A4Q TESTING SUMMIT oA
W= EDITION 202 ¢

Everyone wants to shift left,
but our tests are just too slow!

CQSE Fabian Streitel

Fabian Streitel

= Team lead “Test Intelligence”

= Supervising bachelor and master theses

= For over 7 years:

h CQSE & teamscale

A Hours, Days

manual, automated,

E2E, ...

BEONERE
BEEEAE
ENESNED
THLIY
YLD
IEaans
AONENE
EEDEEN
EREdan
TR

Test Selection

=8 KB40 N R
g
B B S B

IRREED

Shift Left

Complete Test Run

Shift Left

Complete Test Run
Smart Selection

Shift Left

Complete Test Run

Smart Selection

11

Ul Controls

GUI.Dialogs

L

GUl.Base

Authentication

Z B

Data
Validation

L~

BFEINIIES: = D EHNESS HETR OT W

Coverage over Time ©
Test Budget

100%-
90%-
80%-
70%~
60%-

50%-

Relative Coverage —

s | L s L

1d 2d 3d 4d 5d
Total Time

Results for Test Query & Budget Restriction
Relative Coverage: 17% Test in Budget: 36 out of 674 (5 %)

|dea: use tests that are most dissimilar

Coverage over Time ©

Test Budget

100%-

90%-

70%-

60%-

Relative Coverage —
"
¥

Results for Test Query & Budget Restriction
Relative Coverage: 100% Test in Budget: 26 out of 674 (4 %)

2d

3d
Total Time

4d

An Evaluation of Distance Based Test Suite
Reduction Techniques

Alessandro Escher
Technical University of Munich
Munich, Germany
alessandro.escher@tum.de

Abstract—Efficient test suite selection is crucial in software
testing due to the high cost of running extensive tests, particularly
on large industry projects. Coverage-based techniques aim to
maximize system execution within time constraints but often
suffer from costly and complex coverage recording processes.
This study explores alternative selection methods using test

metadata and source code. Clus-

Raphael Némmer
Technical University of Munich

Munich, Germany

noemmer@cqse.cu

approaches rely on the test coverage—be that at the statement,
branch or method level—of the test suite in order to determine
which tests to choose. Recording and storing this coverage
data can become a cumbersome process, especially for large
and complex software systems that use multiple programming

tering (HAC) and a greedy approach were evaluated alongside
distance measures based on package path distance and vector
representations of test code.

Evaluation on a variety of open-source projects and a large
industry project revealed that while the proposed methods
maintained decent coverage, they did not significantly outperform
a strictly time-based selection. We note that HAC lacks a clear
time-budget stopping criterion and performs worse than the
greedy approach and random selection. Furthermore, techniques
that rely on execution times tend to neglect longer-running tests,
which can have an impact on fault detection, particularly in
industry projects.

This study emphasizes the importance of effective test selection
methods that balance coverage, cost, and fault detection. We
suggest that a simple yet effective baseline such as lowest
execution time first is a more robust baseline than a random
selection, especially for a cost based evaluation, and underline
the need for more competitive baseline methods in test suite
optimization research.

Index Terms—test selection, test suite reduction,

1 and frameworks [7]. Because of this, a company
will have to struggle with the high cost and maintenance
effort, and may only decide to do adopt this approach in a
limited manner [8]. Being able to use an alternative approach
that is not based on coverage data but instead uses readily
available data would allow for TCS to be performed on all
projects. no matter their priority. Additionally, it would allow
the developers of a project to gain immediate benefits of TCS
in case the coverage recording process is not set up yet.

In this study we focus on exploring alternative approaches
to coverage-based test suite selection, aiming to address the
challenges associated with the expense and complexity of

litional methods. lly, we i igate the feasibili
of using test metadata and source code for a more efficient test
selection. We examine a clustering and a greedy approach in
conjunction with v i
path distance and vector represent: of test code. The prac-

code embeddings, topic model

I. INTRODUCTION

Software testing is an integral part of the software de-
velopment lifecycle of any application. In order to validate
that the program works as intended and provides the required
functionality, a suite of tests is run—each focusing on different
components of the system and at differing granularities—at
various points in time before the software is released. Regres-
sion testing is a popular approach for this. The test suite is run
at different intervals, depending on the size of the suite and
requirements of the project. Most often this is done whenever
a change is made to the system as this is typically where
faults are introduced [1]. For large industry systems where
test suites can reach hours or days of execution time, this
takes up a significant amount of resources [2]-[6]. causing
additional costs for the company and resulting in slower
feedback for the developers. Test Case Selection (TCS)
to alleviate these issues by selecting a subset of the test suite,
picking relevant tests and omitting redundant ones. Many TCS

tical effecti of these i in ining coverage
and detecting faults is evaluated across a variety of open source
projects as well as a large industry proje

The rest of this research is structured as follows. Section IT
gives background information about some of the techniques
and concepts used. In Section III, we explain our TCS
approaches and the different combination of parameters that
we apply. Afterwards in Section IV we detail our empirical
evaluation of our proposed implementation and lastly, we offer
our concluding thoughts in Section V.

II. RELATED WORK & BACKGROUND
This section gives background information about the con-
cept of test selection and some of the techniques that were
used and offers insight into how they have been applied in
related works.

A. Test Suite Optimization

Optimizing a test suite entails maximizing its effectiveness,
that is its achieved coverage and fault detection for a given
cost in execution time [2]. There are different principles that

SCHOOL OF COMPUTATION, INFORMATION AND
TECHNOLOGY — INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

An Investigation on the Usage of Source
Code Embeddings in Test Case
Prioritization and Selection

Alessandro Escher

[63, 100]

% - - © o O
[3% Q Q Q QO
O Q@OQQ OO0
o 5 O o O
[105, 24]
o O -

Some vector space

Some vector space

Some vector space

Some vector space

Some vector space

Large Language (“Al”) Models

9
‘00\ O et) A
O L o ¥ X O
&\4\0 ,@,\\(\ ‘\\)& QO(\ o ~‘o‘o »

man — | 06 | -02 | 0.8 [09 | -0.1 | -0.9 | -0.7
woman

woman — | 07 | 0.3 | 0.8 | -0.7 | 01 | -0.5 | -0.4 .'
man

queen

queen — | 0.8 | -01 o8 |-09| 08 | -05 | -09

word Word embedding Visualization of word embedding

Al Test Clustering

2 32 2 2 2 2 3 2 3 2
2 32 2 2 2 2 3 2 3 2
2 32 2 2 2 2 3 2 3
2 2 2 2 2 2 3 2 3
2 2 2 2 2 2 3 2 3
2 32 2 2 2 2 3 2 3
2 32 2 2 2 2 3 2 3
2 2 2 2 12 2 3 2 3 2
2 2 2 2 12 2 3 2 3 2
2 2 2 2 12 2 3 2 3 2

e [
™
Ol
: %
et o
mERELIE]
| ot i L
T " | v
Jh | I 0| - 11y »
1\ 11 __: I
1[0 e AU T E—.._ T
M TJ Ilu o _ :4 -1
-
= _ H R 117 B i
I w% L LT = T H
_ : FhEE _
3 =

. - IMES M -
: stiiied H TTE
__:m:—u_ _ NN
i i
1 [
" i
_ [HH i
- u] gt B | — 1
H - T _l% <] NI u 11! o
s IF‘P
i LSt _____. R —. - i ;
- 1 1 o o :— f
L] g8 !
1] LI 1
1 [- ST LT
i = " e A B 1 a1 T ! H 1_1
115
T ™ L 1] ™ -
FLI”H. .”L.w) B0 ___ ~: 11 LT :___ .__ « BEREe
1l _~ _: o L)
- M wmat ; Hunw _: 1| @Eami
o s Ll
- ._..u 1T N
Ll i I H L T
: |
1 I
1 "
1l
T I
[11 1|
| 13 5 NN O O 1 =.-._m
o8 8 T | [
i - = W{“u
. dod e i Blat
i S e
-
- anghistiy LT
r_._m HiF I“ % [i1] T :
Tl_ - I _ ~
H miili B : : 17 e
1 = i
&] T i i
kel Pt e T i 111
: L5 [_
| R v w - ” & I'T ”
vew i |
. + UL TR
11y m TTIH
:uﬂ# aezll -
111 o
1 Ji)
) RN
g 1 I
LA L L R ™ " — B 11
u I TTTITTTICT , &)
e e S -
LIE T Ik [! - I i
1T Lt 5 T
] ____M:_— 0 lll@l o i
| 1L 1] _I.M._,*_‘_~ __...__._: " ok | L0 .I_IL}I + m

1
T
I
1
L §

i

1
¥
-

5
i
1
]
5 |
=
=t
e

https://docs.google.com/file/d/12UlBftlWtw8Dot44NRTiXPfiNxaeqgqh/preview

... 5000+ test cases
don’t execute
changed code

Change-based Testing

» :
We changed login,

accounting and search.

{/>

. (user story, pull request, release, ...)

)

)

Tests for the impacted
functionality

Change-based Testing

~

' ' We changed login,

accounting and search.

(user story, pull request, release, ...)

/>
D

)

test cases for login X y & Q
test cases for accounting X y & Q
test cases for search X y & Q

Tests for the impacted
functionality

Code Changes
manual

@@=

@=

@@=
y

Test S’reps

automated

“Search and login and list and user and ...”

Hp — — Similarity Scoring -

4

Test Code Document Tests to Run
Database

Test cases for feature 12345 X

#1 |80=¢

l\ Test Suite 1
https://www.atlassian.com > jira-... - Diese Seite Uibersetzen

Test Case 1
Xray allows you to plan, design, and execute tests, as well as generate test reports. Xray uses specific
Jira issues types for this process.

A Test Suite 2

https://www.atlassian.com > jira-... - Diese Seite libersetzen

Test Case 2
A step-by-step tutorial on how to use Xray Cloud, a continuous integration tool that triggers automated
tests and provides results through an Xray Test Plan.

& TestSuite 1
https://www.getxray.app > blog - Diese Seite iibersetzen

Test Case 3
27.11.2020 — It's a full-featured tool that lives inside, and seamlessly integrates with Jira. Xray aims to
help companies improve the quality of their ...

Gooopoooooogle >

123145678 910 Weiter

(=

fo)

Changed Code

1
(= 6

LOG.debug("Debit Transaction from Account: Account Updated.™);

&

/*
* Transfer amount between two accounts
*
* Accounts should be full objects. With that said, the objects are fetched to make sure.
*
* AccountTransaction can be a partial object but must contain the transaction amount.
*/

public void transfer(Account fromAccount, Account toAccount, AccountTransaction accountTransaction) {
LOG.debug("Transfer Between Accounts:");

// From Transaction

fromAccount = this.getAccountById(fromAccount.getId());

AccountTransaction fromAt = new AccountTransaction();
fromAt.setAmount(accountTransaction.getAmount());
fromAt.setTransactionDate(accountTransaction.getTransactionDate());

fromAt.setDescription("Transfer to Account (" + toAccount.getAccountNumber() + ")");
fromAt.setTransactionType(transactionTypeRepository.findByCode(Constants.ACCT_TRAN_TYPE_XFER_CODE));
debitTransaction(fromAccount, fromAt);

// To Transaction

toAccount = this.getAccountById(toAccount.getId());

AccountTransaction toAt = new AccountTransaction();
toAt.setAmount(accountTransaction.getAmount());
toAt.setTransactionDate(accountTransaction.getTransactionDate());

toAt.setDescription("Transfer from Account (" + fromAccount.getAccountNumber() + ")");
toAt.setTransactionType(transactionTypeRepository.findByCode(Constants.ACCT_TRAN_TYPE_XFER_CODE));
creditTransaction(toAccount, toAt);

LOG.debug("Transfer Between Accounts: Accounts Updated.");

3

/*
* Get Account object by Id
*/
public Account getAccountById(Long id) {

NntinnalcAreniints art = arecrniintRenncitnry FindRuTACiA) «

Digibank

Changed Code

Code Test

LOG.debug("Debit Transaction from Account: Account Updated.™);
3

/I Transfer amount between two accounts

I Accounts should be full objects. With that said, the objects are f
I AccountTransaction can be a partial object but must contain the tr
pZélic void transfer(Account fromAccount, Account toAccount, AccountT

LOG.debug("Transfer Between Accounts:");

// From Transaction

fromAccount = this.getAccountById(fromAccount.getId());
AccountTransaction fromAt = new AccountTransaction();
fromAt.setAmount(accountTransaction.getAmount());
fromAt.setTransactionDate(accountTransaction.getTransactionDate());
fromAt.setDescription("Transfer to Account (" + toAccount.getAccoun
fromAt.setTransactionType(transactionTypeRepository.findByCode(Cons
debitTransaction(fromAccount, fromAt);

// To Transaction

toAccount = this.getAccountById(toAccount.getId());
AccountTransaction toAt = new AccountTransaction();
toAt.setAmount(accountTransaction.getAmount());
toAt.setTransactionDate(accountTransaction.getTransactionDate());
toAt.setDescription("Transfer from Account (" + fromAccount.getAcco
toAt.setTransactionType(transactionTypeRepository.findByCode(Consta
creditTransaction(toAccount, toAt);

LOG.debug("Transfer Between Accounts: Accounts Updated.");

}

/*

* Get Account object by Id
*/
public Account getAccountById(Long id) {

NntinnalcAreniints art = arecrniintRenncitnry FindRuTACiA) «

21

public class AccountServiceTest extends IntegrationTest {

@Test

public void transferBetweenSameAccountShouldNotBePossible() A
Account account = new Account("savings", AccountType.SAVINC
AccountService service = new AccountService();
AccountTransaction transaction =
| MockAccountTransaction.createForAmount(100);
service.transfer(account, account, transaction);

assertThat(this.getErrors()).contains(
new Error("Transfer between same account is not possible.

Account databaseAccount = this.findAccountById(account.get]
AccountTransactionList transactionlList = this.getTransactic
assertThat(transactionList).isEmpty()

Changed Code

Cucumber Test

LOG.debug("Debit Transaction from Account: Account Updated.™);
3
/*

* Transfer amount between two accounts
*

* Accounts should be full objects. With that said, the objects are f{

*

* AccountTransaction can be a partial object but must contain the trq

*/
public void transfer(Account fromAccount, Account toAccount, AccountT

LOG.debug("Transfer Between Accounts:");

// From Transaction

fromAccount = this.getAccountById(fromAccount.getId());
AccountTransaction fromAt = new AccountTransaction();
fromAt.setAmount(accountTransaction.getAmount());
fromAt.setTransactionDate(accountTransaction.getTransactionDate());
fromAt.setDescription("Transfer to Account (" + toAccount.getAccoun
fromAt.setTransactionType(transactionTypeRepository.findByCode(Cons
debitTransaction(fromAccount, fromAt);

// To Transaction

toAccount = this.getAccountById(toAccount.getId());
AccountTransaction toAt = new AccountTransaction();
toAt.setAmount(accountTransaction.getAmount());
toAt.setTransactionDate(accountTransaction.getTransactionDate());
toAt.setDescription("Transfer from Account (" + fromAccount.getAcco
toAt.setTransactionType(transactionTypeRepository.findByCode(Consta
creditTransaction(toAccount, toAt);

LOG.debug("Transfer Between Accounts: Accounts Updated.");

}

/*

* Get Account object by Id
*/
public Account getAccountById(Long id) {

NntinnalcAreniints art = arecrniintRenncitnry FindRuTACiA) «

23

@ui @account @savings

Feature: Transfer Money (UI)

As a DigitalBank user

I want to transfer money between accounts
So I can change how much 1is in each account

@Gnegative
Scenario: Transfer between the same account is not possible
Given Carleen 1is logged into the application with Carleen6231@gmail.com
And they attempt to open a new 'Savings Account'
When Carleen enters 'Tangerine Savings' into the Account Name field
And they select 'Individual' from the Ownership radio button
And they select 'Money Market' from the Account Type radio button
And they enter '2500' into the Money Market Initial Deposit field
And they click the Submit button
And they attempt to transfer money
When Carleen selects account number '1l' as the from account
And they select account number 'l' as the to account
And they enter '11' into the amount field
And they submit the form
Then Carleen verifies the transfer failed

Changed Code

Robot Test

LOG.debug("Debit Transaction from Account: Account Updated.™);
3

/I Transfer amount between two accounts

I Accounts should be full objects. With that said, the objects are f
I AccountTransaction can be a partial object but must contain the tr
pZélic void transfer(Account fromAccount, Account toAccount, AccountT

LOG.debug("Transfer Between Accounts:");

// From Transaction

fromAccount = this.getAccountById(fromAccount.getId());
AccountTransaction fromAt = new AccountTransaction();
fromAt.setAmount(accountTransaction.getAmount());
fromAt.setTransactionDate(accountTransaction.getTransactionDate());
fromAt.setDescription("Transfer to Account (" + toAccount.getAccoun
fromAt.setTransactionType(transactionTypeRepository.findByCode(Cons
debitTransaction(fromAccount, fromAt);

// To Transaction

toAccount = this.getAccountById(toAccount.getId());
AccountTransaction toAt = new AccountTransaction();
toAt.setAmount(accountTransaction.getAmount());
toAt.setTransactionDate(accountTransaction.getTransactionDate());
toAt.setDescription("Transfer from Account (" + fromAccount.getAcco

toAt.setTransactionType(transactionTypeRepository.findByCode(Consta

creditTransaction(toAccount, toAt);

LOG.debug("Transfer Between Accounts: Accounts Updated.");

}

/*
* Get Account object by Id
*/
public Account getAccountById(Long id) {

o o o e o oy ey F o S Pyl it A e e A S PN g S S R RN S

18

*xk Settings sk
Resource ../keywords/digibank_keywords.robot

*kxx Test Cases *xx
Transfer between the same account is not possible
Log in Carleen6231@gmail.com
Open new account Savings Account Individual Money Market
Open transfer page
Select from account number 1
Select to account number il
Enter amount 11
Submit transfer form
Transfer failed message should be displayed

-
[=

Changed Code

Manual Test

42 LOG.debug("Debit Transaction from Account: Account Updated.™);
5

/*

* Transfer amount between two accounts

*

* Accounts should be full objects. With that said, the objects are f
*

33 * AccountTransaction can be a partial object but must contain the tr
32 */

1 public void transfer(Account fromAccount, Account toAccount, AccountT
23 LOG.debug("Transfer Between Accounts:");

// From Transaction

fromAccount = this.getAccountById(fromAccount.getId());

c AccountTransaction fromAt = new AccountTransaction();

24 fromAt.setAmount(accountTransaction.getAmount());

23 fromAt.setTransactionDate(accountTransaction.getTransactionDate());
22 fromAt.setDescription("Transfer to Account (" + toAccount.getAccoun
2 fromAt.setTransactionType(transactionTypeRepository.findByCode(Cons
20 debitTransaction(fromAccount, fromAt);

// To Transaction

toAccount = this.getAccountById(toAccount.getId());
AccountTransaction toAt = new AccountTransaction();
toAt.setAmount(accountTransaction.getAmount());
toAt.setTransactionDate(accountTransaction.getTransactionDate());

1 toAt.setDescription("Transfer from Account (" + fromAccount.getAcco
12 toAt.setTransactionType(transactionTypeRepository.findByCode(Consta
11 creditTransaction(toAccount, toAt);

LOG.debug("Transfer Between Accounts: Accounts Updated.");

3

/*
* Get Account object by Id
*/
public Account getAccountById(Long id) {

) |

NntinnalcAreniints art = arecrniintRenncitnry FindRuTACiA) «

Action _________Check

Log in as Carleen6231@gmail.com

Open a new account:

Type Savings Account, Individual
In the Money Market

Start deposit: 2500

Account was created as specified.

Open the transfer page.

Select the account from step 2 as both
from and to account.

Enter amount: 11

Submit the form Transfer should fail with a message
that transfers between the same

account are prohibited

technische universitat
dortmund

Evaluating Information Retrieval for
the use in Regression Test Selection Iaster Thesls

Optimization and Evaluation of an

Olises Siady Informatjon Retrieval Based Test
‘ Selection Approach

Author: Majd Akleh Majd Akleh
Supervisors: Prof. Dr. Ben Hermann June 3, 2024

TU Dortmund

Raphael N6mmer

CQSE GmbH Reviewer:
Date: September 2023 JProf. Dr.-Ing. Ben Hermann

Dr. Elmar jurgens

Technische Universitat Dortmund

Fakultat fir Informatik

Lehrstuhl V - Programmiersysteme
Fachgruppe Softwaretechnik sicherer Systeme
https://sse.cs. tu-dortmund. de

Score of one test for one search term =

term frequency * inverse document frequency

(N J (N J
Y Y

How often the term appears in this test. How many of the tests contain the term.
We reward repetition of terms in the test. ~ We penalize terms that appear in many tests.

Similarity Scoring

2 32 2 2 2 2 3 2 3 2
2 32 2 2 2 2 3 2 3 2
2 32 2 2 2 2 3 2 3
2 2 2 2 2 2 3 2 3
2 2 2 2 2 2 3 2 3
2 32 2 2 2 2 3 2 3
2 32 2 2 2 2 3 2 3
2 2 2 2 12 2 3 2 3 2
2 2 2 2 12 2 3 2 3 2
2 2 2 2 12 2 3 2 3 2

90% of bugs found in X% of the time

Start Here!
13% 4%

Al Test Clustering Similarity Scoring

Precision and Effort

Shift Left

|
A 4 A

-0 0o

Complete Test Run
Al Test Clustering
Similarity Scoring

v

Fabian Streitel

streitel@cqgse.eu

CQSE

CQSE GmbH
Centa-Hafenbradl-Stral3e 59

81249 Miinchen
www.teamscale.com

AlIQ TESTING SUMMIT,&\\
— GRS —

Contact me!

mailto:streitel@cqse.eu
http://www.teamscale.com

