing costs by
the execution time per test case and test cycle. We measure
the coverage per test suite as proxy for test benefits, as well
as the fault revelation probability per cycle, and the average
number of test failures revealed per cycle.

RA2: Test Optimization: To answer our research questions
regarding test optimization, we rely on historic development
and test data of our subjects (TIME, BVK, DOLBY, ILP,

ZEISS). For this purpose, they provided us access to their
version control systems, test result history, historic test traces,
covering many months or even years of data.

RQ2.1: To what extent does the optimization technique influence
the fault revelation capability of automated or manual tests?
We run both optimization techniques on historic versions from
our subjects’ test suites and investigate the fault revelation
capabilities of the optimized test suites. An ideal optimization
technique would preserve the original fault revelation capability;
that is, previous test failures are still detected, while running
only those tests that find faults. Still, since the investigated
optimization techniques are heuristics, missed test failures are
possible. Section III-E explains in detail the measurement
setup for automated and manual test suites to obtain the
fault revelation capabilities for test impact analysis and Pareto
testing.

To answer RQ2.1 for test impact analysis, we determine the
fault detection rate. For Pareto testing, we obtain the same
metric for a set of cost limits: As described in Section II, Pareto
testing takes a cost limit L as input parameter. This parameter
is given by the subject’s context. For our evaluation, we run the
optimization technique with a set of cost limits L = {1%, 2%,
3%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 80%}.

For automated test suites, we report the detection rate of
new failures (excluding subsequent failures), and we investigate
whether applying test impact analysis and Pareto testing to an
automated test suite leads to missed failing builds (this would
imply that developers miss critical feedback as the optimized
test suite passes while the original one failed). For manual
tests, we do not report new test failures because data on new
failures was not available at our subjects.

RQ2.2: What reasons lead to missed test failures for the
optimization techniques? To control the effort, we randomly
select for both test impact analysis and Pareto testing a sample
of k = 10 missed test failures (or all if there are fewer) for each
subject and manually investigate why they were not detected.

RQ2.3: What are costs and benefits of the optimization tech-
niques? We quantify costs and benefits of test impact analysis
and Pareto testing to be able to contrast them. The costs refer
to test failures that were not detected by the approaches (see
also RQ2.1) and to a potential loss in overall test suite coverage
(see also RQ1.4). The benefits arise from saved execution time
and earlier feedback from failing tests, that is, we measure
the time to first failure and calculate by which factor the
optimization approaches are faster than the baseline. Since
the original execution order was not available or was subject
to change for subsequent runs (e.g., for manual tests), for
consistency reasons, we use a random selection, rather than
the default execution order, as a more challenging baseline for
all subjects. To obtain the time to first failure for the random
baseline, we used a sample size of 1,000. For both optimization
approaches, we distinguish between automated and manual
testing, if applicable. As far as test impact analysis is concerned,
we state for each subject how much time is saved relatively to
the total execution time. For Pareto testing, the cost limit L
relates directly to the time saving. As we run our experiments
with a set of cost limits L , we first identify an optimal cost
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limit, which balances the time investment
∑k

i=1 C (ti) and the
detected failures FL, to answer this research question. The
optimal cost limit Lo minimizes the euclidean distance to the
theoretical optimum, which detects all failures F without any
costs, that is, in no time. In a plot of cost limits L and their
fault detection rates, Lo would have the smallest distance to
the top left corner of the chart. Formally, Lo can be written as:

Lo = argmin
L∈L

√√√√ ( k∑
i=1

C (ti)
)2

+
(
1− FL

F

)2

(6)

For Pareto testing, we additionally use the APFDc metric for
our cost–benefit analysis, which is a cost aware modification
of APFD (Average Percentage of Faults Detected) that was
introduced by Rothermel et al. [33]. We do not evaluate test
impact analysis using this metric, since test suites optimized
by test impact analysis violate the APFDc requirement of
equal total execution times. While the original APFDc metric
considers cost as well as fault severity, we use a simplified
version considering only cost, since we have no values for
fault severities, as has been done in previous papers [54], [61].
Also, like Peng et al., we assume the worst-case, a one-to-one
failure-to-fault mapping, since we lack the necessary access to
our subjects’ infrastructures. We compare the APFDc with a
random approach based on a sample size of 1,000 (the highest
sampling size found for similar studies [62]). APFDc indicates
how quickly faults can be found by a test suite in a specific
order:

APFDc =

∑m
i=1

((∑n
j=TF i

C (tj)
)
− 1

2C (tTF i
)
)

∑n
j=1 C (tj)×m

(7)

where n is the number of tests, m the number of test failures,
and TF i is the first test that reveals fault i. Again, we compare
the APFDc value of Pareto testing to the more ambitious
random order.

D. Questionnaire and Conduct

With our survey, we collect experience from the responsible
test leads at our subjects to better understand how testing is
currently done in the specific industrial contexts. We strive
for a detailed account of their testing processes and their real-
world context, while exploring potential pathways or opinions
for change. To this end, we designed a questionnaire to get an
overview about the currently implemented testing processes
of our subjects, their specific characteristics, and to elaborate
their wishes for process changes addressing RA1. We asked
a representative of each of our five subjects, typically the
corresponding test lead, to answer the questionnaire beginning
in February 2023; by May 2023 all subjects answered. On
our supplemental Web page, there is a table mapping our
questionnaire’s questions to our research questions. We used
open-ended survey questions, allowing participants to describe
their context.

E. Measurement Setup

RQ2.1 is central for our field experiment. Our research is
concerned with the application of two optimization techniques,

test impact analysis, and Pareto testing, across automated and
manual testing processes, each inherently distinct. Subjects with
automated test suites typically execute the entire test suite at
regular intervals, such as weekly or nightly. In contrast, manual
testing involves the phased execution of all tests amidst ongoing
code changes. Tailored measurement setups are essential for
both processes to determine the fault revelation capability of
optimized test suites. Figure 3 illustrates which data we include
in the calculation for automated test suites (a) and manual test
suites (b). In what follows, we describe the setup disparities
between automated and manual testing, elucidating variations
in data collection methodologies for test impact analysis and
Pareto testing.

Automated Testing: For automated testing, depicted on the
left in Figure 3, we determine for each test run how many
failing tests our optimization techniques would select if applied
prior to the run. The first test report is excluded from our
evaluation because we need an initial set of test coverage data
to apply prioritization. We calculate a Pareto list for all (but the
very first) test executions, denoted by . For the calculation,
we use the code and coverage state right before the next test
report. For test impact analysis, we select test cases based on
the changes starting from the first commit after test report up
to the last commit before the next test report. In Figure 3, these
commit intervals are denoted as .

Manual Testing: For manual testing, illustrated on the right
in Figure 3, full coverage data is only available after the first
test phase, as it requires, at least, one execution of all test cases.
The Pareto list is calculated ( ) based on all test executions
of the initial test phase. Consequently, the test impact analysis
timespan ( ) covers all changes for the subsequent test phase.
For both optimization approaches, the goal is to reveal as
many test failures of the subsequent test phase as possible. To
obtain complete test reports, coverage recording per test case is
required. So, we integrated our tooling deeply into the subject’s
test management tools to trace test begin and end to trigger and
stop coverage recordings appropriately. We analyzed potential
outliers with our subjects’ teams and excluded manual test
executions with implausible execution times (e.g., two seconds,
or two weeks).

IV. RESULTS

In this section, we present our findings on the test processes
of our study subjects (RA1) and the cost and benefits of test
impact analysis and Pareto testing (RA2).

RA1: Test Strategies

RQ1.1: What test activities are performed and what are major
characteristics of the test processes? Four subjects have an
automated test suite used for regression testing (4), user
acceptance testing (2), performance testing (2), robustness
testing (1), smoke testing (1), and compatibility testing (1).
Four subjects rely on manual tests (where ILP has no automated
tests) for regression testing (3) and user acceptance testing (2).
In addition, manual testing is used for performance testing (1).
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Fig. 3: Measurement setup for RQ2.1 to determine the fault revelation capability of optimized test suites

TABLE III: Test suite and testing team sizes (numbers rounded)

Subject Test Cases Test Engineers

Automated Manual Automated Manual

TIME 36,000 10,000 5 15
BVK 3,500 unknown 9 9
DOLBY 2,000 0 4 0
ILP 0 800 0 3
ZEISS unknown 1,000 5 15

The test suite sizes vary greatly (second and third column
of Table III): the relevant subjects have between two thousand
and thirty-six thousand automated test cases. The manual test
suites count between eight hundred and ten thousand test cases.
All automated test suites are run regularly in a continuous
integration pipeline, but the execution frequency ranges from
runs per change to daily runs. Manual tests are run before
scheduled releases, sometimes in every sprint, and on-demand
for acceptance testing.

SUMMARY RQ1.1 . All of our subjects with automated tests
run them for regression testing, some perform additional
automated test activities. The main purpose of manual tests
are regression and user acceptance tests. The subjects’ test
suites tend to be large and are run frequently.

RQ1.2: How much testing and maintenance effort is invested
into automated and manual testing? Table III, column four
and five, list the number of test engineers (e.g., testers and test
developers) involved in the software testing process. Overall,
there are 3 to 20 test engineers per subject. Automated test
cases take, on average, 11 s; the whole automated test suite,
on average, 40.9 h. Up to 30% of the development and testing
efforts are dedicated to maintaining automated tests. In contrast,
most of the manual test suites are run only once per release,
and there are 2 to 10 releases per year. Between 10 and 10,000
test cases are run per test cycle. Running the entire manual test
suite takes between a few person-days and 225 person-days.
Maintenance efforts are relatively low, ranging between 1 and
18 person-days per year.

SUMMARY RQ1.2 . Our subjects invest considerable re-
sources into automated and manual software testing. For
automated testing, maintenance efforts are relatively large;
whereas, for manual testing, the execution costs dominate
maintenance costs.

RQ1.3: What are major bottlenecks in the testing process? For
automated test suites, we found three major bottlenecks in
the testing processes: specifying test cases, poor test suite

architecture, and third-party components, which lack quick
support of new framework versions. In what follows, we
illustrate them with quotes from individual participants. Related
to specifying test cases, ZEISS mentions, for example, the
time-consuming “creation of tests” or at BVK it takes much
time to “define the test preconditions”. Regarding the test
suite architecture, a participant stated that they “have much
more tests on system level than on unit level”, that is, their
test suite has the shape of an ice cream cone instead of a test
pyramid [63]. ILP and ZEISS report resource capacity as major
bottlenecks in their manual testing process, and BVK reports
the test data configuration during test case creation as major
bottleneck. Flaky tests are perceived occurring more frequently
for automated test suites (two out of four subjects); no flaky
tests are reported in manual test suites.

SUMMARY RQ1.3 . Our subjects identify the test suite design
and the time-consuming creation of test cases as major
bottlenecks of automated test suites. Resource capacities
and test case creation are the major bottlenecks of manual
testing. Flaky tests are bottlenecks only for automated test
suites.

RQ1.4: What are costs and benefits of the current testing
process? Figure 4 shows violin plots of the execution times
per test case and the execution time per test cycle (which
does not necessarily run the whole test suite). On average, a
single automated test case takes 11 s to run, whereas a manual
test runs for 29min, on average. A test cycle for automated
tests requires between 4 h and 122 h, while manual test cycles
require 16 h to 180 h. On average, the test suites cover 69% of
the methods of their respective systems; there is no substantial
difference between automated and manual test suites with
regard to coverage. Notably, the probability of, at least, one
failing test per test cycle ranges from 13% to 89% for automated
tests, while all manual test cycles revealed, at least, one failure.
Overall, the probability of a failing cycle is 70%. On average,
a test cycle revealed between 0.1 and 720 failures, where the
extreme value of 720 stems from an automated test suite.

SUMMARY RQ1.4 . An automated test cycle of our subjects
runs up to 122 hours, while the longest manual test cycle
requires 180 hours. Automated and manual test suites cover
approximately 69% of the methods. 70% of all test cycles
produce, at least, one test failure, all manual test cycles
have produced, at least, one failure.

RA2: Test Optimization
In what follows, we present the results of our field experiment

where we implemented test impact analysis and Pareto testing



10

101

102

103

Ex
ec

ut
io

n 
tim

e
pe

r t
es

t c
as

e 
(s

)

101

102

Ex
ec

ut
io

n 
tim

e
pe

r t
es

t c
yc

le
 (h

)

60%

65%

70%

75%

80%

Co
ve

ra
ge

pe
r t

es
t s

ui
te

20%

40%

60%

80%

100%

Fa
ul

t-r
ev

el
at

io
n 

pr
ob

ab
ilit

y
pe

r t
es

t c
yc

le

10 1

100

101

102

103

Av
er

ag
e 

fa
ilu

re
s

pe
r t

es
t c

yc
le

Time BVK Dolby ILP Zeiss

Fig. 4: Statistics of our subjects’ current testing costs (execution
time per test case and test cycle) and benefits (coverage and
failures) (RQ1.4)

Time BVK Dolby ILP Zeiss0%

50%

100%

Fa
ul

t D
et

ec
tio

n
Ra

te

Build failures
All failures
New failures

Fig. 5: Fault revelation capability of test suites optimized by
test impact analysis

in the test processes of our five industrial subjects and ran
a historical analysis. Our subjects have recorded their test
execution history including test failure information and test-
wise coverage information for, at most, three months up to
several years. As described in Section III-E, this test history
information allows us to answer the research questions on the
test optimization approaches.

RQ2.1: To what extent does the optimization technique influence
the fault revelation capability of automated or manual tests?
Figure 5 shows the fault revelation capability of test suites
optimized by test impact analysis for all subjects. For all
subjects, almost all build failures are detected. That is, when
a build would fail with executing all tests, it would also fail
with the optimized test set of test impact analysis. Only for
subject BVK, test impact analysis misses 4 out of 542 build
failures. For newly appearing test failures, on average, 76%
are detected; an outlier is DOLBY with only 21%. Overall, on
average, 93% of all failures are detected.

We show the results for Pareto testing in Figure 6. Since test
selection is not based on changes, but on a chosen maximum
execution time, we show failure detection over the range of
cost limits L (see Section III-C). We observe that the number
of detected build failures is increasing very early with the test
execution time, while the number of failures and new failures
increase a lot slower. For BVK and DOLBY, all build failures
are detected fairly quickly for a comparably small L ≤ 10%.
For TIME, which has 18 different build components, with
L = 1% all build failures from 16 components are detected.
To detect all build failures for TIME, we need to increase the
test execution time limit to L = 50%.

The overall fault revelation capability varies: on the one
hand, for DOLBY, the cost limit L = 5% suffices to detect
all failures. For BVK, on the other hand, L = 80% does not
suffice to select all test failures. For BVK and DOLBY, the
fault revelation capability for new failures is similar to the
overall fault revelation capability.
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Fig. 6: Fault revelation capability of Pareto testing-optimized
test suites per cost limit L

SUMMARY RQ2.1 . For both automated and manual testing,
test impact analysis detects, at least, 60% and up to 100%
of historic failures (93%, on average). For Pareto testing,
the cost limit L influences the fault revelation capability
considerably, up to 100%. On average, it detects 53% of
failures with L = 10%.

RQ2.2: What reasons lead to missed test failures for the
optimization techniques? As shown before, both optimization
techniques missed some historical test failures. We analyzed
for each technique and subject, if possible, ten missed failures
and why they were not selected. Below, we summarize our
findings and provide examples for illustration purposes.

Test impact analysis detected all test failures for three out
of five subjects. For the remaining two subjects, 16 out of 20
investigated test failures are missed due to non-code changes
of the system under test, its test suite, or environment changes,
which are beyond the scope of test impact analysis. It did
not detect XML-specified test case changes or failures of an
infrastructure test, which only checks the testing environment.

For Pareto testing, we determined an optimal cost limit
Lo that balances test execution time and failure revelation.
Hence, missing some test failures, mostly from longer-running
test cases, is expected. We observed this in our subjects,
with unselected test cases revealing failures taking 30%–
250% longer than selected tests. For one subject, all missed
failures belonged to test cases for which the preceding run
also failed. These failures may produce incomplete coverage
information if the execution was cancelled, which may impact
the prioritization of Pareto testing.

SUMMARY RQ2.2 . For test impact analysis, 80% of missed
test failures are related to a lack of coverage information
for build or configuration files, which cannot be easily
collected during test execution. For Pareto testing, some
missed failures are to be expected due to the choice of Lo,
and most missed test failures stem from long-running tests
and previously failing tests.

RQ2.3: What are costs and benefits of the optimization tech-
niques? In RQ2.1, we addressed the fault revelation capability
of test impact analysis (Figure 5) and Pareto testing (Figure 6).
Figure 7 shows results regarding a cost–benefit analysis: (a) the
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relative coverage loss, (b) the relative execution time savings,
(c) the speedup of time to first feedback compared with a
random prioritization as baseline, and (d) the APFDc values of
the optimized test suites. We examine these numbers in detail,
since they require additional context to provide insights:

Test impact analysis for automated tests results in an average
of 88% fault revelation of the full test suite. The main reason for
the 12% loss in faults found are failures at BVK and DOLBY,
where tests fail for reasons unrelated to code changes. At BVK,
this is mainly due to the test descriptions, which are XML files
and thus outside the scope of test impact analysis. At DOLBY,
we found that many failing tests were caused by changes in the
build, not by changes in the source code. The high loss of 43%
coverage is mainly caused by many test runs at BVK, where
test impact analysis on average selects very few tests. While this
means that very little time has to be invested, it also results in
very low coverage numbers. Since test impact analysis does not
optimize for overall coverage but for change coverage, this is
expected, when few changes happen in a time interval. In terms
of benefits, test impact analysis saves 58% of test execution
time, on average. Subject TIME has a big negative impact on
this value. The test executions that we analyze for TIME have a
longer interval of one week, even though their development is
very active. This leads to the selection of all test cases, which
reduces the overall time savings. In contrast, at BVK, we
have short intervals and less development activity which allows
for more time to be saved. Finally, the median time to first
failure is 185 times faster compared to the random baseline,
highlighting the effectiveness of change-based selection and,
especially, prioritization in quickly identifying failures.

Test impact analysis for manual tests detects all historic
failures and shows a negligible loss in coverage of, on average,
1% because of a comparably ineffective selection of, on average,
92% of the total test execution time. Test impact analysis selects
this many test cases mainly because of two reasons. First, it
needs to cover for both subjects a relatively long time span
with many code changes, more than for our subject’s automated
test suites. Second, the manual test cases are end-to-end-tests,
which cover much more code than, for example, automated
unit tests. Since test impact analysis selects all test cases that
cover code changes, a large set of code changes and test cases
covering a lot of code lead to a large proportion of selected
tests. Compared to a random baseline, the time-to-first-feedback
is 4.75-times faster.

Pareto testing for automated tests has a lower fault detection
rate than test impact analysis at 71%. Note that, for Pareto
testing, this value depends on the optimal cost limits that we
calculated (see Section III-C). As shown in Figure 6, the cost
limits Lo are between 0.03 for DOLBY and 0.5 for BVK. Since
test impact analysis selects tests based on code changes, it is
expected to deliver a higher fault detection rate. The very low
coverage loss of, on average, 1% is due to the fact that Pareto
testing optimizes for coverage per time. The time savings
are directly determined by our calculations, as mentioned
in Section III-C. For the automated test suites, we achieve
savings of, on average, 74%. Since this selection is based
on overall coverage, and not on change coverage, there is no
risk of selecting all tests. The median time to first failure is

5-times faster than for the random baseline. While still a solid
improvement, this is far lower than for test impact analysis.
Finally, the average APFDc value of 0.79 is very solid when
comparing to recent results of Peng et al. [54].

Pareto testing for manual tests results in a fault revelation
rate of 60%, while saving 70–85% of execution time (Lo is
0.15 for ILP and 0.3 for ZEISS, see also Figure 6). We observe
a small coverage loss of, on average, 5%. The time to first
failure is 2.2-times faster than a random baseline, about half as
fast as test impact analysis. The APFDc value of, on average,
0.7 is weaker than for automated tests, but still shows a good
cost–benefit ratio.

SUMMARY RQ2.3 . For automated tests, test impact analysis
maintains 88% of the fault revelation capability of the
full test suite, while saving 58% of execution time. We
observe a median speedup of 185 for the time to first failure
compared to random ordering. For manual tests, test impact
analysis selects almost all test cases, so all failed tests are
detected, but the time saving is only 8%. We observe a
median speedup of 4.75. For automated tests, Pareto testing
detects 71% of the failures while reducing the execution
time by 74%. We observe a median speedup of 5. For
manual tests, Pareto testing detects 60% of the failures
while reducing the execution time by 78%. We observe a
median speedup of 2.2.

V. LESSONS LEARNED

In what follows, we summarize lessons learned supporting
practitioners optimizing their testing processes. Our results
show that test impact analysis and Pareto testing help to
reduce testing efforts in industrial-scale automated and manual
software testing processes, while still revealing the vast majority
of test failures (refer to results from RA2). We are convinced
that other industry projects can benefit from the investigated
test optimization techniques for their own testing processes.
To assist practitioners in evaluating the applicability of these
techniques in their context, we enrich the following guidelines
with insights into the test strategies of our study subjects (as
per RA1).
Test optimization technique guidelines Test impact analysis
is more sophisticated than Pareto testing; but it also comes
with stricter requirements. Depending on the optimization
goal, Pareto testing might be the better choice. It suggests
a prioritized, diverse list of test cases within a given cost limit
independently of code changes. This is useful to identify a
(small) set of smoke tests, or (for very large test suites as for
TIME) to identify a list of test cases that can be run overnight. In
both cases, it is advisable to schedule additional, less frequent
test executions of the whole test suite to update the coverage
data of the test cases. Test impact analysis, in contrast, suggests
a list of test cases on the basis of code changes within a given
time range. This is useful for risk-based testing, as done at BVK
and DOLBY, since modified code is more likely to contain
bugs, which can only be revealed by test cases that execute
the buggy code. It should be noted that, the more code has
been changed, and the more test cases are required to cover
all changes, the less effective is the selection of test cases.
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Fig. 7: Costs and benefits of test impact analysis (TIA) and Pareto testing (with optimal cost limit Lo; see also Figure 6)

For example, for very large software projects with dozens or
hundreds of developers on the same repository, for example
TIME, the amount of code changes of one day might already
exceed the available time for a test cycle overnight. The results
for RQ2.3 have shown that test impact analysis maintains a
higher fault detection rate than Pareto testing for automated
and manual tests, which comes with the cost of collecting
test-wise coverage information regularly.
Importance of prioritization for manual testing End-to-end tests
(such as most manual tests of our subjects) tend to cover more
code regions per test than unit or integration tests. Moreover,
manual tests are less frequently executed (2–10 cycles per year
instead of daily or weekly runs, see RQ1.2), which means that
more changes need to be covered for test impact analysis. As a
consequence, test impact analysis selected a large proportion of
tests for both manual test suites in our subjects, which reduces
the potential for time savings (see results of ILP and ZEISS
for RQ2.3). On the other hand, the subjects reported that the
prioritization of test cases was very useful for them because it
allows for great flexibility: The tests are executed in descending
order of their fault revelation probability until there is no time
left (e.g., end of planned test phase).
Variance in manual test reports We observed for both subjects
implementing manual testing (ILP and ZEISS) that data
derived from manual test reports exhibit greater variance
than those from automated tests. This is mainly due to
the inconsistencies inherent with manual testers in initiating,
terminating, and executing test cases, for example, test cases
can be under-specified [6], [42]. For coverage- or time-based
test optimization techniques, this means that a slight variance
in the results needs to be expected and that the exclusion of
outliers may produce more useful results.
Cost limit parameter for test impact analysis In practice, for
example, at BVK and ZEISS, the available time is often the
limiting factor to run tests (see also the results for RQ1.3). While
Pareto testing has a cost limit by design, our implementation
of test impact analysis does not consider such a cost limit. To
address the need of an explicit optimization goal, we suggest
for productive implementations of test impact analysis to add
a cost limit input parameter, which is taken into account after
the selection and prioritization of tests.
Transferability of optimization techniques Our field experiment
shows that optimization techniques designed for automated
testing can be applied for manual testing. To achieve uni-
form and comprehensive data, it is crucial to integrate test

measurement tools, like a profiler, deeply into the tester’s
workflow. While the selection of manual test cases is less
effective for our subjects, they find the prioritization very
helpful. Overall, the optimization techniques provide useful
results for automated and manual testing, and convinced our
subjects to permanently implement them in their testing process.
Concluding, this underpins the transferability of optimization
techniques from automated testing to manual testing.
Post-study optimization of industrial testing processes Prior
to our collaboration, the subjects were unaware of test opti-
mization techniques, or there was no implementation available
for their tech stack. Our language-agnostic implementations of
test impact analysis and Pareto testing helped them evaluate
these techniques within their own testing process. Notably,
our field experiment’s results convinced all five subjects to
permanently implement an optimization technique in their
testing process. For them, the benefits of optimization (e.g., the
substantial resource savings and earlier feedback from failing
tests) outweigh the costs (e.g., potentially missed failures and
optimization data processing).
Recommendations for researchers and practitioners From
our empirical study, we draw a number of recommendations
for researchers and practitioners interested in implementing
optimization techniques in large industrial software testing
processes. Such processes involve many stakeholders with
different experiences and stakes all of whom need to be on
board and convinced of the benefits of the introduction of
test optimization techniques for a successful implementation.
Thus, it is vital to first understand the current testing process in
detail (e.g., test strategies, tools, test environments, deployment
strategies, test frequencies) and to discuss the optimization
goals with the test management. This helps strengthen the
understanding of people involved and to manage expectations,
but also to fine-tune the optimization parameters.

We also recommend anticipating and prepare for technical
challenges. Depending on the technical setup and the organi-
zation, these may be very different. Some likely issues that
we have encountered during this empirical study and in other
industry contexts:

• Access restrictions within test environments that needed
to be addressed.

• For large systems, processing the volume of data required
for the test optimization techniques poses a challenge.

• Non-isolated test environments can make it difficult to
distinguish between concurrently running test cases.
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Third, it is critical to involve the test teams that will be
directly affected by the optimization results. Especially in the
context of manual testing, using these techniques can have a
big effect on the way teams perform their tests. They should be
aware of the motivation for the process change, get an overview
of the technical details of the optimization approach, learn about
its impact on their testing process and have the opportunity to
formulate their own expectations. Our experience working with
manual test teams, in particular, has shown that there should
be room for questions and suggestions for improvement, since
the test teams usually have an excellent practical understanding
of the process.

Finally, before rolling out an optimization technique to a
larger testing process, we found that planning a dry run with
a small subset of test cases or testers to identify potential
blockers reduces the risk of major problems in the full rollout.
In summary, we recommend treating the implementation of
an optimization technique as a process change that requires
active change and expectation management, as well as strong
communication with all stakeholders.

VI. THREATS TO VALIDITY

Re-running failing tests threatens the construct validity of
our field experiment. Our field experiment is based on historic
test runs of our study subjects. This real-world data set contains
some repeatedly failing test cases. Since test impact analysis
selects previously failed test cases for a re-run, repeatedly
failing tests can influence the fault revelation capability of
optimized test suites in our field experiment. As re-running
failing tests is part our subjects’ testing processes, we reflected
this in the behavior of our test impact analysis implementation.
We discuss the impact of re-running tests on our results in
Section V.
Data quality presents a threat to internal validity. Both
optimization techniques rely on testing data such as code
coverage information. If this information is not accurate, it
can lead to inaccurate test selection and worse performance
for test prioritization. Thus, data quality is crucial for our field
experiment. That is why we used field-tested tooling that is
in productive use to measure test coverage, and we validated
the data carefully with partners from our subjects to obtain
meaningful results.
Non-code related failures threaten internal validity. For some
subjects, automated test cases are specified in XML, which
cannot be profiled by the profilers implemented at our subjects.
As a consequence, test failures caused by test case modifications
cannot be predicted by the optimization techniques, as there is
no mapping between the XML test cases and the corresponding
test executions. We encountered a similar situation with test
cases that are concerned with build- or other non-code artifacts.
In RQ2.2, we have investigated limitations of the optimization
techniques and discuss the impact of missing test specification
and configuration data.
Flaky tests threaten the field experiment’s internal validity
as they might influence test impact analysis since it selects
previously failed tests. While two subjects stated that they have

flaky tests for their automated test suite, they only occur in
low numbers.
The low number of versions for manual testing threatens
conclusion validity. Recording the input data for manual test
optimization proved to be a significant challenge in that we
had to continuously support our study subjects with setup
and usage of the infrastructure to obtain reliable results (see
also Section III-E). For both subjects with manual tests, it
took several test phases, each of which took several months,
until we got complete and reliable data. Even though the final
number of versions for manual tests is low because of these
constraints, the data provide unique insights for optimizing
manual testing processes that are inherently challenging to
study, which makes our study results all the more valuable for
practitioners.
Variance in manual test times threatens internal validity. The
time recordings of manually executed tests can be imprecise
(see Section V), which may impact both optimization tech-
niques. We mitigated the threat of human errors by integrating
our tooling as closely as possible into the regular testing
process, so no additional actions needed to be taken by testers
to record the data for the optimization techniques. In addition,
we validated the manual test execution data carefully in close
collaboration with our subjects to make sure that no invalid
data go into our results. For example, we excluded outlier test
cases with too small (a few seconds) or too large execution
times (multiple days).
Generalizability of results in empirical software engineering
research is often limited [64], which is a threat to external
validity. This applies to our empirical study as well: Our
subjects are not representative of all real-world software
systems and their giant range of technologies and development
and test processes. However, we considered a diverse set
of five industrial software projects from different companies,
domains and building up on different technologies. Our survey
for RA1: Test Strategies is meant to be a case study, so it
does not claim to be representative for all industrial software
engineering projects, nor that its results are generalizable
across all industrial projects. We believe that it is important to
understand the specific contexts of our subjects so that other
researchers and practitioners can judge to what extent our
results could also apply in their contexts, which is subject of
an ongoing debate in the software community [65]. Still, in
contrast to prior work on industrial systems, our empirical study
on software testing optimization techniques is not tailored to
individual subjects and, hence, is likely to be more transferable
to other contexts. Our results show that the optimization
techniques can be used for automated and manual testing
processes, help to reduce time to feedback, and, in general,
maintain the test suite’s fault detection capability.

VII. CONCLUSION

Software testing is a common practice in industry, including
both automated or manual processes. In this paper, we
investigate to what extent optimization techniques that are
typically used for automated software testing can be transferred
to manual software testing. We have conducted an empirical
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study on five subjects from different domains, different tech
stacks, varying regulatory requirements, and implementing
different testing strategies. Their test processes are resource-
intensive: up to twenty test engineers are involved in testing
and a single test cycle runs up to four weeks. To carve out
differences in their automated and manual testing processes,
and their implications on optimizations, we conducted a survey
among the test leads of our subjects. Then, in a field experiment,
we applied two optimization techniques that select and prioritize
test cases, test impact analysis and Pareto testing, and compared
their costs and benefits in a historical analysis on our subjects’
test suites. Our results show that both optimization techniques
are applicable for automated and manual testing, even on
large industry systems, and yield execution time savings of
up to 98% for automated tests and 85% for manual tests,
while preserving a fault detection capability of up to 96%. In
conclusion, test optimization strategies—such as test selection,
test prioritization, and test minimization—traditionally used
for automated tests can be effectively transferred to manual
testing, with only manageable limitations to be considered.
More importantly, our results have practical impact, since all
of our subjects implemented them in their software testing
processes.

VIII. DATA AVAILABILITY

The raw data obtained in our empirical study cannot be
shared because of confidentiality agreements. For reproducibil-
ity, we publish aggregated data and the analysis scripts, along
with additional details on our subjects, our questionnaire, and a
subject specific discussion of results on a supplementary Web
site: https://zenodo.org/records/11502386 .
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