
Evaluating Information Retrieval for
the use in Regression Test Selection

Case Study

Author: Majd Akleh

Supervisors: Prof. Dr. Ben Hermann

TU Dortmund

Raphael Nömmer

CQSE GmbH

Date: September 2023

Contents

1 Introduction 1

1.1 Test Selection . 1

1.2 Motivation for Information Retrieval 2

1.3 Study Structure and Objectives 3

2 Literature Review 4

3 Methodology 5

3.1 Lucene . 6

3.2 Construction of Document Collection 7

3.2.1 Collecting Test Files: 7

3.3 Tokenization . 8

3.3.1 Token Filtering: . 9

3.4 Convertion To Document Terms: 9

3.5 Indexing . 10

3.6 Query Construction . 12

4 Results and Analysis 13

4.1 Subject Systems . 14

4.2 IR Configurations . 16

4.3 Max Tests Returned . 16

4.4 Results By Project: . 18

5 Evaluation 20

6 Limitation 21

7 Further Enhancements 22

8 Conclusion 23

9 Appendix 24

9.1 Company Information . 24

9.2 Acquired Experience and Learning: 24

1 Introduction

During the software development life-cycle, code evolves by fixing bugs and

introducing new features, however, these enhancements usually come along

with potential problems, and might negatively impact existing functionali-

ties. Testing is a crucial way to handle these problems by identifying issues

early in the development process and ensuring that software or products

meet quality standards before they reach the end-users. Regression testing

is a type of software testing that focuses on verifying that changes or modifi-

cations in a software application do not introduce new defects or regressions

in existing or newly introduced functionality. It involves retesting previously

tested features or functionalities to ensure that they still work correctly after

changes have been made to the software. The primary objective of regression

testing is to identify and catch any unintended side effects or issues caused by

modifications to the software. It helps ensure that the system remains stable

and reliable throughout the development life-cycle, even as new features are

added or bugs are fixed.

1.1 Test Selection

Modern software applications can have extensive test suites comprising hun-

dreds to tens of thousands of test cases. And as new features are added,

more test cases need to be created. Besides, old tests rarely get removed,

which cause the test suite to grow dramatically in size. Executing all of these

test cases can require a significant amount of time, especially if each test case

takes a non-trivial amount of time to run, i.e. tests at higher levels of abstrac-

1

tion, such as system or UI tests are usually time consuming, with individual

tests often requiring several minutes or even longer to complete. This has a

significant impact on the progress of developers and the overall development

process, i.e. waiting for tests to complete before getting feedback can result

in downtime where developers are unable to proceed with their work, this

also causes them to switch context while waiting for tests to finish, which in

turn can reduce efficiency and focus. Furthermore, running a large number

of test cases simultaneously can consume substantial computing resources

such as CPU, memory, and disk space. This can lead to resource contention

and slower execution times for individual test cases. Therefore, test selec-

tion techniques are used. Test selection is a software testing technique that

aims to optimize the testing process by selecting a subset of test cases from

a larger pool of available tests. This aims to optimize the testing process

by selecting a subset of test cases that have the highest likelihood of de-

tecting defects while minimizing the time and resources required for testing,

which in turn can accelerate the overall development cycle. Several popular

testing selection techniques are used in software development, such as Code

Coverage-Based Selection or Impact Analysis.

1.2 Motivation for Information Retrieval

Numerous selection methodologies commonly employed in both literature

and practical applications rely on the concept of code coverage. However, as

the size and intricacy of projects grow, gathering and assessing code coverage

becomes progressively challenging. This gives rise to a situation where these

methodologies tend to exhibit limited scalability when applied to projects

2

of considerable size. Therefore, this study aims to develop and compare a

prototype procedure that does not rely on coverage with existing coverage-

based methods. Instead Information retrieval (IR) techniques are to be used

and investigated, these have been shown to be effective for selecting and

prioritizing tests. IR deals with the organization, retrieval, and analysis

of information from large collections of data, typically in the form of text

documents. Reducing the problem of test selection into the traditional IR

problem allows us to benefit from the massive research progress in this field.

In this study, we are going to have a deeper look into how test selection can

be formulated using an IR algorithm, the design will take into considera-

tion textual distance between tests and changed source code. Next, we will

realize the conceptual principles into functional implementation where we

investigate different parameters. Finally, we put our design under evaluation

based on historical failure patterns which are grabbed from an open-source

and industrial contexts.

Now the question: Is our design more effective than untreated or random

test orders? This research question aims to understand whether our algo-

rithm reveals regression faults earlier than when there is no test selection or

when test cases are ordered at random.

1.3 Study Structure and Objectives

In Section 2, we provide a literature review of IR algorithms and test se-

lection, discussing previous studies and related work. Section 3 details the

methodology employed for conducting the case study. We explain the cri-

teria used for selecting specific algorithms and techniques. Following the

3

methodology. Section 4 presents the results and analysis obtained from the

case study. In Section 5, we engage in a comprehensive discussion of the

results, comparing and contrasting the performance of the algorithms. Next,

in Section 6, we address the limitations encountered during the case study.

We openly discuss any constraints or biases that may have influenced the

results. In Section 7, we draw conclusions based on the key findings and

insights obtained from the case study. Finally, the report concludes with a

comprehensive list of references in Section 8, ensuring the proper acknowl-

edgment of all cited sources.

2 Literature Review

Information Retrieval (IR) plays a vital role through its implementation in

a range of practical applications, including searching the web, question an-

swering systems, personal assistants, chatbots, and digital libraries among

others. The primary objective of IR is to locate and retrieve information

that is relevant to a user’s query. As multiple records may be relevant, the

results are often ranked according to their relevance score to the user’s query

[1]. Information retrieval techniques have also helped to improve the effi-

ciency and effectiveness of software development, for example, Liu et al. [2]

used an IR method called Latent Semantic Indexing (LSI) to store method

information extracted from the source code and method execution trace, in

which developers can query this to locate features in the codebase, this can

be helpful for developers who are trying to learn about a new feature or fix a

bug. Latent Dirichlet allocation, a generative statistical model that has sig-

4

nificant advantages over LSI, was also investigated in similar contexts. An

LDA-based technique was proposed for automatic bug localization, which

showed sufficient accuracy across different test projects [3].

The initial proposal that suggests employing Information Retrieval (IR)

techniques for the purpose of test case selection and prioritization was pub-

lished by Saha et al. [4], where the idea was that test cases exhibiting greater

textual similarity to the modified code are more likely to be associated with

the changes made to the program.

3 Methodology

In general, in an IR system, a query is performed on a set of data objects,

and the system returns a ranking of the data objects based on similarity

against the input query. There are three key components for an IR system:

(1) how to construct the data objects, (2) how to construct the query, and

(3) the retrieval model that matches the query against the data objects to

return a ranking of the data objects as the result [5].

The idea behind our approach is that the program changes between revi-

sions are a good indication of the areas of the code that have been modified

and this can guide towards the tests that are most likely to be affected by

the changes. Now by treating these changes as a query, the IR system can

identify a set of tests that has a high relevance and textually more related

with the provided query, and prioritize them according to some relevance

score.

Therefore, as initial step, we collect test files from their corresponding test

5

directories for a given software project, process each test including tokeniza-

tion and filtering, then construct and index a so-called document collection,

that represents the pool of tests to be queried from. At this point, the pro-

gram is ready to accept changed files, tokenize and filter them almost in the

same way as test documents, and construct the final query that combines

information for the entire set of these changed source files. That basically

summarizes our focus into two major program components, the Indexer,

i.e. the construction of the document collection, and the Searcher, i.e. the

system that query these indexed documents. We are going to discuss these

two components in detail in the next sections.

3.1 Lucene

Figure 1: Algorithm Schema

We adopt the Lucene library [6], an efficient open-source search engine

library written in Java. We decided on Lucene since it provides powerful

indexing and retrieval capabilities. Lucene operates on the concept of an

6

inverted index, which is a data structure that maps terms to the documents

in which they appear. We are going to use it to analyze documents, and

builds an index that allows for efficient full-text searching. The index can

handle large volumes of data and provides fast retrieval of relevant documents

based on search queries.

3.2 Construction of Document Collection

In the context of IR-based test selection, the data objects originate from the

individual tests. A test file in this context is an entire file that might include

one more test classes. Each of these classes might in turn include a couple

of test methods. The aim here is to construct one document for each test

file and not for classes or methods, i.e. the test selection will return test file

names or paths that could be run individually as a test unit. We decided

on this approach as a test file might include not only the test method which

most likely to identify the bug in the revision, but also other related test

methods or units that also share some context with changed source files as

well. This granularity will provide a higher coverage level

3.2.1 Collecting Test Files:

In order to build the test files index container, test files in the corresponding

software system can be collected from all resources available. This typically

involves identifying the relevant files and gathering them into a single loca-

tion. Manual search within the software’s directory or repository could be

performed to locate the test files. Folders or directories specifically dedi-

cated to testing can be looked, such as ”tests,” ”test,” or any other naming

7

conventions related to testing. Build or test automation tools could also be

used if the software uses them, such as build systems like Maven or testing

frameworks like JUnit, we can utilize their functionalities to gather the test

files. These tools often have specific directories or settings that store the test

files. In this study, we collect test files by conducting a file search on a given

root directory, test directory can be chosen directly instead of the project

root in order to narrow the search scope. Currently we also only support

test files that are written in Java or JavaScript, therefore we have to filter

the returned files obtained from the search to fit this restriction as well.

3.3 Tokenization

Given that we are working with program source code instead of English natu-

ral language, our tokenization process differs from standard IR systems used

outside the scope of software engineering. In a standard IR tokenization task,

the text to be indexed is usually separated using the white space tokenizer.

Although, this approach is simple and straightforward, but it does not filter

out meaningless terms for IR such as Java keywords (e.g., if, else, return),

operators, numbers and open-source licenses[5]. However, in the context of

test files, tokenization involves breaking down the source code into elements

or tokens. Tokens can represent various elements in the code, such as key-

words, identifiers, literals, and symbols. This is a crucial step for the analysis

process, as it provides the flexibility to extract the information we need, that

will be most related to the queried changed files later.

For this, we use Teamscale [7] that provides an API which is capable of pars-

ing source files on a wide range of programming languages and is responsible

8

for breaking down the source code into individual tokens, including entities

like classes, methods and statements.

3.3.1 Token Filtering:

Our approach tries to index as much context information as possible, in other

words, information that is highly relevant and directly contributes to under-

standing the textual relationship between a source and the corresponding

test file and provide more meaning similarity such as describing the same

area or UI components in the project, this would be considered most useful

for indexing and analyzing. Therefore, tokens representing the programming

language keywords or syntax for example aren’t considered very valuable in

determining the context of the test file. Instead, we can extract various ele-

ments such as identifier names (class, attribute, method and variable names)

as well as comments, string literals and descriptions. These hold significant

value for information retrieval since they serve as locations where developers

can employ their own natural language terms, and considered important to

link contexts between the test and source files [4].

3.4 Convertion To Document Terms:

After we received our filtered tokens from the last step, we now pre-process

these tokens to acquire the suitable input for creating documents. This pre-

processing consists of multiple steps that are necessary to maintain a better

document retrieval later, such as:

• Camel case handling: In general, camel case identifier names consist

of concatenated words such as method or variable names, in which we

9

basically destruct into separate lower-case words. E.g testHelloWorld

becomes test, hello and world

• Stop Word Removal: removes the common English language stop

words, such as propositions, articles and question words.

• Stemming: this considered an important step in an IR system in order

to reduce words to their base or root form. It involves removing pre-

fixes, suffixes, and other variations from words so that different forms

of the same word are treated as the same token.

This way we acquire a list of words or ”terms” for each test file, this list con-

tains the most needed information that represent that test file. Usually, the

next step would be to index this list as one document, however we decided to

split this list into three categories of terms based on the program constructs.

We distinguish between:

• Method names

• Docs and comments

• All other identifier names (e.g. variable names, string literals)

3.5 Indexing

After parsing test files and converting them to terms and splitting these

terms into three categories, the indexing process takes place. Indexing in

this case means converting these text terms into a structured format that

allows for efficient and effective searching. This allows for fast look-ups dur-

ing search operations. Creating a document in Lucene allows to also create

10

several fields inside each document for organization, therefore, we use this to

assign a field for each of the three categories mentioned previously. The aim

behind this is to also set different weights for each category, we think that

finding a term in the test method name has a higher potential to share con-

text with the queried source file than finding the same term in an arbitrary

identifier inside the method. Object return values such as String, ArrayList

or Descriptor are also considered identifiers, however they contain less value

since they are more likely to appear in many test files. However, these iden-

tifiers are also less likely to be included in the test method names or even

comments. Considering all this, we decided to create three fields for each

category and assign the highest scoring value for terms found in test method

names, less scoring value for terms found in comments and docs, and the

least value for the remaining terms. This scoring scheme will be considered

when deciding on the returned documents. Figure [2] shows a typical test

file on the left yet to be analyzed and indexed, and on the right we see its

document representation divided into three fields as described above.

Figure 2: Conversion from test source file to document representation.

11

3.6 Query Construction

As we defined in the problem formulation, in an IR-based test selection,

changes between two program versions comprise the query. Generally, there

are multiple approaches to extract these differences from the changed pro-

gram, for instance:

• At line level: which basically considers differences between two ver-

sions at the line level only. A disadvantage at this level is being too

sensitive against tiny changes.

• At a local level: applied on wider area around the changes to include

more context, such as a block or method level, which enhances the

previous approach and tackles its weakness.

• At a file level: considers the entire changed file or class as a query

after re-representing it as a custom structure by extracting as much

useful information as possible.

In this study, we decided on the last approach as we believe the main advan-

tage of it, is the ability to include more related contexts, such as unchanged

methods or the import list, that could potentially hold extra information

that could affect the test selection result dramatically. After acquiring the

changes, we parse these set of files similar to how we processed test files be-

fore, i.e we tokenize, filter, and convert to query terms, except this time there

is no need to differentiate between three categories of terms. Instead, we col-

lect one list of terms extracted from all changed files and construct exactly

one query where each of these terms may or may not appear in the resulting

12

document. We decided on this ”one query” approach instead of querying each

changed file separately, because the files that have been changed together in

one commit have higher potential to share the same area and context, and

we basically want this entire area to be tested after the change. This way,

the test files that have higher similarity with this query are returned, and the

tests that match more terms from the changed set would have higher score

and thus higher priority. This also preferably assumes that test units/files

are constructed in such a way, for each file, one area of the program is being

tested, that has multiple related contexts.

4 Results and Analysis

To investigate the effectiveness of our method, we performed an empirical

evaluation which aims to assess the practical application and outcomes of the

proposed solution, by comparing it with a random test selection approach as

baseline. In a random test selection, test cases are selected randomly from

a test suite for execution, however, for evaluation purposes, we perform test

selection sampling 20 times and average the accuracy results. We refer to

the random approach by Rand. We conduct experiments on several project

systems, and we use different configurations and implementations. With that

we aim to answering the following research questions: (1): How do different

IR configurations impact IR-based test selection techniques? (2): How can

we further enhance these techniques?

13

4.1 Subject Systems

In our case study, Defects4J [8] serves as the experimental environment for

our empirical evaluation and analysis. Defects4J is a database of diverse re-

producible real-world software bugs from open-source Java projects. These

bugs have been encountered in actual software development scenarios, mak-

ing them highly relevant for our practical investigation.

Table 1: Defects4J Projects Overview

Table 1 presents an overview of the projects provided by Defects4J, where

we can see relevant metrics such as number of files, SLOC and file size. This

information gives the ground knowledge about each project, that helps to

draw conclusions about the correlations between their metrics and the overall

14

model performance. The number of files directly affects the size of the search

space that needs to be considered when identifying tests, i.e. it can affect

the efficiency of indexing and searching. Indexing a large number of files

may require more computational resources and time. Additionally, searching

across a larger number of files can impact the speed of the selection process.

Although these metrics are taken for the entire project and not for the test

directories only, SLOC still gives a detailed idea about the size of the index in

general, since each line of code contributes to the overall size. The quality of

the index can also be influenced by file size. A larger test file may introduce

more noise into the index document, making it potentially less effective at

retrieving relevant information if not properly managed. For that, the table

shows a widget that break down file sizes into three categories, small files ≤

300 SLOC in green, medium files ≤ 750 SLOC in yellow, and large files >

750 SLOC in red. This might not only affect document size, but also query

length dramatically, since we deal with queries that are basically lists of terms

collected from a set of changed files, i.e. they might contain ten of thousands

or terms. Defects4J provides a collection of bugs for each project, for each

bug, a list of the modified classes are provided alongside with the relevant,

and triggering tests which correspond to this change for a specific project.

According to the authors, a test class is relevant if, when executed, the JVM

loads at least one of the modified classes. A triggering test however, is the

one that trigger (expose) the bug. We can use this information to investigate

whether using these modified classes as input for our model would yield some

of the corresponding true failing tests.

15

4.2 IR Configurations

One more objective of this study is to investigate, how do different infor-

mation retrieval configurations impact the results of the proposed model.

Subsequently, we will adopt the configuration that exhibits the highest per-

formance as the default implementation. There are two main configuration

options we need to set when implementing our approach.

• Default: Which was explained in the methodology in section 3, and

we refer to it by IR.

• Distinct terms: Given that there is often a big difference between

two program versions, such as thousands of lines of code, it is quite

probable that they will contain numerous duplicated terms. Therefore

we introduce a compact version by removing all the duplicated words.

We refer to it by IRD.

4.3 Max Tests Returned

We tested our model on different values for the test percentage allowed to

be returned from the search operation, ranging from 10% to 90%. Figure

3 depicts the relationship between the percentage of tests returned after

querying and the overall accuracy of detecting tests, both triggering and

relevant.

We see here how our IR and IRD models both show significant improve-

ment over the random approach, with IR slightly superior to IRD. For better

analysis, Figure 4 presents box plots representing the ranges in the previous

16

Figure 3: Accuracy rates for different max returned tests.

figure. These ranges provide a sense of the variation in the data distribution

across all projects.

Figure 4: Triggering and Relevant Accuracy Box Plots

The range of values for IR / IRD triggering tests accuracy spans from

17

57% to 86% and from 56% to 86% respectively. However, the IQR∗ shows

compact data results for both configurations with medians 79% and 77%.

For relevant tests on the other hand, a more data spread is observed, accu-

racy here spans from 33% to 97% and from 30% to 96% respectively. We

also observe that the data has less skewness and the medians tend towards

the center.

∗The interquartile range (IQR) is the box that contains the middle 50% of the

data.

4.4 Results By Project:

Table 2 drills down the previous overall data by showing one data slice for one

value of the metric of max returned tests, particularly 30%, it provides results

of testing our default IR model against the projects provided by Defects4J

and contains information, such as, average triggering test taken across all

bugs in each project, triggering tests capture accuracy, and average query

times taken for all bugs. This provides an indication how the overall accuracy

is maintained in the previous figures. We witness accuracy ranges from 50%

to 100% and 32% to 88% for triggering and relevant respectively. Query time

was also present in the table, this shows the time needed for the algorithm to

perform a query including parsing changed files, extracting terms, processing

tokens and then search the index for relevant tests. However, these numbers

are taken as average across all bugs in the corresponding project.

18

Project Avg. Change Avg Trig. Avg Relev. Avg. Query

Size (KB) #Trig. Acc. #Relev. Acc. Time

[JacksonDatabind] 36 2 74% 260 40% 14.96 ms

[Csv] 23 2 82% 6 64% 5.88 ms

[Jsoup] 28 2 81% 16 51% 9.34 ms

[Cli] 16 2 58% 15 44% 4.95 ms

[Math] 27 2 88% 19 84% 12.03 ms

[Compress] 24 2 77% 21 50% 5.98 ms

[JacksonCore] 69 3 60% 53 46% 15.19 ms

[Codec] 28 3 78% 6 84% 5.89 ms

[Chart] 52 4 67% 36 79% 13.69 ms

[Mockito] 8 4 65% 126 48% 4.45 ms

[Collections] 40 1 100% 5 83% 10.25 ms

[Closure] 41 4 69% 87 49% 16.02 ms

[Lang] 58 2 88% 7 88% 9.03 ms

[JxPath] 17 2 55% 16 37% 6.23 ms

[Gson] 22 2 64% 49 51% 7.94 ms

[Time] 48 3 71% 73 53% 12.38 ms

[JacksonXml] 23 2 50% 51 32% 7.83 ms

Table 1: Default IR Accuracy for test return percentage of 30%

19

5 Evaluation

We saw in Figure 3 how IR algorithms beat the random guessing approach by

a good margin. This shows that the textual relevance between the changed

code and the corresponding test files plays a huge role in test selection and

prioritization. Such relevance is not considered at all in the random approach

that has no mechanism to re-order or select result tests. One more obser-

vation we also extract from Figure 3 is that IR performs slightly better in

terms of accuracy than IRD, and this due to the algorithm how relevance is

being calculated, especially that duplicate query terms may carry additional

context or emphasis. By retaining duplicates, the searcher can consider the

frequency and position of each term, potentially boosting the score of doc-

uments that contain multiple occurrences of a that term, providing more

relevant results. However, keeping duplicates naturally increase the length

of the query. Longer queries may require more computational resources for

additional comparisons and processing. This extra processing overhead can

slow down the search, especially when dealing with a large number of doc-

uments. Also when duplicates are present, index size can increase, which in

turn can affect search speed.

In Table 2, data per project was presented. We saw how the model

performed quite well on the triggering tests, however, this might be influenced

by the the fact that the number of triggering tests per bug is quite low (avg.

between 1 and 4 triggering tests per project). Therefore, returning 30%

of the test suite has quite good chance of picking the triggering tests. This

correlation appears most for projects with only 1 or 2 average triggering tests.

Nevertheless, the model still outperform the random guessing algorithm even

20

for relatively high returned test percentage allowed. For relevant tests, the

model has suffered for specific projects, we argue that this due to the number

of relevant tests per project, as capturing more tests is more challenging. One

more reason is that relevant tests differ from triggering test as they don’t

necessarily provide semantic context similar to the changed files, this could

raise an obstacle for IR based techniques in general that highly depend on the

textual similarity. Despite that, the model had better performance than the

random guessing overall as we saw in Figure 3. Finally, the query time column

gives data about the model performance for each project, this metric does

not seem to have an interesting correlation with the other columns except

for the change size, which was calculated as a sum of all changed file sizes in

KB. This is due to the the fact of bigger files has more terms to process and

in turn to query. Some of these files might have thousands of lines, that is

the tendency among the development team towards writing smaller files that

are dedicated for one purpose, and extracting the remaining logic into other

files might have a positive impact, not only on the performance but also on

the results.

6 Limitation

Our model rely on the the availability and quality of source/test code docu-

mentation, including well naming of variables and methods as well as mean-

ingful comments that generally contain rich context. This dependency may

affect test selection results when incomplete or missing. However, this might

not be considered a big issue in practice, because in the majority of cases,

21

tests are named in alignment with the source code. Furthermore, it may lack

the broader context in which code operates, i.e. code changes that affect

high level abstractions or class generics provide less value in terms of textual

context, which reduce accuracy. As mentioned in section 4, the model is de-

signed to return full test files and not failing test methods in particular, also

this assumes that test files contain related test methods, which might not be

the case in practice. On other side, flickering tests showed to be a struggle

for test selection methods that rely on code change textual context and have

negative impact on the results. Our model does not handle these tests which

might have misled our results. Regarding performance, we tested relatively

small repositories with small test suites, however for large codebases, index-

ing and querying might become computational expensive, which limits the

scalability of our model.

7 Further Enhancements

At the current state, the model considers the tokenized program changes

as input, which we considered the main source of context between source

and test files, however we can improve this input by including more features

other than the textual difference, e.g author of the source code which might

reflect information about the tests, since features are most likely accompanied

with tests written by the same developer. We can proceed further and in-

clude more semantics related to the change such as the commit message, bug

descriptions imported from the software planning environments, and more.

These texts might add more values especially for tiny changes that is not

22

enough to identify related tests. Another enhancement might be by consid-

ering the historical data and version control system logs to allow the model

better understand how changes in this area have impacted tests in the past.

On the performance side, we can optimize the design to ensure that it can

scale to handle large codebases and frequent changes, cloud-based solutions

can be applied to handle these scalability challenges.

8 Conclusion

Regression testing is a crucial part of the software development life-cycle.

It involves retesting existing features to make sure they still work correctly

after changes or additions have been made to the software. The main goal is

to catch any unintended issues caused by these modifications, ensuring the

system remains stable and reliable as it evolves. Throughout this study, we

presented a test selection approach based on an information retrieval method,

We have examined the key components of the algorithm, its implementation,

and its challenges. Next, we conducted an empirical evaluation of different

configurations of the algorithm. For that we used a dataset of 17 projects

that contain real bugs and their failing tests. Our results showed that the

IR model is significantly better than a random test selection approach. In

summary, our model has provided valuable insights into the effectiveness

and applicability of this approach in the field of software testing. It showed

that IR-based test selection can be a promising area for enhancing software

testing, as the potential benefits in terms of efficiency, adaptability, and test

suite relevance make it a valuable strategy for organizations striving to deliver

23

high-quality software products.

9 Appendix

9.1 Company Information

CQSE GmbH

Centa-Hafenbrädl-Straße 59

81249 München, Germany

Email: info@cqse.eu

CQSE GmbH, short for ”Continues Quality Software Engineering,” is

a quality software consulting and solutions provider. Established in 2009,

CQSE is headquartered in Munich, Germany. The company specializes in

offering consulting services, software analysis, quality assurance, and im-

provement solutions to clients across various industries, that help customers

to evaluate, improve and control the quality of their software systems.

9.2 Acquired Experience and Learning:

During my case study at CQSE, I had the privilege to work on large software

applications mainly Teamscale (TS), a software intelligence platform that

provides software analysis and quality assurances. Moreover, I was intro-

duced to the realm of software testing, and the challenges that face compa-

nies in industry when testing their own large scale applications. I researched

Information Retrieval (IR) techniques and its application in regression test

selection. This phase involved identifying relevant literature and exploring

24

state-of-the-art IR methods. I also worked with professionals who guided

me throughout the process of integrating my knowledge in the field of Data

Science with their research ideas, in order to produce solutions that could

potentially facilitate their decisions regarding testing, and improve the effi-

ciency of their software testing processes in general. With the help of TS, I

was able to implement my own approach of test selection, and contribute to

CQSE’s work goals. Furthermore, I put my hands on open-source projects,

that served as the basis of my methodology on one hand, and used as data

to test my approach on on the other hand. I also maintained detailed docu-

mentation throughout the case study, and provided regular progress reports

to CQSE and my university. Finally, My study at CQSE was a informative

experience that significantly expanded my knowledge with a comprehensive

understanding of software quality, emphasizing the vital role of regression

testing in maintaining high-quality software products. Collaboration and

communication were key, as I learned the significance of effective teamwork

and professional interaction while working with their team.

References

[1] K. A. Hambarde and H. Proenca, “Information retrieval: Recent advances

and beyond,” arXiv preprint arXiv:2301.08801, 2023.

[2] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, “Feature location

via information retrieval based filtering of a single scenario execution

trace,” in Proceedings of the 22nd IEEE/ACM International Conference

25

on Automated Software Engineering, ASE ’07, (New York, NY, USA),

p. 234–243, Association for Computing Machinery, 2007.

[3] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug localization using

latent dirichlet allocation,” Inf. Softw. Technol., vol. 52, p. 972–990, sep

2010.

[4] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry, “An information

retrieval approach for regression test prioritization based on program

changes,” in 2015 IEEE/ACM 37th IEEE International Conference on

Software Engineering, vol. 1, pp. 268–279, IEEE, 2015.

[5] Q. Peng, A. Shi, and L. Zhang, “Empirically revisiting and enhancing ir-

based test-case prioritization,” in Proceedings of the 29th ACM SIGSOFT

International Symposium on Software Testing and Analysis, ISSTA 2020,

(New York, NY, USA), p. 324–336, Association for Computing Machin-

ery, 2020.

[6] A. S. Foundation, “Apache lucene core,” 2023.

[7] CQSE-GmbH, “Teamscale,” 2023.

[8] R. Just, “Defects4j: A database of reproducible bugs in java projects.”

https://github.com/rjust/defects4j, Year. Accessed on Date.

26

