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Abstract

Whether applications or libraries, today’s software heavily reuses existing code to build
more gigantic software faster. To ensure a smooth user experience for an application’s
end-user and a reliable software library for the developer, the shipped piece of software
should be as bug-free as possible. Besides manual or automatic software testing, static
program analysis is one possible way to find unintended behavior. While static analysis
tools can detect simple problems using pattern matching, advanced problems often re-
quire complex interprocedural control- and data-flow analyses, which, in turn, presume
call graphs. For example, call graphs enable static analyses to track inputs over method
boundaries to find SQL-injections or null pointer dereferences. The research community
proposed many different call-graph algorithms with different precision and scalability
properties. However, the following three aspects are often neglected.

First, a comprehensive understanding of unsoundness sources, their relevance, and the
capabilities of existing call-graph algorithms in this respect is missing. These sources
of unsoundness can originate from programming language features and core APIs that
impact call-graph construction, e.g., reflection, but are not (entirely) modeled by the
call-graph algorithm. Without understanding the sources of unsoundness’ relevance and
the frequency in which they occur, it is impossible to estimate their immediate effect on
either the call graph or the analysis relying on it.

Second, most call-graph research examines how to build call graphs for applications,
neglecting to investigate the peculiarities of building call graphs for libraries. However,
the use of libraries is ubiquitous in software development. Consequently, disregarding
call-graph construction for libraries is unfortunate for both library users and developers,
as it is crucial to ensure that their library behaves as intended regardless of its usage.

Third call-graph algorithms, are traditionally organized in an imperative monolithic
style, i.e., one super-analysis computes the whole graph. Such a design can hardly hold
up to the task, as different programs and analysis problems require the support for
different subsets of language features and APIs. Moreover, configuring the algorithm
to one’s needs is not easy. For instance, adding, removing, and exchanging support for
individual features to trade-off the call graph’s precision, scalability, and soundiness.

To address the first aspect, we propose a method and a corresponding toolchain for
both a) understanding sources of unsoundness and b) improving the soundness of call
graphs. We use our approach to assess multiple call-graph algorithms from state-of-
the-art static analysis frameworks. Furthermore, we study how these features occur in
real-world applications and the effort to improve a call graph’s soundness.

Regarding aspect two, we show that the current practice of using call-graph algorithms
designed for applications to analyze libraries leads to call graphs that both a) lack
relevant call edges and b) contain unnecessary edges. Ergo, motivating the need for call-
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graph construction algorithms dedicated to libraries. Unlike algorithms for applications,
call-graph construction algorithms for libraries must consider the goals of subsequent
analyses. Concretely, we show that it is essential to distinguish between the analysis’s
usage scenario. Whereas an analysis searching for potentially exploitable vulnerabilities
must be conservative, an analysis for general software quality attributes, e.g., dead
methods or unused fields, can safely apply optimizations. Since building one call graph
that fits all needs is nonsensical, we propose two concrete algorithms, each addressing
one use case.

Concerning the third aspect, we devise a generic approach for collaborative static anal-
ysis featuring modular analysis that are independently compilable, exchangeable, and
extensible. In particular, we decouple mutually dependent analyses, enabling their iso-
lated development. This approach facilitates highly configurable call-graph algorithms,
allowing pluggable precision, scalability, and soundiness by either switching analysis
modules for features and APIs on/off, or exchanging their implementations.

By addressing these three aspects, we advance the state-of-the-art in call-graph con-
struction in multiple dimensions. First, our systematic assessment of unsoundness
sources and call-graph algorithms reveals import limitations with state-of-the-art. All
frameworks lack support for many features frequently found in-the-wild and produce
vastly different CGs, rendering comparisons of call-graph-based static analyses infeasi-
ble. Furthermore, we leave both developers and users of call graphs with suggestions
that improve the entire situation. Second, our discussion concerning library call graphs
raises the awareness of considering the analysis scenario and opens up a new facet in
call-graph research. Third, by featuring modular call-graph algorithms we ease to de-
sign, implement, and test them. Additionally, it allows project-based configurations,
enabling puggable precision, scalability , and sound(i)ness.
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Zusammenfassung

Software ist fehlerhaft. Dieser Tatsache müssen sich Entwickler:innen stellen. Schon
im Prozess der Softwareentwicklung kommen zur Fehlervermeidung deshalb vielfältige
Verfahren zur Anwendung, wie bspw. der Einsatz von Tests, Code Reviews und sta-
tischer Programmanalyse. Damit können Fehler frühzeitig erkannt und beseitigt werden.
Statische Programmanalysen haben im Vergleich zu den anderen genannten Qualitäts-
sicherungsmaßnahmen den Vorteil, dass sie bekannte, häufig auftretende Fehler auffinden
und programmübergreifend eingesetzt werden können. Für einfache Probleme eignen
sich Mustererkennungen, komplexere interprozedurale Probleme bedürfen hingegen auch
Kontroll- und Datenflussanalysen–letztere setzen den Einsatz von Call Graphen voraus.
Die bisherige Arbeit mit Call-Graph-Algorithmen weist in der Forschung jedoch noch
Lücken auf, obwohl sie ein zentraler Grundbaustein von interprozeduralen, statischen
Programmanalysen sind.

In dieser Arbeit adressieren wir drei Probleme der bisherigen Verwendung von Call-
Graph-Algorithmen, die einen negativen Einfluss auf die Ergebnisse von interprozedu-
ralen, statischen Programmanalysen haben können. Dies sind im Einzelnen: 1) die
Vernachlässigung der Korrektheit1 von Call Graphen, 2) der übermäßige Fokus auf der
Entwicklung von Call-Graph-Algorithmen für Applikationen, bei gleichzeitiger Unter-
repräsentation dieser für Software-Bibliotheken, sowie 3) die mangelnde Modularität
und Konfigurierbarkeit von Call-Graph-Implementierungen. Alle drei Aspekte tragen
dazu bei, dass das Potenzial interprozeduraler, statischer Programmanalysen nicht aus-
geschöpft werden kann. Dem begegnen wir mit verschiedenen, problemspezifischen Maß-
nahmen.

Dem Problem der mangelnden Korrektheit (1) setzen wir eine eigens entwickelte
Methodik und ein dazugehöriges Werkzeug entgegen, mithilfe derer die Quellen fehlen-
der Korrektheit identifiziert werden können. Damit bietet sich die Möglichkeit, diese zu
verstehen und zu beseitigen.

Um die problematische Unterrepräsentation von Call-Graph-Algorithmen für Software-
Bibliotheken (2) aufzuzeigen, gehen wir auf deren spezifische Eigenarten und notwendige
Anpassungen vorhandener Call-Graph-Algorithmen ein, um bspw. unnötige Kanten zu
vermeiden oder fehlende zu ergänzen. Mehrere konkrete Algorithmen werden von uns
entwickelt und gewährleisten das Erstellen eines korrekten Call Graphen für Software-
Bibliotheken.

Um Call-Graph-Implementierungen modularer und konfigurierbarer zu machen (3),
entwickeln wir einen generischen Ansatz für die Implementierung von kollaborativen,
modularen statischen Programmanalysen, die unabhängig voneinander kompilierbar,

1engl. soundness—die Eigenschaft einer Analyse, alle tatsächlich möglichen Programmzustände zu
erfassen.
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austauschbar und erweiterbar sind. So kann für jedes Programm die bestmögliche Ein-
stellung für Geschwindigkeit, Skalierbarkeit und Korrektheit gefunden werden.

Mit dem Lösen dieser drei Probleme fördern wir den Stand der Technik von Call
Graphen in mehreren Dimensionen. Zum einen offenbart unsere systematische Bewer-
tung der Quellen fehlender Korrektheit signifikante Schwachstellen bestehender Algorith-
men. Damit diese behoben werden können, geben wir konkrete Empfehlungen für die
Entwickler:innen und Nutzer:innen von Call-Graph-Algorithmen. Zum anderen schärft
unsere Diskussion über Call Graphen für Software-Bibliotheken das Bewusstsein für die
Berücksichtigung des jeweiligen Analyseszenarios. Damit eröffnen wir eine neue Rich-
tung für die Call-Graph-Forschung. Nicht zuletzt erleichtert unser Ansatz für modulare
Call Graphen außerdem deren Entwicklung und ermöglicht projektspezifische Konfigura-
tionen, wodurch u. a. eine flexible Anpassung an bestehende Herausforderungen möglich
ist.
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Preface

I get very fast hooked on puzzles. It is not very important what the problem is about; I
somewhat want to solve it anyway. Someday, a dear friend of mine suggested a website2

to me which was full of all kinds of computer-science-related puzzles. Starting with topics
regarding logic and math, over reverse engineering, to various easy to hard programming
ones. Those taught me a lot, brought tons of fun, and also flared up my interest in
computer science.

First of all, I would like to thank Prof. Mira Mezini for supervising me over the course
of my dissertation, for her assistance, and for giving me leeway to dive into my own
directions and ideas during this time. I am grateful that she gave me the opportunity
to find my own work and supported me when I needed it the most.

I also thank Prof. Eric Bodden for being the second examiner of my thesis. I am
grateful for the time you spent on carefully reviewing my thesis as well as for your
honest feedback.

Next, I want to thank Michael Eichberg, without whom I would not be where I am
today. Your advice and guidance strongly influenced my work. With me not coming
from a static analysis background, I am overly glad that you have taught me a lot and
accompanied me over a large course of my PhD.

Over the years, I was happy to work with and supervise a number of excellent stu-
dents, namely Florian Breitfelder, Roberts Kolosovs, Mario Trageser, Dominik Helm,
Florian Kübler, Javor Bence Nikolov, Bekir-Melih Bayrak, and Malte Limmeroth, An-
dreas Bauer, and Tobias Peter Roth. Your hard work enabled me to explore many
different ideas as well as maintenance of the many research prototypes that we pub-
lished and contributed to over the years. I am very grateful for your contributions to
ongoing research.

Furthermore, I want to thank all the people that were proofreading this thesis. Namely,
I want to thank Sven Amann, Tobias-Peter Roth, Krishna Narasimhan, Lars Baumgärt-
ner, and Dominik Helm. Even if I was not always agreeing with their opinions, I also
want to shout out a big thank you to all the anonymous reviewers of my paper sub-
mission. I highly appreciated your feedback and most of the times it helped me to
communicate more clearly and to improve my work.

Next, I want to gratefully thank Christina Cifuentes and her team at Oracle Labs
Australia for having me as intern. This gave me the opportunity to grow both scientifi-
cally and personally. On top of that, it enabled me to put my research to practical use.
Especially, I am thankful to my internship supervisors Yi Lu and Daniel Wainwright. In
addition, I want to thank the entire team and interns, namely Sora Bae, Ben Barham,

2 http://www.happy-security.de/ (checked on Nov 12, 2020)
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Andrew Browne, Christina Cifuentes, François Gauthier, Behnaz Hassanshahi, Alexan-
der Jordan, Paddy Krishnan, Benjamin Barslev Nielsen, Brad Moody, Joonyoung Park,
and Jörn Guy Süß for all the guidance, discussions, and great amount of fun. Also a
big thanks to the crew that introduced me to climbing which by now became important
factor in my work-life-balance and helped me to stay sane during the course of my PhD.

The past six years would not have been as exciting without my brilliant colleagues
Matthias Bahr, Andi Bejleri, Oliver Bracevac, Ervina Cergani, Joscha Drechsler, Michael
Eichberg, Matthis Eichholz, Sebastian Erdweg, Nafise Eskandani, Leonid Glanz, Sylvia
Grewe, Dominik Helm, Ben Hermann, Sven Keidel, Mirko Köhler, Florian Kübler, Edlira
Kuci, Johannes Lerch, Ingo Maier, Ragner Mogk, Patrick Müller, Sarah Nadi, Sebas-
tian Proksch, Guido Salvaneschi, Jan Sinschek, Jurgen van Ham, Manuel Weiel, Pascal
Weisenburger, and Anna-Katharina Wickert.

Without the invaluable support of Gudrun Harris, my PhD would have been signifi-
cantly harder. Your assistance surely was one of the most significant factors on my PhD
journey at the STG. You always had our back and made sure that we can concentrate
on achieving our goal. Also your honest and clear way of communicating, your cakes
and muffins, and also your humor made the time at STG even more enjoyable. Thank
you very much for being there. That said, I also want to thank Claudia Roßmann for
taking over administrative tasks from Gudrun. I am sure, that you will be as helpful to
following generations of PhD students as Gudrun was to me.

Last but not least, I want to thank my girlfriend, my friends, and my family. Without
your support I may not have been able to achieve this goal. I am filled with gratitude,
that every single one of you motivated and pushed me further, when I needed it the
most and accompanied me through out the roller-coaster-like journey of mine.

Editorial notice: Throughout this thesis I use the term “we” and “us” to describe my
work. This is meant to underline that research is always a cooperative effort and that I
would have much less (if something at all) to present here, if other people had not took
the time off of their own work to review, discuss, and contribute to mine. I am deeply
grateful for their effort.
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1. Introduction

Globally involved, the enormous and steadily growing IT industry is expected to consume
$3.46 trillion alone in 20201. This very industry increasingly influences our quality of
life by creating software and services penetrating all aspects of our lives. Considering
only the software on our smartphones that wakes us up in the morning, connects us
with family and friends, helps us organize ourselves, or is used to keep us fit, all of it
tightly integrates into our daily routines. Not speaking of smart homes or the tools
and services we increasingly depend on to work and collaborate remotely during the
COVID-19 pandemic. While tremendously easing our daily lives, the reliance on these
systems and services also establishes an enormous dependency.

This dependence increases the need for high-quality software to achieve both: a)
minimizing the risk of security breaches, software crashes, safety issues, or unintentional
behavior and b) maximizing the software’s maintainability, usability, and extensibility. A
report on the cost of poor software quality2, published by the Consortium for IT Software
Quality (CISQ), estimates the financial damage in 2018 within the US originating from
bad quality software to $2.84 trillion.

One recommendation of CISQ is finding and fixing problems and deficiencies as
close to the source as possible or preventing them altogether, meaning to best de-
tect and fix them during the development process. Besides manual code reviews, using
static analysis tools is one option to address this recommendation. To prevent bugs
and deficiencies from reaching production code, the static analysis community offers
a broad range of tools at the developers’ disposal. These tools span from optimiz-
ing compilers [DGC95, PVC01] for producing efficient code, over automatic bug detec-
tion tools [LL05, HP18], to find misbehaving code or security vulnerabilities, to other
tools helping to navigate through [KKD+11, SBMH17] or comprehend programs [Sie16].
Adopting these, developers can take advantage of various analysis tools at all stages of
the software development process [SAE+18, DWA20, VPP+20].

As research has shown, those tools are most beneficial when the implemented anal-
yses provide comprehensible reports and are practical, i.e., produce few false warn-
ings [JSMHB13]. Despite these expectations, developers also wish these analyses to be
fast and sound [LSS+15]. Remaining practical while expected to stay sound, modeling
all possible program executions, is a fierce balancing act between precision, scalability,
and soundness.

Trying to satisfy the expectations, almost all static analysis tools deliberately under-

1 https://www.gartner.com/en/newsroom/press-releases/2020-05-13-gartner-says-global-it

-spending-to-decline-8-percent-in-2020-due-to-impact-of-covid19 (checked on Sept 28, 2020)
2 https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/

The-Cost-of-Poor-Quality-Software-in-the-US-2018-Report.pdf (checked on Apr 26, 2020)
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approximate problematic program behavior and willingly accept unsoundness to boost
its precision and scalability [Bod18], resulting in so-called soundy analyses [LSS+15].

Whenever a static analysis needs to process interprocedural information, it must
know about the relationship between methods. Contributing this information, call
graphs [Ryd79] are a) a fundamental static analysis data structure capturing possi-
ble execution-time relationships between program methods and b) a major source of
soundiness [LSS+15].

Hence, a soundy call graph directly influences a static analysis’ results to an unknown
degree. This soundiness originates from programming language features or application
programming interfaces (APIs) that are not or only partly modeled within the call-
graph algorithm [LSS+15, BSS+11]. A potential reason might be the trade-off between
the development costs for supporting problematic language features or specific APIs and
the perceived value of coping with them. In the end, supporting those features is only
relevant when they occur in the analyzed programs [LSS+15]. Yet, the impact of sacri-
ficing soundness for precision or scalability concerning single language features or APIs
on the call-graph construction is poorly understood and recently seeks research atten-
tion [SDTF20, SDTF20, TLR20]. Even less known are these effects for call graphs of
libraries. So far, algorithms dedicated to construction call graphs for libraries are miss-
ing. As we show in this thesis, call-graph algorithms for applications only inadequately
cover the specific needs of libraries.

This thesis is dedicated to call-graph algorithms and their implementations. It pro-
vides a systematic study of the deficiencies of the state-of-the-art and makes several
constructive contributions to advance it. As the major portion of call-graph research,
this thesis focuses on Java.

1.1. Problem Statement

Call graphs (CG) are directed graphs that capture possible execution-time relationships
between methods in a program. Whereas the graph’s nodes represent the program’s
methods, each edge represents at least one invocation of a method mi by a method mj .
For an object-oriented language like Java, the CG is a directed, potentially cyclic graph.

The CG is a fundamental data structure for static analysis enabling more advanced
interprocedural static analyses. A direct use case of CGs is to identify dead meth-
ods, i.e., methods that are unreachable. Another frequent use of CGs is, e.g., to com-
bine them with control-flow graphs (CFG) to form interprocedural control-flow graphs
(ICFG) [LR91, LR92, SHR01]. These in turn build the foundation for complex algo-
rithms, such as solvers for data-flow problems [RHS95, SRH96], flow-sensitive points-to
algorithms [DHS15], or security-related analyses [ARF+14, HREM15]. Hence, research-
ing CGs also benefits interprocedural analyses, relying on them.

Over the last decades, the area of CG construction has received much attention [Ryd79,
Shi88, DGC95, BS96, TP00, SHR+00, GC01]. Most of the existing approaches ad-
dress virtual call resolution, but there is also work covering other aspects such as re-
flection [LWL05b], dynamic proxies [FKS18], dynamic invocations [FS19], or analyzing
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incomplete programs [AL13]. Yet, several problems in the domain of CG construction
remain, which we will elaborate on below.

Understanding the Effects of Accepting Unsoundness Existing research on CG con-
struction algorithm mostly focuses on precision and scalability [LLA+15, GC01, TP00],
thereby often covering only standard (non-)virtual method calls. Other more problem-
atic language features, e.g., Java’s serialization or reflection APIs, are often ignored; the
developers deliberately accept so-called soundy [LSS+15] CGs. One reason for intention-
ally accepting unsoundness is the trade-off between soundness and precision/scalability.
Another potential reason is the trade-off between the development cost for supporting
such language features or specific APIs and the perceived value of doing so. We will use
the term sound(i)ness to describe that an analysis is sound modulo a set of features.

As of now, the effects of supporting or not supporting a specific API or language
feature are not well understood. The taken soundness trade-offs, along with their impli-
cations, often remain unbeknownst to the approach’s users. Undisclosed trade-offs make
it impossible to compare the results of different CG algorithms and, consequently, the
relevance of research on CGs or interprocedural analyses using those. The trade-off’s im-
pact depends on the locations of uncovered language features in the project and, hence,
is best assessed in a project-specific way. For instance, assume that a target project’s
main method uses reflection in combination with system properties to load the executing
code. An CG algorithm, e.g., class-hiearchy analysis (CHA) [BS96], that does not cover
these features would only contain calls to the reflection API; missing all application
methods. As a result, the CG reaches only a fraction of the methods it should actually
reach.

Library Call Graphs Another problem with state-of-the-art is that it does not cover
well the specific needs of libraries. However, the use of libraries is ubiquitous in software
development. Currently, the gold standard for constructing CGs for libraries is to use a
standard algorithm, such as class-hierarchy analysis (CHA) [DGC95], rapid-type analysis
(RTA) [BS96], or variable-type analysis (VTA) [SHR+00] and to consider all non-private
methods as entry points. However, this ignores the nature of libraries that distinguish
them from applications. Libraries are open worlds that can be extended by their users
via inheritance, but they usually also provide public APIs as an interface. Ignoring these
unique properties might lead to CGs that both miss call edges and also contain spurious
ones. Hence, we lack a systematic discussion of library CGs and can consequently not
estimate the need for CG algorithms targeting libraries specifically.

Modular Call-graph Algorithms Traditionally, CG algorithms are implemented in an
imperative monolithic style, i.e., one super-analysis computes the entire CG. These
monolithic designs become complex fast [BS09b], when one single analysis must support
all the different features and APIs that are relevant to CG construction. More impor-
tantly, support for individual features or APIs cannot be developed in isolation, cannot
be reused for other analyses, and cannot easily be added, removed, and exchanged to
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trade-off between precision, sound(i)ness, and performance in a fine-tuned way. A mod-
ular approach to CG construction would be desirable to adapt the algorithms to the
needs of the analyzed projects. In the end, the support of a feature is only relevant
if it is present in applications. For example, support for Java 7’s invokedynamic only
became relevant after Java 8, i.e., to compile lambda expressions.

Summary To advance the state-of-the-art in CG construction and, consequently, also
interprocedural analyses, we:

a) need a systematic evaluation of the state-of-the-art in CG construction,

b) require automatic documentation of a CG’s capabilities,

c) must study the domain of library CGs,

d) must investigate the implications of supporting language features, APIs, and library-
specifics and their relevance in real-world programs, and

e) require a modular approach to CG construction to easily enable trade-offs between
precision, sound(i)ness, and performance.

This thesis contributes to all the above points.

1.2. Contributions of this Thesis

To start with, we contribute a systematic approach to assess and create Java corpora
which provides the field’s researchers with a tool to comprehend existing and to build
efficient corpora for their needs. In particular, we use it in this thesis as a bases for our
systematic study of Java language features and APIs impeding CG construction and to
investigate their relevance in real-world applications. Our automated test suite covering
these language features and APIs enables researchers and developers to improve CGs
systematically and to compare new algorithms to existing ones with minimal effort. We
use this test suite for our extensive assessment of well-known CG algorithms and, thus,
provide an excellent overview of the field’s state-of-the-art. Our automated pipeline
for project-specific CG assessment allows us to evaluate how well-suited a specific algo-
rithm implementation is for a particular project, inspect its weaknesses, and facilitates
the project’s comprehension. Our research on new CG algorithms targeting software
libraries improves over the state-of-the-art, creates awareness for problems when analyz-
ing incomplete codebases, and makes a significant step towards practically usable library
CG algorithms.

Finally, our system for collaborative modular CG construction eases the development
of CG algorithms not only allowing pluggable precision, sound(i)ness, and scalability
but also rapid prototyping of new feature abstractions; bringing us one step closer to
practical and more sound CGs. In the following, we elaborate a bit more on individual
contributions.
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1.2. Contributions of this Thesis

A Query Engine for Code Features Our first contribution one is Hermes, a novel,
generic open-source framework for the systematic assessment of Java projects. The pro-
posed approach provides a code query engine with a flexible API that allows integrating
arbitrary queries, e.g., to find API calls, language features, or to compute metrics. These
queries can be run on a project to collect information about the project’s structure and
the language features that it uses. One can use the collected project information to
either a) comprehend a project or b) find test or evaluation projects with specific prop-
erties. Hermes can automatically query a set of programs and compute a minimal set
covering the queried features, which can then directly act as an evaluation, benchmark,
or test set.

Assessment of the State-of-the-art in Call-graph Algorithms Our second contribu-
tion, is the design of a comprehensive and extensible framework, Cats, to test the recall
of CG algorithms. First, we identify and present the Java language features and APIs
that impair a CG’s recall if not explicitly supported. Using these, we design a test
suite and specify one unique test case for each identified feature and manually annotate
the expected call edges as ground truth. Based on Cats, we assess the capabilities of
CG algorithms of several state-of-the-art static analysis frameworks, uncovering their
immense difference in the number of call edges and their poor performance concerning
recent language features and APIs. As outcome of this assessment, we document each
algorithms capabilities and capture it within a profile. Furthermore, we identify funda-
mental differences in how CGs are constructed, rendering actual implementations of the
same algorithm incomparable. We published our test suite and our experimental results
to allow other researchers to reproduce them and to evaluate further CG algorithms
using our benchmark and compare them.

A Systematic Evaluation of Sources of Unsoundness in Call Graphs Our third con-
tribution is Judge, a methodology and toolchain for analyzing CG algorithms in a
project-specific manner. Judge builds on Hermes and Cats to thoroughly identify,
understand, and evaluate sources of unsoundness in individual CG algorithms. Given a
Cats’ CG algorithm profile and an application, Judge finds and documents all sources
of unsoundness in the applications, equipping users with the tool to decide whether the
given CG is suitable for that specific program. Applying Judge, we examine the preva-
lence of Java language features and core APIs within different open source programs.
Based on these insights, we give directives on what both static analysis researchers and
framework developers can do to build and use CGs transparently. We also present an
approach to reduce a CG’s unsoundness manually. We published Judge along with our
experiment data to allow other researchers to reproduce our results and facilitate further
research on CGs and enable static analysis writers to implement, test, or debug their
CG algorithms.

Design Space for Library Call-graph Algorithms In our fourth contribution, we address
CG construction for Java libraries and investigate the implications of analyzing software
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libraries in isolation, i.e., not integrated into an application. We motivate the need for
CG construction algorithms dedicated to libraries and thoroughly discuss the design
space for such algorithms. Furthermore, we design two different algorithms for two
practical use cases; one of them is suitable to identify security issues, while the other one
is better-suited for analyses that target general software quality issues. By evaluating
both algorithms, we reveal unused code within the codebase of the Java Development
Kit. While demonstrating the need and spanning up library CG algorithms’ design
space, we create awareness to consider the analysis’ use case when choosing the CG and,
thereby, broaden the CG construction area.

Modular Collaborative Call-graph Construction Our fifth contribution is a framework
for composable CG construction. Instead of monolithic algorithms that address several
language features and APIs, we propose an approach where various orthogonal analy-
ses for individual language features and APIs collaboratively compute a single CG. As
this framework is part of a collaboratively developed, more generic approach for mod-
ular and collaborative static analyses, we will present the more generalized approach.
Our approach allows exchangeability and pluggable extension of analyses to improve
sound(i)ness, precision, and scalability. Besides demonstrating the modular design of
analyses, we use our approach to develop TACAI, our novel refinable intermediate rep-
resentation.

Advanced Call-graph Algorithms for Libraries Contribution six is an investigation
into advanced CG algorithms for Java libraries. We reimplemented four propagation-
based application CG algorithms within our modular CG framework and then extended
them to enable the construction of library CGs. Furthermore, we compare these four
algorithms and determine their viability for library analysis.

1.3. Structure of this Thesis

This thesis is organized as follows.

In Part I, we a) introduce required terminology, b) give an overview over the state-of-
the-art of CG construction for Java, static analysis frameworks, as well as their testing,
debugging, and comparison approaches, and c) identify requirements on CG construction
to cope with real-world software. We discuss CG algorithms and points-to analyses that
can be used to construct CGs for either the whole program or program fragments only
(Chapter 2). Furthermore, we present research about dynamic language features that
impede the construction of CGs in practice. Then, we introduce the analysis frameworks
offering implementations of the proposed algorithms and investigate how those imple-
mentations have been tested, benchmarked, and compared in the past (Chapter 3).

In Part II, we present our methods and tools for systematically assessing the quality
of algorithms for CG construction. First, we introduce Hermes, our generic framework
for the systematic assessment and the creation of corpora consisting of Java projects.
We discuss how we can use Hermes to build an effective test suite or evaluation corpora
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and conduct two case studies to show its usefulness (Chapter 4). Second, we identify
multiple Java language features and Java core APIs that are relevant for the sound con-
struction of a CG and propose our CG test framework, Cats, that covers them. Based
on Cats, we conduct a study to evaluate state-of-the-art static analysis frameworks
concerning their CG construction capabilities (Chapter 5). To estimate the potential
effect of unsupported language features and APIs on the computed CG, we use Her-
mes—along with all the identified features and APIs—to further study their prevalence
in numerous open source programs. Combining Hermes with Cats, we finally present
and evaluate Judge, our tool to perform a project-specific evaluation of a CG’s sources
of unsoundness (Chapter 6).

In Part III, we discuss various aspects of how to design library CGs and implement
them in a modular, collaborative fashion. First, we motivate the necessity for specific
CG construction algorithms for incomplete programs, such as libraries. We discuss why
an analyses’ use case must be considered when constructing a library CG, introduce
the open- and closed-package assumption, and span up a new design space for CG
algorithms (Chapter 7). Depending on the analyses’ scenario, we propose two library
CG construction algorithms that differ in entry points and the so-called call-by-signature
resolution. To demonstrate the approach’s usefulness, we evaluate and compare the CGs
in different use cases and conduct a case study to methods that are not used within the
Java Development Kit (JDK).

Second, we present our novel approach to modular collaborative static analysis (Chap-
ter 8). To figure out the needs for such a system, we perform three case studies. The
first case study comprises a modular implementation computing three-address code, the
second modular CG algorithm, and the third one comprises purity, escape, and im-
mutability analyses. Then, we use our case studies to distill a list of requirements on
such a framework. We propose our approach that leverages the modularity of blackboard
systems and combines declarative and imperative static analysis techniques, satisfying
all of these requirements. Showcasing its benefits, we provide evaluation results and
compare the approach to a state-of-the-art static analysis tool.

Third, We present the intermediate representation that we use as input for our mod-
ular CG algorithms (Chapter 9). Further, we use our knowledge about CG construction
for libraries and our framework for modular static analysis to develop more advanced li-
brary CG algorithms (Chapter 10). That is, we investigate how advanced CG algorithms
from the set-based framework behave when we apply the open- and closed-package as-
sumptions. Furthermore, we determine which of these algorithms is viable to use as a
library CG.

In Part IV, we summarize this thesis and present an outlook to further future work
on various topics in focus of this thesis.

1.4. Publications

Several publications have been co-authored during the doctoral project that resulted to
this theses. We briefly overview them in following, thereby distinguishing between those
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that are directly related to the contributions of this thesis and others.

1.4.1. Publications Directly Related to this Thesis

Many of the contributions presented in this thesis have previously been published to
software engineering conferences or workshops. The rest of this section gives an overview
over these publications and the respective parts of this thesis. The thesis parts may
contain verbatim content of the publications.

Call-graph Construction for Java Libraries [REH+16] In this paper, we show that the
current practice of using CG algorithms designed for applications to analyze libraries
leads to CGs that, at the same time, lack relevant call edges and contain unnecessary
edges. The former motivates the need for CG construction algorithms dedicated to li-
braries. Unlike algorithms for applications, CG algorithms for libraries must consider
the goals of subsequent analyses. Specifically, we show that it is essential to distinguish
between the scenario of analyzing for potentially exploitable vulnerabilities from the sce-
nario of analyzing for general software quality attributes, e.g., dead methods or unused
fields. This distinction affects the decision about what constitutes the library-private
implementation, which needs special treatment. Thus, building one CG that satisfies all
needs is nonsensical and gives plenty of different design options which are described in
Chapter 7.

[REH+16] Michael Reif, Michael Eichberg, Ben Hermann, Johannes Lerch, and Mira
Mezini. Call graph construction for Java libraries. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2016,
pages 474–486, 2016

Hermes: Assessment and Creation of Effective Test Corpora [REHM17] The paper
presents Hermes, a framework for assessing a given corpus of Java projects and for the
computation of a minimal corpus regarding the evaluated features. Hermes builds the
foundation for our systematic evaluation of sources of unsoundness presented in Chap-
ter 4. It presents an early version of the query infrastructure, an initial set of feature
queries that partially address CG features and Java language APIs.

[REHM17] Michael Reif, Michael Eichberg, Ben Hermann, and Mira Mezini. Hermes:
assessment and creation of effective test corpora. In Proceedings of the 6th ACM SIG-
PLAN International Workshop on State Of the Art in Program Analysis, SOAP 2017,
pages 43–48, 2017

Systematic Evaluation of the Unsoundness of Call-graph Construction Algorithms for
Java [RKEM18] The paper presents an early version our CG test framework, Cats,
described in Chapter 5. This suite covers 64 language features and APIs relevant during
CG construction. We use it to compare multiple CG algorithms of two major static
analysis frameworks for Java Bytecode.
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[RKEM18] Michael Reif, Florian Kübler, Michael Eichberg, and Mira Mezini. System-
atic Evaluation of the Unsoundness of Call Graph Construction Algorithms for Java. In
Proceeding ISSTA ’18 Companion Proceedings for the ISSTA/ECOOP 2018 Workshops,
SOAP 2018, pages 107–112, 2018

Judge: Identifying, Understanding, and Evaluating Sources of Unsoundness in Call
Graphs [RKE+19] This work presents Judge, our toolchain for the evaluation of lan-
guage features and APIs that are relevant when building CG algorithms, comparing CG
algorithms, evaluating how well-suited a specific algorithm is for a particular kind of
project, and to facilitate the creation of project-specific sound CGs. Judge is presented
in Chapter 6. This article further comprises extensive studies concerning the capabilities
of four state-of-the-art Java static analysis frameworks and the prevalence of unsoundly
handled features. Unfortunately, the results show that any CG algorithms lacks support
for many features frequently found in the wild. Moreover, we find that comparing the
results of static analyses that rely on CGs can be skewed.

[RKE+19] Michael Reif, Florian Kübler, Michael Eichberg, Dominik Helm, and Mira
Mezini. Judge: identifying, understanding, and evaluating sources of unsoundness in call
graphs. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 251–261, 2019

Modular Collaborative Program Analysis in OPAL [HKR+20] This paper presents a
novel approach to modular collaborative static analysis presented in Chapter 8. At first,
we distill a list of requirements on frameworks for collaborative static analysis from three
case studies. We then propose an approach that leverages the modularity of blackboard
systems and combines declarative and imperative static analysis techniques, satisfying
all of these requirements. Unlike monolithic analyses, our system allows exchangeability
and pluggable extension of analyses to fine-tune an analysis’s sound(i)ness, precision, and
scalability. A thorough evaluation of the approach shows that it supports implementing
various static analyses showing its generality. It further showcases its modularity fea-
tures, good performance and provides promising results for its parallelization.

[HKR+20] Dominik Helm, Florian Kübler, Michael Reif, Michael Eichberg, and Mira
Mezini. Modular collaborative program analysis in opal. In Proceedings of the 28th

ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pages 184–196, 2020

TACAI: An Intermediate Representation Based on Abstract Interpretation [RKH+20]
In this paper, we present an intermediate presentation (IR) of Java Bytecode to facili-
tate the development of static analyses (Chapter 9). Concretely, we propose TACAI, a
refinable, abstract IR that is based on abstract interpretation results of a method’s byte-
code. Exchanging the underlying abstract interpretation domains enables the creation
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of various IRs of different precision levels. Our evaluation shows that TACAI can be
efficiently computed and provides slightly more precise receiver-type information than
Soot ’s Shimple representation. Furthermore, we show how exchanging the underlying
abstract domains impacts the generated IR.

[RKH+20] Michael Reif, Florian Kübler, Dominik Helm, Ben Hermann, Michael Eich-
berg, and Mira Mezini. Tacai: An intermediate representation based on abstract in-
terpretation. In Proceedings of the 9th ACM SIGPLAN International Workshop on the
State Of the Art in Program Analysis, SOAP 2020, pages 2–7, New York, NY, USA,
2020. Association for Computing Machinery

1.4.2. Other Publications

In addition, the author contributed to the following publications on static analysis dur-
ing the work on this PhD thesis.

[HREM15] Ben Hermann, Michael Reif, Michael Eichberg, and Mira Mezini. Getting to
know you: Towards a capability model for java. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages 758–769, New
York, NY, USA, 2015. ACM

[GAE+17] Leonid Glanz, Sven Amann, Michael Eichberg, Michael Reif, Ben Hermann,
Johannes Lerch, and Mira Mezini. Codematch: Obfuscation won’t conceal your repack-
aged app. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, pages 638–648, New York, NY, USA, 2017. Association
for Computing Machinery

[KNR+17] Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini, Eric Bod-
den, Florian Göpfert, Felix Günther, Christian Weinert, Daniel Demmler, and Ram
Kamath. Cognicrypt: Supporting developers in using cryptography. In 2017 32nd

IEEE/ACM International Conference on Automated Software Engineering (ASE), pages
931–936, 2017

[EKH+18] Michael Eichberg, F Kübler, D Helm, M Reif, G Salvaneschi, and M Mezini.
Lattice based modularization of static analyses. In ISSTA Companion/ECOOP Com-
panion. ACM, 2018

[HKE+18] Dominik Helm, Florian Kübler, Michael Eichberg, Michael Reif, and Mira
Mezini. A unified lattice model and framework for purity analyses. In 2018 33rd

IEEE/ACM International Conference on Automated Software Engineering (ASE), pages
340–350, 2018

[LWR20] Yi Lu, Daniel Wainwright, and Michael Reif. Probabilistic call-graph con-
struction, May 2020. US Patent App. 16/200,045
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1.4.3. My Contributions

As I stated in my preface, I am thankful to my collaborators and all who somehow
influenced my research. Software engineering and static analysis research is often a
collaborative effort. Thus, pinpointing contributions to single persons is not always pos-
sible. Contributions often arise from ideas that are then iteratively discussed and refined
with colleagues, involving input from various participants. Moreover, most of my work
is related to the static analysis framework Opal, whose maintenance was a joint venture
with other researchers from our Software Technology group. All of us worked together
on the entire framework, sometimes at overlapping parts—benefiting each other’s work.
Additionally, students play an indispensable role when they implement and evaluate
ideas. This thesis also contains verbatim content from individual publications, includ-
ing joint and sometimes indistinguishable contributions from colleagues. Next, I try to
highlight my specific contributions as much as possible.

Chapter 2 and Chapter 3 present a literature review for relevant topics addressed in
this thesis, solely done by me.

Chapter 4 discusses joint work with fellow researchers. I developed the idea and the
concept of the publication on Hermes [REHM17]. However, software design discussions
and parts of the implementations involved Michael Eichberg and Ben Hermann. Col-
laboratively, Michael Eichberg and I implemented Hermes’ core and designed its APIs
(cf. Section 4.1). Then, together with Ben Hermann, we implemented all the feature
queries described in Section 4.1.2. I designed and evaluated Hermes on my own.

Chapter 5 includes several works that are joint efforts of different members in our Soft-
ware Technology group. Most ideas and concepts are genuinely my work. Nevertheless,
I supervised multiple students who supported me in the experimental evaluations and
parts of the implementation [RKEM18, RKE+19]. This holds specifically for Sections
5.1, 5.2, and 5.3 where students assisted me in realizing the setup and running the eval-
uation. The Cats’ (cf. Section 5.2) design and structure was my idea. However, it did
undergo several iterations involving colleagues, a bachelor thesis, and student assistants
until we ended up with the presented design. I invested much manual labor in studying
the Java Language Specification [GJS+18a] and the Java Virtual Machine Specifica-
tion [GJS+18b] as well as in validating the ground truth of our test cases. Adhering to
good scientific practice, another colleague double checked the ground truth correctness.

Chapter 6 includes work from two related publications [RKEM18, RKE+19] with
fellow researchers. Like Hermes and Cats, also Judge’s pipeline was primarily my
idea and concept. Although I developed the concept and the overall framework idea, its
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realization involved several colleagues and students. This holds particularly for Sections
6.1 and 6.2 where student assistants contributed by implementing and evaluating my
concepts. I developed the general test framework comprising the serialization of the call
graphs, Opal’s framework adapter, the call-graph matcher, as well as the reporting.
Furthermore, a student familiar with Soot and Wala implemented their framework
adapters and a colleague developed Doop’s framework adapter as well as the test-case
extractor. I designed all for experiments presented in Section 6.2.2, 6.2.3, 6.2.4, and
6.2.5. To conduct our study of the prevalence of language features and APIs in-the-wild,
we implemented a set of Hermes queries to find all the features we identified for our test
suite in real applications. While I implemented most of these queries, other colleagues
implement some too. Moreover, I ran the experiment and also analyzed the results.
Then I discussed them along with my observations with fellow researchers. Analogously,
I proceeded with experiment two (cf. 6.2.3) and experiment three (cf. 6.2.4). I personally
performed the project-specific evaluation of Xalan using Judge, which is present in
Section 6.2.5.

Chapter 7 presents joint work pertaining to library call graphs [REH+16], performed
with members of the ST research group at TU Darmstadt. While Johannes Lerch
brought up awareness for the trusted-method-chaining attack described in Section 7.1.2,
I contributed to the work’s general concepts. I brought up the idea of distinguishing
the analysis setting, came up with the open- and closed-package assumption, studied
much code to find and validate these assumptions, implemented LibCHAOPA and Lib-
CHACPA, as well as designed the evaluation. However, discussions and joint design
decisions with fellow researchers accompanied the entire process.

Chapter 8 includes collaborative work of several group members done in the context
of the CRISP project. Although the general ideas and concepts are not my work, my in-
volvements include supporting the implementation, discussing concepts, and performing
the evaluation. I mainly contributed two case studies, one on modular call-graph con-
struction (cf. Section 8.3.2) and another one on three-address-code generation (cf. Sec-
tion 8.3.1), which we used to distill important requirements on a modular collaborative
static analysis system.

Chapter 9 presents joint work with several researchers from the Software Technology
Group. The publication on TACAI was my idea. Its foundation, Opal’s abstract
interpretation engine, was implemented by Michael Eichberg. The initial implementation
of TACAI and its maintenance was a collaborative effort. I evaluated the approach.

Chapter 10’s content also presents partially joint work with several researchers as well
as one master thesis. The initial implementations and evaluation of the different call-
graph algorithms from Tip et al. [TP00], which we adapted to my concepts of library
call graphs [REH+16], was the result of a master thesis. According to my ideas, the
student implemented multiple call-graph algorithms initially, adapted them to enable
library analysis, and evaluated them. I improved the implementation. Throughout the
process, I guided the student’s works.

Throughout many publications [REH+16, REHM17, RKEM18, RKE+19, RKH+20], I
wrote most initial texts and was heavily involved in revising, restructuring, and polishing
them.
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2. Call-graph Algorithms

Call graphs (CG) are a significant building block of most interprocedural analyses used
in static program analysis applications. Existing analysis tools support a wide range of
tasks, such as compiler optimization, refactoring, bug detection, code comprehension, or
code verification. Consequently, the domain of CG construction received a considerable
amount of attention. Analogously, that applies to the problem of points-to analysis, i.e.,
it determines what heap abstractions a pointer can point to and, thus, can be used to
generate a CG.

Most of this CG research concerns whole-program analysis, i.e., it assumes that the
entire program is under analysis. However, in many practical applications, e.g., refac-
torings, that is not the case. Therefore, program-fragment analysis came up. It refers to
analysis techniques capable of analyzing partial programs. So far, existing work in this
research field only addresses scenarios in which the analyzed program is the application.

Furthermore, CG construction has to overcome many obstacles when applied to real-
world applications. Programming languages as Java provide multiple APIs and language
features that must be approximated when constructing CGs. These impediments lead to
research on how individual APIs, frameworks, or language features can be approximated.

We discuss topics related to standard virtual method call resolution, i.e., general CG
algorithms (cf. Section 2.1) before elaborating on points-to analyses (cf. Section 2.2).
After that, we discuss general approaches that analyze program fragments (cf. Sec-
tion 2.3). Finally, we discuss related work concerning Java’s dynamic language features
and specific APIs (cf. Section 2.4).

2.1. Application Call Graphs

Existing CG algorithms make a closed-world assumption, i.e., they assume the whole
program being analyzed is available. Furthermore, their design mainly targets virtual
invocations1, i.e., callsites where the call targets are dependent on the runtime type of
the receiver object. Hence, the following research disregards a) other program types, e.g.,
frameworks or libraries, and b) dynamic Java language features, e.g., the invokedynamic
instruction or the reflection API.

However, we will find that the presented algorithms may be adaptable to other pro-
gram types and relevant Java language features or APIs.

The easiest and least precise way to resolve polymorphic method calls in Java is
to apply call-by-name semantic. When using call-by-name to resolve a method call,

1Virtual invocations are also known as dynamic dispatch or polymorphic callsites.
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the called method’s name determines all call targets. Consequently, the method call’s
potential receivers are all types that declare a method with the same name.

Analogously to call-by-name, call-by-signature algorithms resolve calls based on the
method’s signature, i.e., its return type, name, and parameter types. Besides call-by-
name or call-by-signature CG algorithms, class-hierarchy analysis [DGC95] (CHA) is
one of the simplest algorithms. CHA reduces the number of potential targets by only
considering the methods declared within a subtype of the receiver, i.e., it takes the
program’s class hierarchy into account.

Bacon and Sweeney [BS96] show that rapid type analysis (RTA) improves over CHA
by only considering subtypes that are instantiated by the considered application. In
particular, RTA used for applications benefits from the fact that libraries usually define
many types that are not used by an application, but nevertheless will be considered for
call edges in CHA.

Tip and Palsberg [TP00] attribute different precisions of CGs to the number of sets
used to approximate runtime values of expressions. They introduce the algorithm family
CTA, FTA, MTA, and XTA. While CHA does not use a set at all, RTA uses one set to
capture which types have been instantiated for the whole program. CTA uses distinct
sets for classes, MTA uses distinct sets for classes and fields, FTA uses distinct sets for
classes and methods, and XTA uses distinct sets for classes, fields, and methods. The
rationale behind using multiple sets is to provide somewhat local type information and,
thus, resolve callsites more accurately.

Sundaresan et al. [SHR+00] introduce declared-type analysis (DTA) and variable-type
analysis (VTA). The more popular VTA uses a type-propagation graph, a directed graph
where nodes represent variables and edges assignments between them. Sets of possible
types are then assigned to each node, representing the runtime type a variable could
potentially point to. Starting with allocation sites, these type sets are propagated along
the directed edges of the graph. To determine possible call targets at call sites, the type
set of the receiver’s node is intersected with its statically possible subtypes. DTA is a
less precise simplification of VTA that uses a single node per declared type (possibly
merging multiple variables) instead of per variable.

Grove et al. present a framework that allows uniform modeling of multiple context-
sensitive and context-insensitive CG algorithms [GC01]. They distinguish three contour
selection functions that allow varying levels of context-sensitivity. Thereby, a contour
denotes each context-sensitive version of a procedure. These functions enabled them to
extend Shivers k-CFA [Shi88] to the more precise k-l-CFA algorithm.

To summarize, the design of these CG algorithms targets application CGs. However,
researchers use these CGs for libraries and frameworks and consider all non-private
methods as entry points, ignoring that libraries are a) open worlds and b) usually provide
a public API.

Challenge 1: These CG algorithms target applications and lack a separate discussion
of whether and how they can be applied to libraries.
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2.2. Points-to Analysis

Points-to analysis, or pointer analysis, is a static analysis that determines to which heap
references a variable or field can point to. Hence, points-to analyses are a precursor for
more complex analysis such as escape analysis [CGS+99]. Given a points-to analysis, it
is easy to generate a CG from its results because a points-to analysis knows the runtime
types a variable—used as the receiver of a call—can point to. Even if points-to analysis is
an extensively investigated field of research [RC00, SGSB05, SB06, Ste96, XR08, XRS09,
ZXZ+14], we are not aware of works comprehensively discussing points-to analysis for
analyzing libraries only. In particular, in such a scenario, not all allocation sites can be
known. The correct result to what a parameter of a method callable by an application
may point to is therefore not well defined, i.e., if the user creates new subtypes that
extend a library class and implement a library interface. Moreover, which result is
useful may depend on the use case the points-to analysis is applied to. For example, one
could use a single allocation site to represent unknown allocation sites outside the library
or multiple unique allocation sites for distinct entry points into the library. While the
former is cheaper to compute and useful to answer may alias problems, the latter yields
wrong results. Contrary, for must alias problems, the former is wrong.

Lately, Dietrich et al. [DHS15] presented a points-to analysis via transitive closure
structure. They evaluate their approach on the library shipped with OpenJDK and can
compute precise results in less than a minute. While they evaluate their approach on an
extensive library only, they do not discuss whether the results remain correct in cases
where a variable may point to an unknown allocation site outside the library.

Rountev and Ryder [RR01] presented an approach to construct summary information
for libraries, which assumes all possible client applications. The summaries can be
applied when constructing points-to information for a client application. They show that
the results of their approach are equal to those computed by a whole-program analysis.
They assume clients to be able to use all exported variables. While these include function
references, a discussion is missing as what to include in exported variables for soundness
and what can be excluded to increase precision. For example, some function references
must be included to avoid trusted method chaining attacks, as discussed in Section 7.1.2,
and others may be excluded under the closed-package assumption to increase precision.

Allen et al. [AKS15] discuss how to compute points-to information when analyzing
a Java library in isolation. The core idea is to determine the so-called most general
application (MGA) that subsumes all possible applications by using a single abstract
allocation site per statically declared type of an entry point. Still, a discussion about
the correct result of the points-to analysis is missing. Their solution uses a single abstract
allocation site per statically declared type of an entry point. From their description, it
seems that the approach misses call edges due to possible library extensions.

To recap, at first glance, many of the works published in the field seem to address
computing CGs (or the larger points-to problem) for libraries. However, they address
only parts of the problem. For instance, all works lack systematic considerations related
to the inheritance of library classes. Hence, they disregard that the external world can
potentially extend libraries.
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Challenge 2: A systematic discussion related to the inheritance of library classes is
missing, i.e., how does the extension of library classes from the outside world affects a
CG.

2.3. Program-fragment analysis

Program-fragment analysis refers to analysis techniques capable of analyzing incomplete
parts of a program. So far, existing work in this research field only addresses scenarios
in which the analyzed program is the application. We address in this work the opposite
case: analyzing a library while not knowing the client application.

Ali and Lhoták present the tool Cgc, capable of creating sound CGs without analyzing
library code [AL12]. It makes use of the separate compilation assumption, i.e., that the
library has been compiled without access to the code of the application, limiting the ways
library code can interact with application code. Hence, the library cannot instantiate
application classes (except via reflection, serialization, or cloning objects for which the
results are unsound). Building upon this work, the authors introduce the tool Averroes,
which generates placeholder code behaving as an over-approximation of the original
library code [AL13]. Averroes allows using any whole-program CG algorithm on the
application and the generated placeholder while still benefiting from analyzing a much
smaller codebase than it would have to consider when including the original library code.

Rountev and Ryder [RMR04] present a fragment class analysis for testing. They gen-
erate a particular main method that over-approximates a test suite’s behavior, enabling
to apply existing whole-program analyses on a program’s fragment. Their approach ad-
dresses test coverage computation only, using case-specific assumptions that do not hold
in general.

Whereas works exist to analyze libraries or partial programs, they mainly concentrate
on making them analyzable by bringing them to a state where one can use the already
known techniques.

Challenge 3: We miss a disscussion of what it takes to analyze a library in isolation.

2.4. Dynamic Language Features

Livshits et al. [LWL05b] introduced the first static reflection analysis for Java. Their
reflection analysis uses a points-to analysis to determine all possible sources of strings
that flow into reflective calls as class names (e.g. Class.forName())). Furthermore,
if they detect that a class name’s origin is outside the program, e.g., it is read from
a file, they allow manual specification points where the approach’s user can provide
the required external input. However, when the analysis witnesses a reflective object
creation (e.g., via clz.newInstance) without inferring the class’ name, it tries to exploit
intraprocedural cast operations to approximate the object’s type. The latter was not only
adopted by different static analysis frameworks such as DOOP [BS09b], WALA [IBM],
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Soot [VRCG+10, LBLH11], Chord [NAW06], and OPAL [EH14] but also inspired many
reflection analyses [LTSX14, LTX15, SBKB15, ZTLX17, ZLTX18, LTX19].

Java’s Dynamic Proxy API creates type-safe proxy classes via runtime bytecode engi-
neering, which will then forward the calls—using Java reflection—to a previously spec-
ified handler class. Fourtounis et al. [FKS18] recently introduced the first approach
to deal with dynamic proxies. Using the Doop framework, they found that resolving
dynamic proxies also requires support for other object flows (e.g., calls or reflective
operations) as well as other program semantics (e.g., string tracking).

Since Java 7, the new invokedynamic bytecode instruction provides a call instruction
with user-defined semantics [Ros09]. All current compilers starting from Java 8 use it
to compile the newly introduced lambda expression construct, and compilers from Java
10 also use it to concatenate Java’s strings. Only resolved at runtime, this instruction
complicated the constructions of CGs [ARL+14]. Recently, Fourtounis et al. [FS19]
published a deep static model for the invokedynamic instruction. Their approach fully
models method handles and approaches the invokedynamic support at the language
feature’s fundamental level.

The research focus of the community is centering towards reflection. Other features,
such as dynamic proxies or dynamic invocations via invokedynamic receive only a lit-
tle attention. However, other Java features, APIs, and runtime-specific callbacks also
impede CG construction, such as serialization, type casts, or static initializers, these
features require more attention.

Challenge 4: Not all features that are relevant to CG construction are researched
equally well.

Furthermore, it is unclear how relevant single programming language features and APIs
are in practice. Still, understanding their practical impact is highly relevant, since the
occurrence of the ignored features in real software can have a devastating impact on the
constructed CGs.

Challenge 5: A systematic investigation of the practical relevance of single language
features within real-world applications is missing.
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3. Implementing and Comparing Static
Analysis and Call-graph Algorithms

This chapter first introduces the state-of-the-art frameworks for static analysis that are
used by the community to construct call graphs (CG) (cf. Section 3.1) as foundation
for other static analyses. Then, we elaborate on how these frameworks and their static
analyses tested and compared in terms of performance or precision (cf. Section 3.2).
Afterward, we discuss studies that compare CG algorithms or their implementations
with respect to precision and recall or their sound(i)ness (cf. Section 3.3).

3.1. Static Analysis Frameworks

The static analysis community working on the Java ecosystem often integrates their re-
search in one of the state-of-the-art static analysis frameworks, such as Soot [VRCG+10],
Wala [IBM], Doop [BS09b], or Opal [Pro18b, HKR+20]. All frameworks provide sev-
eral different algorithms to construct CGs, but the set of implemented algorithms differs.
Furthermore, it is not clear how the implemented CG algorithms compare concerning
performance, precision, recall, and their support for different language features and APIs.

Soot Soot is a general-purpose static analysis framework that enables program anal-
ysis, manipulation, and optimization. It provides algorithms to construct CGs directly
(e.g., RTA or VTA) or via points-to analysis (SPARK [LH03]) on-the-fly. To facilitate
the development of static analysis, Soot provides several intermediate representations,
such as Baf, Jimple, Shimple, or Grimp. However, most analyses rely either on Jimple
or Shimple. Whereas the former is a typed three-address intermediate representation,
the latter is additionally transformed into a static single assignment form.

Soot requires the entire program on the classpath to generate a CG. If Soot detects
unresolved classes during the analysis, e.g., classes not on the classpath, it stops imme-
diately. However, it is possible to configure Soot such that it ignores unknown classes.
Whereas it is then possible to perform an analysis, using this option still leads to the
loss of essential information, such as class-, method-, and field signatures of the ignored
classes. Soot’s CGs not only handle virtual calls but also model some implicit invoca-
tions triggered by the Java Virtual Machine. For example, they support static initializ-
ers, finalizers, and calls of Thread.run(). Soot’s CGs support different configuration
options to enable static reflection support, such as safe-forname and safe-newinstance.
For instance, when Soot’s RTA is used, activating these options forces the RTA to con-
sider all types as instantiated when Class.forName(. . . ) or Class.newInstance(. . . )
is called. Hence, the resulting CG will degenerate to a CHA CG.

37



3. Implementing and Comparing Static Analysis and Call-graph Algorithms

Wala Wala is another static analysis framework for Java and JavaScript, developed
by IBM Research. Besides general analysis utilities, data structures, interprocedural
dataflow solver, and intermediate representation form to facilitate static analysis, Wala
can generate various CGs. These are either constructed by points-to analysis or by
specific CG algorithms (e.g., RTA). Additionally, Wala provides multiple configuration
options to resolve reflective calls, e.g., Class.forName(. . . ). Wala also enables the user
to specify packages to be excluded from the analysis. This option is enabled by default.
If not configured otherwise, Wala always excludes several Java-related packages (e.g.,
java.awt). Due to this feature, Wala might construct imprecise or unsound CGs.

Doop Doop is the state-of-the-art framework for declarative static points-to analy-
sis for Java. It implements a wide range of points-to analysis, including context in-
sensitive, call-site sensitive, and object-sensitive analysis. While performing points-to
analysis, Doop also constructs CGs for the entire input program on-the-fly. Doop re-
lies on Datalog to implement static analyses in a strictly declarative manner using a
rule-based approach. Rules can easily be exchanged or added (e.g., for new APIs or
language features), enabling high configurability. For instance, Doop has many anal-
ysis options to enable/disable support for various forms of reflection, dynamic proxies,
etc. Furthermore, Doop emulates the behavior of some common native methods, e.g.,
Thread.run(). Finally, when a Doop analysis is configured, it uses Soot to parse the
target program, transforms it to Soot’s Shimple representation, and then generates the
required Datalog facts from Shimple.

Opal Opal is an extensible framework, written in Scala, to analyze, process, engineer,
and manipulate Java bytecode. To support these different analysis tasks, Opal provides
several data structures and algorithms specific to static analysis. Its unique selling point
is its highly-customizable framework for the lightweight abstract interpretation of byte-
code. Opal’s abstract interpretation can treat each method as a potential entry point,
making no assumptions over the program’s state or a method’s parameters. However,
it supports interprocedural, flow-, path-, object-, and context-sensitive analyses. If the
analysis is interprocedural, one can configure the length of the call chain. Opal provides
several preconfigured abstract domains to make it easier for developers to use its abstract
interpretation feature. Based on these, Opal provides a configurable three-address code
intermediate representation, encoding different information depending on the employed
abstract domains. Additional information derived from that abstract interpretation can
comprise whether a variable is null, a branch is unreachable, or that two variables are
aliases. Furthermore, Opal also provides several CG (e.g., CHA and RTA) and points-to
algorithms.

The research presented in this thesis was done and incorporated in Opal.

To recap, we do not know how existing static analysis frameworks (Soot [VRCG+10],
Wala [IBM], Doop [Sma18], and Opal [EH14, HKR+20]) compare in terms of per-
formance and capabilities of their CG algorithms. This is also relevant when deciding
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which framework and algorithms to use, especially, since preliminary studies [MNGL98,
SDTF20] have shown that CG implementations vary more widely than expected. Un-
fortunately, we lack methods and tools to investigate this problem in a systematic way.

Challenge 6: We require methods and tools for systematically analyzing and under-
standing the capabilities of CG algorithms with respect to their supported language
features and core APIs.

3.2. State-of-the-art in Comparing Static Analyses

The defacto standard of proposing new algorithms is to publish a prototype implemen-
tation and an evaluation of the new approach, showing its feasibility. Fully establishing
these experimental results requires independent reproduction. Finding an uncomfort-
able large number of results failing this test, the Association for Computing Machinery
(ACM) lays the foundation for a formal artifact evaluation process which is already
implemented by many ACM conferences and journals 1. As a result of this artifact eval-
uation process, published works can earn badges, verifying the research’s functionality,
reusability, availability, or integrity.

To obtain these badges, static analysis researchers open-source their implementations
and evaluate their approach using well-established corpora [Liv05, BGH+06, TAD+10,
DSST17] for easier comparison to the state-of-the-art, or present and publish their self-
made data sets [ARF+14, REH+16, GMB+20]. As every approach or analysis targets
specific needs and goals, naively falling back to existing corpora as well as defining new
data sets poses several challenges.

However, the creation of an unbiased, representative, and long-lived corpus is difficult.
The lack of such corpora in various research areas has led authors to build their corpora,
which differ in particular in two dimensions: a) criteria for project selection and b)
evaluation goals.

Blackburn et al. [BGH+06] created the DaCapo benchmark suite, which primarily
targets Java performance evaluation. They also discussed how to develop and test such
corpora. They determined that their benchmark should consist of diverse and easy to
use real-world applications. Besides these criteria, they identified a set of dynamic and
static software metrics to assess a project’s performance behavior.

Tempero et al. [TAD+10] first identified size, content, representativeness, and perma-
nence as critical aspects for project selection. Based on these criteria, they created a
curated code collection of 100 Java projects. These projects range from libraries over
application frameworks to different kinds of applications. The focus of the Qualitas
Corpus is on aiding researchers to carry out empirical studies of code.

In SecuriBench, Livshits et al. [Liv05] selected large web applications, which have
known security vulnerabilities. Consequently, SecuriBench can be used to evaluate
static and dynamic security analyses. Other corpora like DroidBench [ARF+14], Point-

1 https://www.acm.org/publications/policies/artifact-review-and-badging-current (checked
on Sept 18, 2020).
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erBench [SNAB16], or the Darmstadt Library Corpus (DLC) [REH+16] provide data
sets with yet different goals as well as different criteria to assemble the corpus.

The design of the previously introduced corpora has one specific goal in mind, but their
suitability with respect to their original goals often remains unknown. Especially the
inclusion of (yet) another real-world project into a corpus is repeatedly justified based
on its perceived difference, rather than based on qualitative measures. Additional mea-
sures like goal-relevant metrics, e.g., the degree to which a project uses Java reflection
or the occurrence of specific properties—already used by some corpora—could be used
to assess the suitability regarding a given goal. However, the static analysis area pur-
sues many goals ranging from entire static analysis frameworks [VRCG+10, EH14] over
data-flow analyses [ARF+14, LSBM15] to lower-level CG algorithms [AL12, REH+16].
Furthermore, as programs and programming languages improve steadily, old corpora
often become out-dated quickly. Conversely, hand-picked data sets can be recent, but
it is harder to compare them to state-of-the-art analyses, not supporting the current
software version.

Furthermore, most of the previously presented corpora are no longer maintained,
indicating the difficulty keeping them up-to-date. Efforts have been made to partially
or completely automate corpora creation to address this shortcoming.

Dujmović et al. [Duj10] presented a parameterized approach to automatically generate
fully synthetic programs that already allow benchmarking and testing but is unusable
to evaluate a system on real-world applications.

Nguyen et al. [DEB16] present Automatic Benchmark Management (ABM), a method-
ology for mining software repositories to semi-automatically extract an up-to-date, up-
datable, and representative corpus that includes applications from various domains.
However, no assessment is done when including the projects, and it may be the case
that many projects do not have relevant differences.

These corpora are good starting points to build up-to-date, comprehensive evaluation-
or test corpora. Nevertheless, using these blindly does not ensure a meaningful evaluation
or testing setup since the corpora might over- or under-represent relevant features.

Challenge 7: It is unclear to which degree the constructed corpora support the evalua-
tion goals and to which degree all relevant properties, like occurrences of programming
language features, the usage of certain APIs, and problematic design patterns, can be
found in the projects. This lack of knowledge of the properties of the used projects
generally leads to questionable evaluation results.

3.3. State-of-the-art in Call-graph Comparison

Call graphs are a central data-structure required by many static analyses, ranging from
the detection of unused methods [EHMG15] to advanced control- and dataflow analy-
ses [ARF+14]. The algorithm used for constructing a CG is directly impacting a client
analysis’ results; often even to a considerable extent. Hence, the algorithm’s choice and
the quality of its implementation, therefore, predetermines an analysis’ precision and
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recall. The research efforts we present below compare CGs, which is the first step to
understand differences in CGs and their effect on subsequent analyses.

Murphy et al. [MNGL98] conducted a study where they compared CG algorithms for
C. They found that CGs emitted by different tools vary for identical input programs
and deemed the barely understood practical effects of approximations as the problem’s
origin. Furthermore, they discussed how one should choose a CG algorithm and recom-
mended to check its input constraints, its documented or implicit design decisions, and
its correctness for one’s needs. However, such information is generally not available.

Lai et al. [LLA+15] discussed CG construction for different kinds of Java codebases
with respect to potential sources of unsoundness and imprecision. However, they solely
focused on programs compiled from JVM-hosted languages such as OCAML, Jython,
Scheme, Scala, or JRuby. They aim to describe the challenges that arise when construct-
ing CGs for such programs and only used Wala for their analysis. For their study, they
focused on minimal, artificial code examples, and the identified sources of unsoundness
were reflective calls and invokedynamic usage.

Lhoták [Lho07] presented a tool that enables a manual, qualitative comparison be-
tween two CGs by first finding differences and then inspecting them. The work targets
the debugging of CG algorithms, requiring manual inspection of the generated CGs.
Also, systematic identification of sources of unsoundness is not possible if the compared
CGs both miss some edges; in that case, the graphs would be incomplete.

Sui et al. [SDE+18] compared Soot, Wala, and Doop’s CG implementations using
a micro-benchmark suite, taking the test program’s execution environment into account.
They measure the recall and also the precision of the tested algorithms. In follow up
work [SDTF20] they used a hybrid approach to extract patterns that cause statically
generated CGs to be unsound. Utilizing a subset of the XCorpus [DSST17], they compute
a diff between dynamically recorded context call trees and static CGs generated with
Doop. Comparing the results, they perform a root cause analysis investigating features
that are not supported by Doop’s CG. They found that not only Java reflection but
also serialization and native methods of the Java Virtual Machine are significant reasons
for unsoundness within their data set.

Other works presented CG algorithms or algorithm families [Shi88, TP00, GC01,
ARL+14, ARL+15], evaluated and compared them concerning their size, the number
of reachable methods, poly- and monomorphic callsites, and runtime. Their CG com-
parison focuses on the CGs’ size and their capabilities to resolve polymorphic calls and,
therefore, their precision.

Another CG algorithm family concerns the Scala language. Ali et al. [ARL+14,
ARL+15] show that Java CGs are too imprecise when used on Scala—due to lost type
information and Scala’s custom features such as traits—and, therefore, propose several
low-cost CG algorithms targeting Scala. However, they generate their CGs from source
code, not investigating if the Java compiler emits code that must explicitly be handled
by bytecode-based static analysis frameworks, e.g., Scala’s custom invokedynamics.

41



3. Implementing and Comparing Static Analysis and Call-graph Algorithms

Challenge 8: Mostly, CG algorithms are compared concerning their capabilities to
resolve virtual calls. Although some research recently investigated the soundness of
CGs, more systematic and automatically repeatable studies are needed.

Despite the research efforts, the community accepts soundy CG algorithms and uses
them for their interprocedural analyses without questioning their suitability. Moreover,
these analysis are then evaluated on corpora or hand-picked programs and compared to
the state-of-the-art analysis without investigating the effect of the underlying CGs.

Challenge 9: Call-graph implementations often come with undocumented implicit de-
sign decision and input constraints. The community still lacks methods to automati-
cally assess and document a CG algorithm’s capabilities.

Moreover, no tools exist that help to explore the origins and effects of under-approximated
features and, therefore, the introduced unsoundness. Still, understanding their practical
impact is highly relevant, since the occurrence of the ignored features in real software
can have a devastating impact on the constructed CGs. This impact depends on the
locations of uncovered language features in the project and, hence, is best assessed in a
project-specific way.

Challenge 10: We need an systematic investigation on the implications of (not) sup-
porting individual language features and APIs and their relevance in real-world pro-
grams.
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Part II.

Methods and Tools for
Systematically Assessing the Quality

of Algorithms for Call-graph
Construction
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Comparing and Evaluating Static Analyses
and Call Graphs

To compare and evaluate static analyses, researchers have proposed several corpora,
benchmarks, and test suites. Chapter 3 of this thesis presented state-of-the-art ap-
proaches, used to evaluate newly suggested static analyses and compare them to prior
work. In this part, we suggest new techniques, to address limitations of state-of-the-art

Our discussion in Chapter 3 shows that the design of an existing corpus always targets
a specific goal. Thus, their suitability for evaluating arbitrary static analyses is unclear.
In many cases, we lack the understanding to which degree the used corpus a) supports the
evaluation goals and b) contains all evaluation-relevant properties, such as programming
language features, APIs, or design constructs. As most call-graph (CG) evaluations
primarily focus on the CG’s precision, relevant language features and their influence
remain an afterthought. Precision is an essential metric since high numbers of false
positives are the foremost reason why developers are hesitant to use static analysis
tools [JSMHB13]. However, we are also interested in a CG’s sound(i)ness [LSS+15],
since our assessment of the state-of-the-art suggests that CGs do not support relevant
programming language features and APIs. We argue that it is vital to understand
CG algorithms’ capabilities and trade-offs to decide their suitability for a given project
or subsequent analysis. Furthermore, we are interested in how these CG algorithms
compare across different state-of-the-art static analysis frameworks. Therefore, in this
part of the thesis, we focus on a) finding suitable evaluation and test programs and b)
assessing the capabilities of call-graph algorithms.

To address the identified challenges, we present three related building blocks to sup-
port developers and users of static analyses in performing a systematic comparative
assessment of algorithms for call-graph construction. Figure 3.1 gives an overview of the
tools and shortly depicts their relations.

To facilitate comprehension of existing evaluation corpora and ease the construction
of new ones, we propose Hermes (cf. Chapter 4). Hermes is an extensible and generic
query engine for code that enables the systematic assessment of given corpora and cre-
ation new corpora. Based on an extensible set of queries, Hermes provides a compre-
hensive overview of a project’s features and the features’ locations, whose understanding
is critical for many analysis projects. Depending on the evaluated queries’ results, Her-
mes can then compute the minimal set of those projects that are necessary to cover all
relevant features. Using this minimal set, one can test and evaluate analyses efficiently.

In Chapter 5, we discuss the design of Cats, our comprehensive Call-graph Assessment
and Test Suite. Based on a set of hand-crafted tests that cover call-graph-construction-
relevant features, Cats enables us to compute a fingerprint of the unsoundness of call-
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Figure 3.1.: Overview of all tools and their relation that are presented in this chapter.

graph algorithms. Developers can use Cats as a regression test suite or as a reference
for new implementations of call-graph algorithms. Furthermore, it empowers us to com-
pare static analysis frameworks. We employ Cats’ fingerprinting for several call-graph
algorithms from Soot, Wala, Doop, and Opal and, hence, document their capabilities
concerning their supported programming language features and APIs.

In Chapter 6, we propose Judge, our overarching toolchain for analyzing call-graph
algorithms concerning the language features they cover in a project-specific manner.
Judge builds on top of Hermes and Cats’ fingerprints to find and document a CG’s
sources of unsoundness within an assessed program. In several experiments, we use
Judge to:

a) determine the prevalence of language features and APIs that affect soundness in
modern Java Bytecode,

b) compare the CGs of Soot, Wala, Doop, and Opal, highlighting essential differ-
ences in their implementations, and

c) evaluate the necessary effort to achieve reasonable soundness of CGs in a project-
specific way.
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4. Hermes: Assessment and Creation of
Effective Test Corpora

This chapter presents our work to assess a set of programs, with the following specific
contributions:

• Hermes, an open-source framework1 for the assessment of a given corpus of Java
projects and for the computation of a minimal corpus regarding the evaluated
features

• An initial set of feature queries to collect, provide, and comprehend information
about a project

• An evaluation that shows the usefulness of the the assessment and creation of test
corpora

• A case study that shows that the Qualitas Corpus [TAD+10] is not suitable for any
kind of evaluation and should, e.g., not be used to evaluate the level of support for
Java 7 or newer features

We will discuss the proposed approach and its realization in Section 4.1. Next, we
present in Section 4.2 our evaluation and case study. The chapter ends with a conclusion
in Section 4.3.

4.1. Design and Implementation

Hermes is an extensible, configurable framework for the comprehensive assessment of a
given set of projects concerning a wide range of different features. We implement Her-
mes upon the Java bytecode analysis framework OPAL [EH14, HKR+20] and, therefore,
require compiled Java programs as input. The latter can be either standalone applica-
tions or libraries; all projects form the base corpus.

Figure 4.1 gives an overview of Hermes’ design. Taken the base corpus, Hermes
assesses these programs via querying them for the occurrence of features. Whereas a
feature is an abstract concept that can express a call to an API, a bytecode instruction,
or a complexity metric, a feature extension is a concrete value of a feature, such as a
call to Class.newInstance(), an occurrence of the invokedynamic instruction, or the
computed value of a complexity metric. A respective feature query then determines the
extensions of a feature for a given project: It is a static analysis that given a project as

1 https://www.opal-project.de/Hermes.html (checked on Sept 01, 2018).
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Figure 4.1.: General design overview of Hermes, showing its inputs and outputs.

input collects all feature extensions. After collecting the desired information, Hermes
produces a report containing the found features and their locations within the pro-
gram. Depending on the feature, the location information is expressed at package, class,
method, or instruction level. The set of feature queries is configurable and customizable.

Using the results of the evaluation of all queries, Hermes can then automatically
compute a minimal corpus which ensures that all features are found in at least one
project. This subset can then be used for effective and efficient testing and evaluation
purposes.

4.1.1. Approach

Hermes is written in Scala and uses multiple representations of Java bytecode from
Opal which enables lowest level queries but also feature queries at a high abstraction
level. Additionally, OPAL provides useful abstractions such as a Project and also
provides a wide range of standard functionalities like computing control-flow graphs and
call graphs. This facilitates the implementation of feature queries which range from
metrics to data- and control-flow dependent analyses. The computation of the optimal
corpus is done using the constraint programming library Choco [PFL16].

In the following, we describe the main components of Hermes along with the steps a
user must take to assess and optimize a base corpus.

Corpus configuration Before running Hermes, all projects of the base corpus have to
be specified. Listing 4.1 shows an example configuration for a small corpus consisting
of two projects. Each project specification consists of a unique id (line 6 and 12) and a
specification of its classpath (cp line 7 and 13). Additionally, the two optional attributes
libcp (line 8) and libcp default (line 9) can be used to specify the project’s libraries.
The first one specifies the paths to the libraries’ jar files and libcp default is used to
add a dependency to a predefined library to the project, e.g., a language runtime. The
available default libraries are the current Java Runtime Environment (JRE) as a whole
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4.1. Design and Implementation

1 {

2 "org": {

3 "opalj": {

4 "hermes": {

5 "projects": [{

6 "id": "Apache ANT 1.7.1 - Javac 6",

7 "cp": "../../projects/Apache ANT 1.7.1.jar",

8 "libcp": "../../dependencies/Apache ANT

1.7.1.jar",

9 "libcp_default": "JRE"

10 },

11 {

12 "id": "argouml-excerpt",

13 "cp": "../../projects/argouml-excerpt.jar"

14 }]

15 }

16 }

17 }

18 }

Listing 4.1.: Example JSON configuration file (.json) specifying the corpus projects.

or just the rt.jar2. Library class paths need to be specified whenever some feature
query requires information that cannot be extracted from the project alone, e.g., feature
queries related to the inheritance hierarchy generally require a complete type hierarchy.

Query configuration Hermes provides a customizable configuration where the queries
which should be evaluated are configured. By default, all available queries will be eval-
uated. The set of queries should—in general—be selected with a concrete analysis and
test/evaluation goal in mind. For example, if a test corpus for integration testing of a
static analysis should be created, it might be important to ensure that all language-
specific features are found at least once in the given projects. If the evaluation goal is
the scalability of the analysis, it may be more important to ensure that specific features
occur with a certain frequency. However, it is possible to always run all available queries,
but as every query is also a potentially complex static analysis, this might be too expen-
sive. Listing 4.2 shows a configuration that enables the queries in Line 3, 5, and 7 and
which disables the query in Line 4. Each entry specifies the fully qualified name of the
class that implements the query (query) and whether the given query should be executed
or not (activate). New queries can simply be added to the configuration analogously.

2Here, current refers to the one used for running Hermes.
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1 {

2 "org.opalj.hermes.queries" = [

3 { "query" : "queries.Metrics", "activate" : true }

4 { "query" : "queries.MethodsWithoutReturns", "activate" : true}

5 { "query" : "queries.JDBCAPIUsage", "activate" : false }

6 ...

7 { "query" : "queries.MethodTypes", "activate" : true } ]

8

9 }

Listing 4.2.: Hermes’ configuration of enabled and disabled feature queries.

Corpus evaluation and visualization Given a complete configuration, we can then
start Hermes. Hermes’ UI provides an overview of the current state of the evaluation,
provides descriptions of the activated queries, and shows basic size metrics related to
the projects.

Additionally, the evaluation of each activated feature query for each project belonging
to the specified base corpus is directly started. As soon as a feature query was evaluated,
Hermes shows the resulting number of feature occurrences and makes it possible to jump
to concrete occurrences of the feature in the respective project’s code base—if supported
by the query. In general, a query can report feature occurrences at the package, class,
method, or instruction level. Being able to navigate to concrete feature occurrences is
helpful when developing new feature queries, but also if a more detailed understanding
of the feature in the context of a specific project is required. The amount of location
information that is kept is configurable and managed by Hermes to ensure that very
large test corpora such as the Qualitas Corpus can successfully be evaluated.

4.1.2. Feature Queries

A feature query is a static analysis that is given a project as input and then collects all
feature extensions of one or multiple closely related features. For example, it is possible
to write a query which collects all Java 7 class files found in a specific project and another
one for Java 8 class files. Alternatively—and also more efficiently—it is possible to write
a single feature query that analyzes every class file once and adds every class file to its
respective feature category. To ensure that all features are uniquely identifiable across
all feature queries, each query assigns a unique id to each derived feature.

All feature queries have to implement the FeatureQuery interface, which defines the
two functions shown in Listing 4.3. The first function featureIDs (Line 3) defines a list
of unique feature ids where each id represents the name of a derived feature. The second
function (apply - Line 5) defines the query itself. The input for the static analysis
is the project configuration (Line 6), OPAL’s representation of a Project (Line 7),
and a raw one-to-one representation of the project’s Java class files (Line 8). The raw
representation supports queries which need to work on unprocessed class files; e.g., those
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1 trait FeatureQuery {
2

3 def featureIDs: Seq[String]
4

5 def apply[S](
6 projectConfiguration: ProjectConfiguration,
7 project: Project[S],
8 rawClassFiles: Traversable[(da.ClassFile, S)]
9 ) : TraversableOnce[Feature[S]]

10 }

Listing 4.3.: Scala trait that must be implemented by all feature queries.

that want to analyze the constant pool in detail. The representation provided by the
project enables higher level code analyses, such as control- and data-flow analyses or
abstract code interpretation3.

A selection of the currently available feature queries is listed in Table 4.1 together with
the number of derived feature extensions and a short description of each feature. The
available queries demonstrate the variety of possible analyses: they reach from basic API
usage queries, which can be used to select projects for API misuse detection, specification
mining, or injection analyses, over JVM and language features based queries—e.g., to
find suitable integration test corpora—up to control - and data-flow analyses. The latter
can, e.g., be used to get some understanding of how Java reflection is used.

4.1.3. Computing an Optimal Corpus

After all queries have been evaluated for all projects, it is possible to let Hermes compute
the subset of projects which has the overall minimal number of methods (optimization
goal) and which ensures that every feature occurs at least once in some project (con-
straint). I.e., Hermes would prefer two small projects with, e.g., two methods each
over one project with ten methods. Minimization of the overall number of methods is
done because in most cases it better reflects the overall effort that is necessary when the
corpus is eventually used for evaluation or test purposes.

For more elaborated use cases, it is possible to export the computed results using a
CSV file and to perform some external post processing, e.g., to study a particular feature
in-the-wild.

4.2. Evaluation

In the following, we describe the evaluation of Hermes for the two use cases: “Compre-
hending a test corpus” and “Generation of an effective integration test suite”.

3An example for an API query can be found in Appendix A, an example for a query computing metrics
can be found in Appendix B, and an example for a custom query is available in Appendix C.

51



4. Hermes: Assessment and Creation of Effective Test Corpora

Table 4.1.: Available feature queries including their category, number of unique features
and a short description.

feature query category # features description

BasicMetrics metrics,
control flow

15 Extracts the following basic metrics: meth-
ods per class, fields per class, the number of
children (NOC), and McCabe and groups
them per complexity category (e.g., in case
of McCabe: linear methods, simple meth-
ods (2 to 3 paths), complex methods (more
than 3 paths).

BytecodeInstructions JVM fea-
tures

201 List of all Java bytecode instructions as de-
fined in the Java Virtual Machine Specifi-
cation (Java 1.1 up to Java 8).

ClassFileVersion JVM fea-
tures

6 Extracts the class file version (Java 1.1 up
to Java 9) of each class file belonging to
the project where each version is a single
feature.

ClassTypes language
features

10 Extracts the information about the type of
the specified class; e.g., how may concrete
classes, annotations, interfaces, interfaces
with default methods, or Java 9 modules
are defined.

JavaCryptoArchitecture-
Usage

API usage 8 Extracts information about the usage of
core classes and interfaces, for instance ci-
phers, keys, or signatures, from the Java
Crypto Architecture (JCA) according to
the official reference guide.

JDBCAPIUsage API usage 5 Extracts information about the usage of
Java’s JDBC API and SQL statement
kinds.

MethodsWithoutReturns control flow 2 Extracts whether a method either never re-
turns normally, e.g., by throwing an excep-
tion, or has a real infinite loop without any
possibility to return.

MethodTypes language
features

9 Extracts the information about the type
of the specified methods; e.g., whether a
method is native, synchronized, or is a
varargs method.

ReflectionAPIUsage API usage 12 Derives which methods/functionality of
Java’s classical Reflection API is used
within a project.

SystemAPIUsage API usage,
capabilities

8 Extracts the usage of API methods that are
related to the state of the JVM, capabili-
ties [HREM15], or used to access the under-
lying operating system; e.g., spawning an
external process, playing sound, or work-
ing with the java.lang.SecurityManager.

TrivialReflectionUsage API usage,
data flow

1 Counts the number of cases where
Class.forName calls can be trivially re-
solved, because the respective String(s)
are directly available.

UnsafeAPIUsage API usage 19 Derives usage information about
sun.misc.Unsafe according to the classifi-
cation of Mastrangelo et al. [MPM+15].
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4.2. Evaluation

All measurements were done on a Mac Pro with a Xeon E5 CPU with 8 cores@3GHz.
The Java Virtual Machine (Java 8 Update 121) was given 24GB of heap memory.

4.2.1. Comprehending Test Corpora

To understand the nature of the projects contained in the latest release of the Qualitas
Corpus [TAD+10] (QC) from September 2013, we ran Hermes using all queries against
all projects and inspected the result. As expected—given the release date of QC—none
of the projects used Java 8. More surprisingly, none of the projects used the JavaFX
framework already introduced in 2008. This indicates that even though the corpus al-
ready contains over 100 projects, some domains are not well represented. Furthermore,
only one (Hibernate) of the included projects used Java 7 features4. Overall, this pre-
liminary analysis suggests that using the Qualitas Corpus to evaluate or test analyses
that support Java features released after 2011 is not meaningful.

4.2.2. Generating Integration Test Suites

For the second evaluation, we used Hermes to compute an optimal test corpus based
on the Qualitas Corpus [TAD+10] (QC) for generic integration testing purposes; i.e., we
used Hermes to compute the subset of all QC projects that should enable us to perform
effective and efficient integration testing of general static and dynamic analyses. The
concrete goal for the evaluation was to use the minimal set of projects for testing the
analysis described in the paper “Hidden Truths in Dead Software Paths” [EHMG15].
The core part of that analysis is a very generic data- and control-flow analysis and it
should be able to handle all valid Java bytecode. Using this minimal set of projects
should give us basically the same level of confidence in our developed analysis as using
all QC projects.

The first step of this evaluation was to run Hermes against all projects using every
available query. After each query was evaluated for all projects, we let Hermes compute
the minimal set of projects which a) has the minimal overall number of methods and
b) ensures that every feature occurs at least once in some project5. The set of projects
computed by Hermes consists of the following five projects: joggplayer, jchempaint,
hibernate, quilt, and nakedobjects. It took Hermes less than a second to find the
minimal solution.

The second step was to determine the overall code coverage of the paper’s core control-
and data-flow analysis. We measured the coverage using scoverage6 twice: Once, run-
ning the analysis against all 100 projects of the Qualitas Corpus and once running it
only against the automatically determined set of five projects. The time to run the
analysis against all projects was 1006s(≈ 16.77min) while it took 169s(≈ 2.82min) for
the selected projects, i.e., just using the selected projects is nearly 6 times faster.

4Java 7 was released in 2011 and already two years old when the updated corpus was created.
5Recall that features which are not found at all across all given projects, such as those related to Java

8 features in case of the QC, are simply ignored.
6 https://github.com/scoverage (checked on Dec 15, 2018).
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However, the code coverage is slightly better (1.06%) when we all QC projects. An
investigation of the code coverage data revealed that some projects, which did not belong
to the selected projects, contained advanced exception handling and more elaborate
array-based accesses.

4.2.3. Discussion

To recap, the evaluation shows that one can use Hermes to get a better understanding
of available corpora and also to compute minimal test corpora that enable effective
integration testing. Furthermore, given the very primitive nature of the available queries
and the achieved quality of the results, it is evident that we do not need complex queries
to compute effective test corpora.

Additionally, by adding further queries related to exceptions/exception handling and
to array accesses, one can compute a test corpus that is most likely still much smaller
than the complete QC, while being as effective for testing data- and control-flow analyses.

4.3. Conclusion

Testing and evaluation are essential and generally very time consuming tasks that are
part of the development of every new analysis. Both tasks are typically done using test
corpora consisting of large(r) collections of projects. But as discussed in Chapter 3,
without explicit tool support, it is hard to judge whether the selected projects have the
desired/necessary features. Additionally, it is impossible to know which projects are
useful and which just test/evaluate the same functionality over and over again.

To address these issues, we proposed Hermes, a generic framework that facilitates
the assessment of a given set of Java bytecode projects with respect to their properties.
Thereby, we gave researchers a tool to a) assess whether a given corpus suits their needs
and b) enable meaningful evaluations.

Furthermore, Hermes contains several built-in feature queries, allowing users to ex-
plore various properties of projects. These are a starting point for selecting projects
for different static analyses; e.g., for SQL injections, cryptographic security flaws, or
call graph construction. We demonstrated Hermes’ usefulness by using it to better
understand the Qualitas Corpus and by computing a minimal test corpus useful for
integration testing of generic data- and control-flow analyses. Thus, we successfully
addressed Chlg. 7, identified in Chapter 3.
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5. CATS: A Framework for Systematically
Testing the Unsoundness of Call-graph
Construction Algorithms

Following the idea of test suites for static analyses, such as SecuriBench [Liv18] and
DroidBench [ARF+14], we facilitate the task of assessing call-graph (CG) algorithms
with an automated test framework. We call this framework Cats. Its goals are:

a) to provide a comprehensive overview of programming language features and APIs
relevant to CG construction,

b) to automate the assessment of a CG algorithm’s capabilities, and

c) to enable reproducible and extensible experiments.

It is possible to add new CG algorithms to compare and extend the test suite in the
future. We publish Cats for future studies1.

5.1. Design and Implementation

The core idea is to have a wide range of small, focused test cases. Each test case—as
far as possible—tests a single relevant soundness aspect related to CG construction.
These test cases provide the ground truth and, when compiled, are used as input for the
different CG algorithms.

Figure 5.1 provides an overview of the proposed approach. For each set of closely
related test cases we use a single markdown file which contains all related tests (<Test
Fixtures Category>.md). For example, we create one markdown file for each of the
following categories: usages of Java Reflection, Java 8 language features, usages of
sun.misc.Unsafe, or Serialization. Using markdowns enables us to generate a concise,
human-readable description of the test cases that can be enriched with additional back-
ground information. Each test case consists of a small runnable Java program which
uses a specific language feature and/or API along with a brief description of the unique
features of the test case. Additionally, each test case contains one or more annotations
to describe the expected call targets; i.e., to specify the ground truth.

The Test-case Extractor parses the markdown files and retrieves the test cases, com-
piles them, and bundles each one into a respective jar file. In addition to the test cases
that are compiled by the test-case extractor, we can provide a number of precompiled

1https://bitbucket.org/delors/cats/src/master/ (checked on Dec 2, 2020).
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Figure 5.1.: Overview of the CG test framework: From test-case specification and com-
pilation, over evaluation to fingerprint generation.

test cases. We use this feature for more advanced test cases that cannot be created
within a single compilation process, e.g., when imitating a software evolution scenario.

After that, we use a Framework-specific Test Adapter to construct a call graph (CG)
for each individual CG algorithm. After construction, the graph is serialized to a common
JSON-based representation. The last step is performed by the Call-graph Matcher. It
loads the CG and compares the found call targets with those explicitly specified in the
test cases. Based on its findings, the CG matcher then generates a fingerprint of the
algorithm’s capabilities, i.e., a report that summarizes the results. In the following, we
provide more details regarding the individual steps.

Test-case Specification There are two classes of test cases. The first class consists of
basic test cases that can be created using Java code. These are defined in markdown files
(.md) that contain a high-level description of the test case along with the source code.
Listing 5.1 shows an example markdown file. Each file is structured in the same way: The
first level header (e.g., Trivial Reflection in Line 1) identifies the test category. A second
level header (e.g., TR1 in Line 3) identifies a concrete test case. After the second level
header comes the specification of the main class (Line 4) and a short description (Line 5)
that is followed by multiple code snippets which—taken together—form an executable
Java program. The first line of each test case is a Java comment that identifies the
target file in which the code will be stored (Line 7). As a test case can consist of
multiple public Java classes, it is not always possible to declare one test case in a single
Java file. Listing 5.1’s TR1 test case will be stored in the file tr1/Foo.java.

The second class of test cases consists of test cases that cannot be generated by the
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1 #TrivialReflection
2 The strings are directly available...
3 ##TR1
4 [//]: # (MAIN: tr1.Foo)
5 Test reflection with respect to static methods.
6 ```java
7 // tr1/Foo.java
8 package tr1;
9 import lib.annotations.callgraph.IndirectCall;

10 class Foo {
11 static String m() { return ”Foo”; }
12

13 @IndirectCall(
14 name = ”m”, returnType = String.class,
15 line = 17, resolvedTargets = ”Ltr1/Foo;” )
16 public static void main(String[] args) throws

Exception {
17 Foo.class.getDeclaredMethod(”m”).invoke(null);
18 }}
19 ```
20 [//]: # (END)
21 ##TR2 ...

Listing 5.1.: An example test-case definition from the Trivial Reflection category.

Java 8 compiler. These Advanced Test Cases (cf. Figure 5.1) are manually compiled
using another compiler (e.g. Java 10 or Scala), created via bytecode engineering, or by
replaying code evolution scenarios. The study of the Java Virtual Machine Specification
(JVMSpec) led us to test cases that represent valid bytecode but cannot be generated by
the Java compiler. For example, the JVM supports so-called MethodHandle Constants

which are primarily intended to be used by other JVM-hosted languages. Furthermore,
due to code evolution, it may happen that an interface SuperI defines a default instance
method m and its subinterface SubI a corresponding static method m. That is, both
methods have the exact same signature and only differ in the access modifier (e.g.,
public or protected). Such bytecode is legal and works reliably, but cannot be created
using Java source code.

Annotating the Ground Truth In order to detect missing call edges, a specification
of the ground truth is required. We decided to use Java’s annotations (cf. Line 13 in
Listing 5.1) to specify the crucial CG edges that should be part of the CG. Due to the
decision that all code snippets have to be executable programs, it is sometimes necessary
to perform multiple calls to achieve the required state. Hence, each method may contain
multiple call sites. Therefore, we identify the relevant call sites using line numbers, the
callee’s name, as well as its return and parameter types. To avoid ambiguous call sites,
the test are restricted to have only one method call with the same name per line of code.
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1 { "callSites": [

2 { "method": {

3 "name": "main",

4 "parameterTypes": ["[Ljava/lang/String;"],

5 "returnType": "V",

6 "declaringClass": "Ltr1/Foo;" },

7 "line": 12,

8 "declaredTarget": {

9 "name": "getDeclaredMethod",

10 "parameterTypes": ["Ljava/lang/String;",

11 "[Ljava/lang/Class;"],

12 "returnType": "Ljava/lang/reflect/Method;",

13 "declaringClass": "Ljava/lang/Class;" },

14 "targets": [ {

15 "name": "getDeclaredMethod",

16 "parameterTypes": ["Ljava/lang/String;",

17 "[Ljava/lang/Class;"],

18 "returnType": "Ljava/lang/reflect/Method;",

19 "declaringClass": "Ljava/lang/Class;" } ]

20 },

21 ...

22 ]

23 }

Listing 5.2.: A serialized CG from the TR1 test case shown in Listing 5.1.

We provide two annotations: First CallSite to specify direct call edges between
two methods. This one is used for standard virtual method calls, constructor calls,
static method invocations, and default method invocations (Java 8). The second one,
IndirectCall, is used to specify indirect calls. Consider the reflective call m.invoke(null)
in Line 17 (Listing 5.1). In this case the CG may (also) contain call edges to the Reflection
API and/or a call to the target method (m in the example); however, the representation
of such calls is framework specific and to abstract over differences, e.g., how reflective
calls, method references, etc. are actually handled by the frameworks, we specify that
we expect some path leading to the expected targets as shown in Lines 13-15.

Serialization of the Call Graphs In the JSON representation (cf. Listing 5.2) of the
CGs, each method is represented using its name, the parameter types, the return type,
and the fully qualified name of its declaring class. A call site is represented by the caller
method, the line number, the declared target method, and the set of computed target
methods.
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Validating the Call Graph Identifying missing call edges is done by iterating over all
methods of a project and comparing the found call targets against the specified ones.
The presence of call edges related to indirect calls is validated by performing a breadth-
first search on the computed CG; starting with the main method. The final report then
lists failed test cases along with the missed calls.

Fingerprint Generation To construct the fingerprint of a CG algorithm, Cats uses
the final report. Please note that each test case is testing one specific feature that is
relevant when constructing CGs. Hence, each test case a CG algorithm passes represents
a single feature the algorithm supports. Given the sum of all test cases, we can derive a
CG algorithm’s fingerprint, representing its capabilities of supported language features,
APIs, and bytecode features.

Cats supports the analysis of various CG algorithms offered by the frameworks. Four
algorithms from Wala, four algorithms from Soot, 1 algorithm from Doop, and one
algorithm from Opal.

5.2. Test Suite

In the following, we discuss our extended test suite by first giving a high-level overview
of the test categories (cf. Table 5.1) before we discuss individual test cases. Overall, we
define 122 test cases which we grouped in 23 categories.

5.2.1. Test Categories

Classloading Using a java.lang.ClassLoader, it is possible to load and use a specific
class in multiple (incompatible) versions.

Class.forName Exceptions Loading a class at runtime, using Class.forName(. . . ), can
cause various exceptions. If the classloading fails and an exception is thrown, the excep-
tion’s handler becomes a valid program path. Since ignoring these exception handlers
can lead to unsoundness, we cover multiple test cases that always lead to an exception.

Dynamic Proxies Java’s Dynamic Proxy API creates (via runtime bytecode engineer-
ing) type-safe proxy classes which will then forward the calls—using Java reflection—to
a previously specified handler class.

Interface Default Methods Java 8 introduced default methods which are defined in
interfaces and have to be taken into account when resolving virtual method calls. These
default methods act as fallback case when a Java class implements that interface but
does not override the respective interface method. We included test cases for virtual
method invocations concerning interface default methods and maximally-specific inter-
face methods. The latter must be computed when a subclass/interface inherits multiple
interfaces that define a method with the same signature.
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Category Abbreviation # Test Cases

Classloading CL 4
Dynamic Proxies DP 1
Interface Default Methods J8DIM 6
Static Interface Methods J8SIM 1
Java 8 invokedynamics MR/Lambda 11
JVM Calls JVMC 5
Library Analysis LIB 5
Trivial Reflection TR 9
Locally Resolveable Reflection LRR 3
Context-sensitive Reflection CSR 4
Method Handles MH 9
Class.forname Exceptions CFNE 4
Non-virtual Calls NVC 6
Serialization Ser 9
Externalizable ExtSer 3
Lambda Serialization LamSer 2
Signature Polymorphic Methods SPM 7
Static Initializers SI 8
Types - 6
Unsafe - 7
Virtual Calls VC 4
Java 9/10 Features J9+ 2
Non-Java Bytecode NJB 6

Total 122

Table 5.1.: Overview of the test suite showing the different categories, their abbrevia-
tions, and their number of test cases.

JVM Calls Calls of those methods that are (only) done by the JVM due to some event,
such as calling start on a Thread. In that case the JVM will eventually call the Thread ’s
run method. Other examples comprise object finalizers or access control functionality.

Lambdas and Method References The Java 8 compiler started to use invokedynamic
instruction to compile lambda expressions (e.g. () =⇒ doSomething();) as well
as calls that are based on method references (e.g., String::length). We included test
cases for various different cases of lambdas and method references that result in different
bytecode.

Library Analysis As will be discussed in Chapter 7, the target of a method call in
a library may require call-by-signature resolution when computing call graphs just for
the library. Therefore, this category comprises test cases that assume an open-world

60



5.2. Test Suite

scenario.

Virtual Calls Such method calls are at the core of Java. When a virtual method is
called, the target is resolved depending on the runtime type of its receiver object. When
the runtime type cannot be determined precisely, a sound call-graph algorithm will over-
approximate the receiver type and then determine the set of possible call targets. The
provided test suite contains various test cases containing polymorphic method calls.
Those cases cover class and interface receiver types in the presence of different type
hierarchies.

Non-virtual Calls Non-virtual method calls, i.e., constructor calls, super calls, private
method calls and static method calls. The call target at a non-virtual callsite is always
unambiguous.

Trivial Reflection Usage of the classical reflection API—java.lang.reflect.* in combina-
tion with java.lang.Class’s methods—where the call target is immediately available (e.g.,
Class.forName("XYZ")). Hence, test cases that belong to this category are rather triv-
ially resolvable, as all API inputs are directly known and neither data-flow nor control-
flow analyses are required.

Locally-resolvable Reflection Usage of the classical reflection API where an intrapro-
cedural control-/data-flow analysis is required to resolve the call targets. Hence, the
information passed to the reflection API is defined within the reflection-using method.

Context-sensitive Reflection Usage of the classical reflection API where an interpro-
cedural control-/data-flow analysis is required to resolve the call targets. Hence, the
information passed to the reflection API is defined outside of the reflection-using method.

Method Handles Usage of the modern reflection API—java.lang.invoke.* and Java
7’s MethodHandle API. This category tests only methods from the MethodHandle API
that are not signature polymorphic, i.e., the method descriptor used at the call site must
always match the signature of the called method. In contrast to the different levels of
classical reflection test cases, tests defined in this category have all inputs immediately
available. They do not require any control- or data-flow analysis.

Signature Polymorphic Methods Calls from this category comprise signature poly-
morphic method2 calls concerning from Java’s java.lang.MethodHandle’s invoke and in-
voke-exact methods, or java.lang.invoke.VarHandle respectively. In general, a method is
considered signature polymorphic if it has the following three properties: the method a)
is either declared within MethodHandle or VarHandle, b) has a single formal parameter
of type Object[], and c) has the ACC VARARGS and ACC NATIVE flags set.

2More information pertaining to signature polymorphic methods can be found within the Specification
of the Java Virtual Machine [GJS+18b] in §2.9.3
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Method calls of this category are unique because the invoked method’s signature can
differ from the invoked method when the method handle invocation happens through
MethodHandle’s invoke method. Therefore, special semantic applies to those method
calls. For instance, passed parameters are (un)boxed, cast, or widened automatically.
Please note, those automated operations are not performed when invokeExcact is called.

Serialization Java’s serialization mechanism allows one to persistently store and re-
trieve objects using object serialization. To use this mechanism, classes must implement
the java.io.Serializable or java.io.Externalizable interface. Additionally, classes can de-
fine several callback methods, e.g., writeObject or readResolve, that are called by the
JVM during (de-)serialization. Hence, those method calls are implicitly performed by
the JVM and not visible to the programmer. For example, when deserialization of a Se-
rializable object occurs, the default constructor3 of the first non-serializable superclass
is invoked. This constructor must exist and must be accessible from the class. Likewise,
Externalizable classes also must define a default constructor which is then invoked during
deserialization.

Static Initializers In Java, every time a class is loaded by the JVM, a call to its static
initializer4 is performed by the language runtime. Those calls are implicit and, therefore,
must be explicitly modeled by the CG algorithm.

Types Type casts and instanceof checks can be performed using language features,
but also using core Java APIs. We added several test cases that test both: API-based
and language-feature-based type casts and instanceof checks. Type narrowing itself
is not directly related to soundness but still a language feature that needs coverage.
Considering a static analysis on Java bytecode, e.g., with Soot, type casts and instanceof
checks require handling for additional bytecode instructions.

Unsafe With sun.misc.Unsafe, Java provides an internal API that allows direct mem-
ory manipulations via Java code. Using the methods compareAndSwapObject, putObject,
or getObject, objects can be put into or retrieved from fields. The test cases therefore
test whether the call graphs contain call edges to those virtual methods that are due
to an unsafe field update. E.g., if a method m invocation occurs on a field of type T
which is updated to an object of type TSub (with TSubextendsT ) via Unsafe, the call
graph must contain an edge to TSub.m. Despite that the API is designed for inter-
nal use only, security checks to retrieve an instance of the class can be circumvented,
e.g., by using Java’s Reflection API. In fact, this API is used by several wide spread
libraries [MPM+15].

3A default constructor is a constructor without any formal parameters.
4More information pertaining to static initializers can be found within the Specification of the Java

Virtual Machine [GJS+18b] in §12.4.1.
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Java 9/10 Features added with Java 9 and 10, such as private interface methods and
modules.

Non-Java Bytecode Legal Java Virtual Machine (JVM) bytecode that cannot be cre-
ated using Java. This bytecode can either be created through software evaluation sce-
narios that require multiple compilation steps or by compilers for other JVM-hosted
languages such as Clojure, Groovy, Kotlin, or Scala. These languages can theoretically
be analyzed with a static bytecode analysis tool. However, the emitted bytecode and
the usage of JVM features can differ among languages [SMSB11, SMS+12], e.g., Groovy
and Scala use invokedynamic instructions differently than Java and may require special
handling. Please note that test cases in this category require a manual compilation
process.

5.2.2. Test Case Design

For systematically designing the test suite, we studied the Java Virtual Machine Spec-
ification (JVMSpec) [GJS+18b] and Java’s core APIs (java.* ). When constructing the
test cases, we tried to ensure that a test case will only succeed if the algorithm explicitly
supports the respective feature. This is, however, not possible in all cases; some test
cases are simply supported due to an algorithm’s inherent imprecision. For example,
some of the test cases related to Types or Unsafe manipulate references and can there-
fore negatively affect soundness in those algorithms that are points-to information based.
If those algorithms do not model the effects of, e.g., manipulating references using the
Unsafe API, the points-to information will be incorrect—potentially leading to unsound
results. CG algorithms, such as class-hierarchy analysis (CHA), that just rely on the type
information found in the bytecode handle related scenarios in a sound manner; they just
assume all subclasses. Furthermore, we did not add explicit test cases related to custom
native methods because none of the frameworks support cross-language analyses.

5.3. Using Cats to Study the Call-graph Algorithms of
State-of-the-art Static Analysis Frameworks

In the following, we describe how we evaluate Soot, Wala, Doop, and Opal’s call-
graph (CG) algorithms by applying the proposed test suite. The study is driven by the
following two research questions.

RQ1 How do the CGs of Soot, Wala, Doop, and Opal compare to each other in
terms of feature support?

RQ2 What are the main sources of unsoundness in built-in CG algorithms of Soot,
Wala, Doop, and Opal?
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Table 5.2.: Support of language features and APIs of Soot, Wala, Opal, and Doop’s call graphs.

Category Soot WALA OPAL DOOP
CHA RTA VTA SPARK RTA 0-CFA N-CFA 0-1-CFA RTA Points-to

CL G# 4/6 G# 4/6 G# 4/6 G# 3/6 G# 4/6 G# 4/6 G# 2/6 G# 4/6 G# 4/6 G# 4/6
DP  1/1  1/1 � 0/1 � 0/1  1/1 � 0/1 � 0/1 � 0/1  1/1 � 0/1
J8DIM/J8SIM G# 3/7 G# 3/7 G# 3/7 G# 3/7  7/7  7/7  7/7  7/7  7/7 G# 3/7
MR/Lambdas G# 1/11 G# 1/11 � 0/11 � 0/11  11/11 G# 10/11 G# 10/11 G# 10/11  11/11 G# 1/11
JVMC G# 4/5 G# 4/5 G# 3/5 G# 2/5 G# 2/5 G# 2/5 G# 2/5 G# 2/5 G# 2/5 G# 2/5
LIB G# 2/5 G# 2/5 G# 2/5 G# 2/5 G# 1/5 G# 1/5 G# 1/5 G# 1/5 G# 2/5 � 0/5
TR G# 4/9 G# 4/9 G# 4/9 G# 4/9 G# 3/9 G# 6/9 � 0/9 G# 6/9  9/9 G# 3/9
LRR  3/3  3/3  3/3  3/3 � 0/3 � 0/3 � 0/3 � 0/3 G# 1/3 G# 2/3
CSR  4/4  4/4  4/4  4/4 � 0/4 � 0/4 � 0/4 � 0/4 G# 1/4 G# 0/4
MH G# 3/9 G# 3/9 G# 1/9 � 0/9 G# 2/9 � 0/9 � 0/9 � 0/9  9/9 G# 1/9
CFNE  4/4  4/4  4/4  4/4  4/4  4/4 G# 3/4  4/4  4/4  4/4
NVM  4/4  4/4  4/4  4/4  4/4  4/4  4/4  4/4  4/4  4/4
Ser G# 1/9 G# 1/9 � 0/9 � 0/9 � 0/9 � 0/9 � 0/9 � 0/9 G# 5/9 � 0/9
ExtSer  3/3  3/3 G# 1/3 G# 1/3 G# 1/3 G# 1/3 G# 1/3 G# 1/3  3/3 G# 1/3
LamSer G# 1/2 G# 1/2 � 0/2 � 0/2 � 0/2 � 0/2 � 0/2 � 0/2 G# 1/2 � 0/2
SPM � 0/7 � 0/7 � 0/7 � 0/7 � 0/7 � 0/7 � 0/7 � 0/7  7/7 � 0/7
SI  8/8  8/8  8/8 G# 7/8 G# 7/8 G# 6/8 G# 6/8 G# 6/8  8/8 G# 7/8
Types  6/6  6/6  6/6  6/6  6/6  6/6 G# 2/6  6/6  6/6  6/6
Unsafe  7/7  7/7 � 0/7 � 0/7  7/7 � 0/7 � 0/7 � 0/7  7/7 G# 0/7
VC  4/4  4/4  4/4  4/4  4/4  4/4  4/4  4/4  4/4  4/4
J9+ � 0/3 � 0/3 � 0/3 � 0/3 � 0/3 � 0/3 � 0/3 � 0/3 G# 2/3 � 0/3
NJB � 0/6 � 0/6 � 0/6 � 0/6 G# 3/6 G# 3/6 G# 3/6 G# 3/6 G# 4/6 � 0/6

sum 67/122 67/122 51/122 47/122 67/122 65/122 55/122 58/122 102/122 42/122

 indicates fully supported feature categories, G# indicates partially supported feature categories, and � indicates
not supported feature categories.
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5.3.1. Setup

All measurements are done using Wala 1.5.0, Soot 3.1.0, Opal’s develop branch5,
and Doop’s master branch6. From Wala, we use the following algorithms: WalaRTA,
Wala0-CFA, WalaN-CFA

7, Wala0-1-CFA—all configured with the FULL reflection op-
tion. Wala requires to specify packages to be excluded from the analysis. However,
for this experiment we choose to exclude no package. For all Soot CGs (SootCHA,
SootRTA, SootVTA, and SootSPARK [LH03]) we use the options safe-forname and
safe-newinstance. These options make Soot consider all types as instantiated when
Class.forName or Class.newInstance is used. We could not use types-for-invoke
due to exceptions being thrown [SDE+18]. Furthermore, we use include-all to en-
sure that no packages are filtered. Our library test cases are additionally started with
library:signature-resolution and all-reachable to make use of Soot’s capabilities to an-
alyze library code. Doop’s CG is set to be context-insensitive with classical-reflection
turned on. For OpalRTA, we use the standard configuration. Please note that we de-
scribed the used algorithms in Section 2.1.

All test cases with respect to libraries are started with the respective library entry
points.

5.3.2. Comparing Call-graph Algorithm Fingerprints

Next, we will compute and compare each algorithm’s fingerprint. Table 5.2 summarizes
the computed algorithm profiles. The first column shows the test categories. Columns
two to ten show for each test category the individual test results per CG algorithm. A
cell’s symbol indicates whether all ( ), some (G#), or none (�) of the tests succeeded;
the numbers represent the number of succeeded vs. all tests.

The results shows that basic language features like static initializers (SI ), (non-)virtual
calls ((N)VC ), and type casts (Types) are well supported. An exception are two static
initializer cases: the first one is not supported by SootSPARK, Doop, and Wala and
the second one is not supported in Wala. SI4 models a case where a Java 8’s interface’s
static initializer must be called, i.e., the JVM initializes a subclass of an interface that
defines a default method. An unexpected behavior is shown by WalaN-CFA. It can
only handle type casts that are performed using Java’s explicit cast and instanceof

APIs, but does not support built-in operators, i.e., instanceof or type casts of the
form (String) o;.

Serialization-related methods (Ser) are not well supported by Wala and Doop, they
are slightly better supported by Soot and are best supported by Opal (≈ 50%). The
methods (in particular readObject and writeObject—which will be called by the JVM)
must be considered when object (de-)serialization occurs in reachable methods.

Java 8 language features, such as default methods (J8DIM ), lambdas, and method
references (MR) are mostly handled correctly by Wala and Opal but not supported

5Opal’s commit id: 3107c45c8a00de0e132691a6275d39b5a4aa415b.
6Doop’s commit id: cdc59ce71d6510198da396cf6a7d20d73c6466d9.
7We use N=1 throughout the whole evaluation.
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by Soot and Doop. Furthermore, Opal is the only framework that supports the new
method handle API (MH ) and signature polymorphic methods (SPM ).

Furthermore, support for Java’s reflection API varies, but all—except of WalaN-CFA—
provide at least some support. Moreover, Soot’s reflection options enable it to resolve all
advanced reflection test cases (LRR and CSR); calls to Class.newInstance are resolved
to all initializers in the project.

Table 5.2 shows that only the basic algorithms: SootCHA, SootRTA, WalaRTA, and
OpalRTA can deal with Java’s Unsafe API as well as the Dynamic Proxy API. However,
more advanced CG algorithms are not able to detect those cases. Here, the imprecision
of CHA/RTA benefits the support of those two APIs.

Only Opal supports non-Java bytecode (NJB) and Java 9/10 features (J9+).

Please note that the WalaN-CFA implementation performs consistently worse than
Wala’s other implementations. After corresponding with the maintainers of Wala
they confirmed that his behavior was caused by a bug.

RQ1 – How do call-graph algorithms from Soot, Wala, Doop, and Opal compare?
Generally, all CG algorithms provide similar support for basic language features. Dif-
ferences in the supported features show when we look at specific APIs. Whereas Serial-
ization is best supported by Opal, Soot provides the best support for Java’s classical
reflection API. Furthermore, Wala und Opal provide the best language support for
Java 8, which is still missing in Soot and Doop. While reflection support can also be
mixed in by using the dynamic reflection analysis tool Tamiflex [BSS+11], there is no
alternative for the other features.

In summary, all frameworks support different features. Opal is the most recent frame-
work and supports more of the recently added Java features and APIs than the other
frameworks. Advanced features for which solutions were proposed in literature [BSS+11,
SBKB15, FKS18]—such as Doop’s dynamic proxy support—are not enabled by default.
However, Soot, Wala, and Doop do instead support a large variety of different con-
figuration options that all effect the CGs but are not completely covered within this
work.

Obs.1: In terms of feature support, Opal outperforms Wala, Soot, and Doop’s CGs.
Wala and Opal can be used to analyze Java 8 or newer. However, using Soot and
Doop’s CGs is still viable when analyzing older Java versions. Moreover, when using
the dynamic reflection analysis tool Tamiflex [BSS+11], no explicit static reflection
support is required.

RQ2 – What is the main source of unsoundness in built-in call-graph algorithms? All
built-in CGs struggle with the resolution of reflective method calls. Another unsoundness
source pertaining to Doop and Soot’s CGs is the introduction of new language features.
Several features introduced in Java 8 are not yet supported8. All frameworks struggle
to support even newer features from Java 9 upwards. Furthermore, we observe that

8Java 8 first release was in March 2014.
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APIs pertaining to dynamic language features, such as serialization, reflection, method
handles, or classloading remain unsupported.

Obs.2: While all frameworks are actively maintained, implementing support for up-to-
date language features from Java 8 or higher seems challenging.

Additionally, corner cases, e.g., object creation via method references or static ini-
tializers of interfaces, hinder the sound and correct construction of CGs. Wala’s defect
WalaN-CFA algorithm as well as the lack of support for corner cases confirm the need for
a comprehensive CG test suite. Moreover, it is important to be capable to comprehend
a CG algorithm’s strengths and weaknesses and provide a test suite for developers.

Obs.3: This test framework can act as an integration test suite or a reference for a new
CG algorithm and can be used to increase comparability across different implementa-
tions.

5.3.3. Threats to Validity

The performed evaluation demonstrates the design and usefulness of a comprehensive
test suite to assess sources of unsoundness in CG construction algorithms. The test
suite is, however, not complete with respect to all Java features, core APIs, or runtime
(JVM) callbacks. For instance, test cases for JNI calls, general exception handling,
Java 11 or higher, and others are missing. Additionally, it is possible that we were not
able to identify all relevant test cases within the covered categories. However, the test
cases were developed by researchers with many years of experience in doing Java-based
static analyses and were cross-checked by the author of this thesis as well as another
researcher. Furthermore, the thesis’ author was responsible for constructing Java CG
algorithms as part of his professional career, and a fellow researcher has developed Java
bytecode analyses for more than 15 years. Hence, the likelihood that we missed relevant
features is low. The test suite already covers 122 language features and APIs that are
used in practice and, therefore, allows us to draw valid conclusions regarding the tested
features and core APIs. Moreover, Cats is publicly available and, therefore, can be
extended by independent researchers.

Since all test cases are manually annotated, there is a chance of annotation mistakes.
To mitigate this threat, we thoroughly reviewed all our test cases and added a built-
in verifier that checks if a test case is correctly annotated, e.g., it checks whether the
annotated call is present within the bytecode. Furthermore, the programs were executed,
and all annotations and unexpected results were independently verified by the author of
this thesis and by another researcher independently.

5.4. Conclusion

In this chapter, we discussed the design of Cats, a comprehensive and extensible CG
test framework. The proposed approach consists of a test suite and a pipeline that can
a) parse the test suite, b) automatically run the tests against a CG algorithm, and c)
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compare the computed CGs with the ground truth. Furthermore, we provide an interface
that allows any bytecode analysis framework for Java to provide an adapter to test their
CGs. The test suite consists of 122 manually forged and annotated test cases in 23
different categories. Each test case tests a unique feature relevant to CG construction
and contains the ground truth as an annotation. We implemented four adapters that
integrate twelve CG algorithms from four well-known static analysis frameworks: Soot,
Wala, Doop, and Opal. By using these adapters, Cats enabled us to study and
document the unsoundness of their CGs, thereby addressing Chlg. 6, Chlg. 8, and Chlg. 9.
The evaluation revealed the weaknesses and strengths of Soot, Wala, Doop, and
Opal’s built-in CGs and that they vary significantly. Moreover, we were able to find a
bug within Wala’s N-CFA algorithm.
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Evaluating Sources of Unsoundness in
Call Graphs

Building on Hermes (cf. Chapter 4) and Cats (cf. Chapter 5), we design Judge, to
analyze call-graph (CG) algorithms with respect to the language features they cover in a
project-specific manner. Given a CG fingerprint—generated by Cats—and the features
of an application for which we want to construct the CG—identified by Hermes—,
Judge finds and documents sources of unsoundness in the application.

We use Judge to answer the following research questions:

RQ1 Which language and API features are used how frequently by which kind of code?

RQ2 How do Soot, Wala, Doop, and Opal compare to each in terms of runtime?

RQ3 Which CG algorithms are suitable for a specific application kind?

RQ4 Given support for manually tuning the entry-points considered by an algorithm,
how much effort is necessary to increase the soundness of a CG to an acceptable
level.

Subsequently, we first introduce Judge and then perform four experiments, one per
research question.

6.1. Design

Figure 6.1 depicts the building blocks and the workflow of Judge for analyzing call-
graph (CG) algorithms. Judge’s input are (a) capability fingerprints from the CG
algorithms under investigation and (b) a project for which we want to investigate the
project-specific unsoundness of CG algorithms.

The upper part uses Cats to run all CG algorithms on the test suite and to compute
fingerprints reporting whether the algorithms support a specific language feature or not.
This part must only be performed once, unless new test cases or algorithms are added
to Cats. The lower part of the workflow computes the CG for the input project with
different algorithms and in parallel evaluates the prevalence of the CG-relevant features
under investigation in the project code. Given the CG of a project P constructed by
algorithm AL, the occurrence of the features FSET under investigation in P ’s code,
FSET , and the AL’s profile, Judge reports potential sources of unsoundness of AL in
P ’s CG. The latter step is called project-specific analysis of a CG.
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Figure 6.1.: Judge: An overview of our CG analysis toolchain.

As mentioned above, Judge relies on Cats and, therefore, is a) restricted to analyzing
CG algorithms that are accessible over a framework adapter and b) is limited to the
features that are tested within the test suite. Hence, Judge supports the analysis of
the various CG algorithms offered by the frameworks: 4xWala, 4xSoot, 1xDoop, and
1xOpal. Furthermore, Cats’ fingerprint contains overall 122 test cases and, therefore,
we can investigate 122 features which are grouped in 23 categories (cf. Table 5.1).

6.1.1. Querying for Cats’ features in Code

To understand the prevalence of features affecting the soundness of CGs (cf. Step 3/blue
area in Figure 6.1), Judge uses Hermes, which was presented in Chapter 4.

To recap, Hermes executes code queries against a large code base and then produces
reports on the queries’ findings. Each query is an analysis that checks if a specific feature
is found in a given code base. The result is a report that lists the locations (in terms of
the instructions’ program counters) that use a feature along with the Hermes feature id.

To judge a CG’s soundness concerning a particular project, we must be able to map
all the features we tested with Cats to real-world programs. In order to do so, we
developed Hermes queries to derive the features modeled by the test cases. Then,
we mapped all test case ids to the query’s feature ids. For example, the query to
check for occurrences of trivially-resolvable reflective methods searches for invocations
of java.lang.reflect.Method.invoke and then uses data-flow information to check

70



6.1. Design

if, e.g., the name of the target method can be locally resolved. When this query is run,
it will reveal whether a method contains no reflective calls, trivially-reflective calls, or
non-locally resolvable calls. If the method contains reflective calls, the result will also
identify the respective bytecode instruction. Each of the 3 categories is considered to be
a feature in Hermes terminology and is assigned a unique feature id.

All queries perform a most-conservative intra-procedural analysis. Ergo, test cases
that require an inter-procedural analysis, e.g., test cases related to reflective calls that
test if a framework is able to track strings across method call boundaries to (soundly and
precisely) resolve reflective call targets, are only partially covered. Writing queries for
these test cases would be subject to false positives and false negatives; the query would
require information about the flow of strings in the application and no such analysis
exists that is sound and precise. Therefore, it would be impossible to use those queries
to reliably identify code locations that are sources of unsoundness.

However, for these test cases we write queries that determine that the local analysis is
inconclusive and then flag the method accordingly. Such queries often handle multiple
test cases by reporting that a finding belongs to one of multiple test cases, i.e., the query
reports an id consisting of all test cases the finding may matches. For example, test
cases of context-sensitive reflection are grouped because the query cannot distinguish
where the method’s parameter originates from.

Hence, the queries only derive 107 features for 122 test cases. Altogether, we developed
15 queries for Hermes.

6.1.2. Project-specific Call-graph Analysis

For the project-specific evaluation of an algorithm, we compute its CG for the project
(Step 3 in Figure 6.1). As discussed previously, we use Hermes to find the locations of
all features that may affect the soundness (Step 4 in Figure 6.1). Finally, the computed
CG is used to determine all reachable methods that use unsupported features (Step 5 in
Figure 6.1). This enables the identification of the initial sources of unsoundness1.

Figure 6.2 illustrates the project-specific assessment of a CG algorithm. The first
two columns are project agnostic and represent the CG algorithm’s profile: the first
one lists Hermes’ features ids (which map to the respective test cases); the second one
identifies a feature as being supported or not. Columns three to six are project specific:
Column three (Extensions Count) shows how often a feature was found by the respective
Hermes query—in our case, the project contained three polymorphic calls, two reflective
calls, one Java invokedynmic instruction, and zero Scala invokedynamic s. The fourth
column represents the mapping between the occurrences of a feature (column 3) and its
locations/methods (column 5). Finally, column six shows whether the methods where
the features were found are reachable from the constructed CG—i.e., are an immediate
source of unsoundness—or not.

With respect to the reflection usage of method my, we make two observations: 1) the
CG algorithm does not support the resolution of reflective method calls and 2) method

1Sources of unsoundness are always only potential sources of unsoundness because we do not check
whether the instructions themselves are reachable.
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Figure 6.2.: Project-specific CG analysis.

my is already reachable. Hence, this reflection usage in my is a source of unsoundness
because it knowingly leads to missing call edges. The reflective usage in method m2

is—in contrast—not reachable according to the current CG and is so far a conditional
source of unsoundness; i.e., it would be another source of unsoundness if the method
would be reached. In other words, conditional sources of unsoundness are potentially
relevant because the impact of known, not soundly handled features on the constructed
CG remains unknown.

6.2. The Study

We perform four experiments to answer the following four research questions:

RQ1 Which language and API features are used how frequently by which kind of code?

RQ2 How do Soot, Wala, Doop, and Opal compare to each other concerning runtime
costs?

RQ3 Which call-graph algorithms are suitable for a specific application kind, i.e., which
kind of code base?

RQ4 Given support for manually tuning the entry-points considered by an algorithm,
how much effort is necessary to increase the soundness of a call graph (CG) to an
acceptable level.
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6.2.1. Setup

All measurements are done using Wala 1.5.0, Soot 3.1.0, Opal’s develop branch2,
and Doop’s master branch3. From Wala, we use the following algorithms: WalaRTA,
Wala0-CFA, WalaN-CFA

4, Wala0-1-CFA—all configured with the FULL reflection op-
tion. Wala requires to specify packages to be excluded from the analysis. However,
for this experiment we choose to exclude no package. For all Soot CGs (SootCHA,
SootRTA, SootVTA, and SootSPARK [LH03]) we use the options safe-forname and
safe-newinstance. These options make Soot consider all types as instantiated when
Class.forName or Class.newInstance is used. We could not use types-for-invoke
due to exceptions being thrown [SDE+18]. Furthermore, we use include-all to en-
sure that no packages are filtered. Our library test cases are additionally started with
library:signature-resolution and all-reachable to make use of Soot’s capabilities to an-
alyze library code. Doop’s CG is set to be context-insensitive with classical-reflection
turned on. For OpalRTA, we use the standard configuration. Please note that we de-
scribed the used algorithms in Section 2.1.

All test cases with respect to libraries are started with the respective library entry
points. We perform all experiments on a server with two Intel Xeon E5-2620 CPUs and
64 GB RAM.

6.2.2. Experiment 1: Studying the Prevalence of Language Features and
APIs

Our corpus for analyzing the prevalence of language and API features (RQ1) includes the
XCorpus [DSST17], the top 50 distinct libraries from Maven Central [Mvn18] (from July
2018), the top 15 apps from Google’s Playstore (from January 2018), plus five popular
Clojure [Hic18], Groovy [pro18a], Kotlin [kot], and Scala [Lau18] projects from GitHub.
We run our Hermes queries on the entire corpus and evaluate and compare the results.

Table 6.1 visualizes the results using a heatmap. It shows the relative frequency of
each feature (cf. Feature column) within each corpus. We include the OpenJDK column
as a separate corpus because most corpus projects are built upon it and, hence, at least
partially use its features. A feature’s relative frequency is color coded using a logarithmic
scale as shown in the legend of Table 6.1. Slightly yellow boxes (�) identify unused
features and red boxes (�) those found in ≥ 5% of all methods; we chose 5% because
only seven of our 122 features occur in more than 5% of all methods. Features used
in no corpus (e.g., Groovy invokedynamics, or the serialization of lambdas) and always
soundly resolved features (e.g., standard poly-/monomorphic calls) are not included. For
example, test caes from NVC, VC, and Types are omitted since all algorithms support
them.

Obs.4: All the API and language features supported by Java up to version 7 are used
widely across all code bases.

2Opal’s commit id: 3107c45c8a00de0e132691a6275d39b5a4aa415b.
3Doop’s commit id: cdc59ce71d6510198da396cf6a7d20d73c6466d9.
4We use N=1 throughout the whole evaluation.
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Table 6.1.: Feature prevalence across different corpora.
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The most frequently used feature that was introduced with Java ≥ 8 is the call of
static interface methods (J8SIM6 ). This case occurs in 12% of all methods of the top
50 Maven projects. However, Scalatest [Inc18] is responsible for ≈ 90% of all uses and,
hence, the feature’s heaviest user. Clojure and Android code have not yet adapted Java
8 call semantics. Other Java 8 features, e.g., MethodHandle constants, are rarely used;
primarily by the Nashorn library.

Obs.5: Support for Java 8 is a must, given the frequent use of Java 8 call semantics
features in modern code (J8DIMX ), unless one analyzes only Android or Clojure code.

Serialization-related functionality (Ser3-7,9, ExtSer) and Java’s Reflection API (cf.
TR, LRR, CSR) are both used with medium frequencies; also in modern code.

Obs.6: Supporting classic reflection and serialization is strongly recommended, inde-
pendent of the source code’s age.

Many features (e.g., method references MR), Java’s MethodHandle API (MH ), native
methods (cf. native), or Java’s Unsafe API (cf. Unsafe3-7 ) occur with varying frequency
and not in all corpora.

Obs.7: Support for many features is only required in specific scenarios.

Obs.8: The distribution of the feature usage is very different for the XCorpus when
compared to the JDK 8 and/or the other corpora, therefore its representativeness
for evaluating CG construction algorithms is limited. In particular, the usage of the
Lambdas and the MethodHandle API increases when we compare its usage frequency
in the XCorpus vs. the top 50 Maven libraries.

6.2.3. Experiment 2: A Detailed Assessment of State-of-the-art Call-graph
Algorithms

In this experiment we compare different CG algorithms. As we found in Chapter 5, CG
algorithms support different sets of features. We construct the CGs for five XCorpus
projects (jasml, javacc, jext, ProGuard, and sablecc) to assess the CGs’ size and construc-
tion time. We select these projects because they all have a) well-defined main classes,
and b) can be processed by at least one CG algorithm of each framework. We run all
CG algorithms once on all five projects including the Java Runtime Environment 1.6 30
from Doop’s benchmark project [Sma]. The latter is chosen to attain comparability
regarding the runtime; we set a 90 minutes timeout.
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Table 6.2.: Performance comparison across call graphs from Soot, Wala, Doop, and Opal.

Project
#Methods SootCHA SootRTA SootVTA SootSPARK OpalRTA

all (incl. JDK) project #RM time #RM time #RM time #RM time #RM time

jasml 160 564 265 12 184 18 s 12 134 75 s 8 012 17 s 10 356 22 s 3 195 13 s
javacc 162 484 2 185 13 035 22 s 12 986 97 s 8 863 22 s 9 752 17 s 4 222 12 s
jext 163 569 3 270 34 604 97 s 34 470 697 s 20 259 97 s 20 605 73 s 15 705 15 s
proguard 165 797 5 498 36 425 84 s 36 256 647 s 20 928 100 s 28 912 136 s 7 771 11 s
sablecc 162 670 2 371 14 138 18 s 14 088 104 s 9 687 24 s 12 101 24 s 4 932 11 s

average 47.8 s 324 s 52 s 54.4 s 12.4 s

Project
#Methods WalaRTA Wala0-CFA WalaN-CFA Wala0-1-CFA Doop CI

all (incl. JDK) project #RM time #RM time #RM time #RM time #RM time

jasml 160 564 265 75 817 362 s - timeout - timeout - timeout 14 149 579 s
javacc 162 484 2 185 76 643 399 s - timeout - timeout - timeout 14 952 618 s
jext 163 569 3 270 79 513 411 s - timeout - timeout - timeout 27 194 1 698 s
proguard 165 797 5 498 80 240 465 s - timeout - timeout - timeout 18 205 949 s
sablecc 162 670 2 371 77 607 460 s - timeout - timeout - timeout 15 774 680 s

average 419.4 s - - - 9048.8 s

7
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1 Collection c1 = new LinkedList();
2 Collection c2;
3 if(cond){
4 c2 = new ArrayList();
5 } else {
6 c2 = new Vector();
7 }
8 c2.add(null); // Call site
9 Collection c3 = new HashSet();

(a)

1 public static Object copy(Object o){
2 return (String[]) o.clone();
3 }

(b)

Listing 6.1.: Code examples to demonstrate how Wala, Soot, and Opal’s CGs differ
in precision.

The performance results are shown in Table 6.2. Column one lists the project, column
two gives the number of all methods including the JDK and column three the number of
project methods. The remaining columns list the number of reached methods and the
CG’s construction times for each algorithm.

Opal is the fastest framework. All of Wala’s context-sensitive CGs timed out. Doop
has the slowest CG algorithm that still finished in time, followed by WalaRTA and Soot.
The CGs constructed by RTA algorithms of Soot, Wala, and Opal differ extremely.
This is partly due to the different handling of basic virtual methods calls, which all handle
soundly, but with very different precision. Other reasons are the supported features as
well as the different usage of receiver-type and cast information.

Listing 6.1a partly explains the difference. The three local variables c1, c2, and c3

are assigned different subtypes of Collection, namely LinkedList, ArrayList, Vector,
and HashSet. The call on line 8 is then resolved differently. Wala considers all instanti-
ated subtypes of Collection, i.e., all types where the constructor is called in Listing 6.1a,
Soot computes an upper-type bound for c2 and the call is thus resolved to all subtypes
of AbstractList. Opal computes union and intersection types and determines that
c2 can either be an ArrayList or a Vector. For this example, Wala would add four,
Soot three, and Opal two call edges on Line 8.

Also unrelated to the supported feature set is the use of type information from casts,
which are performed after a method call. In case of Listing 6.1b, Wala and Opal use
the cast (cf. Line 2), which is performed after the method call, to refine the object’s
upper-type bound to String[], while Soot and Doop consider all clone methods as
possible call targets. Thus, Wala and Opal would add only a single call edge, whereas
Soot and Doop would add one edge to each clone method defined within the analyzed
program.
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Obs.9: Non-conceptual differences have a significant impact on the computed CGs,
indicating that it does not make sense to compare the results of static analyses that
build upon CGs from different frameworks. Even if we use the implementations of the
same algorithm across frameworks, the resulting CGs are vastly different.

In summary, there are significant differences between the frameworks in therms of
performance. As we observe for different RTA CGs, it is impossible to relate the amount
of supported features (cf. Chapter 5) to the algorithm’s runtime. The use of different
approximations—within a conceptually identical algorithm—also has a significant im-
pact on the CG’s precision and, therefore, its runtime [Bod18]. For example, imprecision
is introduced by not utilizing casts. In addition, we still do not understand the perfor-
mance consequences of partially supported features, e.g., reflection can not be supported
precisely and, therefore, can be approximated in various ways.

Obs.10: From the observations above, we conclude that it is not possible to relate a
CG’s feature completeness to its runtime costs and its size. A CG’s suitability needs
to be analyzed in the context of a specific problem (domain).

6.2.4. Experiment 3: Project-specific Assessment

We assess Judge’s suitability for project-specific evaluations using XCorpus’ Xalan
project. Xalan is a mid-sized project with a well-defined main class, for which we were
able to run all CG algorithms within a 90 minutes limit. Xalan also uses features not
handled by any CG implementation.

Table 6.3 shows an excerpt of the evaluation’s results. The column #Locations shows
whether a specific (un)used feature is prevalent in Xalan or in the JDK. Furthermore, it
shows for each CG algorithm the reachable methods (#RM), its runtime, the number of
reachable feature locations, and whether the respective feature is supported. Whereas
 indicates a supported feature, an unsupported feature is denoted by �.
Soot’s CG algorithms are the only ones that handle all context-sensitive reflection

test cases in a sound manner. This resulted in the biggest CGs whose computation also
required much longer than those of Wala and Opal.

However, all CGs contain reachable methods where unsupported features (�) are used,
i.e., miss edges and are thus unsound. Though, Opal’s CG reaches the least number
of sources of unsoundness, we also observe that Opal’s CG only contains 49 (≈ 0.3%)
methods from Xalan. Wala’s RTA CG in contrast touches ≈ 50% of all methods. A
detailed investigation using Judge, starting from the identified sources of unsoundness,
reveals that this is due to a single unsupported feature related to Java reflection. The
cause is a helper method (findProviderClass(...)) in Xalan’s ObjectFactory—
it expects a class name as a parameter and loads the class via reflection. Soot and
Wala are configured to act conservatively and, therefore, consider all available classes as
instantiable when a Class.newInstance call is performed. As result, they add a call edge
to all class’ constructors which enables them to reach a large portion of Xalan’s methods
but also introduces a large amount of imprecision—as a manual analysis revealed.
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Table 6.3.: Excerpt from the Project-specific Evaluation for Xalan.

F #Locations SootRTA SootVTA SootSPARK WalaRTA Wala0-CFA OpalRTA Doop

#M #M #RM time #RM time #RM time #RM time #RM time #RM time #RM time
16 389 251 239 58 560 2320s 28 248 322s 23 753 139s 15 343 15s 3 021 4s 6 834 22s 14 392 988s

Xalan JDK #RF #FS #RF #FS #RF #FS #RF #FS #RF #FS #RF #FS #RF #FS

TR2 28 288 25 � 10 � 7  7 � 1  1  2 �
Ser3 1 97 1 � 0 � 0 � 0 � 0 � 0 � 0 �
MH1 0 107 13 � 8 � 13 � 0 � 0 � 0  14 �
LRR1 2 84 15  10  10  2 � 1 � 1  11  
CSR1 38 176 49  34  31  20 � 6 � 4 � 7 �
JVMC4 2 23 4 � 3 � 5  2 � 0 � 0  0 �
J8PC1 81 9799 1165 � 450 � 396 � 236  42  221  316 �
Lambda10 621 30 � 14 � 14 � 5  0  3  1 �
MR3 0 1059 14 � 6 � 6 � 1  0  0  0 �
...

Σ� 328 15012 1428 � 575 � 489 � 107 � 18 � 16 �  
Σ 328 15012 259  156  157  254  57  267   

F=feature; M=methods; RM=reachable methods; RF=reachable features; FS=feature support

 indicates feature support and � an unsupported feature
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Obs.11: The experiment shows that CGs contain methods that use unsupported fea-
tures and are thus unsound. Unsupported features can have a devastating effect as,
e.g., Opal’s poor coverage of Xalan demonstrates.

6.2.5. Experiment 4: Improving a Call Graph Manually

The experiments so far investigated the level of unsoundness of CGs due to incomplete
feature/API coverage by CG construction algorithms. Whether unsoundness is toler-
able or not depends on the use case. In this experiment, we consider usage scenarios
where unsoundness cannot be tolerated, or, at least, needs to be minimized. An example
for this is vulnerability analysis. To cover such use cases, Opal provides a mechanism
for manually specifying entry points that are taken into consideration by the CG algo-
rithm. This mechanism can be used together with Judge, which provides assistance
with analysing reachable methods that use unsupported features/APIs to understand
the expected effect on the CG.

The goal of the experiment is to get an intuition of the effort needed to manually turn
an unsound CG to a reasonably sound one. The subject was Xalan’s CG produced by
OpalRTA, which is unsound due to incomplete coverage of the reflection API. OpalRTA
is used as it is most feature complete (cf. Table 5.2), hence, we expect to minimize
the manual effort. What reasonably sound means depends in general on the use case.
In this experiment, we consider a CG as being reasonably sound if it contains at least
all results also found by dynamic analyses. We perform two dynamic analyses: (a)
JVM profiling to log which methods are executed and (b) the dynamic analysis tool
Tamiflex [BSS+11] for resolving reflective calls to record dynamic edges. Whereas we
use the JVM profiling to check whether all executed methods are reachable in the CG,
we use Tamiflex to examine whether the CG includes all reflective call edges that have
been reported. Hence, when the CG contains both, we consider it reasonably sound.
We profile Xalan using exemplary input and Tamiflex to record call targets of reflective
calls and then iteratively use Judge along with OpalRTA’s mechanism to configure
additional entry-point methods and types that must be considered as instantiated by
the CG algorithm5. This way, we increase soundness manually step by step.

The initial CG covered 30% of all methods reported by a profiling run using exemplary
input. None of the methods reported by TamiFlex were included. The manual analysis
took ≈1.5 hours and required to analyze 10 reflective call sites, configure 17 types as
instantiable, and configure 50 additional entry points. As a result, the CG covered 121
of 198 methods reported by TamiFlex. The remaining methods are related to code that
is generated at runtime. Furthermore, the CG covered 1500 of 1653 methods (≈ 91%)
when compared to the profile run; all non-reachable methods belong to the JDK. At this
state, we consider the CG reasonably sound.

5The configuration of instantiated types is required since we are using a RTA CG which does not
capture reflectively instantiated types.
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Obs.12: The experiment indicates that the effort involved in manually increasing the
soundness of CGs is high even for mid-sized projects and despite good tool support, i.e.,
manual correction is not proper compensation for better algorithms that automatically
construct sound CGs. However, when repeatedly analyzing the same code base, the
effort is well-spent, as the cost is worth the benefits.

6.2.6. Discussion

In the following, we discuss the implications of our study for both developers of CG
algorithms and static analysis researchers that use the latter. Thereby, we highlight
how Judge helps them to make more informed decisions, to reason about potential
limitations of their tools and the root causes thereof, and to set up empirical evaluations
and ensure reproducibility of their results.

Implications for Framework Developers Obviously, our experiments indicate that re-
search on constructing high quality and practically useful CGs is still needed. We need
new implementations that soundly cover features that are prevalent in real software, e.g.,
Java 8 call semantics. Furthermore, the implementations should support users in manu-
ally adjusting implementations and/or CGs, e.g., to integrate manually-defined parts of
the graph in a project-specific way to handle encounters of unsupported features. Such
a mechanism can help increase the soundness. So users can specify call edges that solve
the most significant soundness/precision issues.

Judge can be useful for implementors of CG construction algorithms in several ways.
It helps figuring out where manual adjustments of the CG are needed. For example,
during debugging or when designing new abstractions. When implementing new or
extending existing CG algorithms, it helps investigating the usage of unsupported fea-
tures/APIs in practice. Judge—in particular its extensions to Hermes—can also help
to create representative benchmark suites w.r.t. their used language features/APIs, en-
abling well-founded research that (in)directly relies on CG algorithms. What is still
missing and needed, however, is support for understanding design decisions pertaining
to precision. It is, in any case, important that every CG algorithm implementation doc-
uments its design decisions w.r.t. to approximations and optimizations. Finally, given
that the JVM, the Java language, and its bytecode keep evolving, our comprehensive
test suite (Cats) can be very useful as a regression test suite. Furthermore, it can be
continuously enriched with new test cases for further domains/APIs that affect a CG’s
soundness by us or by others.

Implications for Static Analysis Researchers The results of our study directly inform
developers of client analyses if a framework suits their specific needs. Soot and Doop can
be used to analyze Android code as their feature profiles match well the feature profile
of this domain, while Opal and Wala support analyses targeting Java 8 applications.
In any case, researchers developing new static analysis tools/frameworks, should clearly
specify the employed CG algorithm in order to increase reproducibility of their results.
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In addition, it can be used to systematically evaluate CG algorithms w.r.t. their suit-
ability to serve as a foundations for building analyses for a certain application (class), as
it can provide an overview of the (prevalence of) features that are used in that applica-
tion (class), so as to pick the most sound CG for the specific needs. Even Opal’s broad
feature/API support may be insufficient, if unsupported features, e.g., CSR, are used
in the target applications. Knowing where the CG is unsound enables static analysis
writers to understand whether a false negative originates from an unsound CG or is a
problem of the analysis.

6.2.7. Threats to Validity

Internal threats to validity are the usage of incorrect Hermes queries. In that case,
we may fail to identify the presence of language features/APIs that potentially cause
unsoundness. To mitigate this threat, the implementations of the queries were reviewed
carefully. Furthermore, we tested all Hermes on the respective test cases to ensure that
the features are identified correctly.

An external threat is the usage of a non-representative corpus of programs. Our study
has shown that an established corpus such as the XCorpus is not representative for mod-
ern Java code, as it does not contain usages for many relevant features. Other established
corpora, e.g., Qualitas, DaCapo, etc. are even older than the XCorpus. Therefore, we
used 7 different corpora of reasonable sizes and mixed in recent libraries from Maven
Central as well as GitHub projects written in different JVM-hosted languages. This
said, our work reveals the urgent need for a corpus that is representative for currently
deployed applications.

6.3. Conclusion

In this chapter, we presented Judge for (1) the evaluation of language features and
APIs that are relevant when building CG algorithms; (2) comparing CG algorithms;
(3) evaluating how well-suited a specific algorithm is for a specific project, and (4)
to facilitate the creation of project-specific sound CGs. Additionally, we performed
extensive studies regarding the capabilities of four major Java static analysis frameworks
and the prevalence of features that are not soundly handled. As discussed in the state-
of-the-art in Chapter 2, we can confirm that the inequality pertaining to the researched
features (cf. Chlg. 4) reflects in the CG algorithms capabilities. However, we were able
to shed light on which features occur frequently in real-world code (cf. Chlg. 5), thereby
enabling a prioritization of the next steps. All frameworks lack support for many features
frequently found in-the-wild and—even for standard mono- and polymorphic calls—
produce vastly different CGs. This renders comparisons of static analyses which rely on
different CGs impossible and also considerably unsound.
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Part III.

Modular Call-graph Construction for
Libraries
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The Next Step in Call-graph Construction

Despite the amount of previous work, call-graph (CG) construction remains a problem in
practice [SDE+18, SDTF20, LSS+15]. Therefore, in Part II of this thesis, we empirically
evaluated and compared existing CG algorithms using our automated test framework
Cats (Chapter 5). Furthermore, we used Hermes (Chapter 4) in combination with
Judge (Chapter 6) to study the relevance of individual programming language features
and APIs in-the-wild and investigated their effect on a CG’s unsoundness. Besides, we
identified further challenges while discussing the state-of-the-art algorithms in Chapter 2.
In both our study and our discussion, we identified several critical problems that affect
a CG’s soundness:

a) CG construction algorithms are designed for applications and lack a separate dis-
cussion of whether and how they can be applied to libraries in isolation, i.e., how
the extension of library classes form the outside world affects the CG.

b) Call-graph algorithms provide limited configuration options that—if present—
often pertain only to reflection. Support for other features is barely configurable.

c) Constructing CGs for individual programs requires the support for individual lan-
guage features/APIs and, thus, each program has different requirements.

d) CG algorithms have poor comparability, not only because of the diverse feature
support but also due to underlying design decisions.

Furthermore, problem a) is reinforced because application CG algorithms are used for
libraries. A common hypothesis is that the algorithm will construct a sound library CG
when all non-private methods are considered as entry points. However, this ignores that
libraries are open worlds and that they usually provide a public API.

Such that CG algorithms can further improve, we must address all these problems
appropriately.

In Chapter 7, we investigate the peculiarities of CG construction for libraries. We
motivate the need for CGs dedicated to libraries and thoroughly discuss the design
space for such CG algorithms during our investigation. Based on our discussion, we
suggest two concrete CG algorithms based on the CHA algorithm: one can be used
to identify security issues and one targets general software quality issues. We evaluate
these algorithms, showing that classical CG algorithms do not serve the needs to analyze
libraries.

In Chapter 8, we address the problem of configuring and individualizing CG algo-
rithms. Specifically, we propose a novel generic approach together with a proof-of-
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concept implementation in the Opal framework [EH14, EKH+18, HKR+20] for lattice-
based fixed-point computations with support for lattices of any kind, including singleton-
value-based, interval, and set lattices. To capture such a system’s needs, we implement
three case studies with somewhat different requirements. Founded on the requirements
derived from the case studies, we then present and evaluate the approach. Its eval-
uation shows that it features modular analyses encoded as independently compilable,
exchangeable, and extensible units. Therefore, it supports CG algorithms’ needs to
provide pluggability concerning precision, scalability, and sound(i)ness.

In Chapter 9, we report on the design of TACAI, a three-address code intermediate
representation presented as case study in Chapter 8. According to the study of Chap-
ter 5, the receiver-type information available in static analysis frameworks’ intermediate
representation significantly impacts CG construction. Therefore, the focus of Chapter 9
is to improve the comparability of CGs and further research the influence of an inter-
mediate representation on CG construction. TACAI is an abstract-interpretation-based
intermediate representation with exchangeable abstract domains. By exchanging the
used domains, one can adapt the precision of the information encoded by the three-
address code. We will discuss and evaluate how switching the used abstract domains
affects the bytecode-to-TACAI transformation.

In Chapter 10, we present some advanced CG algorithms for libraries. We reimple-
mented four application CG algorithms from Tip et al. [TP00] and then extended them,
thereby further exploring the knowledge gathered in Chapter 7. To implement these
algorithms, we use the approach presented in Chapter 8 and TACAI, which we dis-
cussed in Chapter 9. Furthermore, we compare these four algorithms and determine
their viability for library analysis.
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7. Call-graph Construction for Java
Libraries

Currently, the gold standard for constructing call graphs for libraries is to use a standard
algorithm, such as Class Hierarchy Analysis (CHA) [DGC95], Rapid Type Analysis
(RTA) [BS96], or Variable-Type Analysis (VTA) [SHR+00] and to consider all non-
private methods as entry points. However, this ignores two properties that distinguish
libraries from standalone applications. First, libraries are not closed worlds—their users
can extend them via inheritance. Second, libraries consist of classes and interfaces that
either define the public API or belong to the library-private implementation.

In this chapter, we discuss how ignoring the first property leads to the construction of
call graphs that miss important call edges, while ignoring the second property leads to
call graphs with many spurious edges. Consequently, we argue that call-graph algorithms
for libraries must distinguish between two usage scenarios of the library.

In this chapter, we address these problems and make the following contributions:

• A motivation for call-graph algorithms dedicated to libraries and a thorough dis-
cussion of the design space for such algorithms.

• Two concrete call-graph algorithms for libraries based on adaptations of the CHA
algorithm: one that can be used to identify security issues (LibCHAOPA) and one
that can be used to find general software quality issues (LibCHACPA).

• A comprehensive empirical evaluation which shows that call graphs computed
by the classical CHA algorithm and those computed by LibCHAOPA and Lib-
CHACPA are significantly different. The evaluation supports our claims that a)
classical call-graph construction algorithms (specifically CHA) do not serve the
needs of either security or general quality related analyses of libraries and b) we
need two types of algorithms to address the respective needs.

• A case study that shows that using LibCHACPA as the foundation of a dead
methods analysis enables us to find ≈6 times more dead methods compared to a
solution based on the classical CHA algorithm.

7.1. Why Library Call Graph Algorithms?

In this section, we motivate the algorithms presented in this chapter. We start by charac-
terizing a library’s private implementation versus its public interface. Then, we motivate
the need to consider all possible extensions of the library by means of inheritance to
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1 package library {
2 interface J { public void mj() }
3 public interface K { public void mk() }
4 class A { public void mk(){} /∗API∗/ }
5 class B extends A implements J,K {
6 public void mj(){} /∗Impl.∗/
7 }
8 class C {
9 public void mc(){} /∗API∗/

10 public void md(){} /∗Impl.∗/
11 }
12 public class D extends C {
13 public void md(){} /∗API∗/
14 }
15 class E implements K { public void mk() }
16 class F { public void mj() }
17 public class Factory {
18 public K createBK(){return new B();}
19 public Object create(){new E(); return new

B();}
20 }
21 }

Listing 7.1.: An example of a simple library.

construct a sound library call graph1. Finally, we explain that different library usage
scenarios may require different kinds of analyses, which in turn need different call graphs.

7.1.1. A Library’s Private Implementation

Conceptually, a library’s private implementation consists of all code that a library user
cannot directly use. Under the open-package assumption (OPA), a library’s private
implementation consists of all methods and fields with private visibility. Under the
closed-package assumption (CPA), the library’s private implementation additionally in-
cludes (a) every code element (class, method or field) that has at most package visibility
and (b) all protected and public fields/methods of a package visible class, unless they
are indirectly exposed to the library’s user. The latter happens, e.g., if the package vis-
ible class inherits from a public class or interface and overrides or implements a method
declared by the super-type, or it has a subclass that is public (or implements a pub-
lic interface), which inherits the respective method. In other words, a field/method
of a package visible class does not belong to the private implementation, if a user can
potentially directly access the field/method.

To illustrate CPA, consider the code in Listing 7.1. The types A, B, C, and J belong
to the library-private implementation. The class B implements the public interface K,

1Unless reflection, native methods, or Java’s Unsafe API are used.
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1 public interface I {
2 public m();
3 }
4

5 public class C {
6 public m(){ . . . };
7 }

(a) An example of a library’s public API.

1 public AppClass
2 extends C implements I {
3 /∗∗
4 Method m is not overridden.
5 Hence, it is inheritated from C.
6 ∗/
7 }

(b) An example app depending on the library.

Listing 7.2.: Excerpts of two code pieces that have not been compiled together.

which defines the public method mk (Line 3). Hence, a method with declared return
type K could actually return an object of type B (Line 18), enabling the user to call the
method mk defined by A (Line 4). Therefore, <A>.mk belongs to the public API. In case
of the public methods defined by C only the method mc (Line 9) belongs to the public
API. This method is inherited by D and is not overridden. Hence, a user who calls mc on
an instance of D actually invokes <C>.mc. The method <C>.md (Line 10) is overridden
by D (Line 12) and therefore belongs to the private implementation.

Our approach is conservative in classifying elements as part of the library implemen-
tation in the sense that it may classify code as belonging to the public API, although
a user of the library cannot actually use it. For example, the method <E>.mk (Line 15)
would be identified as belonging to the library’s public interface, because the class im-
plements the public interface K. Even if E is never returned to a user: E does not escape
the scope of the library. Hence, a user will never be able to invoke <E>.mk. However, by
being conservative we ensure that we will not miss a call edge.

7.1.2. Covering Possible Library Extensions

Established algorithms ignore OPA usage scenarios, which is understandable given that
extension code does not need to be considered, when analyzing standalone applications.
Yet, extension code can lead to direct call dependencies between library methods that are
not apparent from the class hierarchy.

For illustration, consider the situation displayed in Listing 7.2. Listing 7.2a shows an
excerpt of a library containing an interface and a class independent of each other. They
neither are related through inheritance not use each other. Using a standard call-graph
algorithm to construct a call graph of this library, a call <I>.m would not be resolved
against <C>.m as C is not a subtype of I. Yet, a user of the library, such as shown in
Listing 7.2b, may later on create a subclass of C, such as AppClass, that also implements
I, but does not override m. Hence, to produce a sound call graph for the library, the call
<I>.m also needs to be resolved against <C>.m.

Consequently, when constructing a library call graph, we need to perform so-called call-
by-signature resolution for all interface-based calls. The need to do so is exemplified by a
real-world security bug (CVE- 2010-0840) found in the JDK. To facilitate comprehension
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of the bug, we will first introduce the basics of the Java Security Model before we will
discuss the attack in detail.

The Java Security Model allows to execute untrusted code safely, i.e., even malicious
code cannot do any harm to the executing environment. This is required whenever a
user may not trust the provided application, e.g., a Java Web Start application. The
Security Model is a stack-based access control mechanism that guards all sensitive actions
by permission checks which verify that all the code on the current call stack is granted
access to that sensitive action.

Often attacks exploit forgotten permission checks, but there have also been attacks,
in which trusted code is used to call sensitive actions on behalf of the attacker. The
trick to make this work is to make sure that the attacker’s code is not on the call stack,
when permissions are checked. This is possible, if library code accepts a callback that
is provided by an attacker. But, the callback can not be implemented by the attacker,
because the implementation would be unprivileged and present on the call stack. Instead,
the attacker must find a suitable callback implementation that can be configured to fit
his needs.

/*other methods*/
attacker.Link

Object getValue()
java.beans.Expression

Object getValue()
/* other methods */

«interface»
java.util.Map.Entry

getValue() is 
not implemented 
by attacker.Link

Library Code
Attacker Code

Figure 7.1.: Type hierarchy scenario for the trust-method chaining attack.

One such vulnerability is documented in CVE-2010-0840: Attackers exploited that
checks consider the permissions associated with the declaring class of the method on the
call stack but not its runtime receiver type. Hence, the runtime receiver type may belong
to untrusted code. For illustration, consider Figure 7.1. Both the interface Entry and the
class Expression, belonging to the library, declare the method getValue(). Expression
neither implements Entry nor is otherwise semantically related to it. Expression en-
capsulates a reflective call, whose receiver, method, and arguments are specified by
arguments to its constructor. The reflective call is performed in Expression.invoke(),
which is called from within getValue().

Now, consider the following trusted method chaining attack which bypasses the Java
Security Model. The attacker must create an Expression instance that encapsulates
a System.setSecurityManager(null) invocation. Yet, he cannot call invoke on the
Expression object himself. Instead, he defines a class attacker.Link that extends
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java.beans.Expression and implements java.util.Map.Entry, thus linking Expression

and Entry: As a result, Expression.getValue() is now an implementation of Entry.get-
Value(). The last step is to find a library method that accepts an Entry object and
calls getValue() on it, such that when this happens the attacker is not on the call stack.

1 HashSet<Map.Entry<Object,Object>> set =
2 new HashSet<>();
3 set.add(
4 new

Link(System.class,”setSecurityManager”,null));

5 JList list = new JList(new Object[] {
6 new HashMap<Object, Object>() {
7 public Set<Map.Entry<Object, Object>>

entrySet(){
8 return set;
9 }}});

10 JFrame frame = new JFrame();
11 frame.getContentPane().add(list);
12 frame.setSize(50, 50);
13 frame.setVisible(true);

Listing 7.1: Code example that shows the attack’s setup.

This behavior is provided by the user interface thread of AWT/Swing. This thread
dispatches events, as illustrated in Listing 7.1. In Line 5, a JList object is created.
A JList usually uses a ListModel to control its contents and representation. As an
alternative, an arbitrary array can be used. The content representation is then based
on each array element’s String representation as returned by toString(). We add a
custom HashMap implementation to JList (Line 6), which in its default implementation
of toString() calls getKey() and getValue() on its entries accessed by entrySet().
The entrySet method (Line 7) of the custom HashMap returns a set containing the pre-
configured Link instance (Line 4). Finally, the JList is added to a JFrame (Line 11)
and the latter is made visible. This triggers a paint event which is processed by the user
interface thread.

The shortened call stack of that processing is shown in Figure 7.2. The user in-
terface thread transitively calls toString() on all its contents, when it paints JList.
We provided the custom HashMap implementation as content, which does not override
toString(), thus AbstractMap. toString() is called. AbstractMap. toString() iter-
ates over the entry set and calls getValue() on each entry. The only element of the entry
set is the attacker’s Link instance. Therefore, it effectively calls Expression.getValue(),
which, in turn, reflectively invokes System.setSecurityManager(null). Setting a new
security manager is dangerous and therefore guarded by a permission check, but—as il-
lustrated in Figure 7.2—no method defined by the attacker is on the call stack, therefore
access is granted.

To systematically find exploitable callback implementations, a static analysis must
check that there exists no attacker callable method that transitively calls sensitive actions
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java.lang.SecurityManager.checkPermission(RuntimeP...)

java.lang.System.setSecurityManager(SecurityManager)

java.beans.Expression.invoke()

java.beans.Expression.getValue(Object)

java.util.AbstractMap.toString()

...

javax.swing.JList.paint(Graphics)

...

java.awt.EventDispatchThread.run()

Figure 7.2.: The call stack at the time of the permission check.

without proper sanitization or permission checks. Such static analyses have already
been proposed [BDF01, BBFG04, Cha06, KPK02, SRH95]. However, the static analysis
has to furthermore consider that calls to callbacks are resolved to all possible trusted
implementations. State-of-the-art call-graph algorithms will not include a call edge from
call sites of Entry.getValue() to the method Expression.getValue(); though this
edge is required to find the attack that we presented here. If this edge is included, data
flow analyses looking for unguarded paths to sensitive actions are enabled to identify
the vulnerability.

7.1.3. Closed-package Usage Scenarios

A call graph algorithm that considers all possible extension scenarios of the library, while
being sound for analyses under OPA, is not appropriate for analyzing libraries under
CPA. For illustration, consider the JRE 7’s class java.awt.datatransfer.MimeType,
which is package visible. This class belongs to JRE’s private implementation, which is
clearly suggested by the comment directly above the class:

THIS IS *NOT* - REPEAT *NOT* - A PUBLIC CLASS! DataFlavor IS
THE PUBLIC INTERFACE, AND THIS IS PROVIDED AS A ***PRI-
VATE*** (THAT IS AS IN *NOT* PUBLIC) HELPER CLASS!

This class defines the public method match(String), which is not (no longer) used by
code within the JDK and the class is also not exposed to the client by any means. Hence,
this method belongs to the JRE’s private implementation and does not have any intended
users anymore; i.e., it is a dead method. JDK developers would certainly want to detect
and remove such methods from the library, e.g., to improve code comprehension, to
avoid useless maintenance, or to shrink the overall size of the library code. Yet, in a call
graph that is constructed to cover all extension scenarios—as described in the previous
subsection—the method would be treated as an entry point. Hence, an analysis searching
for dead methods on top of such a call graph would not report it.

When a developer analyzes a library concerning general software quality attributes,
such as the presence of dead methods or dead code, they want to treat the library
as closed, i.e., he deliberately does not want to consider code that (eventually) extends,
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accesses or calls library-private code, which makes it possible to construct a more precise
call graph w.r.t. the intended usage of the library. For example, a developer of a library
that uses the namespace prefix x.y.z to analyze the implementation of the library itself
will not take into consideration what may happen if a user of the library puts code in
the package x.y.z.

Private code is pervasive in many Java libraries. For example, the Oracle JDK 82

defines 8,330 (≈ 40%) package visible classes. Additionally the public classes contain
further 11,786 (≈ 9%) package visible methods and 6,668 (≈ 20%) package visible fields.
Call graphs which take the distinction between the implementation of the library and its
public API into consideration represent intended usage scenarios. In such a graph there
will be no edge to the method java.awt.datatransfer.MimeType.match(String), al-
lowing a respective analysis on top of the call graph to spot it as dead.

7.2. The Call-graph Algorithms

The proposed call graph algorithms for libraries are build on top of the Java bytecode
framework OPAL and are defined w.r.t. the JVM’s semantics. Implementing them as
bytecode analyses has two advantages. First, it makes them useable for security related
analyses, because attackers can always directly craft bytecode. Second, we can also
analyze libraries written in other languages such as Scala or Groovy. Both algorithms
require that the bytecode of the library L, for which we want to construct the call graph,
and that of any library LDep used by L are available and can be analyzed; this includes
in particular the JDK.

Both algorithms share the following main steps. First, they determine the set of entry
points under their respective assumption (OPA or CPA). Second, they set each entry
point method to be reachable. Third, a fixpoint computation is performed that computes
the call graph. The fixpoint is computed when all methods that are marked as reachable
are analyzed, which is an iterative process. For each method call found in a reachable
method, both algorithms determine the set of potential call targets based on the class
hierarchy; i.e., calls to methods may resolve to any subtype of the receivers static type.
This resolution of call targets is the same as done by class hierarchy analysis (CHA)
[DGC95].

If the receiver type is an interface, both algorithms additionally perform call-by-
signature resolution to identify those methods defined by classes that have a matching
signature (name, parameter types and return type), but where the class does not inherit
from the interface type. In case of OPA, all these methods defined by non-final classes
are potential targets. In case of CPA, the interface and also the declaring class visibili-
ties are further evaluated to determine if the target method is a potential target. Each
method that is a potential call target is then marked as reachable.

In the following, we elaborate on the two steps of the call graph algorithms that lead
to the different call graphs: (1) the computation of entry points and (2) the computation
of the call targets in case of call-by-signature resolution.

2The classes found in the rt.jar of the Mac Version of Oracle JDK 8 updated 66.
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1 def isEntryPoint(declType, method):Boolean =
2 maybeCalledByTheJVM(method) ||
3 method.isStaticInitializer ||
4 (!method.isPrivate &&
5 (method.isStatic || declType.isInstantiable))

Listing 7.3.: Entry-point predicate in case of the open-package assumption.

1 def isEntryPoint(declType,method):Boolean =
2 maybeCalledByTheJVM(method) ||
3 (method.isSaticInitializer && declType.isAccessible) ||
4 (method.isClientCallable &&
5 ( method.isStatic || declType.isInstantiable))
6

7 def isClientCallable(declType,method):Boolean =
8 (method.isPublic || method.isProtected) &&
9 (declType.isPublic ||

10 declType.subclasses.exists{ subC =>
11 subC.isPublic && subC.inherits(m)})

Listing 7.4.: Entry-point predicate in case of the closed-package assumption.

7.2.1. Entry-point Computation

Roughly speaking, a method is an entry point if it can be called (a) by the JVM (e.g.,
finalize) or (b) directly by a user of the library. The differences between the two
algorithms are described next. LibCHAOPA determines if a method is an entry point
by the predicate shown in Listing 7.3.

The first test (Line 2) identifies those methods that may be called directly by the JVM.
For example, the finalize method is called by the JVM. Another example are serial-
ization related methods, e.g., readObject, in Serializable classes. These methods are
implicitly called by the JVM during the (de-)serialization process. These methods are
often private and would not be considered as entry points otherwise. The second test
(Line 3) checks whether the method is a static initializer. The last test (Line 4) is true
if a method is non-private and static or if the non-private instance method’s decaring
class is instantiable. In this scenario, a class is instantiable if the class has a non-private
constructor or has a factory method that potentially creates and returns instances of the
class. A factory method is every static method with a return type that is a supertype
(reflexive) of the class type and which calls a private constructor.

LibCHACPA determines whether a method is an entry point by the logic depicted in
Listing 7.4.

The first test mayBeCalledByTheJVM (Line 2) is the same as in case of LibCHAOPA.
The second test (Line 3) is extended and now also tests if the static initializer’s declaring
class (declType) is accessible. The latter is the case if the class or a subclass of it can be
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1 def cbsTargets(declIntf, mSig) : Set[Method]=
2 project.findConcreteMethods(mSig).filter { m ⇒
3 m.isPublic &&
4 !m.definingClass.isEffectivelyFinal &&
5 !(m.definingClass <: declIntf)
6 /∗in case of CPA:∗/
7 &&
8 ( m.definingClass.isPublic ||
9 m.definingClass.subclasses.exists{subC ⇒

10 subc.isPublic &&
11 !(subC <: declIntf) && subC.inherits(m)} )
12 }

Listing 7.5.: Pseudo-code showing how to compute call-by-signature targets.

referenced from client code. In general, a class is referenced whenever the name of the
class can appear in the code without violating visibility constraints. Hence, all public
classes and also all package private classes that have a public subclass are immediately
accessible.

Each method that does not satisfy one of the first two tests needs to be callable by
a library’s user (Line 4) and either must be static or be defined by a type that is
instantiable. A method is callable (Line 7) if the given method has public or protected
visibility (Line 8) and the declaring class of the method is either public (Line 9) or
has a public subclass (Line 10), which does inherit the method, i.e., the method is not
overridden on the path from the declaring class to the public subclass. In this case,
a class is instantiable if and only if it is instantiable as in case of LibCHAOPA and is
accessible as dicussed in the previous paragraph.

7.2.2. Call-by-signature for Libraries

The algorithm to compute the edges that must be added to the call graph due to call-
by-signature resolution (CBS resolution) in case of interface-based calls is depicted in
Listing 7.5.

Given an interface as well as the signature of a method msig defined by the respective
interface, the algorithm returns a set of all methods that are only resolved by signature,
i.e., a method with the given signature that is defined in a class that implements the
interface will not be returned.

The first step, which is shared by LibCHAOPA and LibCHACPA, is to identify all call
targets by finding all non-abstract, public instance methods that have the same method
signature as msig (Lines 2–13). For each such method – in the following referred to as m –
we then check whether m’s defining class C is effectively final, i.e., whether C is declared
final or if C only defines private constructors which makes it impossible to inherit from
it. In both cases, C cannot be subclassed and hence, m cannot become a call-by-signature
call target.
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Analysis Context Closed
Library
Assumption

CBS

Library Security Issues (LibCHAOPA) in our library no (Someone
will try to break
our library.)

yes

in 3rd party libraries no (Other li-
braries may trie
to break it.)

yes

Software Quality (LibCHACPA) in our library yes (We don’t
care about mis-
uses of our li-
brary.)

yes

in 3rd party libraries yes (We are us-
ing the 3rd party
libraries as in-
tended.)

yes

Application both security and general issues (implicitly) no

Table 7.1.: The design space for library call-graph algorithms.

In case of LibCHACPA, we additionally check (Lines 7–12) if either m’s defining class
ist public or if C has a public subclass (Line 10) which does not implement the given
interface I and which does not override m (Line 11).

7.2.3. Summary

As argued in Section 7.1, depending on the goal of the analysis, we must choose the
respective call graph algorithm. The two different algorithms that we presented in this
section, LibCHAOPA and LibCHACPA, serve this need.

As shown in Table 7.1, when we want to analyze a library (be it our own or a 3rd
party library) w.r.t. security issues then we must make the most conservative assumptions
and this requires that we analyze the library using the open-package assumption (OPA).
Additionally, we must use call-by-signature resolution related to all interface method calls
to ensure that the call graph is sound. We must make these conservative assumptions
when we analyze a third party library, e.g., the JRE, because it is conceivable that
another library A that we also want to use tries to attack JRE. To handle these cases we
use LibCHAOPA.

When we want to analyze a library (be it our own or a 3rd party library) w.r.t. general
software quality issues then we shall create the call graph based on the assumption that
the library is used as intended by its developers. Hence, we can treat the library as closed
and analyze it under the closed-package assumption (CPA) and use LibCHACPA. As
with LibCHAOPA, we must consider call-by-signature calls but now only those that have
a relation to the public API. For example, the package visible class F in Listing 7.1 defines
a method mj (Line 16) that is also defined by the interface J. Under OPA every call to
<J>.mj must be resolved against <F>.mj. Under CPA, F belongs to the library private
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implementation, hence, the user cannot create a subclass of F that also implements
the interface J and therefore a (library internal) call to <J>.mj is not resolved against
<F>.mj.

G⊥

GCall by Sig

GLibCHAOPA

GLibRTAOPA

Sound if the library 
is used as intended

Sound 
GLibRTACPA

Pr
ec

isi
on

 

GLibCHACPA 
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Figure 7.3.: Theoretical precision of call-graph algorithms.

The relation between the proposed/discussed call graph algorithms is depicted in Fig-
ure 7.3 and is inspired by the representation used in previous work [GC01]. It represents
the relative precision of the algorithms compared to each other. As indicated in the
figure, a call graph that is constructed using call-by-signature resolution for all types of
methods calls would also be sound for libraries. As in case of applications, these call
graphs are so huge that they are hardly useable [GC01].

The first meaningful call graph algorithm is LibCHAOPA which is sound but rather
imprecise because the identification of the library’s private implementation is most con-
servative. Only code that is technically not usable by any client, because it is private, is
considered as belonging to the private implementation. This property makes the respec-
tive call graphs suited for security focused analyses. LibCHACPA, on the other hand
identifies a library’s private implementation based on generally agreed best practices
and a thorough analysis of the visibility of the library’s classes and methods. Hence, the
resulting graphs are unsound if the library is not used as intended, but they much better
approximate (and in non-security related cases still over approximate) all potential real
runtime call graphs. Therefore these call graphs are better suited for general software
quality analyses.

Theses ideas generalize to other call graph algorithms, i.e., it is conceivable to adapt
other established call graph algorithms such that they can be used to analyze libraries.
For RTA, e.g., we would also consider calls based on their signatures. Additionally, it is
necessary to treat all classes that could be instantiated as instantiable. In case of OPA, it
would result in a call graph that is identical to the one created by LibCHAOPA. In case
of CPA, it would be possible to define one scope per package and to associate all package
private classes that are confined to their package with their respective scope. This could
lead to a reduction in the number of call edges when compared to LibCHACPA.
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7.3. Empirical Study of Library Call Graphs

We evaluate the proposed approach along two major dimensions: (1) by comparing a
call graph computed using the classical CHA against the call graphs computed by our
call-graph algorithms; (2) by comparing both proposed call-graph algorithms.

7.3.1. Setup

The empirical study is designed to help answer the following questions:

RQ1 Do we need call graph algorithms specialized for libraries?

RQ2 Is it necessary to distinguish between the open- and closed-package assumptions?

RQ3 Does a precise computation of the entry point set lead to a more precise call graph?

RQ4 What are the performance characteristics of the proposed algorithms?

We used the three algorithms to construct respective call graphs for a large set of
libraries3: the 100 most used distinct4 Java related libraries from Maven Central Repos-
itory 5. The set is representative for a wide range of libraries. It contains very small
(e.g., JUnit) to very large (e.g., Scala Library) libraries; libraries developed primar-
ily in an industrial context (e.g., Guava) or in an open-source setting (e.g., Apache
Commons); libraries from very different domains: testing (e.g., Hamcrest, Mockito),
databases (e.g., HSQLDB), bytecode engineering (e.g., cglib), runtime environments
(e.g., Scala Runtime), containers (e.g., Netty), and also general utility libraries (e.g.,
osgi.core). Additionally, it contains two libraries that have unusual properties: jsr305
and easymockclassextesion both do not contain a single instance method call. The jsr305
project is just a collection of annotations and easymockclassextesion only contains in-
terface definitions and a few classes with static methods. Lastly, the set also contains
libraries that are written in other languages, such as Scala (e.g., ScalaTest), whose com-
pilers only use a subset of the JVM’s concepts. The Scala compiler, e.g., does not use
package and protected visibility. This significantly limits our possibilities to identify the
library-private implementation (recall that LibCHACPA identifies a library’s private im-
plementation based on the evaluation of the code elements’ visibilities). For each library,
we also downloaded all of its dependencies, downloaded via sbt6, to build complete class
hierarchies for them.

3The script to run the experiments can be downloaded from: http://www.st.informatik.tu-

darmstadt.de/artifacts/DLC/.
4In case of libraries that appeared multiple times in the list, we just downloaded the most current

version.
5http://mvnrepository.com/popular (as of Dec. 2015).
6 https://www.scala-sbt.org/ (checked on Dec 30, 2020).
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Project Classes and Interfaces (Ifc.) Call Edges

Library Dependencies Näıve LibCHAOPA Ratios
Class Ifc. Class Ifc. CHA

∑
By Type By Sig. CHA Edges CBS Edges

maven-plugin-api 22 3 28.661 3 257 8 118 19 320 8 117 11 203 99.99% 57.98%
httpcore 182 72 28.213 3 150 51 067 92 922 51 026 41 896 99.92% 45.04%
slf4j-log4j12 6 0 28.527 3 178 1 001 1 785 1 001 784 100.00% 43.92%
hsqldb 522 65 28.213 3 150 306 414 449 786 306 110 143 676 99.90% 31.88%
plexus-container-default 142 45 28.801 3 185 116 515 165 670 116 112 49 558 99.65% 29.67%

hamcrest-core 40 5 28.213 3 150 22 491 22 909 22 463 446 99.88% 1.82%
json 17 1 28.213 3 150 92 533 93 769 92 330 1 439 99.78% 1.32%
cdi-api 25 76 28.259 3 166 12 865 13 015 12 850 165 99.88% 1.15%
jsr305 5 30 28.213 3 150 88 88 88 0 100.00% 0.00%
easymockclassextension 5 2 28.213 3 150 133 133 133 0 100.00% 0.00%

mean (over all projects) 99.89% 16.78%
std dev (over all projects) 0.10% 9.90%

Table 7.2.: Number of call edges from LibCHAOPA; our call graph using the open-package assumption and call-by-signature
resolution.
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Project Types Methods Entry Points (EPs) Call Edges

Pub. Pkg.
∑

Pkg. LibCHAOPA LibCHACPA Reduction Reduction

lombok 58 56 242 64 161 108 32.92% 0.02%
hsqldb 189 125 4 687 1 502 4 008 2 739 31.66% 2.73%
guava 370 1 350 13 200 3 562 11 714 8 402 28.27% 0.06%
derby 997 755 23 345 3 875 17 721 13 033 26.45% 0.54%
gson 59 106 957 185 826 608 26.39% 1.47%

scalacheck 2.10 1 997 0 8 651 0 8 266 8 266 0.00% 0.00%
scalac-scoverage-
plugin 2.11

172 0 1 068 0 1 006 1 006 0.00% 0.00%

scalatest 2.10 6 755 0 82 680 0 79 197 79 197 0.00% 0.00%
jsr305 35 0 30 1 15 15 0.00% 0.00%
easymockclassextension 7 0 27 0 27 27 0.00% 0.00%

mean (over all projects) 8.04% 0.41%
std dev (over all projects) 7.27% 1.47%

Table 7.3.: Entry points in OPA and CPA; Pub. is used for public and Pkg. for package private visibility
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Visibility Call Edges

Project Types Methods LibCHAOPA LibCHACPA Call Edge Reduction
Pub. Pkg. Total Pkg. All CBS All CBS All CBS

httpcore 238 16 1 652 62 92 922 41 896 65 104 15 204 29.94% 63.71%
hsqldb 446 141 10 196 1 880 449 786 143 676 342 577 43 060 23.84% 70.03%
spring-tx 168 37 1 108 70 60 808 17 551 48 331 5 595 20.52% 68.12%
groovy-all 2 905 1 497 37 150 1 467 3 125 366 794 454 2 493 057 280 747 20.23% 64.66%
plexus-container-default 182 5 1 142 17 165 670 49 558 133 112 17 000 19.65% 65.70%

scalac-scoverage-
plugin 2.11

172 0 1 068 0 440 868 10 180 438 389 7 701 0.56% 24.35%

scala-compiler 8 557 37 59 147 200 14 476 580 629 696 14 408 370 561 514 0.47% 10.83%
scalatest 2.10 6 755 0 82 680 0 7 780 661 305 601 7 749 991 274 931 0.39% 10.04%
jsr305 35 0 30 1 88 0 88 0 0.00% 0.00%
easymockclassextension 7 0 27 0 133 0 133 0 0.00% 0.00%

mean (over all projects) 9.21% 50.06%
stddev (over all projects) 5.79% 15.64%

Table 7.4.: Reduction of call edges from LibCHAOPA compared to LibCHACPA
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Types Methods Näıve LibCHAOPA LibCHACPA

Project eps cg
∑

eps cg
∑

eps cg
∑

easymockclassextension 7 27 0.0001 0.0035 0.0036 0.3590 0.6424 1.0014 0.3861 0.6415 1.0276
hamcrest-core 45 275 0.0002 0.2317 0.2319 0.3333 0.8544 1.1877 0.3824 0.8570 1.2394
json 18 128 0.0002 0.2214 0.2216 0.3362 0.8930 1.2292 0.3890 0.8687 1.2577
reflections 96 619 0.0002 0.1908 0.1910 0.3614 0.8317 1.1931 0.4026 0.8191 1.2217
aspectjrt 130 722 0.0002 0.1858 0.1860 0.3544 0.8830 1.2374 0.3885 0.8458 1.2343

groovy-all 4402 37150 0.0086 1.1409 1.1495 0.4074 2.3045 2.7119 0.4684 1.9579 2.4263
gwt-user 5497 46599 0.0092 1.5877 1.5969 0.4193 2.5968 3.0161 0.4786 2.4562 2.9348
scala-library 4899 59519 0.0127 1.4340 1.4467 0.4528 2.5445 2.9973 0.5175 2.3973 2.9148
scalatest 2.10 6755 82680 0.0160 3.2804 3.2964 1.0270 4.5554 5.5824 1.0599 4.9914 6.0513
scala-compiler 8594 59147 0.0578 5.7433 5.8011 1.1644 7.4983 8.6627 0.9313 7.6521 8.5834

mean (over all
projects)

0.3826 1.5047 1.5359

Table 7.5.: Measured time for computing the entry point set and constructing the call graph (in seconds).
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7.3. Empirical Study of Library Call Graphs

7.3.2. Discussion

The results of the empirical study are shown in Tables 7.2-7.5. They list only the top 5
and the bottom 5 libraries with respect to the measured effect. Furthermore, each table
contains the mean as well as the standard deviation over all 100 libraries. Next, we will
use this information to answer the research questions.

RQ1. To answer the first question, whether we need specialized call-graph algorithms
for libraries or not, we compare the number of edges in call graphs computed by Lib-
CHAOPA and the näıve CHA approach. The results are shown in Table 7.2.

In 98 of the 100 libraries, CBS resolution introduces additional edges; in some case
the increase is up to 50%. These edges are missing in the graphs constructed by the
näıve approach. As discussed, the lack of these edges may prevent security analyses from
hinting at potential vulnerabilities. Given that CBS significantly impacts the call graph,
we conclude that the näıve approach computes an unsound approximation most of the
time; the exception are the projects without instance calls. This clearly supports the
claim that specialized algorithms for libraries are needed. Additionally, we observe that
the more precise entry point computation leads to less edges in most projects (shown in
column Type Edges in Table 7.2), but the effect is small.

Obs.13: We observe that näıve approaches compute an unsound approximation when
constructing library call graphs. Hence, we require specialized algorithms for libraries.

The experiments also show that CBS resolution does not lead to an explosion of the
call edges count. The maven-plugin-api has the most significant increase in the number
of call edges because it depends on three other libraries in which a lot of CBS targets
are found. For example, the maven-plugin-api defines interfaces that declare methods
with the following signatures: java.lang.String getValue(), java.util.Iterator

iterator() or java.lang.String toString() and methods with these signatures are
often found in the used libraries; in particular in case of toString(). Yet, even in this
worst case, only ≈ 60% of all edges are due to CBS resolution. The mean is only 16%,
and from Table 7.4, we can further conclude that the number of CBS edges decreases
significantly (up to 70%) when we apply the closed-package assumption.

Obs.14: A significant number of call-by-signature edges originate from methods with
generic names. However, applying the closed-package assumption can help to reduce
these.

RQ2. To answer this question, we compare the respective precision of the graphs
constructed by LibCHAOPA and LibCHACPA. We did a quantitative and a qualitative
comparison. The former is discussed in the following; the latter in Section 7.4. The
quantitative evaluation compares the number of call edges in the respective call graphs
shown in Table 7.4.

In all cases—except of the projects without instance calls—the LibCHACPA graph
contains less edges; sometimes up to 30% less. Surprisingly, we observe differences even
in case of the Scala libraries (scala-compiler, scalatest 2.10, etc.). A manual inspection
of the code revealed that the libraries contain a minimal amount of Java code, which
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uses package and protected visibility. Over all projects the mean call edge reduction is
9.21% and the number of edges that is added by CBS resolution is reduced by 50.06%
on average. The latter is due to the fact that a client can not inherit package visible
classes or interfaces under the closed-package assumption and therefore the amount of
possible subtypes is lower in LibCHACPA.

Obs.15: Distinguishing between the open-package assumption and closed-package as-
sumption is useful, especially for libraries that use Java’s visibility modifiers.

RQ3. To answer this question, we measure how many entry points are identified by
LibCHACPA w.r.t. LibCHAOPA and how this affects the call graph.

The reduction in entry points is shown in Table 7.3. We observe a reduction of entry
points in 93 projects (in the table only the last five of these seven projects are shown).
In the remaining seven cases, the entry point sets are identical; these projects all have in
common that they do not declare a single package-visible type and at most one package-
visible method. Overall, LibCHACPA identifies up to 33% less entry points and the
mean reduction of entry points is 8.04%. However, the effort dedicated to precise entry-
point computations done as part of LibCHACPA are—again—useless, if the library does
not make use of package visibility. For instance, as is the case for the Scala language
and, therefore, for all Scala libraries in our set.

Obs.16: Discriminating between the open-package assumption and closed-package as-
sumption is useful when computing entry points. However, the usefulness depends on
the library’s usage of visibility modifiers.

Interestingly, the reduced number of entry points in LibCHACPA does not have an
effect of the same magnitude on the overall call edges, though we can still observe some
effect. For example, for the hsqldb project, we observe a reduction of the number of
entry points by 30% but the effect on the call graph is only ≈ 2.7%. This is probably
due to the choice of the CHA algorithm as foundation of our algorithms; most methods
that are not in the initial entry point set are still included in the call graph. It is likely
that the better computation of the entry points would have a more significant effect in
combination with better, e.g., context-sensitive, call-graph algorithms.

Obs.17: The effect of a reduced amount of entry points seems minor. More research
is needed to determine whether this effect originates from using the imprecise CHA
algorithm.

RQ4. To understand the performance characteristics of the proposed algorithms, we
measured the times to compute the entry points and the call graphs. Instead of analyzing
all library dependencies, we consider only the public interface of all third party libraries.
Otherwise, the performance and the set of call edges would be dominated by dependent
libraries (Ldep). For the largest library, 82% of all methods are defined by the used
libraries (Ldep); in 90% of all cases, the library defines less than 5% of all methods.

The measurements were taken on an Intel i7 (2.4Ghz) with 6GB memory. The results
are shown in Table 7.5. As expected, the proposed algorithms are slower than CHA, but
still scale well up to very large libraries. The performance of the näıve implementation
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outperforms the two library call graphs in average by 1.15 seconds. The additional time
is required to perform the more precise computations. However, this overhead is still
acceptable given that the resulting call graphs are well suited for library analyses.

7.4. Case Study: Dead Methods in the JDK

To further understand the impact of the proposed algorithms on an analysis that builds
on top of them, we conducted a case study. We implemented an analysis that uses a
call graph to collect all non-entry point methods that are not called by another method
(excluding self-recursive calls). These methods are then reported as being dead. For the
case study, we build the analysis on top of the three different call graphs constructed by
the näıve algorithm, LibCHAOPA, and LibCHACPA. The subject library was the part
of JDK 1.7.0 update 80 that defines Java’s public API, but which also contains library-
private code (specifically, we analyzed the code in the packages starting with java and
javax). The results are reported in Table 7.6.

Algorithm näıve/LibCHAOPA LibCHACPA

Reported Methods 218 2 119

Technical Artifacts 114 114
Swing PLAF related 4 1 325

Potentially Dead 100 680

Table 7.6.: Number of dead methods found in the JDK.

As shown in the second row of the table, the analyses using the call graphs computed
by the näıve algorithm and LibCHAOPA initially reported the same 218 methods, a
much smaller number compared to 2,119 methods reported by the analysis on top of the
call graph constructed by LibCHACPA. A manual evaluation of the results revealed that
some methods are dead “on purpose”. For example, it is a common Java idiom to define
a private default constructor to ensure that no instances of the class can be created.
This idiom is, e.g., used by java.lang.Math and always results in an intentionally dead
constructor. We call appearances of this idiom technical artifacts: Adapting the analysis
revealed that 114 of the initially reported methods belong in this category (cf. third row
in the table).

The manual evaluation further revealed that we must filter out methods in packages
starting with javax.swing.plaf.*. The respective classes and methods are responsible
for the look and feel of Java GUIs and are—as documented in the API—generally in-
stantiated or called by reflection. Given that our case study analysis has no support to
identify reflective calls, we decided to consider all methods in the respective packages as
being called using reflection, hence not dead. This filtering left us with 100, respectively
680, dead methods reported by the analyses using the näıve or LibCHAOPA-based call
graphs, respectively the LibCHACPA call graph.
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Next, we randomly selected 80 out of the 680 presumable dead methods to perform a
manual inspection. From these 80 methods, 40 methods are also reported based on the
näıve/LibCHAOPA based call graph. Which revealed that, 32 out of the 40 methods
(80%) were correctly classified as dead. From the remaining 40 methods, one further
method was misclassified. Hence, 71 (≈ 89%) out of the 80 reported methods are indeed
dead. The majority of the latter methods are non-private methods defined in package
visible classes. Some of them were marked as deprecated, some could be clearly identified
as left-over debug or test code, some were unused method overloads, and others seemed
to be overlooked due to the complexity of surrounding code. In nine cases, we concluded
that the reported methods are (most likely) not dead, because they seem to be called
from native code or via Java’s reflection mechanism.

Overall, we are confident that we found at least 550 (≈ 80%) true dead methods in
the core of the Java Class Library using the LibCHACPA-based call graph.7 Using a
call graph computed by LibCHAOPA or the näıve call graph construction algorithm, we
identified only ≈ 80(≈ 15%) of these methods.

Obs.18: A simple quality analysis that requires a call graph, such as a dead-method
detection, benefits from distinguishing the open- and closed-package assumption.

7.5. Conclusion

In this chapter, we have discussed the design space for call-graph algorithms for libraries.
We have in particular discussed the issues related to the use of established call-graph
algorithms and have discussed how to adapt the classical CHA algorithm to make it
useable for the construction of library call graphs. Constructing call graphs for libraries
requires—compared to the construction of call graphs for applications and components—
necessarily different algorithms to satisfy the needs of different categories of subsequent
analyses. As the evaluation has shown, both algorithms are necessary as the number
of call edges in the call graphs differ significantly and each algorithm is able to identify
unique issues.

7These overall quality results are in line with the results reported by Eichberg et al. in [EHMG15].
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In this chapter, we present a framework for composable call-graph construction algo-
rithms. Instead of building monolithic algorithms that address several language features
and APIs, we propose an approach where various orthogonal analyses for single language
features and APIs collaboratively compute a CG. As this framework is part of a more
general architecture—reminiscent of blackboard systems [Cor91]—we will present the
full approach. Overall, this chapter presents the following contributions:

• A list requirements on frameworks for collaborative static analysis that is distilled
from three case studies.

• A novel approach that satisfies all these requirements and advances the state-of-
the-art in implementing modular inter-dependent analyses.

• A thorough evaluation of the approach that supports our claims on generality,
showcases its modularity features, points out performance improvements over Doop
[BS09b], the state-of-the-art declarative framework, and provides promising results
for parallelization.

As I already mentioned, while discussing my contributions (cf. Section 1.4.3), the
general framework and the escape and purity analyses are joint work others. There
I was a collaborator but not the primary contributor. My work concentrates on the
modularization of CGs.

8.1. Motivation

Traditionally, static analyses have been implemented in an imperative monolithic style,
i.e., one super-analysis computes the results of all sub-problems. Not only do monolithic
designs become complex when mutually dependent problems are involved [BS09b]. More
importantly, individual sub-analyses cannot be developed in isolation, cannot be reused
for other analyses, and cannot easily be added, removed, and exchanged to trade-off
between precision, sound(i)ness [LSS+15], and performance in a fine-tuned way, i.e., to
enable pluggable precision/sound(i)ness/performance.

To address these requirements, it is desirable to encode solutions for sub-problems of
a complex static analysis in separate modules. However, while encoded in independent
modules, the execution of inter-dependent sub-analyses needs to be interleaved to enable
exchanging intermediate results. The latter is often necessary for optimal precision, as
has been proven by the theory of reduced products in abstract interpretation [CC79] and
was more recently demonstrated for other kinds of analyses [BS09a, HKE+18, EKH+18].
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Recently, declarative approaches to static analysis using the Datalog language [WL04,
BS09b, MYL16] are gaining increased popularity—especially in the area of points-to
analyses [WL04, BS09b, SBL11, TLX16]. Such approaches nicely support the require-
ments stated above. Analyses are implemented as sets of rules that are evaluated by an
underlying constraint solver. Thus, complex analyses can be broken down into simpler,
independently-developed analyses. The underlying solver transparently resolves their
dependencies and propagates intermediate updates according to the specified rules, thus
enabling interleaved execution. Moreover, the solver can (a) apply analysis-independent
optimizations, e.g., by rearranging the computation order (although manual optimiza-
tion is still necessary [BS09b, SB10]), and/or (b) automatically parallelize the execu-
tion [JSS16].

However, using Datalog and giving solvers full control comes with drawbacks in terms
of both performance and generality. First, it is not possible to exploit analysis-specific
knowledge in managing the execution and dependencies of the analyses. Such knowledge
can help boost scalability. For example, an imperative purity analysis that determines
whether a method is deterministic by, among others, checking the mutability of fields
f1, ..., fn could drop further checks as soon as any fi is found to be mutable. A declarative
analysis whose execution is driven by a general-purpose solver cannot take this short-cut.
Analysis-specific knowledge is also valuable to correctly compose incompatible optimistic
and pessimistic analyses (as defined in [GC01, LH03]). Second, the Datalog solver uses
analysis-independent data structures and analyses cannot exploit data structures that
are tailored for their specific needs. Such optimized data structures, like tries, can be
crucial for achieving performance.

Finally, the fully declarative approach fosters a one-size-fits-all style, limiting gener-
ality. For instance, by relying on relations, Datalog-based approaches support only set-
based lattices, while many common analyses require other kinds of lattices. Constant
propagation, e.g., is usually implemented via singleton-value-based lattices, making it
infeasible to implement it using Datalog [MYL16, SBEV18].

Next, we discuss the required terminology and then address the these issues of declar-
ative approaches, without compromising on their benefits.

8.2. Background and Terminology

In this section, we shortly introduce blackboard systems and present terminology used
throughout the chapter.

Blackboard Systems

Blackboard systems [Cor91] use a central data structure—the blackboard—to coordinate
the collaborative work of otherwise decoupled knowledge sources. The latter contribute
(partial) information to the blackboard towards collaboratively reaching an overall goal.
The blackboard notifies knowledge sources about availability of new information they
might require through a control mechanism that decides which knowledge sources should
be executed in what order. The information can then be queried by the knowledge
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sources, which execute and produce further information. Each execution of a knowledge
source is called an activation. For instance, computing the purity of a method m requires
the purity information of all callees of m. Whenever new information about these callees
is recorded, the analysis for m may be activated. The order of activations is decided by
the blackboard.

Terminology

Entity The term is used to characterize anything one can compute some information
for. Entities can be concrete code elements, e.g., classes, methods, fields, or allocation
sites, but also abstract concepts such as all subtypes of a class. The set of entities is not
necessarily defined a priori and can be created on-the-fly while analyses execute.

Property Kind The term characterizes a specific kind of information that can be com-
puted for an entity, e.g., mutability of classes, purity of methods, or callees of a specific
method. Each property kind represents one lattice of possible values.

Property The term characterizes a specific value in the lattice of some property kind
that is attached to some entity, e.g., a class can be mutable or immutable, a method can
be pure or impure, a specific method may invoke a specific set of methods. Per entity
at most one property of a specific kind can be computed.

Analysis The term characterizes an algorithm that given an entity computes its prop-
erty of a certain kind. We say that an analysis computes a property kind as a shorthand
for ”an analysis that computes properties of that property kind for a given kind of en-
tity”. Analyses are knowledge sources in the sense of the blackboard architecture; the
properties they compute constitute the information that they contribute to and/or query
from the blackboard.

8.3. Case Studies

We motivate the need the required features for our modular static analysis framework
by discussing case studies involving several interrelated sub-analyses to distill a list of
requirements on static analysis frameworks. During the discussion, we emphasize con-
cepts whenever they occur. The case studies represent very dissimilar kinds of analyses.
In particular, they require different kinds of lattices, including singleton-value lattices
(e.g. in Section 8.3.3) and set-based lattices (e.g. in Section 8.3.2). This motivates the
first requirement: Static analyses frameworks must support varied domain lattices (R1).

8.3.1. Three-address Code

The first case study is an analysis to produce a three-address code representation (TAC)
of JVM bytecode, presented in more detail in previous work [RKH+20]. In its basic ver-
sion, TAC uses def/use, type, and value information (including constant propagation)
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provided by an abstract-interpretation-based analysis (AI). To increase precision, AI may
be enhanced with analyses that refine type and the value information for method return
values and fields. However, such additional analyses may negatively affect the runtime.
Hence, systematic investigation of the precision/performance trade-off is needed to de-
cide whether to use such additional analyses on a case-by-case basis. To this end, a
separation into modules that can be enabled/disabled is beneficial. In general, we derive
the following requirements regarding support for modular pluggable analyses.

For systematically studying precision/soundness/performance trade-offs, static analy-
sis frameworks should support en/disabling inter-dependent analyses (R2). To maximize
pluggability, analyses should be defined in decoupled modules, and yet be able to col-
laboratively compute properties (collaborative analyses). As individual analyses can be
disabled, it should be possible to specify soundly over-approximated fallback values1 for
the properties they compute, to be used by dependent analyses in lack of actual results
(R3).

Moreover, an approach for modular collaborative analyses should support their inter-
leaved execution without them knowing about each other’s existence (R4). Two analyses
are executed interleaved, if they can interchange intermediate results. This is important
for optimal precision [CC79]: knowledge gained during the execution of some analysis
A1 may be used by the execution of some other analysis A2 on-the-fly to refine its re-
sult and, in turn, this may enable further refinement for A1. The precision of field-
and return-value refinement analyses would profit from interleaved executions, as they
depend on each other cyclically. If a method m returns the value of a field f, then the
return value of m depends on f’s value. Similarly, if the value returned by m is written
into f, then f’s value also depends on m’s return value.

However, interleaved execution must in specific cases be suppressed to ensure cor-
rectness. This is the case for the composition of pessimistic and optimistic analyses.
Pessimistic analyses start with a sound but potentially imprecise assumption and even-
tually refine it. Optimistic analyses start with an unsound but (over)precise assumption
and progress by reducing (over)precision towards a sound result. Field- and return-value
refinement analyses are pessimistic—the declared return type of method m, say List, is
a sound but eventually imprecise initial value for the return-value analysis; during the
execution, the analysis may find out that m actually returns the more precise result, say
ArrayList. AI is an optimistic analysis—it starts with the unsound assumption that all
code is dead and refines it by adding statements found to be alive towards a sound, but
potentially less precise result. Optimistic and pessimistic analyses are incompatible for
interleaved execution, because they refine the respective lattices in opposite directions.
As a result, exchanging intermediate results may cause inconsistencies, thereby violating
monotonicity. Thus, the analysis framework must enforce that only final results of pes-
simistic analyses are passed to dependent optimistic analyses (and vice-versa), avoiding
interleaving and suppressing non-final updates (R5).

1To minimize the effect of fallback values on precision, it makes sense to compute the fallback by using
locally available information, e.g., using declared type information, instead of always returning the
same over-approximated value.
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For illustration, consider the example of some piece of code, say c, that contains a
call to a method m1 that is mutually recursive with a method m2, but is conditioned
on a field f being an instance of LinkedList. To analyze c, we combine a field-value
analysis FA, an AI analysis, and a call graph construction algorithm, CG. Assume that
FA, which is a pessimistic analysis, initially reports the type of the field f to be List.
Given this information, AI would optimistically consider c to be live and CG, hence,
will consider both m1 and m2 to be reachable. Because of the mutual recursion (and
also because of the monotonicity requirement), this result cannot be changed later, if
FA finds out that f can only contain ArrayLists. If, however, the latter information
was present when AI analyzed the code, c would have been marked as dead, and CG
would have marked m1 and m2 as unreachable. Thus, the results of this combination of
analyses is non-deterministic and possibly incorrect (imprecise, if m1 and m2 are falsely
reported to be reachable).

8.3.2. Modular Call-graph Construction

Inter-procedural analyses presume a call graph (CG): Given method m, CG provides
information about (a) methods that may be invoked at a call site in m (callees) and (b)
call sites from which m may be invoked (callers). We use the CG to motivate the need
for supporting further kinds of execution interleaving (beyond R4) as well as further
requirements. The previous case study illustrated the need for interleaved execution
of inter-dependent analyses that calculate different properties and operate on different
entities (composition of analyses for refining field and return values with TAC). The CG
use case illustrates two further kinds of interleaved execution.

First, we need interleaved execution of multiple instances of the same analysis oper-
ating on different code entities to collaboratively compute a single property, whereby
each instance contributes partial results (R6). For example, different executions of a
CG analysis for different callers of a method m need to contribute their partial results
to collaboratively derive all of m’s callers (computing callers of a method is inherently
non-local).

Second, we also need to support interleaving of independent analyses that collabora-
tively compute a single property (R7). Consider, e.g., the computation of the callees
of m. A CG analysis can in principle consider m in isolation. A monolithic analysis
for callees is nonetheless not suitable. It makes sense to distinguish between one sub-
analysis that handles standard invocation instructions (e.g., CHA [DGC95], RTA [BS96],
points-to-based [BS09b] analysis) and sub-analyses dedicated to non-standard ways of
method invocation through specific language features, e.g., reflection, native methods,
or functionality related to threads, serialization, etc. Non-standard invocation requires
specific handling (e.g., one may deliberately not want to perform reflection resolution, or
may want to perform it based on dynamic execution traces). By offering such specialized
analyses as decoupled modules, they become highly reusable and can be combined with
different call-graph analysis for standard invocation instructions. This makes the call
graph construction highly configurable for fine-tuning its performance and sound(i)ness.
Hence, not only a method’s callers but also its callees need to be computed collabora-
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tively. This time, different analyses targeting different language features, rather than
different executions of the same CG analysis, contribute to the same property.

Handling special language features may even rely on integrating results of external
tools or precomputed values (R8). For instance, one may choose to integrate the results
of TamiFlex [BSS+11] for reflective calls, or external tools for analyzing native methods.

The CG case study also motivates support for specifying precise default values (R9)
(in addition to sound fallback values). For illustration, consider the case of an unreach-
able method m. The CG analysis will never compute callees or caller information for
m. However, this lack of results is an inherent property of the entity, as opposed to
being the result of a missing/disabled analysis. An over-approximating fallback value to
compensate the deactivation of the CG module for m may have to include all methods
and hence be too imprecise. Instead, analyses depending on the CG should get the infor-
mation that m is unreachable—the precise default value. The developer of the analysis
knows such information and should be enabled to tell the framework.

Another requirement is motivated by the CG. The CG construction unfolds along
the transitive closure of methods reachable from some entry points. Hence, it does not
make sense to execute the decoupled modules collaboratively constructing the CG—
each handling a particular language feature—globally on all methods of a program.
Instead, they should be triggered only when the overall analysis progress discovers a
newly reachable method. Hence, the framework must support triggering analyses once
the first (intermediate) result for a property is recorded (R10).

Our previous work [RKE+19] provides empirical evidence that encoding an RTA sub-
analysis and sub-analyses for language-specific features as collaborative interleaved mod-
ules, results in more sound call graphs and better performance compared to call graph
analyses of the Soot [VRCG+10], WALA [IBM], and Doop [BS09b] frameworks.

8.3.3. Mutability, Escape, and Purity Analysis

The example analyses in this subsection illustrate the need for further kinds of activation
modes in addition to triggered analyses, illustrated in the previous subsection: (a) eager
analyses, which refers to computing an analysis for all entities in the analyzed program,
and (b) lazy analyses, i.e., executing an analysis A1 only for the entities for which the
property that A1 computes is queried by some (potentially the same) analysis A2. A
further requirement illustrated by the analyses in this subsection is that the framework
should allow analyses to enforce an execution order that overrides the order determined
by the solver.

The use case involves analyses for method purity, class and field mutability [PBKM00,
HM12], and escape information [CGS+99, KM05]. The latter includes aggregated infor-
mation on field locality and return-value freshness (cf. [HKE+18]). The analyses in this
case study interact tightly and compute properties that may be relevant for both end
users (e.g., method purity) and further analyses (e.g., escape information). Complex
dependencies exists between all these analyses. To fine-tune the precision/performance
trade-off, several analyses for these property kinds with different precision can be ex-
changed as needed; all are optimistic and use TAC and/or the CG information.
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Since the results of analyses in this case study may be of interest to the end user, it
is useful to compute them for all possible entities eagerly (R11), e.g., computing the
mutability of all fields in the program. However, when the field mutability is only used
to support, e.g., the purity analysis, it may be beneficial for performance reasons to
compute it lazily (R12), i.e., only for the fields for which mutability is queried by the
purity analysis. This illustrates that we need both eager and lazy execution modes.
Eager and lazy versions of the same analysis should typically share the code and only
be registered with the framework in different ways. The class mutability analysis also
illustrates the need to configure the framework with analysis-specific execution orders
(R13): For performance reasons, it makes sense to analyze classes in a program in a
top-down order starting with parent classes before their children.

Our previous work ([HKE+18]) provides empirical evidence for the requirements stated
in this section. An implementation of the purity sub-analysis of this case study (and
through transitive use, the mutability and escape sub-analyses) as collaborative analyses
with interleaved execution showed higher precision, more fine-granular results and similar
performance characteristics compared to the then state-of-the-art purity inference tool
ReIm [HMDE12].

8.3.4. Interim summary

Table 8.1 summarizes the requirements along the case studies motivating them. Existing
frameworks do not satisfy all of them. Imperative frameworks lack support for modular-
ity, especially R5, R6, and R7. Declarative approaches, e.g., Doop [BS09b], have other
limitations: By being bound to relations for modeling properties, they lack the ability
to express the range of different analyses represented by our case studies (R1). They
also fail to support sound interactions between incompatible analyses (R5). By giving
the solver full control, they do not support different kinds of analysis-specific activation
modes of analyses (R10-R13).

8.4. Approach

Opal is the first static analysis framework to build upon the concept of blackboard
systems: Static analysis modules correspond to knowledge sources; the store that stores
and manages the computed properties corresponds to the blackboard. Opal combines
imperative and declarative programming styles for analyses.

In Opal, the developer of an analysis A: (a) implements the lattice representation of
the property values computed by A (8.4.1), (b) implements two imperative functions - so-
called initial analysis function (IAF) respectively continuation function (CF) (8.4.2), (c)
declares the property kinds computed by the analysis and its dependencies (8.4.3), and
(d) defines how A’s results are reported to the blackboard (8.4.4). Guided by the declared
dependencies, the blackboard and its fixed-point solver then coordinate the execution
of the analyses, thereby (e) ensuring all execution constraints (8.4.5), (f) performing
fixed-point computations, whenever circular dependencies are involved (8.4.6), and (g)
automatically scheduling and parallelizing the execution of analyses (8.4.7).
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Table 8.1.: Summary of Requirements

Lattices and values
R1 Support for different kinds of lattices (8.3.1, 8.3.2, 8.3.3)
R3 Fallbacks of properties when no analysis is scheduled (8.3.1, 8.3.3)
R9 Default values for entities not reached by an analysis (8.3.2)

Composability
R2 Support for enabling/disabling individual analyses (8.3.1, 8.3.2, 8.3.3)
R4 Interleaved execution with circular dependencies (8.3.1, 8.3.2, 8.3.3)
R5 Combination of optimistic and pessimistic analyses (8.3.1)
R6 Different activations contributing to a single property (8.3.2)
R7 Independent analyses contributing to a single property (8.3.2)

Initiation of property computations
R8 Precomputed property values (8.3.2, 8.3.3)
R10Start computation once an analysis reaches an entity (8.3.2)
R11Start computation eagerly for a predefined set of entities (8.3.3)
R12Start computation lazily for entities requested (8.3.1, 8.3.3)
R13Start computation as guided by an analysis (8.3.3)

8.4.1. Representing Properties

Values of a property kind constitute a lattice structure. In Opal, singleton value-
based lattices, interval lattices, or set-based lattices are possible (R1). The lattice’s
bottom value models the best possible value (e.g., pure for method purity); its top value
the sound over-approximation (e.g., impure). The lattices must satisfy the ascending
(descending) chain condition to ensure termination of optimistic (pessimistic) analyses.
When defining a property kind, developers can choose suitable data structures.

Developers can also specify fallback and default values. The blackboard will return
the fallback value for some requested property, p of property kind k, if no analysis is
available for k (R3). As it is a sound over-approximation, the lattice’s top value is a good
choice. However, the fallback value can also be provided by a ”proxy” analysis function
that does not query the blackboard, avoiding cyclic dependencies. The blackboard will
return a default value for p, if an analysis is available, but did not produce any result for
p’s entity (R9). For instance, call graph analyses only examine methods reachable from
entry points - for any non-reachable method, m, a default value can be used to state that
m is dead and has no (relevant) callees. A sound fallback value would include all possible
methods as callees of m; thus, in this case, the default value provides more information
than a fallback value. If no default value is declared, the fallback value is returned.

Developers implement property kinds by specifying an interface, which can be used to
access and manipulate the property values. When the PropertyKind trait is extended,
the framework assigns an identifier, which can be used to query the blackboard for prop-
erties of that kind. Listing 8.1 shows exemplary Scala code of a simple class mutability
property kind. Lines 1 to 3 define the base trait for the property kind and give a sound
fallback value in line 2. The two possible property values are defined in lines 4 and 5.
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1 sealed trait ClassMutability extends PropertyKind {
2 def fallback(Type theClass) = MutableClass
3 }
4 case object ImmutableClass extends ClassMutability
5 case object MutableClass extends ClassMutability

Listing 8.1.: Example lattice describing class mutability.

Figure 8.1.: Overview

8.4.2. Analysis Structure

An overview of Opal’s analysis structure is shown in Figure 8.1. As already mentioned,
Opal’s analyses are structured in two parts: An initial analysis function (IAF) and one
or more continuation functions (CFs). These functions can be implemented in any way,
as long as they provide their results as defined by the property kind.

For each entity e to be analyzed by A, A’s IAF is executed. The IAF collects infor-
mation directly from e’s bytecode in order to compute its result. If it needs additional
information pertaining to some other entity e or from another analysis that computes a
property kind k, the IAF queries the blackboard for these dependencies, using the identi-
fiers of e and k to find the relevant information (arrow 1. in Figure 8.1). The blackboard
will return the currently available value (2.). This value may, however, not be available,
or not final, either because the respective analysis was not yet executed or because it has
dependencies that yet need to be satisfied. Once the IAF completes analyzing the entity,
it returns to the blackboard (a) a result computed based on the currently available in-
formation and (b) any remaining dependencies, along with a continuation function (CF)
(3.). Similar to the solver of declarative frameworks, the blackboard resolves dependen-
cies and automatically invokes the CFs whenever updates to these dependencies become
available (4.). On completion, CFs also return their updated results to blackboard (5.),
potentially triggering the execution of other CFs. While the IAF is written imperatively
(dotted queries in Figure 8.1), the subsequent execution is performed similar to declar-
ative frameworks (straight lines) by having results declare their dependencies and the
solver being responsible to satisfy them. Executions of the IAFs and CFs are called
analysis activations. To ensure determinism, Opal executes the activations for a single
property sequentially, while IAFs and CFs for other properties can execute concurrently.
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As analyses get notified about dependency updates through the invocation of the CF,
it is not necessary that dependencies are computed before or when they are queried.
Instead, they can be computed asynchronously and lazily, i.e., on-demand (R12). This
also allows Opal to handle cyclic dependencies (R4).

Apart from adhering to this basic structure, developers may use any suitable strategy
to implement an analysis A. A may, e.g., focus on specific statements instead of traversing
the entire code of a method (Opal provides pre-analyses to query specific parts of the
code, e.g., all statements that access a specific field). Also, analyses can internally use
any data structure suitable to achieve good performance. For illustration, Listing 8.2
shows an excerpt from a simple class mutability analysis’ initial analysis function. The
IAF is given the entity to analyze (Line 1). Lines 3 to 7 show how to retrieve and handle
properties required to compute the IAF’s result: The required property (the mutability
of an instance field of the analyzed class) is queried from the blackboard (line 3) and
based on the returned value, the IAF may compute its result (as in line 4) or keep the
dependency in a list of dependees (line 6) to return it alongside an intermediate result
later (line 9). Line 9 also specifies the continuation function to be invoked when any of
the properties in dependees is updated. We do not show the code for that CF here, as
its implementation is very similar to lines 4 to 9, i.e., based on the updated value, the
(intermediate) result of the CF is determined.

There are two semantic constraints that the implementations of the analyses must
satisfy, though. First, they must ensure monotonicity of result updates according to the
used lattice. Analyses that optimistically start at a lattice’s bottom value may only
refine approximations upwards; pessimistic analyses only downwards. Opal can au-
tomatically check the monotonicity of updates. Monotonicity allows analyses to know
which refinements of intermediate results are still possible. Second, analyses must be
scheduling independent : Whenever they receive the value of some other property they
depend on, they must use the information provided by that value to compute the result
of the current activation, i.e., they may not defer the incorporation of the newly gained
information to a later activation of a continuation function. This ensures that all avail-
able information is used independent of whether the continuation is later scheduled for
execution - an activation may never occur in case of cyclic dependencies. For example,
once the mutability analysis of a class C knows that C’s instance field f is mutable, it
may no longer report that C could be immutable. The developer of some analysis A must
ensure that A is scheduling independent.

8.4.3. Declarative Specifications

On top of the IAF and CF, the developer of an analysis A specifies (a) the property
kinds computed by A, (b) its dependencies, (c) on which entities A will be executed and
(d) when the blackboard should start A’s execution. These specifications are evaluated
when the analysis is registered with the blackboard, before the latter takes over control of
analysis activation. When registering analyses, developers may also report precomputed
values to the blackboard (R8).
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1 def analyze(Type theClass) = {
2 [...]
3 Blackboard.get(field, FieldMutability) match {
4 case : MutableField => return Result(theClass,

MutableClass)
5 case dependee: ImmutableField =>
6 if (!dependee.isFinal) dependees += (field −>

dependee)
7 }
8 [...]
9 Result(theClass, ImmutableClass, dependees,

continuation)
10 }

Listing 8.2.: Simplified example of a class-mutability analysis.

The specification of the computed property kinds also states whether intermediate
results are optimistic or pessimistic and whether the analyses contributes to a collabo-
rative computation or intends to be the only analysis computing the specified property
kinds. Dependency specifications state other property kinds on which A depends (which
A queries) and whether A can process optimistic/pessimistic intermediate values or final
values only.

Analyses can eagerly select a set of entities (e.g., all methods of the analyzed program)
if it is likely necessary to perform the analysis for all of these entities (R11). This is,
e.g., useful for analyses that are of interest to the end user, e.g., if the user is interested
in the purity of all methods. Alternatively, analyses can be registered to be invoked
lazily [JMT10, Bod18]. Lazy analyses only compute a property if that property is queried
(R12) by another analysis or by the end user. Finally, an analysis can specify a property
kind k such that it is started for every entity for which k has been computed (R10).

Some analyses benefit from enforcing a specific order for computing the properties
for different entities (R13). For instance, the class mutability analysis benefits from
traversing the class hierarchy downwards, such that results for a parent class are available
before any subclass is analyzed. In Opal, this is supported by enabling the developer of
an analysis A to declare a number of computations to be scheduled whenever A returns
a result to the blackboard.

For illustration, Listing 8.3 shows the registration code for a class mutability analysis.
Line 1 declares that the analysis optimistically and lazily derives class mutability. Line
2 declares that in performing its computation, it may require field mutability and that
it can handle intermediate results for this property if they were computed optimistically.
This declaration is complete: No property kinds other than field mutability (and class
mutability) may be queried by this analysis. Line 4 registers a predefined value stating
that the base class Object is immutable (R8). The IAF analyze is registered as a lazy
analysis in line 6, i.e., the mutability of a certain class will only be computed on demand,
e.g., when a purity analysis queries it.
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1 override def derivesLazily =
Optimistic(ClassMutability)

2 override def uses = Set(Optimistic(FieldMutability))
3 override def register() = {
4 Blackboard.set(Type.Object, ImmutableClass)
5 val analysis = new ClassMutabilityAnalysis
6 Blackboard.registerLazyAnalysis(this,

analysis.analyze)
7 }

Listing 8.3.: An example of registering the class-mutability analysis to the blackboard.

8.4.4. Reporting Results

As already mentioned, analyses write intermediate and final results to the blackboard.
They can report results for each single entity individually or for multiple entities at the
same time. A result consists of a single lattice value representing the new value for the
property or of an update function (UF) for updating the property’s current value (as
recorded in the blackboard) to incorporate the new result.

A UF is used for properties whose computation is not localized to a specific part
of the program, e.g., the callers of a method. For such properties, constraint-based
analyses [Aik99, NNH05] have been used in the past; declarative analyses also provide
such updates, called deltas, that only specify the change to the property value instead of
the full new property value. The UF merges the results of one activation to the current
state of the property (e.g., add a new caller to an existing set of callers). This way,
activations of one or of different analyses can collaboratively contribute to a property
(R6, R7).

8.4.5. Execution Constraints

Once the end user chooses a set of analyses to be executed (R2), Opal uses the declar-
ative specifications (cf. Section 8.4.3) to check and automatically enforce restrictions
on analyses that can be executed together. First, it ensures that any property kind
is computed by at most one analysis or collaboratively; this is to avoid that conflicting
results are reported to the blackboard. Second, if several analyses derive a property kind
collaboratively, Opal ensures that they are all either optimistic or pessimistic. Finally,
Opal ensures that all property kinds required by any analysis are derived by another
analysis or there is a fallback value provided; this is to ensure that dependencies can be
satisfied.

Opal’s blackboard may run optimistic and pessimistic analyses simultaneously. But,
when doing so, it ensures that no intermediate results are propagated between them
(R5). Given property kind p that is computed optimistically and pessimistic analysis
A depending on p, Opal does not forward any intermediate values of p to A’s CF. The
latter is triggered only when a value of p is submitted marked as final. We say that the
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dependency of A on p is suppressed. There are subtle interactions between dependency
suppression and cyclic and collaborative computations, which we explain next.

First, there can be no cyclic dependencies between pessimistic and optimistic analyses.
The correctness of cyclic dependency resolution relies on the assumption that all inter-
mediate approximations have been processed and no further updates to any property
involved in the cycle may happen (cf. Section 8.4.6). This obviously is not the case when
updates are suppressed.

The interaction between dependency suppression and collaboratively computed prop-
erties is more involved. Assume a collaboratively computed property p1 that (transi-
tively) depends on another collaboratively computed property p2 and consider the case
when one or more of the transitive dependencies between them is suppressed2. In this
case, Opal must ensure that p2’s values are committed as final before p1’s values can
be committed as final, too. This ensures that final values have been propagated along
the suppressed dependencies. To this end, Opal derives a commit order when checking
the execution constraints before executing analyses. The commit order is a partial order
between collaboratively computed property kinds: p1 must be finalized later than any
other collaboratively computed property kind p2 on which p1 depends when there is
suppression between them.

Suppression of intermediate updates can also be used to improve performance: Con-
sider the relation between TAC and AI. Both are optimistic and TAC could use inter-
mediate AI results. But these results are typically not useful, hence, it can be beneficial
to use suppression to avoid costly computation of these intermediate results and instead
compute the TAC only once on the final AI result.

8.4.6. Fixed-point Computation

Computation is started for the entities selected by eager analyses (R11) (cf. Section 8.4.3).
Whenever intermediate values for properties are submitted, the blackboard schedules ac-
tivations of continuation functions, distributing updated results to analyses that depend
on them. Additionally, the blackboard starts new computations by invoking the initial
analysis function for properties that are requested lazily (R12), are triggered by some
analyses reaching a certain entity (R10), or whenever it is guided to do so by running
analyses (R13). This process of scheduling IAF and CF activations is performed until
no further updates are generated – the blackboard has reached a quiescent state. At this
point, however, the properties’ values may not necessarily be final, as there still may be
unresolved dependencies. There are three cases to be considered.

First, an analysis was scheduled for some property kind p, but it did not analyze some
entity e, for which p was requested, e.g., because e was not reachable in the call graph.
In this case, the default value (R9) is inserted, which may trigger further computations,
until quiescence is reached again.

2On a chain of dependencies, more than one may be suppressed. Also, if p1 depends on p3 and p4 and
each of those depends on p2, there is more than one path between p1 and p2, on which dependencies
may get suppressed.
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Second, properties that cyclically depend on each other are not finalized yet. If such
properties form a closed strongly connected component, i.e., they do not have any de-
pendees outside of the cycle (but other properties may still depend on them), they are
now finalized to their current value. By requiring analyses to report their results in
a monotonous and scheduling independent way (cf. Section 8.4.2), Opal guarantees
that the cycle resolution is deterministic and sound. Again, further computations may
arise from resolving cyclic dependencies (including supplying more default values and
resolving further cycles) until quiescence is reached again.

Finally, the blackboard finalizes values for collaboratively computed properties. It
respects the commit order computed previously (cf. Section 8.4.5): After finalizing a
set of collaboratively computed properties, computation is resumed again. Only once
quiescence is reached again, the next property kinds, as given by the commit order,
are finalized. This is repeated until all collaboratively computed properties have been
finalized.

8.4.7. Scheduling and Parallelization

Blackboard systems require a control component that, upon updates of the blackboard,
decides which knowledge sources to activate next. In our case, this control component
determines the order in which activations of dependent analyses are executed and is called
scheduler. The order in which dependent analyses are activated can have significant
effects on performance [RL11].

Opal allows for the scheduler to be easily exchanged in order to select the best per-
forming one for any chosen set of analyses. Apart from general strategies such as first-
in-first-out, more specific algorithms may use the dependency structure or the values
of intermediate approximations to decide the scheduling order. This is similar to the
control component of blackboard systems asking knowledge sources for an estimated
information gain (cf. [Cor91]).

Blackboard systems lend themselves well to parallelization. The individual knowledge
sources, i.e., analyses in our case, are decoupled and their activations (both the initial
analysis and the continuations) can be executed in parallel on multiple threads. Updates
to the blackboard, on the other hand, can be synchronized on a special thread or, if that
becomes a bottleneck, distributed to several threads based on the property kind and/or
entity. A simple implementation may consist of several threads that use a shared data
structure holding the property data and use locks or other mechanisms to synchronize
accesses to this shared storage.

8.4.8. Summary

Opal’s approach fosters strong decoupling of reified lattices (choice of data structures),
analyses (choice of algorithm), and the solver infrastructure (the concrete fixed-point
solving implementation). This enables exchanging and optimizing these parts indepen-
dently. As reified lattices are the basis for all communication between analyses, different
versions of analyses can be implemented at different trade-offs. The solver manages exe-
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cution of analyses, tracks dependencies and propagates updates, performs monotonicity
checks, and computes the fixed-point solution.

8.5. Evaluation

We evaluate our approach by answering the following questions:

RQ1 Does our approach support modularization of a broad range of static analysis kinds
with varying requirements?

RQ2 Does exchangeability of analysis modules benefit the end user and the developer?

RQ3 Can the framework be parallelized?

RQ4 What is the benefit of analysis-specific data structures?

RQ5 How does the performance of Opal’s analyses compare to state-of-the-art declar-
ative approaches?

We implemented our approach on top of the OPAL framework for JVM bytecode
analysis [EH14]. However, the approach is framework and language independent. We
answer the above research questions using the case studies of Section 8.3 to analyze
the DaCapo 2006 benchmark [BGH+06]. We choose DaCapo because Doop, which we
compare to in Section 8.5.5, has special support for it. Both the implementation of Opal
as well as the case studies are available in the OPAL GitHub repository3.

All measurements were performed in a Docker container4 on a server with two AMD(R)
EPYC(R) 7542 @ 2.90 GHz (32 cores / 64 threads each) CPUs and 512 GB RAM.
Analyses were run using OpenJDK 11.0.5+10 (64-bit) with 32 GB of heap memory and
Scala 2.12.9. Experiments were run seven times and we report their median runtime.
We report only excerpts of the results here5.

8.5.1. Support for Various Analyses

To answer RQ1, we implemented the case studies from Section 8.3 using Opal and
argue that these are representatives of different analysis kinds. The first case study
represents pessimistic analyses in the context of improving precision of a three-address
code representation (TAC)—it shows how basic analyses can be extended by analyses
that are specialized to increase the precision of sub-problems’ solutions. The modular call
graph of the second case study involves tightly interacting yet decoupled analyses (e.g.,
points-to and call graph) and demonstrates how one can plug in further modular analyses
that handle special cases of Java in order to increase the call graph’s soundness. The third
case study introduced several exchangeable analyses for different high-level properties
(immutability, escape information, purity). The individual analyses are relatively simple

3https://github.com/stg-tud/opal.
4https://doi.org/10.5281/zenodo.3872848.
5The entire results can be found here: https://doi.org/10.5281/zenodo.3972736.
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Table 8.2.: Purity results for different configurations (hsqldb).

Configuration #Pure #SEF #Other #Impure / Analysis

PA2/FMA1/E1 417 482 245 2 635 2.42 s
PA2/E1 363 536 245 2 635 2.40 s
PA2/FMA1/E0 417 481 241 2 640 1.93 s
PA2 362 504 225 2 688 0.98 s
PA1/FMA1 415 431 0 2 933 0.93 s
PA0/FMA1 104 0 0 3 675 0.70 s
PA0 100 0 0 3 679 0.13 s

and can focus on their respective property, but by using the results of other analyses, they
can be more precise than a corresponding monolithic analysis of medium complexity.

As discussed in Section 8.3, to achieve this modularity, several requirements need
to be satisfied (cf. Table 8.1). Section 8.4 already explained how Opal supports all of
them. On the contrary, as we argue in Section 8.3.4, no current imperative or declarative
framework supports all these requirements.

We additionally implemented a solver for inter-procedural, finite, distributive subset
problems (IFDS) [RHS95], a well-known general framework for dataflow problems based
on graph reachability. Similar to other IFDS solvers, e.g., Heros [Bod12], users provide
a domain for their dataflow facts and four flow-functions that together specify the IFDS
problem. The solver starts one computation per pair of method and entry dataflow fact
and these tasks need to communicate their results. We chose IFDS as it is a general
framework that allows implementing many dataflow analyses and it is dissimilar from
the three case studies’ analyses. In particular, it shows Opal’s support for implementing
general solvers as individual analyses.

Obs.19: Opal’s programming model enables the implementation of dissimilar anal-
yses, fostering their modularization into a set of comprehensible, maintainable, and
pluggable units. Opal is the only static analysis framework satisfying all requirements
from Section 8.3.4.

8.5.2. Effects of Exchangeability of Analyses

Opal strictly decouples property kinds from analyses that compute them. Thus, it can
provide different analyses computing the same property kind to cover a wide range of
precision, sound(i)ness, and performance trade-offs. Two experiments examine how this
exchangeability fosters rapid probing, thus benefiting the analysis’ developer and end
user alike (RQ2): We explore the impact on precision in one experiment and impact on
soundness in the second.

In our first experiment, we run various configurations of our purity analysis (cf. Sec-
tion 8.3.3) with different supporting analyses for field mutability or escape information
with different precision-scalability trade-offs. No other tool supports similar exchange-
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Table 8.3.: Results for different call-graph modules for Xalan.

Configuration #Reachable Methods #Edges / Analysis

RTA 6 141 46 946 8.58 s
RTA C 6 162 47 154 8.76 s
RTA R 8 404 63 821 10.07 s
RTA X 12 937 106 516 12.99 s
RTA C X 12 958 106 743 12.86 s
RTA S T F C X 12 970 106 778 13.35 s

C=Configured native methods; R=Reflection; X=Tamiflex;
S=Serialization; T=Threads; F=Finalizer;

ability of interacting purity, mutability, and escape analyses. Table 8.2 shows the results
for hsqldb. Higher indices indicate more precise analyses. Comparing the least precise
analysis PA0 with the most precise PA2/FMA1/E1, we observe a reduction in the num-
ber of reported impure methods by ≈28%, but a runtime slowdown by 18.6x. Some
configurations even have a large impact on runtime for almost no gain in precision, e.g.,
comparing the most precise one with that using simpler escape analysis E0.

In the second experiment, we evaluate the RTA call graph with different supporting
modules for different JVM features. While DOOP computes call graphs and offers some
modularity, e.g., for reflection, no other tool so far includes such fine-grained modules for
call graphs. Also, DOOP does not support RTA, but points-to based call graphs only.
Results for Xalan are shown in Table 8.3, displaying the active modules, the number
of reachable methods (RMs), call edges, and respective construction time. While some
configurations discover more methods/edges than others, they may discover different
sets of methods/edges. A configuration is only guaranteed to be strictly more sound if
it uses a strict superset of modules. Compared to the baseline, RTA with support for
preconfigured native methods (RTA C), reaches 21 more methods and ≈200 more call
edges. Reflection support (RTA R) brings over 2 000 more RMs and 16 000 call edges; at
the same time, construction time increases by about 15%. Using the Tamiflex (RTA X)
module instead increases call graph size (and soundness) more but introduces further
slowdown. With all modules enabled, we reach 111% more methods and 127% more call
edges, at the cost of a 55% increased runtime. Moreover, the data suggests that different
modules benefit different projects. Tamiflex impacted Xalan and jython, reflection fop,
and serialization hsqldb. Thus, which modules are more relevant than others may differ
between different programs and it may be worth investigating tradeoffs even at the level
of individual projects.

Overall, both experiments confirm that Opal maintains exchangeability benefits from
Datalog-based analyses, while generalizing these results to a broader range of lattices.

Obs.20: Opal facilitates systematic investigation of different configurations, support-
ing users and developers in finding the best trade-off between precision, sound(i)ness,
and scalability.
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Figure 8.2.: Performance graph of Opal’s parallel architecture.

8.5.3. Parallelization

We implemented a proof-of-concept parallel version of our blackboard control (RQ3).
Using this, we measured the execution time for the points-to-based call graph with dif-
ferent numbers of threads. Results for five DaCapo projects are shown in Figure 8.2.
The projects were selected to have similar runtime to facilitate graph readability, the
other projects show similar behavior. Benefits of parallelization over one thread appear
at two to four threads and we achieve speedups of up to 2x for 16 threads. Beyond this,
further improvement is negligible; instead, it slightly decreases due to growing commu-
nication overhead. These results are encouraging, given that the parallel version is not
at all optimized. An optimized version of it is expected to scale better. Designing such
an optimized version requires further research to identify the optimal way to parallelize
the computation.

Obs.21: Opal’s computation can be parallelized and that parallelization holds poten-
tial for increased performance.

8.5.4. Benefits of Specialized Data Structures

To answer RQ4, we compare two versions of the same points-to based call-graph algo-
rithm. Both encode points-to, caller, and callee information as integer values. The first
version uses specialized trie-based data structures, the second one uses standard Scala
sets.

Results are given in the sixth and last column of Table 8.4. Due to its high memory
consumption, we had to run the version using Scala’s data structures with 128 GB
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Table 8.4.: Runtime and size of points-to-based call graphs.

Doop Opal Opal

Project Compile Facts Analysis #RM runtime #RM (Scala)

antlr 107 s 35 s 41 s 8 402 28.36 s 8 653 305.90 s
bloat 109 s 21 s 33 s 9 644 34.43 s 10 000 266.08 s
chart 109 s 38 s 45 s 12 058 40.13 s 12 268 516.37 s
eclipse 109 s 19 s 17 s 7 163 44.89 s 13 429 343.69 s
fop 110 s 41 s 35 s 7 300 18.87 s 7 509 56.64 s
hsqldb 109 s 38 s 32 s 7 097 19.65 s 7 455 55.69 s
jython 108 s 24 s 90 s 12 901 77.65 s 13 161 3 341.62 s
luindex 108 s 21 s 19 s 7 608 19.34 s 7 972 62.57 s
lusearch 108 s 21 s 20 s 8 281 21.03 s 8 540 70.55 s
pmd 109 s 39 s 36 s 8 817 21.47 s 9 028 75.47 s
xalan 108 s 37 s 30 s 7 111 35.59 s 13 330 246.97 s

geo. ∅ 108.54 s 29.09 s 32.51 s 29.68 s 191.26 s

of heap space; jython’s analysis even required 256 GB. Using tailored data structures,
Opal’s runtime decreased by 65% to 98% compared to naively using Scala’s sets.

Obs.22: Selecting suitable data structures adapted to the specific analysis needs is an
important factor for analysis performance. While the analysis developer can freely se-
lect optimized data structures in Opal, strictly declarative approaches do not support
such choices.

8.5.5. Comparison with Declarative Approaches

After evaluating individual unique features of Opal in isolation, we present the re-
sults of an experiment that directly compares the performance of Opal with that of
Doop [BS09b] (RQ5) - a highly optimized state-of-the-art tool for declarative Java
points-to and call-graph analyses on top of the Soufflé [JSS16] Datalog engine. Its
declarative approach assembles a fair comparison as it supports similar modularity and
configurability and good trade-offs between pluggable precision/recall. Also, Doop’s and
Soufflé’s authors repeatedly claimed its good performance [BS09b, SB10, BS09a, JSS16].
Specifically, we compare our points-to based call-graph’s runtime from Section 8.3.2 to
Doop’s.

For better comparability, we disabled the reflection support in both tools, because the
respective approaches are different. The applications were analyzed together with Open-
JDK 1.7.0 75 (used for the TamiFlex data in Doop’s benchmarks). Minor differences
(less then 5% difference in the number of RMs, except for eclipse and xalan) remain, but

125



8. Modular Collaborative Program Analysis

these are in Doop’s favor, since they result in more work to be done by Opal6. Still,
the sixth column of Table 8.4 shows that our complete analysis, including all preprocess-
ing, is often faster than Doop’s analysis (9% in the geometric mean). Further, Doop
additionally requires time for rule compilation and fact generation.

We used Opal’s single-threaded implementation since it seems that Doop is hardly
parallelized (fact generation was done with 128 threads, but did not significantly vary
with other values for the fact-gen-cores parameter and the souffle-jobs parameter
did not show any effects). Using a parallel version, Opal should be able to outperform
Doop even more as shown in Section 8.5.3.

Obs.23: Despite being more general, i.e., not tuned for points-to analyses but support-
ing many different kinds of analyses, Opal clearly outperforms Doop.

8.6. Threats to Validity

One threat to the validity of our evaluation is the use of the relatively old and small
DaCapo benchmark. It is, however, widely used to evaluate Doop [BS09b] and to com-
pare other approaches with Doop [AL12, AL13, PM14, TLX16]. Doop’s special support
for the benchmark makes it a particularly fair evaluation set. Furthermore, our exper-
iment design, based on relative comparisons, should yield the same results with any
well-assembled benchmark.

Also, our results are threatened if our points-to analysis is not sufficiently similar to
Doop. To achieve comparability, we tailored our points-to analysis to be as similar as
possible, i.e., the call graph derived from the points-to results should be almost identical.
In order to ensure this, we systematically studied Doop’s Datalog rules, validated the
resulting call graphs using Judge [RKE+19] and manually inspected points-to sets from
deviating call graphs. As a result, our analysis produces always call graphs with slightly
more—never less—reachable methods and call edges.

8.7. Related Work

In this section, we discuss several related approaches in various areas of static analysis
as well as in blackboard systems.

8.7.1. Blackboard Systems

The blackboard metaphor was introduced by Newell [New62] and implemented for
speech-recognition in HEARSAY-II [EHRLR80]. Blackboard systems were used for
image recognition [LDDC+95], vessel identification [NFA82], or industrial process con-
trol [DCYB09]. For these domains, no efficient, deterministic algorithm is known, leading

6For instance, Opal does handle some cases of reflection more soundly even with reflection handling
disabled in order to process the DaCapo benchmark correctly.
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to several problems mentioned by Buschmann et al. [BMR+96]: nondeterminism makes
testing difficult, good solutions are not guaranteed, performance suffers from wrong hy-
potheses, and development effort is high due to ill-defined domains. As static analyses
have a well-defined domain and deterministic algorithms, these do not apply to our
approach.

The structure of blackboard systems is described, e.g., by Nii [Nii86], Craig [Cra88],
and Corkill [Cor91]. Corkill also discusses concurrent execution of knowledge sources
and the control component [Cor89], similar to Opal. Opal resembles a more modern
interpretation of blackboard systems [Cra93]: its blackboard is not hierarchical and
analyses may keep state between activations. Information is, however, never erased and
all communication is done via the blackboard.

Brogi and Ciancarini used the blackboard approach to provide concurrency for their
Shared Prolog language [BC91]. Like static analyses, this domain is well-defined. Their
knowledge sources are restricted to be Prolog logical programs, while Opal’s analyses
can be implemented in a way best suited to the analysis needs.

Decker et al. [DGHL91] discuss the importance of heuristics for scheduling concurrent
knowledge source activations. Focusing on static analyses and well-defined dependency
relations, Opal provides good general heuristics which are agnostic to individual anal-
yses.

8.7.2. Abstract Interpretation

Cousot et al. [CC79] have proven that multiple (possibly cheap) abstract domains (i.e.,
analyses) can be combined using the reduced product to increase overall precision. In
abstract interpreters, such as Astrée [CCF+06] or Clousot [FL10], dependencies between
domains are restricted by the execution order. Thus, the same program statement must
be analyzed multiple times which is superfluous with Opal’s explicit dependency man-
agement. Also, abstract interpretation typically aims to compute abstract approxima-
tions [CC77] of concrete values, such as an integer variable’s value. Opal further allows
natural expression of analyses on all granularity levels. Keidel et al. [KPE18, KE19] pro-
vide modular and reusable abstract semantics for different language features allowing
soundness proofs from composition of already sound components. The analyses again
approximate single concrete program values. Opal supports analyses to be based on
abstract interpretation and includes such analyses, but generalizes to a much broader
range of static analyses.

8.7.3. Declarative Analyses Using Datalog

Datalog is often used to implement static analyses in a strictly declarative fashion [Rep95,
WL04, LWL+05a, HVDM06, Wha07, EKKM08]. Properties are represented as relations
and rules specify how to compute them. This enables modularization, as rules can be
easily exchanged and/or added (e.g. for new language features). The Doop [BS09b]
framework, building on top of the highly optimized Datalog solver Soufflé [JSS16], has
shown that the rule-based approach enables precise and scalable points-to analyses. For
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this reason, Doop became the state-of-the-art for such analyses [SBL11, KS13, SBKB15,
TLX16, TLX17]. Datalog-based frameworks, however, are limited in their expressive-
ness by using relations, i.e., set-based abstractions, to represent all analysis results.
Opal’s approach combining imperative and declarative features provides similar bene-
fits as Datalog-based approaches, while allowing for more expressive ways to represent
data and to implement analyses.

Datalog’s limitation to relations has also been pointed out by Madsen et al. [MYL16].
They propose Flix to overcome this using a language inspired by Datalog and Scala
to specify declarative pluggable analyses using arbitrary lattices as in Opal. However,
Flix focuses on verifying soundness and safety properties of static analyses and not on
performance. For instance, Flix does not allow optimized data structures or scheduling
strategies. We wanted to compare our approach against Flix and contacted the authors,
but they answered that their IFDS implementation is dysfunctional now and suggested
comparing against Doop with the Soufflé engine, which we did in Section 8.5.5. Szabó
et al. [SBEV18] also extend Datalog to allow arbitrary lattices for static analysis. Their
solver IncA focuses on incrementalization. Opal allows optimizations, e.g., of used data
structures or scheduling strategies. Furthermore, analyses’ coarser granularity compared
to individual rules reduces overhead in parallelization.

8.7.4. Attribute Grammars

Attribute grammars [Knu68] used in compilers such as JastAdd [EH07] enable modular
inference of program properties by adding computation rules to the nodes of a pro-
gram’s abstract syntax tree (AST). In traditional attribute grammars, attributes may
only depend on parent, sibling, and child nodes. Circular reference attribute gram-
mars [Far86, Jon90, Hed00, MH07] enable attributes to depend on arbitrary AST nodes
and allow circular dependencies. Still, analyses are tightly bound to the AST, impeding
natural expression of analyses based on different structures, such as a control-flow graph.
Similar to Opal, JastAdd enables pluggability for new language features. However, Jas-
tAdd requires at least one attribute in a cyclic dependency to be marked explicitly, while
Opal handles this transparently.

Öqvist and Hedin [ÖH17] proposed concurrent evaluation of low complexity attributes
in circular reference attribute grammars. Opal on the other hand supports arbitrary
granularity of concurrent computation. Opal’s explicit dependency management enables
analyses to drop dependencies and commit final results early for improved performance.
Finally, as memorization of properties is done in Opal’s blackboard, temporary values
are garbage collected automatically, whereas JastAdd requires explicit removal.

8.7.5. Imperative Approaches and Parallelization

Lerner et al. [LGC02] proposed modularly composed dataflow analyses which communi-
cate implicitly through optimizations of the analyzed code or explicitly through snooping.
A fixed-point algorithm repeatedly reanalyzes the code, while Opal’s explicit dependen-
cies avoid reanalysis. They support only dataflow analyses, while Opal enables a wide
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range of analyses including dataflow analyses.

CPAchecker [BHT07] is a tool for configurable software verification and analysis. For
any combination of analyses, CPAchecker requires defining a compound analysis to inte-
grate results of individual analyses and manage their interaction. For CPA+ [BHT08],
combined analyses must work with the same domain and provide an explicit measure of
result precision. In contrast, Opal enables tight interaction and interleaved execution
of independently-developed analyses without requiring a compound analysis or explicit
measure of precision.

Johnson et al. [JFB+17] present a framework for collaborative alias analysis. Clients
ask queries which are processed by a sequence of analyses. Each analysis can answer
the query or forward it to the next one. Analyses can also generate additional (premise)
queries. To ensure termination, a complexity metric must be defined and premises must
be simpler than the queries they originate from. Therefore, cyclic dependencies, required
for optimal precision, and results combined from different analyses are not supported.

Parallel execution of static analyses is performed by Magellan [EMK+06]. In this
framework, dependencies are given by the data processed instead of explicitly by the
analyses.

Haller et al. [HGES16] concurrently execute tasks based on lattices and apply this to
static analysis. Their framework requires dependencies to be managed fully by the client
while Opal manages them automatically based on declarative specifications. In recent
work [HKK+20], we extended this approach to support mutable state and found that
exchangeable scheduling strategies significantly impact performance. Both concepts are
supported in Opal.

8.8. Conclusion

We presented a novel approach for modular collaborative static analyses implemented in
the Opal framework. Like with declarative frameworks such as Doop, Opal’s analyses,
while developed in isolation, can be quickly composed to complex analyses by collabo-
ratively computing results during interleaved executions. Sub-analyses can be reused in
various complex analyses, and one can easily exchange sub-analyses of complex analysis
for fine-tuning precision, sound(i)ness, and performance.

Instead of relying on a general-purpose solver, Opal combines imperative and declara-
tive features to overcome limitations of fully declarative frameworks. Individual analyses
can be implemented in imperative style using whatever data structures and implemen-
tation strategies are appropriate for their specific needs. Interdependencies and other
characteristics necessary for guiding their interleaved execution are declaratively speci-
fied and automatically managed by a custom solver resembling a blackboard architecture.
Due to its approach, Opal (a) is more general in terms of the analyses supported—it is,
in particular, the first framework to explicitly support lazy collaboration of optimistic
and pessimistic analyses—and (b) enables analysis-specific optimizations, which lead to
outperforming state-of-the-art declarative analyses.

Whereas the approach itself is generally applicable, it also exhibits enormous benefits
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for the modular construction of call graphs. Section 8.5.2 demonstrated Opal’s capabil-
ities to reconfigure a call graph quickly. This pluggability enables both a) easy adaption
of a call-graph algorithm to the needs of an individual program and b) exchanging sin-
gle analyses to find the best trade-off between precision, scalability, and sound(i)ness.
Besides, our study from Chapter 6 showed that many features remain unsupported, and
Opal’s modular design allows for prototyping and testing new feature abstractions in
isolation.
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9. TACAI: An Intermediate Representation
based on Abstract Interpretation

All Java static analysis frameworks presented in Section 3.1 rely on an intermediate
presentation (IR) of Java Bytecode to facilitate the development of static analyses. Ini-
tial observations from Section 6.2.3 reveal that especially Soot’s Jimple, WALA IR,
and Opal’s IR apply different optimizations during the transformation from bytecode
to the IR such that the available type information varies in precision. That lead to
enormous differences in the precision of the framework’s RTA call graphs. Therefore, we
want to further investigate the differences within different IRs and their affect on CG
construction.

This chapter presents the design and implementation of TACAI, an intermediate
code representation based on abstract interpretation with exchangeable domains. We
implemented TACAI as IR of OPAL. In the previous chapter, we presented TACAI as
one of the case studies (cf. Section 8.3). Exchanging the abstract domains TACAI uses
for the abstract interpretation allows to enrich the resulting IR with additional informa-
tion, e.g., more precise type information for a callsite’s receiver objects. We will discuss
and evaluate how switching the used abstract domains affects the bytecode-to-TACAI
transformation. Furthermore, we compare TACAI to Shimple, a well-established IR
provided by Soot. We chose Shimple because it is an SSA-based TAC representation
and is thus closer to TACAI than Jimple. WALA’s IR does not provide any refined
type information over the types available directly in the bytecode.

9.1. Approach

TACAI, our approach for a three-address code (TAC) representation, is based on the
results of an intra-procedural abstract interpretation (AI) of a method’s bytecode. This
features two main properties: First, it enables intermediate-representation (IR) deriva-
tion at different precision levels by exchanging the underlying domains. Second, all
information is computed at the same time in one step, which offers improved perfor-
mance when compared to classical compiler frameworks that typically compute compa-
rable information in a step-wise manner [Muc97]. In this step-wise approach, collected
information is oftentimes not shared between steps and, therefore, recomputed to reduce
dependencies. While performing the AI, Opal always computes the method’s control-
flow graph (CFG) and def-use/use-def information on-the-fly. Therefore, the CFG and
def-use information immediately benefit from better domains and lead to simpler and
less IR code. The CFG and def-use information are also made explicit in TACAI.
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1 trait TypeLevelDomain extends Domain
2 with DefaultReferenceValuesBinding
3 with DefaultTypeLevelIntegerValues
4 with DefaultTypeLevelLongValues
5 with TypeLevelLongValuesShiftOperators
6 with TypeLevelPrimitiveValuesConversions
7 with DefaultTypeLevelFloatValues
8 with DefaultTypeLevelDoubleValues
9 with TypeLevelFieldAccessInstructions

10 with TypeLevelInvokeInstructions

Listing 9.1: Example TypeLevelDomain configuration.

We reuse Opal’s domains starting with those operating at the type level, which lead
to an IR that has similar precision as Soot’s Shimple representation. However, Opal also
provides domains that enable constant propagation and constant folding for primitive
types. For reference values, there are domains that, e.g., precisely track the nullness,
provide must-alias information, compute intersection and union types, or resolve local
Class.forName calls. Using these domains enables the computation of a more precise IR
when compared to typical IRs offered by other frameworks. Furthermore, it is possible
to tailor the precision at a fine-grained level to one’s needs.

Opal uses Scala’s mixin-composition to configure the AI and to implement the se-
mantics for different sets of instructions. The default, namely TACAIL0, performs all
operations at the type level and is shown in Listing 9.1. The semantics for each set
of closely related instructions is implemented by one specialized trait. Opal provides
one trait for integer, long, float, and double based computations, one for method
invocations, one for field accesses, and one for reference-value-based operations. The
latter handles, e.g., instanceof checks, casts, and tests against null. Interactions be-
tween the traits are facilitated by requiring the implementation of a shared set of query
methods. For example, every implementation that handles reference values has to im-
plement the globally defined method to test if a value is null. The result of these
methods is typically a three-state answer: Yes, No, or Unknown. For example, the
method returning a reference value’s nullness is used by the domain, which is respon-
sible for handling method calls. The latter checks—for each method invocation—if the
receiver is null. If the receiver is known to be null, the target method is not invoked,
and a NullPointerException will be thrown instead. If the answer is Unknown, the
behavior can further be configured such that only the call is considered or additionally
an exception is considered to be thrown.

Besides the TACAIL0 configuration, two further configurations for a more precise TAC
are preconfigured. In the first one (TACAIL1), the DefaultReferenceValuesBinding

(Line 2) is exchanged for an implementation that computes intersection and union types
as well as must-alias information for reference values. Furthermore, special support for
calls of the native method System.arraycopy is provided, which checks for the non-
nullness of the arrays and also validates the range that is to-be-copied. If this validation
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fails, appropriate exceptions are thrown, which have to be correctly represented.1 Lastly,
constant folding and propagation is performed for integer values by exchanging the
DefaultTypeLevelIntegerValues (Line 3) domain. The latter is required to identify
if statements where the conditions evaluate to constant values and are therefore useless.

The most precise configuration (TACAIL2) builds on top of TACAIL1 and addition-
ally performs method inlining for monomorphic calls. This is useful, e.g., for builders
(e.g. StringBuffer), which provide a fluent interface enabling call chaining by always
returning the current instance. In such cases, it is then possible to determine that all
calls actually happen on the same instance. For that, Scala’s stackable trait pattern is
used to adapt the handling of method invocations, i.e., an additional trait is configured.

Table 9.1 shows TACAI’s output for method m (cf. Listing 9.2) at all three levels.
TACAIL0 almost directly reflects the bytecode: The type of the variable p1 (Line 2) is
considered to be Cloneable after the cast operation. The code also contains the (useless)
reference comparison (Line 7), comparing the newly created StringBuffer (Line 4) with
the reference returned by the append call (Line 6). TACAIL1 is able to correctly identify
that p1’s type is Serializable with Cloneable. This intersection type significantly
restricts the set of subtypes when compared to the previous version. Additionally, both
p1 and lv4 are found not to be null: p1 because of the explicit nullness check (Line 0), the
second because it is freshly allocated (Line 4). This guarantees that the invocations on p1

(Line 3) and lv4 (Lines 6 and 10) will not cause NullPointerException s. Although the
chosen domain is able to track must-alias information intra-procedurally, the (useless)
reference comparison is still found in the TAC. The identification of the must-alias
relation in this case requires to know that the value returned by append is the self-
reference this. By performing inlining, as done when computing the TACAIL2, this
information becomes available and, therefore, the useless comparison can be removed
and subsequently, the if statement is removed as well as the throw statement. A NOP

statement (TACAIL2 Line 7) is added because the CFG is not rewritten during the initial
transformation, which requires that every basic block contains at least one instruction.
It is straight-forward to remove NOPs and update the CFG in a second step.

1 RuntimeException e() { return new RuntimeException(); }
2 void p(String s) { System.out.println(s); }
3

4 void m(Serializable serializable) {
5 if(serializable == null) return ;
6 Object o = (Cloneable) serializable;
7 String s = o.toString();
8 StringBuffer sb0 = new StringBuffer();
9 StringBuffer sb1 = sb0.append(s);

10 if(sb0 != sb1) throw e();
11 p(sb0.toString());
12 }

Listing 9.2: Java code used to generate TACAI.

1Special handling is provided for System.arraycopy because it is by far the most widely used native
method in the JDK.
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Table 9.1.: Transformed TACAI bytecode from Listing 9.2 using OPAL’s Level 0 , Level 1 , and Level 2 domains.
Blue lines mark differences compared to lower levels. Light-blue lines are only syntactic changes.

TACAIL0 TACAIL1 TACAIL2

void m(Serializable) { void m(Serializable) { void m(Serializable) {
0: if(p1 ! = null) goto 2 0: if(p1 ! = null) goto 2 0: if(p1 ! = null) goto 2
1: return 1: return 1: return
2: (Cloneable) p1 2: (Cloneable) p1 2: (Cloneable) p1

p1 ¡: Cloneable p1 ¡: Serializable with
Cloneable

p1 ¡: Serializable with
Cloneable

p1 not null p1 not null
3: lv3 = p1.toString() 3: lv3 = p1.toString() 3: lv3 = p1.toString()
4: lv4 = new StringBuffer 4: lv4 = new StringBuffer 4: lv4 = new StringBuffer

lv4 not null lv4 not null
5: lv4.¡init¿() 5: lv4.¡init¿() 5: lv4.¡init¿()
6: lv6 = lv4.append(lv3) 6: lv6 = lv4.append(lv3) 6: lv4.append(lv3)

/* expression value ignored
*/

7: if(lv4==lv6) goto 10 7: if(lv4==lv6) goto 10 7: ; /* NOP */
8: lv8 = p0.e() 8: lv8 = p0.e() —
9: throw lv8 9: throw lv8 —
10: lva = lv4.toString() 10: lva = lv4.toString() 8: lv8 = lv4.toString()
11: p0.p(lva) 11: p0.p(lva) 9: p0.p(lv8)
12: return 12: return 10: return

} } }

1
3
4
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9.2. Evaluation

Next, we evaluate the costs and benefits of our IRs along the following four dimensions:

RQ1 How does computing TACAI affect the performance; the time required to compute
the IR?

RQ2 How does TACAI affect the overall number of three-address code statements?

RQ3 In how many cases is it possible to provide more precise receiver-type information
when compared to the representation offered by the Soot Framework?

RQ4 How does exchanging domains affect the precision of subsequent analyses; in par-
ticular call-graph algorithms?

Setup. We perform three experiments to answer the above questions. We analyze five
programs with main method from the XCorpus [DSST17]: jasml, javacc, jext, proguard,
sablecc. This is necessary for the call graphs in the third experiment. All measurements
are taken on a Mac Pro with a Xeon E5 with 8 cores@3GHz and a JVM with 24GB of
heap space.

Experiment 1. The first experiment aims to answer RQ1 and RQ2 and evaluates how
exchanging the abstract interpretation domains affects TACAI’s output and its transfor-
mation performance. In order to compare the results, we generate Shimple, TACAIL0,
TACAIL1, and TACAIL2 (cf. Section 9.1) for all methods of the programs that are
subject to our evaluation.

Table 9.2 shows the experiment’s results. The first three columns show the analyzed
project, the number of its classes and methods, respectively. Column four shows the
IR to which the values in columns five to ten belong to. Those columns present the
total number of instructions, the average instruction count per method, its median, and
standard deviation. The last column presents the time it takes to generate the IR.

Comparing the runtimes reveals that TACAIL0, TACAIL1, and TACAIL2 are com-
puted significantly faster than Shimple. Only on javacc, TACAIL2 was slower than
Shimple. The best speedup w.r.t. Shimple of roughly 4.5× is achieved on proguard. We
conclude that TACAI’s design is feasible. TACAI can be generated faster than Shim-
ple, even using the most precise configuration TACAIL2. The overhead to compute
TACAIL1 compared to TACAIL0 is negligible. Computing more precise information
takes time. However, when the extra information (e.g. nullness) provided by TACAIL1

and TACAIL2 are required by an analysis, this time consumption is justifiable.
When we consider the number of instructions, its reduction is less than 1 %. This is,

however, expected because if it would be otherwise, it would indicate dead code [EHMG15].

Obs.24: Combined with the applied optimizations, the reduction of three-address state-
ments is negligible for our evaluation programs.
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Table 9.2.: Performance results from Experiment 1.

project #classes #methods representation #instructions avg. median st. dev. #call edges runtime

jasml 50 265

Shimple - - - - 5 792 7.6s

TACAIL0 14 164 53.5 12 307.5 5 195 3.5s

TACAIL1 14 163 53.5 12 307.5 5 065 3.9s

TACAIL2 14 066 53.4 12 307.5 5 065 6.9s

javacc 154 2151

Shimple - - - - 73 884 10.9s

TACAIL0 81 917 38.1 11 150.2 71 515 4.2s

TACAIL1 81 683 38.0 11 150.2 71 003 5.4s

TACAIL2 81 651 38.0 11 150.0 70 985 11.5s

jext 466 2799

Shimple - - - - 40 670 19.2s

TACAIL0 73 428 26.2 6 119.8 17 335 4.6s

TACAIL1 73 358 26.2 6 119.8 17 297 5.0s

TACAIL2 73 334 26.2 6 119.7 17 291 6.4s

proguard 645 5237

Shimple - - - - 49 260 26.3s

TACAIL0 70 203 13.4 5 140.4 46 218 4.4s

TACAIL1 70 194 13.4 5 140.4 46 096 4.7s

TACAIL2 69 859 13.4 5 140.4 43 535 5.8s

sablecc 286 2274

Shimple - - - - 57 021 10.3s

TACAIL0 35 717 15.7 5 50.6 52 076 4.1s

TACAIL1 35 715 15.7 5 50.6 50 939 5.0s

TACAIL2 35 715 15.7 5 50.6 50 939 6.3s

1
3
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Experiment 2. Here, we compare the type information that is available in Shimple,
TACAIL0, and TACAIL2 in order to answer RQ3. To perform the experiment, we
compare each IR’s receiver-type information of all potentially polymorphic method in-
vocations.

The comparison across Soot’s Shimple and Opal’s TACAI is carried out as fol-
lows: First, we generate Shimple for all program methods. Afterward, we traverse each
method’s Shimple linearly and memorize for each polymorphic invocation its surround-
ing method, the invoked method’s signature, the line number it occurred in, and its
receiver type. Linear traversal allows us to distinguish multiple invocations within the
same line. Then, we generate TACAI in its current configuration and match each call
site with those recorded by Soot. Next, we compare the call site’s receiver types to
determine if Shimple’s type information is more precise than ours or vice versa. If both
types are equal, we consider them equally precise if TACAI does not know that its
type information is precise, i.e., the exact runtime type is known. In case of precise
type information, TACAI is only considered more precise when the precise type has
subtypes. When intersection types are inferred, we always consider them to be more
precise. However, when TACAI reports union types, we only consider them to be more
precise if each type contained in the union is more precise than Shimple’s receiver type.
Call sites are marked as incomparable if they are not present in either representation.

All results are reported in Table 9.3, which shows the evaluated project, the compared
representations, the project’s invocation count, the number of unmatchable call sites, the
total number of receiver types that are known to be non-null, the number of invocations
with precise receiver-type information, as well as for how many call sites the receiver-type
information provided by Shimple is equal, better, or worse when compared to TACAI.

Table 9.3’s shows that we could match most call sites across Shimple and TACAI’s
representation. While comparing both IRs on Proguard, 520 remain unmatched. An
investigation revealed that Shimple falsely optimizes exception handlers that pertain
to JVM-level exceptions (e.g. ArrayIndexOutOfBoundsException), introducing many
unmatchable call sites in Proguard. Additionally, the unmatched call sites in case of
javacc are caused by the selective inlining of TACAIL2.

When we only consider matchable call sites, we observe that the receiver-type infor-
mation across Shimple, TACAIL0, and TACAIL2 are mostly equal. Whereas Shimple
never provides more type information than even TACAIL0, TACAIL2 can maximally
improve on jext, where it has more precise information for 467 receivers. However,
the overall number of improvements pertaining to receiver-type information is small.
When comparing the availability of nullness information, i.e., the number of cases where
we definitively know that a receiver is non-null and no NullPointerException can be
thrown, between TACAIL0 and TACAIL2, we observe that non-nullness information is
at least available in 11 % of all cases in sablecc and up to 40 % of all cases in jasml.
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Table 9.3.: Receiver-type information of Experiment 2.

project representation #inv. #failed not null precise #equal #Shimple > #TACAI >

jasml
Shimple vs TACAIL0 2 094 37 0 843 2 057 0 0

Shimple vs TACAIL2 2 094 37 838 1 028 1 987 0 70

javacc
Shimple vs TACAIL0 9 883 0 0 4 709 9 878 0 5

Shimple vs TACAIL2 9 722 20 3 551 4 925 9 546 0 164

jext
Shimple vs TACAIL0 15 457 2 0 2 803 15 450 0 5

Shimple vs TACAIL2 15 455 2 5 709 3 406 14 986 0 467

proguard
Shimple vs TACAIL0 9 961 520 0 3 560 9 439 0 2

Shimple vs TACAIL2 9 959 520 3 694 4 168 9 083 0 356

sablecc
Shimple vs TACAIL0 35 717 0 0 4 542 35 716 0 1

Shimple vs TACAIL2 35 715 0 4 143 5 180 35 262 0 453

1
3
8
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Obs.25: TACAI improves little over Shimple concerning receiver-type information.
However, TACAIL1 and TACAIL2 provide additional information useful for static
analysis, e.g. nullness.

Experiment 3. Our last experiment evaluates how exchanging abstract domains in-
fluences CG construction, answering RQ4. To measure the effect, we construct a class
hierarchy analysis (CHA) CG since it is solely based on the declared types. However,
other algorithms (e.g. RTA [BS96]) may also benefit from more precise type information.

Table 9.2 provides the CG’s size in the number of edges in the second last column.
Whereas we can observe a great reduction of call edges compared to Shimple (up to 58%),
the reduction of call edges between different versions of TACAI remains minuscule (up
to 6%).

Obs.26: CHA based on TACAI improves over a Shimple-based CHA. The direct
impact on call graphs between our IRs for our evaluation set is minor. However, the
analyzed programs are rather small in size which lets us assume that the effect on
larger programs could increase. More research is necessary to definitely answer RQ4.

9.3. Related Work

Static analysis tools often work on an intermediate representation (IR) of bytecode which
facilitates static analysis. For instance, Soot [VRCG+10] provides several IRs to operate
on: Baf, Jimple, Grimple, and Shimple. However, Jimple and Shimple are the only TAC-
based representations. Jimple is generated in 5 steps [VRH98]. At first, a näıve, verbose,
and typeless TAC is generated. Step 2 takes the generated TAC and applies several code
optimizations, such as constant propagation and dead code elimination. Step 3 splits,
step 4 types, and step 5 packs local variables so that they are reused as often as possible.
Shimple is produced by converting Jimple into SSA form. In contrast to TACAI, neither
Jimple nor Shimple perform all optimizations in one step. Compared to Jimple/Shimple
which always provide a type bound, TACAI can provide union and intersection types
and derives the information if a specific type is an upper-type bound or a concrete
type. Further, TACAI provides a comparable IR when it is configured with its cheapest
domain but can be computed faster. Moreover, when advanced domains are configured,
TACAI can directly provide additional information, such as def-use information or a
variable’s nullness.

Demange et al. [DJP10] tackle the problem that an analysis result’s correctness strictly
depends on the correctness of the performed transformation from the original bytecode
to the IR. To mitigate the risk, they provide a formal semantics for an untyped, stack-
based Java-like bytecode language, called BC. BC, however, lacks several Java bytecode
features (e.g. static fields). Using the defined semantics, they provide a one-pass trans-
formation algorithm that takes BC as input and then generates a TAC-based intermedi-
ate representation, called BIR. BIR is proven to preserve the code’s semantics. During
the transformation, a symbolic stack is used to decompile bytecode into TAC. However,
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proposed transformation works only for a subset of Java bytecode and does not aim at
making the precision configurable.

9.4. Conclusion

In this chapter we presented TACAI, an abstract-interpretation-based intermediate rep-
resentation with configurable abstract domains. Our intermediate representation directly
comes with three preconfigured abstract domains which—when used—result in three-
address codes with different levels of precision regarding nullness or available type infor-
mation. TACAI’s configurable approach provides an important building block for many
analyses and enables pluggable precision and scalability at the lowest level.

Our evaluation shows that TACAI is faster to compute than Soot’s Shimple. Further-
more, TACAIL1 and TACAIL2 encode more information. Whereas the improvements
over Shimple concerning the provided type information are minor, Chapter 6 showed
that a precise IR can have a significant impact on a CG’s precision.
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10. Modular Call-graph Construction for
Java Libraries

Previously, in Chapter 7, we systematically discussed call-graph (CG) algorithms for
libraries, finding that their construction must a) consider a library’s extension via inher-
itance and b) distinguish a library’s public API and its private implementation. However,
both aspects are influenced by the CG’s usage scenario, implying either of the follow-
ing two assumptions. In one scenario, we assume an unrestricted library usage (open-
package assumption in short OPA). In the other scenario, we assume that a library user
uses and extends only classes of the library’s public API (closed-package assumption in
short CPA). In the same chapter, we also modified the CHA CG algorithm [DGC95]
to support both scenarios and evaluated their effect. Our experiments have shown that
distinguishing the above usage scenarios is necessary as the number of call edges in the
CGs differs significantly and each algorithm can identify unique issues. However, we
performed the experiments with a CHA-based algorithm, which is fast but imprecise,
limiting the scalability of subsequent analyses [Bod18].

In this chapter, we investigate whether the open- and closed-package assumption gen-
eralizes to CGs from the propagation-based CG algorithm family proposed by Tip and
Palsberg [TP00]. Furthermore, we explore how to adapt CG algorithms of this family to
analyze libraries to find a better base CG algorithm than CHA. We present how these
algorithms can be adapted to the analysis of libraries and determine the best-suited algo-
rithm concerning precision and performance. We implemented all CGs of the algorithm
family and the library support—for both OPA and CPA—using OPAL’s modular and
collaborative analysis framework (cf. Chapter 8).

10.1. The Algorithms

We will use and extend Tip and Palsberg’s set-based framework [TP00] to present both
the existing algorithms and our extensions to those. This will enable straightforward
comparison and puts our work in context. Figure 10.1 shows the relationships between
the four algorithms we will adapt and their cost/accuracy relation compared to other
well-known algorithms. We will focus on the four algorithms shown in the shaded area,
namely CTA, MTA, FTA, and XTA1. The ordering from left to right corresponds to the
number of sets used by each algorithm to approximate the runtime receiver types at a
callsite, resulting in greater cost and accuracy, while potentially limiting their scalabil-
ity. For example, rapid-type analysis (RTA) uses a single global set to approximate a

1Please note that these are the algorithms’ complete names and not acronyms. However, like the
rapid-type analysis (RTA), these algorithms are also type-based analyses.
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program’s runtime types. In contrast, XTA captures the program’s runtime types using
one set for each field and for each method. The rationale behind using multiple sets is
to provide somewhat local type information and, thus, resolve callsites more accurately.

RTA CTA

FTA

MTA

XTA 0-CFA

cost and precision 

…

…

…

…

number of used sets

Figure 10.1.: Overview of the algorithms adapted and studied in this chapter.

10.1.1. Call Graphs fro Applications

Next, we will introduce the application CG algorithms and their propagation constraints
as defined by Tip and Palsberg [TP00]. First, we will define RTA as a baseline. Second,
we will define the most precise algorithm XTA. Finally, we will adapt the definition of
XTA to define CTA, FTA, and MTA.

All definitions only define how an algorithm resolves virtual calls. Other language
features, APIs, or non-virtual calls are not discussed as these are orthogonal to virtual
call resolution and can be handled equally throughout all algorithms.

RTA The rapid-type analysis [BS96] captures type-instantiation information in a global
set variable IT (instantiated types). Whenever the algorithm encounters a constructor
call during CG construction, it adds the type of the constructed object to IT.

To define the CG’s constraints, we use the following notion. R denotes the set of
reachable methods, StaticType(e) denotes the static type of the expression e, SubTypes(t)
denotes the set of declared subtypes of t, and StaticLookup(C,m) denotes the definition
of a method m that is found on method lookup in the class C. Furthermore, we use
eps to denote the set of entry points. For example, when constructing a whole-program
application CG, eps contains only the program’s main method.
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The following three contraints2 define RTA:

1. eps ∈ R

2. For each method M, each virtual callsite e.m(. . . ) occurring in M, and each class
C ∈ SubTypes(StaticType(e)) where StaticLookup(C,m) = M’:
(M ∈ R) ∧ (C ∈ IT )⇒ (M ′ ∈ R).

3. For each method M, and for each new C() occuring in M : (M ∈ R)⇒ (C ∈ IT ).

Intuitively, the first constraint reads: all entry-point methods are reachable. Constraint
two reads: if a method m is reachable and its body contains a virtual callsite e.m(. . . ),
then every method with m’s signature3 that is a) inherited4 by a subtype of e’s static
type and b) declared in an instantiated type, becomes reachable. The third constraint
expresses: IT contains all classes that a reachable method instantiates.

XTA In contrast to RTA, the remaining CGs use multiple sets to capture the instan-
tiated types. Instead of using a global set, they associate multiple sets with different
program entities, such as classes, methods, or fields. XTA uses a distinct set ITM for each
method M and a distinct set ITF for each field F. To define XTA’s constraints, we intro-
duce further notation. ParamTypes(M) denotes the set of static types of a method M ’s
formal arguments5. ReturnType(M) denotes M ’s declared return type. Additionally, we
must extend SubTypes(·) to work on a set of types:

SubTypes(TS) =
⋃

t∈TS

SubTypes(t)

Using these notions, we can define XTA with the following five constraints:

1. eps ∈ R

2. For each method M, each virtual callsite e.m(. . . ) occurring in M, and each class
C ∈ SubTypes(StaticType(e)) where StaticLookup(C,m) =
M’ : (M ∈ R) ∧ (C ∈ ITM )

⇒


(M ′ ∈ R) ∧ (a)

SubTypes(ParamTypes(M ′)) ∩ ITM ⊆ ITM ′ ∧ (b)

SubTypes(ReturnType(M ′)) ∩ ITM ′ ⊆ ITM ∧ (c)

C ∈ ITM ′ . (d)

3. For each method M, and for each new C() occuring in M : (M ∈ R)⇒ (C ∈ ITM ).

2Implications can become true if the left-hand side of the implication is false. Hence, we are only
interested in the minimal sets of eps, R, and IT that fulfill these three constraints.

3We consider a method’s signature to consist of its name, formal type parameters, and return type.
4Please note that the subtype relation is reflexive and, therefore, each class C is also a subtype of itself.
5The method’s this pointer is excluded.
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4. For each method M in which a read of a field F occurs:
(M ∈ R)⇒ ITF ⊆ ITM .

5. For each method M in which a write of a field F occurs:
(M ∈ R)⇒ (SubTypes(StaticType(F )) ∩ ITM ) ⊆ ITF .

Again, all entry points are reachable. Constraint two refines the respective RTA
constraint as follows: a) for M’ to become reachable, its declaring class C must be
available in method M ’s instantiated type set ITM, b) all types that are locally available
in M and compatible with the types of the callee’s formal paramterers flow to the type
set of M’ (ITM’), c) all types that are locally available in M’ and compatible with its
return type flow to M ’s type set ITM, and d) type C is always available in M’ through
its implicit this reference. The third constraint restricts the corresponding RTA rule by
adding the instantiated type C only to the local type set ITM. The fourth constraint
reflects type flow from a field’s type set to the method M ’s set whenever a field read of
F occurs. Analogously, the fifth constraint models the type flow from M’s set to the set
of a written field F.

Next, we will define additional constraints to obtain MTA, FTA, and CTA. These
constraints focus on unifying the type sets ITM and ITF in different ways.

MTA This algorithm uses a distinct set variable for each class C (ITC) and for every
field F (ITF), thereby unifying the type information for all methods within a class. As
in XTA, the type sets for fields remain separated. MTA can be obtained by adding the
following constraint to the definition of XTA:

1. If a class C defines a method M : ITC = ITM .

FTA This algorithm uses a distinct set variable for each class C (ITC) and for every
method M (ITM). In contrast to MTA, FTA unifies the type information for all fields,
still separating methods. Hence, FTA can be obtained by adding the following constraint
to the definition of XTA:

1. If a class C defines a field F : ITC = ITF .

CTA This algorithm uses a distinct set variable ITC for each class C. Hence, compared
to XTA, the type information for all methods and fields of a class is unified. The
algorithm is obtained by adding the following constrains to XTA’s definition:

1. If a class C defines a method M : ITC = ITM .

2. If a class C defines a field F : ITC = ITF .

10.1.2. Library Considerations

In Chapter 7, we discussed how to extend existing CG algorithms for libraries. Besides
the advanced entry-point computation and the call-by-signature resolution for interface-
based calls, adapting the previously presented CG algorithms for libraries poses an
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additional challenge. As our program is no longer a closed world, we must consider
the external world’s influence. Thus, we must initialize the instantiated type sets of
all entry-point methods of each algorithm accordingly. Like the extensions discussed
in Chapter 7, the initialization of the instatianted type sets also requires a distinction
between the open-package assumption (OPA) and closed-package assumption (CPA).
Chapter 7 presented how these two assumptions directly influence which program entities
are accessible. Therefore, we will not distinguish OPA and CPA explicitly to define the
algorithm extensions. However, we will use the concept of accessibility to enable concise
definitions.

Next, we discuss all library extensions and define additional XTA constraints. As for
the application algorithms, adding the constraints for CTA, MTA, or FTA will result in
the respective algorithm.

Entry Points An entry point is a method that is considered reachable (M ∈ R) at the
start of CG construction. The computation of the entry points is described in Chapter 7.
While Listing 7.3 shows the algorithm in case of OPA, Listing 7.4 refines the entry-point
computation for CPA. Here, we can use the same algorithms to determine our initial set
of entry points eps with respect to OPA and CPA.

library’s public API

External World 
(ITEW)

A.mi(X)

A.mj(Z)

B.mk(X[])

class hierarchy

X Z

Y

{X}

{Z,Y}

{X[]}

W

legend

accessible
inaccessible

{X, Y, Z, X[], Y[], Z[]}

Figure 10.2.: Type-set instantiation example in the presence of an external world.

Type-set Initialization The entry points define the library’s public API, i.e., they com-
prise all methods that can directly be called by a client of the library. Whereas an
application’s main method always has the type String[] as formal parameter, library
entry points may have formal parameters with many different types, provided by the
caller.

The problem is illustrated by Figure 10.2. It shows how the external world—denoted
by ITEW—can access a library’s public API and how these accesses can affect the con-
structed CG. The displayed library has internal classes that cannot be accessed from
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the external world. In our example, the class W belongs to the library-private imple-
mentation. All other classes are accessible, i.e., the external world can construct objects
of them. As the library’s public API has three methods with formal parameters, the
type sets associated with these methods must be initialized accordingly. Assuming an
algorithm that keeps separate type sets for each method (e.g., XTA), we must initialize
A.mi(X)’s type set ITA.mi as {X}. Please note that we do not have to consider X ’s
subtype W since it is not accessible. In contrast, the method A.mj(Z) has a formal-
parameter type Z which is subtyped by the accessible type Y. Therefore, ITA.mj must be
initialized with {Z, Y }. As B.mk(X[]) shows, array types can be handled analogously.

To recap, the set of accessible types, methods, and fields depends on the library-
private implementation (cf. Chapter 7). Intuitively, all classes, methods, and fields that
can be accessed from the external world are considered accessible. Moreover, all classes
with constructors that are externally callable must be assumed to be instantiated by a
client of the library. To define the additional constraints, we will use Cacc to denote all
accessible classes and Facc to denote all accessible fields. SubTypesacc(t) denotes the set
of subtypes of t that are accessible. Analogously, we adapt the SubTypesacc(·) predicate
that works on a set of types.

We add the following constraints to the definition of XTA:

1. For each method M :
(M ∈ eps)⇒ (SubTypesacc(ParamTypes(M)) ∩ ITEW ) ⊆ ITM .

2. For each field F :
(F ∈ Facc)⇒ (SubTypesacc(StaticType(F )) ∩ ITEW ) ⊆ ITF .

Intuitively, the first constraint expresses that each entry point’s instantiated type set
initializes to all types from the external world that a client might pass to the method.
Constraint two says that each accessible field’s instantiated type set initializes to all
types that can be assigned to the field.

Call-by-signature Resolution The goal of call-by-signature (CBS) resolution is to cover
possible inheritance scenarios where the external world extends library classes. To deal
with these scenarios, we must perform CBS resolution at interface-based callsites. All
details pertaining to CBS resolution were discussed in Chapter 7. However, CBS resolu-
tion concerns only classes that are not (yet) in an inheritance relation with the callsite’s
interface and is therefore orthogonal to virtual call resolution.

We add the following constraint to the definition of XTA to enable CBS resolution:

1. For each method M, each interface callsite e.m(. . . ) occurring in M where at least
one type in SubTypes(StaticType(e)) is accessible, and each class
C ∈ ¬SubTypesacc(StaticType(e)) where StaticLookup(C,m) = M ′ :

(M ∈ R) ∧ C ∈ (ITEW ∩ SubTypesacc(StaticType(e))⇒ (M ′ ∈ R).

The constraint reads: if a method is reachable and contains a virtual call on an
interface type e.m(. . . ), then every method with the same name m that a) is not declared
in a subtype of that interface e but b) is declared in or inherited by an accessible class
is also reachable.
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10.2. Implementation

We implemented the previous section’s version of the XTA algorithms using Opal’s
framework for modular and collaborative static analysis presented in Chapter 8. Our
implementation consists of four generic core analyses that derive three property kinds.

TACAI

InstantiatedTypesAnalysis

InstantiatedTypes

PropagationBasedCallGraphAnalysis

CallersCallees

ArrayInstantiationsAnalysis

InstantiatedTypes

TypePropagationAnalysis

InstantiatedTypes

uses property kindderived property
 kind

property kind
of other analyses Analysismodul

legend

Figure 10.3.: Overview of the different analysis modules that collaboratively compute
the call graph.

Figure 10.3 gives an overview of these components and depicts their relations. The
PropagationBasedCallGraphAnalysis depends on our intermediate representation TACAI
(cf. Chapter 9) and the InstantiatedTypes property kind. Based on that information,
it resolves direct and virtual method calls. Furthermore, the InstantiatedTypesAnaly-
sis, the ArrayInstantiationsAnalysis, and the TypePropagationAnalysis collaboratively
compute the instantiated types. The regular InstantiatedTypesAnalysis is responsible
for adding newly instantiated types to an entity’s type set. Analogously, the ArrayIn-
stantiationsAnalysis exclusively handles array types and their elements. The TypeProp-
agationAnalysis handles the propagation of these type sets. Collaboratively computing
the instantiated types brings two advantages. First, the separate analysis for array
handling allows implementing various models of arrays. Second, the separation of the
instantiated types and the type propagation enables isolated development, and we can
implement several type-propagation strategies.

Abstracting over the concrete entities that are associated with a type set, this design
allows to instantiate all CG algorithms from the set-based framework. The implemen-
tation is parameterized over a function, the TypeSetEntitySelector that given an entity
(e.g., a field or a method) returns the entity its type set is associated with (e.g., a
method’s class). While the proposed design allows to instantiate many different CGs
from the set-based framework, we currently provide entity selectors to model RTA, CTA,
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FTA, MTA, and XTA.

10.2.1. Call-graph Construction Lifecycle

The CG is computed in 5 steps. First, we must compute the entry points. Second, we
must configure the CG’s entity selector. Third, given the entry points and the entity
selector, we must preinitialize the type sets. Fourth, we can register additional analyses
to support additional language features. Finally, we can start the CG construction at all
entry points, triggering the fixed-point computation. When the fixed-point is reached,
the CG becomes available. Next, we shortly discuss each step.

Entry Points Our implementation relies on the entry points derived by Opal’s Entry-
PointsFinders. In addition to application entry points, these can compute library entry
points that are conform either to OPA or CPA. Hence, the concrete entry-point finder
determines whether the CG is suitable for applications, libraries with OPA, or libraries
with CPA.

Entity Selection To instantiate a concrete algorithm from Tip and Palsberg’s set-based
CG framework, we use the following trait to define a type-set-entity-selector function:

trait TypeSetEntitySelector extends (Entity ⇒ TypeSetEntity)

We use this function to determine the type set representing the available types at a
given entity. Listing 10.1a and Listing 10.1b show examples of set-entity selectors for
CTA and XTA. CTA’s function maps methods and fields to their respective class file
(cf. Line 6 and 7), i.e., their instantiated type sets are associated with their class, unifying
the type sets of a class’ methods and fields. In contrast, XTA’s function maps fields and
methods to themself, keeping separate type sets (cf. Line 6 and 7). Additionally, it is
possible to define how array types as well as fields and methods that were not found
on the classpath are handled. In our examples, we associate the type sets of unknown
entities with the external world (cf. Line 10 and 12).

Preinitalizing Type Sets Before we can start to intialize the type sets of entry-points
methods and accessible fields, we must initialize the type set of our external world
(ITEW ). Hence, we must compute which classes might be instantiated by a client of the
library. However, this initial set of instantiated types depends on our CG construction
scenario, i.e., whole-program, library with OPA, or library with CPA. Opal’s Instantiat-
edTypesFinder offers that functionality and computes ITEW according to the respective
scenario. Using ITEW , we intialize the entry point’s type sets as described in Section 10.1
(cf. Figure 10.2). Similarly, we initialize the type sets of accessible fields.

Registering Additional Analyses Opal’s framework for modular and collaborative
static analyses allows us to define additional analyses that can contribute to the CG.
In particular, we can add further analyses that collaboratively compute the CG’s caller
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1 object CTASetEntitySelector
2 extends TypeSetEntitySelector {
3

4 override def apply(e: Entity):
TypeSetEntity =

5 e match {
6 case m: Method ⇒ m.classFile
7 case f: Field ⇒ f.classFile
8 case at: ArrayType ⇒ at
9 case em : ExternalMethod

10 ⇒ ExternalWorld
11 case ef: ExternalField
12 ⇒ ExternalWorld
13 }
14 }

(a)

1 object XTASetEntitySelector
2 extends TypeSetEntitySelector {
3

4 override def apply(e: Entity):
TypeSetEntity =

5 e match {
6 case m: Method ⇒ m
7 case f: Field ⇒ f
8 case at: ArrayType ⇒ at
9 case em : ExternalMethod

10 ⇒ ExternalWorld
11 case ef: ExternalField
12 ⇒ ExternalWorld
13 }
14 }

(b)

Listing 10.1.: Definition of the CTA and XTA entity selectors.

and callee property kinds.6 While our PropagationBasedCallGraphAnalysis computes
the call targets of direct or virtual calls, additional analyses can contribute this informa-
tion for different features and APIs, e.g., reflection, serialization, threads, or finalizers.
Moreover, when analyzing a library, we can add an analysis that contributes CBS targets.

10.2.2. Design Decisions

Using the algorithms on real-world applications requires us to make several design
choices. In the following, we discuss the most relevant ones:

Array Handling We model arrays as unique entities. For each n-dimensional array type
An in the program, we use a special ArrayType entity that represents all of its elements
(ITAn). Hence, all arrays of the same type and dimension share one type set.

We use the same methods to track and propagate array types as we use for fields and
classes. For example, whenever we observe a new array’s construction, we add the array
type to the local type set (e.g. AT ∈ ITM ). Thus, the type sets carry information about
classes and arrays available to an entity. We use ElementTypes(AT ) to denote the set
of types that an array can hold7. If an array AT is read by a method M, we propagate
(ITAn ∩ ElementTypes(AT )) to ITM . When an array AT is written by a method M,
we propagate (ITM ∩ ElementTypes(AT )) to ITAn .

We chose this representation as it is a global but correct model for arrays. However,
we modularized the computation of the instantiated types and can therefore quickly

6Analogously to the case study presented in Section 8.3.
7Multi-dimensional arrays hold lower-dimensional arrays whose element types are not returned by
ElementTypes.
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adapt our array modeling.

Exception Handling Tip and Palsberg [TP00] argue that precise exception tracking is
very complex and might not be worthwhile. We agree and use a separate global set ITEx

to approximate the runtime types of all exceptions. This set contains only subtypes of
java.lang.Throwable and is only used to resolve calls on exception objects.

Generics Generic types are common in Java. For instance, they are heavily used in
Java’s collection classes to facilitate type-safe access. However, due to type erasure,
generic type information is lost during compilation. Therefore, if an object of a generic
collection is retrieved and the type has been removed, all following method calls are
performed on the root type java.lang.Object. However, the compiler sometimes adds
a checkcast instruction after a call on a generic object, restoring the lost information.
We explicitly check for these instructions to maintain precision.

Incomplete Code While we have described how our algorithms construct CGs for
libraries, any realistic implementation must deal with unknown code elements, i.e., code
elements that are not in the scope of the analyzed program. Such a scenario is typical for
non-whole-program analyses. For example, when analyzing a program with incomplete
dependencies, one may encounter field reads and writes or method calls that cannot
be further analyzed. Hence, we must approximate their behavior. Since our set ITEW

already models the external world, we chose to also use it in the following cases:

• If a method M calls an externally declared method M ′, we propagate (ITM ∩
ParamTypes(M ′)) to ITEW . When M ′ is a virtual method, the this pointer is
additionally propagated. In turn, for methods that return a reference type, we
propagate (ITEW ∩ReturnType(M ′)) to ITM .

• If a method M writes to an externally declared field F, we propagate (ITM ∩
StaticType(F )) to ITEW . Reading such a field F causes a propagation of (ITEW ∩
StaticType(F )) to ITM .

Please note that all entry points always depend on ITEW . Therefore, whenever new types
are become available in ITEW , these will be propagated to all entry-point methods.

Modeling Java Features Due to our approach’s modular and collaborative design, we
can add support for additional features or APIs by defining new independent analyses.
Our current implementation provides analyses for reflection, serialization, threads, fi-
nalizers, and some native methods. If support for a particular feature is needed, one
can add the respective analysis to the modular CG construction algorithm. Once we
develop an analysis for a feature, one can reuse it in every CG that our implementation
can potentially instantiate.
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10.3. Evaluation

We evaluate the proposed approach along two major dimensions: a) by comparing a call
graph (CG) computed using the classical RTA against the call graphs computed by our
CG algorithms; b) by comparing the proposed algorithms with each other.

RQ1 What is the performance overhead of initializing the different CG construction
algorithms’ type sets?

RQ2 What is the effect of OPA and CPA on the initialized type sets?

RQ3 What is OPA and CPA’s effect on the set-based CG algorithms with respect to
their CG’s call edges and reachable methods?

Setup We use ten algorithms (RTAOPA, CTAOPA, MTAOPA, FTAOPA, XTAOPA,
RTACPA, CTACPA, MTACPA, FTACPA, and XTACPA) to construct respective call
graphs8 for a large set of libraries: the 100 most used distinct Java related libraries
from the Maven Central Repository. Specifically, we used the same set of libraries as in
Chapter 7. The data set’s full description is available in Section 7.3. We also downloaded
all dependencies to build a complete class hierarchy.

Instead of analyzing all library dependencies, we consider only the public interface of
all third-party libraries. Otherwise, the performance and the set of call edges would be
dominated by dependent libraries. For over 90% of our evaluation projects, the analyzed
library defines less than 5% of all methods itself, while 95% of the code base’s methods
are introduced by used third-party libraries.

All measurements are taken on a Mac Pro with a Xeon E5 with 8 cores@3GHz and a
JVM with 24GB of heap space.

Experiments While we performed the experiments with all CG algorithms, we show
only excerpts of our data. Because CTA and MTA as well as FTA and XTA exhibit
very similar behavior, we group these algorithms. Tables 10.1-10.7 show selected results
of our experiments. Most of these tables list only the top five and the bottom five libraries
with respect to the measured effect. Furthermore, those tables contain the mean and the
standard deviation over all 100 libraries. Next, we will use this information to answer
the research questions.

10.3.1. Performance Overhead of Type-set Initialization

To answer RQ1, we measure for each algorithm the size of the initialized type sets and
the time it takes to compute them. Table 10.1 presents the number of type sets, their
average size9, and the initialization time of RTA and XTA variants. While RTA’s
initialization time slightly increases when more types are available in ITEW , XTA’s

8Each CG was constructed with a timeout of 600 s.
9The size of RTA’s initial type set is equivalent to the size of ITEW .
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Table 10.1.: XTA and RTA type-set information directly after initialization on the top
and bottom five projects from our data set.

Project Algorithm #TS ∅ TS Size / Initialization

slf4j-log4j12

RTAOPA 1 3 016 1.1 s
RTACPA 1 1 662 1.1 s
XTAOPA 1 086 223 1.8 s
XTACPA 371 63 1.5 s

commons-fileupload

RTAOPA 1 2 902 1.1 s
RTACPA 1 1 653 1.1 s
XTAOPA 1 105 48 1.7 s
XTACPA 428 41 1.5 s

easymockclassextension

RTAOPA 1 3 021 3.3 s
RTACPA 1 1 667 3.1 s
XTAOPA 1 027 72 4.6 s
XTACPA 285 75 1.5 s

hibernate-jpa-2.0-api

RTAOPA 1 2 750 1.1 s
RTACPA 1 1 526 1.1 s
XTAOPA 1 014 82 1.7 s
XTACPA 355 81 1.5 s

json

RTAOPA 1 2 750 1.1 s
RTACPA 1 1 528 1.1 s
XTAOPA 1 085 99 1.7 s
XTACPA 459 98 1.6 s

hibernate-core

RTAOPA 1 6 196 3.5 s
RTACPA 1 3 661 3.2 s
XTAOPA 26 732 474 74.8 s
XTACPA 20 108 289 32.8 s

hsqldb

RTAOPA 1 3 230 3.3 s
RTACPA 1 1 791 3.2 s
XTAOPA 14 030 166 24.9 s
XTACPA 7 795 101 8.7 s

groovy-all

RTAOPA 1 6 821 3.3 s
RTACPA 1 4 104 3.4 s
XTAOPA 32 109 2 070 201.9 s
XTACPA 23 817 1 310 95.0 s

scala-compiler

RTAOPA 1 15 151 1.1 s
RTACPA 1 13 845 1.2 s
XTAOPA 52 225 1 986 128.6 s
XTACPA 48 650 1 898 112.7 s

scala-library-2.10.4

RTAOPA 1 5 899 3.5 s
RTACPA 1 4 658 3.1 s
XTAOPA 53 448 1 088 229.0 s
XTACPA 49 936 929 175.3 s

TS = Type set.
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initialization time additionally depends on the program’s number of accessible methods
and fields. Hence, the computation of type flows from ITEW to XTA’s methods and
fields becomes more expensive with a) larger type sets and b) an increased number of
methods and fields, leading to a big increase in initialization time for larger projects,
such as scala-library-2.10.4 or scala-compiler. The named projects’ initialization time
increases by several orders of magnitude, up to 116.3× of RTA. However, Table 10.2
shows that the overhead from type-set initialization increases only by a factor of 4.7-7.6
on average, depending on the algorithm. In relation to the full CG construction time,
type-set initialization consumes 11.4%-16.6%.

Obs.27: The type-set initialization for all algorithms of the XTA-family has on average
a non-negligible overhead of a factor between 4.7 and 7.6 compared to a RTA. Thus,
it does not scale well to large libraries that come with many dependencies.

Table 10.2.: Information on type sets and runtime of each algorithm. All of the present
information are means over all libraries.

Algorithm
∅ #Type Sets ∅ Type-set Size ∅ Time

initialization final initialization final initialization total

RTAOPA 1 1 4 053 4 104 2.9 s 13.4 s
CTAOPA 1 069 5 034 968 873 22.6 s 144.2 s
MTAOPA 1 836 6 143 635 704 19.1 s 143.4 s
FTAOPA 5 765 10 753 456 742 19.7 s 138.1 s
XTAOPA 6 480 12 098 363 643 17.0 s 118.9 s

RTACPA 1 1 2 487 2 661 2.7 s 8.9 s
CTACPA 673 3 119 763 794 14.7 s 128.5 s
MTACPA 903 3 887 578 682 12.6 s 118.3 s
FTACPA 4 531 8 529 328 536 15.4 s 106.7 s
XTACPA 4 720 9 226 288 494 12.5 s 92.7 s

10.3.2. Comparing Type Sets across CPA and OPA

To answer the second question, we compare the initial type sets’ size across the algo-
rithms that operate on OPA and those operating on CPA. Across the four base algo-
rithms, XTA is affected the most. That is, as described in Chapter 7, because CPA
reduces the number of initially instantiated types, the number of accessible fields, and
the number of entry points and, hence, XTA has the most potential for improvement.
On some programs (e.g., guava, guice, and gson), we observe a reduction of the number
of initial type sets between 65-78% and a decrease in the average initial set size of up
to 90% for all algorithms. While these projects make good use of Java’s visibility mod-
ifiers, unfortunately, the Scala compiler does not. Again, as in Chapter 7, we observe
the least effect on Scala programs. Interestingly we find that for some programs, the

153



10. Modular Call-graph Construction for Java Libraries

average type-set sizes only slightly decreases, although the size of ITEW and the number
of initialized type sets massively dropped. For example, in easymockclassextension the
use of CPA shrinks ITEW ≈ 45% and reduces the number of type sets by 72% compared
to OPA. Nevertheless, the average size of all type sets increases by three. An inspection
revealed that the remaining entry points and fields had java.lang.Object as a formal
parameter or declared type respectively, often leading to the propagation of the entire
set ITEW . Unification of all entities that use java.lang.Object into a set ITO may
reduce the overhead of maintaining multiple sets.

Obs.28: Frequent use of java.lang.Object as formal parameter or field type in entry
points or accessible fields generates numerous large sets.

Considering the average number of initial type sets (cf. Table 10.1) and the average ini-
tial type-set size together with their final state (cf. Table 10.2), we observe that all CPA
algorithms benefit from respecting the library-private implementation. Although RTA
uses only a single set, it can leverage CPA. Yet, as RTACPA’s average type-set size in-
dicates, its type set is often initialized to 80-93% the size of the final type set. Instead,
RTAOPA adds almost all available types during the initialization phase.

Obs.29: When using CPA, RTA does not degenerate to a CHA, implying that a
significant number of libraries do not use java.lang.Object as a formal parameter in
their entry points. Thus, under CPA RTA can improve over CHA, while under OPA
it practically is equivalent to CHA.

All other algorithms profit from CPA too. The average number of initial type sets of
each algorithm decreases between 20% (FTACPA) and 38.4% (CTACPA), reducing the
average number of final type sets of CTACPA by 37%, MTACPA by 50.8%, FTACPA by
21.4%, and XTACPA by 27%. Additionally, the decrease of each type set’s size lets us
assume that less information is provided at each call site, leading to faster execution.

Obs.30: CPA has a positive effect on the average number and size of an algorithm’s
type sets. Additionally, it reduces each algorithm’s initialization time.

10.3.3. Comparing Advanced Library Call Graphs

To answer research question three, we compare CGs computed by all algorithms in the
context of OPA and CPA. First, we compare RTAOPA to CTAOPA, MTAOPA, FTAOPA,
and XTAOPA. Second, we compare RTACPA to CTACPA, MTACPA, FTACPA, and
XTACPA. Finally, we measure the differences between XTAOPA and XTACPA.

OPA Call Graphs We group algorithms with similar performance. Whereas Table 10.3
shows the results for CTAOPA and MTAOPA, Table 10.4 provides results FTAOPA and
XTAOPA. With an exception of org.apache.felix.scr.annotations where all algorithms
can reduce the number of call edges by 92% compared to RTAOPA, CTAOPA and
MTAOPA perform consistently worse than FTAOPA and XTAOPA. Over all projects,
they can reduce the number of call edges only by 6-7%. Considering that these al-
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gorithms take approximately more than 20 times longer to compute than RTAOPA,
the gains seem negligible. Despite also being way slower than RTAOPA, FTAOPA and
XTAOPA can considerably reduce the number of call edges by 27% and the number of
reachable methods by 9% on average.

Obs.31: Set-based algorithms that unify the type flow for all methods can not improve
significantly over RTAOPA. Hence, they seem not well suited in an open-package
library scenario. However, when each method is represented by a separate type set,
as in FTAOPA and XTAOPA, the number of call edges can be reduced by more than
25% without losing any soundness. Despite being slower than RTAOPA, XTAOPA is a
viable option for OPA CGs.

CPA Call Graphs Observing similar behavior for CTACPA and MTACPA as well as
for FTACPA and XTACPA, we group their results. Table 10.5 displays the results for
CTACPA and MTACPA, while Table 10.6 shows FTACPA and XTACPA’s results. All
CG construction algorithms exhibit similar behavior as under OPA. However, due to the
smaller initialized type sets, the overall CG size can be reduced by 11% (CTACPA and
MTACPA), or 26% (FTACPA and CTACPA) respectively. While Tip and Palsberg [TP00]
observed a smaller effect of an average reduction of only 7% (XTA) on their application
benchmark, these algorithms show more significant benefits on libraries. Moreover, we
observe that the resulting CGs from algorithms that unify the type sets for methods
and those that do not are very similar. Hence, CTA and MTA produce similar CGs
and FTA and XTA, respectively. While the average reduction of call edges or reach-
able methods is almost identical, we find that for some programs (e.g., protobuf-java)
XTACPA produces slightly smaller CGs than FTACPA. Still, XTA produces the result-
ing CGs faster (cf. Table 10.2). In general, XTACPA maintains more but smaller type
sets than FTACPA, reducing the cost to compute set intersection while propagating type
sets. Compared to RTACPA, XTACPA reduces the number of reachable methods by 12%
and the number of call edges by 26%. Unfortunately, this improvement comes with high
runtime cost. Our experiments show that XTACPA is ≈10× slower than RTACPA.

Obs.32: XTACPA is the most precise and fastest algorithm and, therefore, is superior
to all other CG algorithms of Tip and Palsberg’s propagation-based CG-family. The
gains compared to RTACPA are more significant on libraries then they reported in an
application setting.
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Table 10.3.: Number of reachable methods and number of call edges produced by the RTAOPA, CTAOPA, and MTAOPA

algorithms for the top and bottom five libraries from our data set.

Project
RTAOPA CTAOPA MTAOPA

#RM #E #RM #E ↓ #RM ↓ #E #RM #E ↓ #RM ↓ #E

org.apache.felix.scr.annotations 665 4 824 167 395 75% 92% 167 395 75% 92%
validation-api 178 234 112 130 37% 44% 112 130 37% 44%
commons-cli 977 3 408 519 2 243 47% 34% 517 2 079 47% 39%
hibernate-jpa-2.0-api 340 657 267 420 21% 36% 267 420 21% 36%
easymockclassextension 47 60 40 39 15% 35% 40 39 15% 35%

hamcrest-library 766 1 748 766 1 748 0% 0% 766 1 748 0% 0%
hamcrest-core 822 1 676 822 1 676 0% 0% 822 1 676 0% 0%
json 1 238 16 109 1 238 16 109 0% 0% 1 238 16 109 0% 0%
jsr305 83 75 83 75 0% 0% 83 75 0% 0%
asm 422 1 799 422 1 799 0% 0% 422 1 799 0% 0%

mean (over all projects) 4% 6% 4% 7%
std dev (over all projects) 11% 13% 11% 13%

#RM = number of reachable methods; #E = number of call edges. ↓ reduction in the number of reachable methods or call edges.
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Table 10.4.: Number of reachable methods and number of call edges produced by the RTAOPA, XTAOPA, and FTAOPA

algorithms for the top and bottom five libraries from our data set.

Project
RTAOPA FTAOPA XTAOPA

#RM #E #RM #E ↓ #RM ↓ #E #RM #E ↓#RM ↓#E

org.apache.felix-
.scr.annotations

665 4 824 166 366 75% 92% 166 366 75% 92%

maven-project 2 800 27 551 1 801 7 237 36% 74% 1 734 6 903 38% 75%
maven-core 7 140 123 717 5 873 36 313 18% 71% 5 873 36 035 18% 71%
commons-cli 977 3 408 433 1 036 56% 70% 433 1 036 56% 70%
testng 7 378 199 643 7 152 81 055 3% 59% 7 152 80 210 3% 60%

fest-assert 1 191 2 564 1 186 2 492 0% 3% 1 186 2 492 0% 3%
scalacheck 2.10 13 689 231 394 13 172 228 367 4% 1% 13 172 228 367 0% 1%
asm 422 1 799 418 1 791 0% 0% 418 1 791 0% 0%
jackson-annotations 609 649 607 647 0% 0% 607 647 0% 0%
jsr305 83 75 83 75 0% 0% 83 75 0% 0%

mean (over all projects) 9% 27% 9% 27%
std dev (over all projects) 13% 18% 13% 18%

#RM = number of reachable methods; #E = number of call edges. ↓ reduction in the number of reachable methods or call edges.
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Table 10.5.: Number of reachable methods and number of call edges produced by the RTACPA, CTACPA, and MTACPA

algorithms for the top and bottom five libraries from our data set.

Project
RTACPA CTACPA MTACPA

#RM #E #RM #E ↓ #RM ↓ #E #RM #E ↓ #RM ↓ #E

org.apache.felix.scr.annotations 474 3 106 166 395 65% 87% 166 395 65% 87%
slf4j-log4j12 117 202 49 45 58% 78% 49 45 58% 78%
commons-cli 744 2 069 420 1 183 44% 43% 420 1 183 44% 43%
org.osgi.core 1 327 7 036 1 081 4 403 19% 37% 1 081 4 403 19% 37%
lombok 660 1 091 516 722 22% 34% 516 722 22% 34%

asm 405 1 782 396 1 771 2% 1% 396 1 771 2% 1%
jackson-databind 7 982 54 008 7 925 53 750 1% 0% 7 925 53 750 1% 0%
maven-model 1 334 9 523 1 331 9 505 0% 0% 1 331 9 505 0% 0%
jsr305 83 75 83 75 0% 0% 83 75 0% 0%
json 958 11 085 958 11 085 0% 0% 958 11 085 0% 0%

mean (over all projects) 7% 11% 7% 11%
std dev (over all projects) 11% 14% 10% 14%

#RM = number of reachable methods; #E = number of call edges. ↓ reduction in the number of reachable methods or call edges.
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Table 10.6.: Number of reachable methods and number of call edges produced by the RTACPA, XTACPA, and FTACPA

algorithms for the top and bottom seven libraries from our data set.

Project
RTACPA FTACPA XTACPA

#RM #E #RM #E ↓ #RM ↓ #E #RM #E ↓ #RM ↓ #E

org.apache.felix-
.scr.annotations

474 3 106 164 357 65% 89% 164 357 65% 89%

jboss-logging 807 3 083 710 532 12% 83% 710 532 12% 83%
slf4j-log4j12 117 202 49 42 58% 79% 49 42 58% 79%
org.osgi.core 1 327 7 036 839 2 167 37% 69% 839 2 167 37% 69%
json 958 11 085 907 4 324 5% 61% 907 4 282 5% 61%

hamcrest-core 628 1 162 624 1 129 1% 3% 624 1 129 1% 3%
scalacheck 2.10 13 552 231 108 12 883 224 549 5% 3% 12 883 224 549 5% 3%
jackson-annotations 483 523 466 511 4% 2% 466 511 4% 2%
asm 405 1 782 392 1 744 3% 2% 392 1 744 3% 2%
jsr305 83 75 83 75 0% 0% 83 75 0% 0%

mean (over all projects) 12% 26% 12% 26%
std dev (over all projects) 12% 17% 12% 17%

#RM = number of reachable methods; #E = number of call edges. ↓ reduction in the number of reachable methods or call edges.
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OPA vs CPA Finally, we measure how OPA and CPA affect our advanced call graphs.
During our evaluation of LibCHAOPA and LibCHACPA, we observed a negligible re-
duction (0.41%) in the number of call edges from LibCHACPA over LibCHAOPA. In
contrast, the number of entry points could be significantly reduced by 30% (cf. Sec-
tion 7.3). This time, we compare XTAOPA and XTACPA. While we also compared the
other algorithms, we do not discuss them here as their differences across the scenarios
are of similar magnitude. Table 10.7 shows CG information of XTAOPA and XTACPA.
Constructed under CPA, CGs generated by XTA generally provide 26% less edges and
discover 18% less methods. The effect of CPA on type-set initialization (↓ 70%)—which
is also influenced by the computed entry points—carries over to the final CG. However,
it affects neither the number of reachable methods nor the number of all edges to the
same extent.

Obs.33: Respecting the library-private implementation under CPA has a significant
impact on the number of reachable methods and the number of call edges on advanced
CG construction algorithms. Advanced algorithms have a better carry-over effect from
CPA’s initial benefits and, hence, can leverage the assumption better.

In Chapter 7 we found that library CGs for projects with little to no use of Java’s visi-
bility modifiers barely show a difference between OPA and CPA. We observe the same
behavior for CGs from the set-based framework. Additionally, we find that an entity’s
type set can easily be polluted when an entry point declares at least one formal parame-
ter with a type high up in the class hierarchy, e.g., Java’s root type java.lang.Object is
the worst-case scenario. Other examples are collection classes or a visitor design pattern
with many elements. However, CGs with fewer sets are more vulnerable to the pollution
of type sets as their type propagation is more coarse grained.

Obs.34: Advanced library CGs from the set-based framework do bring little to no im-
provement over a CHA when the target library a) does not make use of Java’s visibility
modifiers and b) declare entry points and accessible fields that use java.lang.Object

or any other type with many subtypes.

10.3.4. Threats to Validity

One threat to the validity of our evaluation is the use of libraries from 2015. However,
to enable comparability to the results presented in Chapter 7, we chose to use the same
benchmark projects. Furthermore, most of the libraries are still under the top 100 most
popular maven artifacts10.

Additionally, the presented results could be subject to bugs in our implementation. To
mitigate the risk of significant bugs, we tested the final call graphs with Cats (cf. Chap-
ter 5) and compared the resulting algorithm profiles to Opal’s RTA. Besides, we system-
atically wrote test cases concerning the general implementation and type propagation.

10 https://mvnrepository.com/popular (checked on Apr 26, 2020).
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Table 10.7.: Number of reachable methods and number of call edges produces by the
XTAOPA and XTACPA algorithms for the top and bottom five libraries
from our data set.

Project
XTAOPA XTACPA

#RM #E #RM #E ↓ #RM ↓ #E

jboss-logging 821 3 088 710 532 14% 83%
slf4j-log4j12 119 190 49 42 59% 78%
reflections 2 081 11 068 860 2 719 59% 75%
guice 4 567 22 422 2 172 7 288 52% 67%
maven-core 5 873 36 035 3 722 14 702 37% 59%

org.apache.felix-
.scr.annotations

166 366 164 357 1% 2%

scalacheck 2.10 13 172 228 367 12 883 224 549 2% 2%
scalac-scoverage-plugin 2.11 8 133 19 685 8 120 19 671 0% 0%
jsr305 83 75 83 75 0% 0%
easymockclassextension 40 39 40 39 0% 0%

mean (over all projects) 18% 26%
std dev (over all projects) 12% 17%

#RM = number of reachable methods; #E = number of call edges. ↓ reduction in the number

of reachable methods or call edges.
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10.4. Conclusion

In this chapter, we discussed how to extend CG construction algorithms from the set-
based framework to analyze libraries. In particular, we discussed how to apply the
concepts presented in Chapter 7 to adapt RTA, CTA, MTA, FTA, and XTA algorithms
to make them usable for the construction of library CGs.

These algorithms, in contrast to CHA, use type sets to approximate the receiver types
at a given call site. When building application CGs, this set is usually empty initially
and then filled with the types seen during CG construction. However, libraries are not
closed worlds and their methods and fields can therefore be accessed externally. Thus,
in addition to the extension presented in Chapter 7, the type sets of CGs from the set-
based framework must be initialized, i.e., the type sets must reflect possible uses from
the external world.

Our evaluation shows that these CG algorithms are more precise than RTACPAand,
thus, also improve over LibCHACPA. Other than LibCHACPA, our set-based algorithms
can leverage the reduced number of entry points and contain significantly fewer call
edges and fewer reachable methods. However, the gain in precision comes with a price:
The CGs must hold and merge many large sets, which considerably decreases their
performance. Nevertheless, the increase in precision is with 10% fewer reachable methods
and 25% fewer call edges beneficial.

Our modular implementation of the set-based CG framework allows instantiating
many more CG variants. Some of these algorithms may exhibit different runtime behav-
ior than the evaluated algorithms. Moreover, the modular design facilitates the support
of individual language features and APIs that, when implemented once, can be reused
for all algorithms of the framework.
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11. Conclusion

In this chapter, we present a brief overview of the findings and contributions of this
thesis. We start with a summary of our results and follow with a closing discussion.

11.1. Summary of Results

We provide a holistic view on sources of unsoundness of CG construction algorithms and
on the state-of-the-art in CG construction. We provide an automated test framework,
Cats, which we use to compare existing CG algorithms qualitatively. Based on Cats and
Hermes, our code-query engine for assessing and constructing minimal project corpora
for benchmarking software analysis techniques and tools, we present a methodology and a
toolchain, Judge, for systematically evaluating a CG algorithm’s sources of unsoundness
in a project-specific manner.

Additionally, we discussed the design space of CG algorithms for libraries and pre-
sented OPA and CPA algorithms suiting different needs. To implement the propagation-
based library CG algorithms, we used our framework for collaborative modular static
analyses that eases the development of modular CG algorithms, allowing pluggable pre-
cision, sound(i)ness, and scalability. Finally, we present improved library call graphs, as
a cornerstone for future work.

Comprehending and Minimizing Corpora We proposed Hermes, our code-query en-
gine, to better understand available test corpora and to compute corpora that enable
effective testing of static analysis techniques. We find that we can already use very
primitive queries to better comprehend the nature of given corpora better. Furthermore,
Hermes can be used to generate minimized integration test suite that are feature-wise
equivalent to a large corpus. As Hermes is extensible, researchers can quickly write new
queries to search arbitrary real-world projects suiting their needs and, thereby, enable
meaningful evaluations.

Automated Test Suite for Call-graphs Algorithms We studied the Java Virtual Ma-
chine Specification and reviewed state-of-the-art CG construction algorithms to identify
what introduces sources of unsoundness in CGs. Using the sources of unsoundness we
identified, we build Cats, the first automated test framework for CG algorithms. Cats
enables systematic, comparable, and reproducible experiments, measuring and docu-
menting a CG algorithm’s capabilities. Therefore, it enables to document which features
and APIs a CG construction algorithm supports. Moreover, Cats is easily extensible
by new test cases and additional CG construction algorithms for further experiments.
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Performance of State-of-the-art Call-graph Algorithms We use Cats for a systematic
evaluation and comparison of CG algorithms from four state-of-the-art static analysis
frameworks. We find that all of their CG algorithms support rudimentary program-
ming language features and APIs. Otherwise, they exhibit uneven support for other
features, passing on average only ≈60% of our test cases. While the failing test cases
partially cover dynamic program behavior (e.g. reflection), others pertain to newly in-
troduced features from Java 8 or newer. Only 29% of tests were passed successfully by
all algorithms, i.e., they provide a vastly different feature and API support. In addi-
tion to varying feature support, we find that CG algorithms from different frameworks
employ different design decisions, leading to large differences in the constructed CGs.
Unfortunately, that makes them hardly comparable.

We suggest using Cats as a reference or test suite to improve the evaluated CG
algorithms and increase their comparability.

Prevalence of Java Features and APIs In-the-wild Using Cats’ test cases for sources
of unsoundness in CG algorithms, we developed Hermes queries that find the respon-
sible features in real-world applications. We employed these queries to investigate the
relevance of these sources of unsoundness in-the-wild. Among others, our findings in-
clude that a) Java 8 support is a must for most code bases, b) serialization and reflection
is frequently used, c) many features are only required in specific scenarios, and d) a lot of
commonly used evaluation corpora (e.g., Qualitas Corpus [TAD+10]) are not up-to-date
in terms of coverage of recent features and APIs. As our infrastructure is open source,
researchers can verify these results or investigate these features’ prevalence on additional
corpora.

Project-specific Unsoundness Analysis for Call Graphs We use Judge for a project-
specific evaluation of a call graph’s sources of unsoundness. Our case study on Xalan
revealed that even mid-sized programs use many unsupported features, leading to un-
sound CGs. Furthermore, we find that these unsupported features can have a devastating
effect, e.g., Opal’s CG contained only ≈0.3% of Xalan’s methods. Judge’s findings en-
abled us to quickly identify the problem’s root cause, empowering us to improve Opal’s
CG. Using our experiments’ results, we derived several implications for framework de-
velopers and static analysis researchers to improve CG construction algorithms, their
comparability, and their documentation.

Design Space for Library Call-graph Algorithms We motivate the need for CG algo-
rithms dedicated to libraries and present a thorough discussion of the design space for
such algorithms. We propose two concrete algorithms for libraries based on adaptations
of the CHA algorithm within that design space: One algorithm can be used to identify
security issues (LibCHAOPA), and the other algorithm is meant to identify general soft-
ware quality issues (LibCHACPA). Evaluating these algorithms shows that we need two
types of algorithms to address a library analysis’s individual needs. Additionally, with
LibCHACPA, we discovered 550 dead methods within in the Java Development Kit.
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Modular Construction of Call Graphs Our findings from our studies concerning the
support of programming language features and APIs motivated the need for modular CG
construction and we proposed such a framework as part of a more generalized frame-
work for modular static analyses. Our approach allows various isolated, orthogonal
analyses for individual language features and APIs to collaboratively compute a single
CG. Therefore, it facilitates systematic investigation of different configurations, support-
ing users and developers in finding the best trade-off between precision, sound(i)ness,
and scalability.

Improved Library Call Graphs Using our framework for collaborative static analysis
and our library design space, we investigated how to adapt the CG algorithms of the
set-based framework [TP00] for libraries. After discussing how to extend these CGs, we
present five algorithms that use the open-package assumption (OPA) and five algorithms
that use the close-package assumption. While all CGs show similar improvements in
precision, the algorithms based on RTA are the fastest, and the algorithms based on
XTA are the most precise. Besides, we find that the algorithms are less scalable when
used on libraries. However, the set-based framework facilitates the instantiation of many
more CG algorithms that might scale better, which however needs more investigations
in the future.

11.2. Closing Discussion

After summarizing this thesis’ contributions and findings, we will briefly relate them to
current trends and look at future challenges.

Interprocedural static analysis tools are an integral ingredient to ensure software qual-
ity. Software developers use such tools on their programs. Thereby, they must consider
which kind of issues they are interested in and the nature of the software they are analyz-
ing. The work presented in this thesis shows that the call graphs (CG) these tools build
on are only partially up to the task, i.e., they are unsound concerning various language
features and APIs and do not reflect the nature of libraries sufficiently.

Researchers have dedicated much work to the construction of CG algorithms. This
thesis consolidates several decades of research for qualitative and quantitative assessment
of the state-of-the-art. We find that existing CG algorithms cover only a small subset
of language features and APIs relevant in real-world programs. Moreover, we find that
even CG algorithms covering similar features, result in CGs that differ significantly, i.e.,
rendering even the comparison of the same base algorithm implemented in two different
frameworks impossible. Furthermore, we investigate their sources of unsoundness and
compare CGs to determine the respective root causes. Based on our findings, we provide
recommendations to both static analysis researchers and framework developers.

Despite the maturity of CG algorithms, their practical applicability must be further
improved. Existing CG construction algorithms focus only on precision/scalability and
on analyzing applications (cf. Chapter 2). Furthermore, they support only approximately
52% of relevant language features (cf. Chapter 5). The work presented in this thesis
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shows that with a through systematic analysis of the problems of state-of-the-art CG
algorithms, we can pinpoint their weaknesses and propose a design space that shows how
to adapt library CGs to the needs of client analyses. At the same time, we propose a
modular framework that eases to address these weaknesses in isolation and allows high
customization of CG algorithms. Our results on library CG construction algorithms
show that there is further potential for improvement, which is why we are convinced
that CGs can become an even better foundation for interprocedural static analyses. In
order to reach this goal, we briefly present challenges that future work faces.

First, current CG construction algorithms do not support many programming lan-
guage features and APIs relevant in practice. Although some of these features are hard
to support statically [LSS+15], we must develop new abstractions that beneficially trade-
off precision, scalability, and sound(i)ness concerning the analyzed program. Judge can
guide the development of these abstractions.

Second, CG algorithms from different frameworks are subject to different design de-
signs, e.g., they rely on type information provided by different intermediate representa-
tions. Our empirical results show that these decisions highly influence the outcome of
CG construction. We should systemically research and document these design decisions
to better understand their effects on client analyses. Otherwise, the results of two static
analyses using different CGs are hardly comparable.

Third, CG algorithms for libraries are still in an early stage of research. Unsoundness
of CGs is deliberately accepted to improve precision and, thus, to reduce the number of
false positives on client analyses [LSS+15]. Analogously, the community might accept
unsound library CGs. With call-by-signature resolution, we propose a technique that is
indispensable to receive a sound library CG while reducing a CG’s precision. However,
our results on library CGs indicate that it is essential to distinguish between the open-
package assumption (OPA) and closed-package assumpiton (CPA). For the latter, we
provide empirical evidence that these algorithms are beneficial. Nevertheless, we should
further research the impact of library CGs on client analyses. Primarily, we must show
that OPA-algorithms positively affect security analyses. Simultaneously, we need to
research ways to improve CG algorithms’ precision for libraries further, e.g., by using
escape analysis to approximate the library-private implementation more accurately or
using machine learning to learn from actual library usages about the actual types passed
to entry points. Our results on library CGs further show that Java’s visibility modifiers
are crucial for CGs operating under CPA. We should develop analyses that support
developers to decide if they can declare classes, methods, and fields with more restrictive
visibility modifiers, e.g., private or package visibility.

Fourth, our results show that the customization of CGs and trading-off precision, scal-
ability, and sound(i)ness is essential when analyzing real-world applications. While our
modular CG-algorithms framework shows how to customize CG algorithms, it is not
apparent how we can reuse our analyses for individual features across context-sensitive
CG algorithms. Context-sensitivity has many facets (e.g., object sensitivity or callsite
sensitivity) that must either be compatible with each analysis module or one must com-
bine the general CG algorithm with context-insensitive modules. Moreover, it would
be attractive to employ self-adaptive analyses that automatically add a module when
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the analysis encounters a specific language feature and, therefore, requires support. A
self-adapting analysis would reduce not only the configuration efforts but also improve
the CG algorithms performance.
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12. Future Work

In this chapter, we present our ideas for future. First, we discuss future work with
respect to creating benchmarks for static analyses. Second, we present ideas how to test
and benchmark call-graph (CG) algorithms. Last, we will explore possible directions for
follow-up work in the area of CG construction.

12.1. Benchmarking Static Analyses

Creating Use-case-based Corpora Even though we can use Hermes to create eval-
uation corpora that suit our needs, the researchers must publish the created data set
and the queries to create transparency and enable comparison. If the relevant data is
not published, the data set bears the danger of not being representative, e.g., prob-
lematic projects could be unknowingly removed or the queries could not represent the
problem. To mitigate this threat, we image a similar system to the Normalized Java
Resource (NJR) [PL18]. NJR’s goal is to provide an infrastructure that consists of
100 000 executable Java programs that can be queried to find projects based on dynamic
measurements. However, Hermes uses static measurements, which are better tailored
to the needs of static analysis research. Future work should explore how Hermes can
be used to systematically create data sets from common sources (e.g., Maven Central,
GitHub, or app stores) based on a common but extensible set of metrics. The Delphi
project1 makes the first step in that direction by running Hermes’ queries on artifacts
from Maven Central, creating a searchable index that allows users to find artifacts with
particular features. Yet, Delphi neither allows to publish created data sets nor to add
custom queries.

Minimizing Corpora With Hermes, we advocate for a more detailed inspection of
the corpora to assure their representativeness while keeping the evaluation data set
minimal to assure a practical evaluation. Still, the generated set is only minimal in
the sense that each feature occurs within the subset. While it is globally configurable
how often a feature must occur, it is not possible to weight certain features over others.
Hence, Hermes’ optimizer is rather primitive and does not support multi-objective
optimizations. We can extend its optimizer by setting the following two goals: the first
is the broadest most coverage of metrics relevant to the analysis. The second is the
minimum of a size metric such as the number of projects, number of classes, number
of instructions, or file size. The first criterion ensures that our evaluation dataset is

1 https://delphi.cs.uni-paderborn.de/ (checked on May 13, 2020).
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representative for the analysis targeted. The second criterion ensures the smallest input
size, which we assume to affect the analysis runtime directly.

Using this methodology, researchers can create evaluation sets for their respective
program analyses, targeted at the analysis purpose while keeping the effort minimal.
This ensures that analyses have been properly tested on every case that might occur in
real-world code, without making the evaluation run longer than necessary. Additionally,
it saves valuable time for analysis experts and may expose implementation issues much
faster than previous efforts.

Analysis experts must specify the criteria that their analysis is sensitive to, i.e., develop
the queries that derive features relevant to their evaluation and if necessary also prioritize
the derived features. Different analysis types may react differently to various program
size measures. Therefore, it is also necessary that analysis experts select optimization
criteria for program size, such as the number of methods, number of fields, number of
callsites, or file size.

12.2. Evaluating Call-graph Algorithms

Improve Test Framework Infrastructure Cats uses two kinds of test cases, standard
test cases with automatic compilation and advanced test cases that require a manual
compilation process. Among other cases, these tests comprise features that belong to
Java 9 or higher, which is no longer compatible with lower Java versions and, therefore,
need a different compiler. The latter kind of test cases is tedious to add to the test suite.

Future work should extend Cats test case compilation. First, the compilation process
must be modularized to support multiple compilers, e.g., one for each Java version. Then,
one can easily add new compilers on new Java releases. Second, each test case should
then specify the required compiler. This extension would improve Cats’ extensibility,
i.e., one can add new test cases for new features and APIs only becoming relevant to
newer recent Java versions. Furthermore, it would improve the transparency of existing
tests, as some are only available as pre-compiled units. Another area for future work
would be to broaden the test suite’s scope by adding test cases related to practice-relevant
frameworks, such as Android.

Test Suite with Precision We found evidence that CG construction algorithms that are
implemented using different frameworks significantly vary in precision (cf. Section 6.2.3).
For example, the RTA algorithms from Soot, Wala, and Opal exhibited different
behavior due to implementation design decisions. Unfortunately, Cats measures only
recall and, therefore, is only useful as a reference for checking feature support.

Hence, future work should investigate how to build a framework for testing a CG’s
precision, i.e., we need to test whether a call edge should be or should not be contained
in a CG built by a specific algorithm. Like in Cats, one could define the test suit’s
ground truth via annotations. These annotations could then specify for each callsite
all possible call targets. Additionally, one must define for each call targets which CG
algorithm (e.g., RTA, XTA, VTA, or 0-1-CFA) must contain the respective call edge.
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This manual process is laborious and error-prone. Groove and Chambers [GC01] dis-
cussed many existing CG algorithms and arranged them within a lattice ordered by their
precision. For example, such a lattice allows one to state that a call edge should not be
contained in a CG more precise than RTA. Hence, it would be correct for RTA, CHA, or
signature-based CGs to contain this call edge but not for VTA, XTA, or others. How-
ever, not all CG algorithms are directly comparable in terms of precision, e.g., FTA and
MTA are orthogonal to each other such that neither FTA is a subset of MTA nor the
other way around. Using such a lattice while annotating test cases concerning precision
could tremendously reduce the annotation effort. Instead of specifying every algorithm
individually, it would be possible to specify different, comparable CG algorithms.

Studying the Impact of Unsoundness on Client Analyses Current CG construction
algorithms deliberately lack support for many features. While this indirectly increases
the precision of interprocedural client analyses, it remains unknown what percentage
of findings are missed due to the CG’s sound(i)ness. However, some features (e.g.,
reflection) are not entirely statically supportable and developing näıve support can lead
to high imprecision that might impede the scalability of client analyses [BSS+11]. Hence,
we must find approximations with reasonable trade-off between sound(i)ness, precision,
and scalability. Independently from problematic features, future work should investigate
the effect of not supporting individual features on the results of various client analyses.
Our configurable modular CG framework would be beneficial for such an investigation.

12.3. Advancing Call-graph Construction

Leveraging Advanced Static Analysis Techniques One of the biggest weakness of type-
based CG algorithms is the lack of precise information at callsites that involve large type
hierarchies. The prime example is a toString() method call on a receiver typed with
java.lang.Object. Other examples of frequently used APIs are java.lang.Iterator’s
next(), hasNext(), or remove() methods. Additionally, using types with many sub-
types as formal method parameters, return types, or as field types, potentially leads to
an enormous type flow in CGs build with the set-based framework. Also, due to the lack
of information on the external world when constructing library CGs, we must assume
worst-case scenarios, e.g., all existing and accessible types are used outside the library.

To gather additional information at callsites, one could apply advanced static analysis
techniques. Opal’s architecture for collaborative static analysis facilitates the use of
information derived by such static analyses while constructing CGs. In the following,
we discuss three such analyses that future work should investigate:

a) CG algorithms should employ type refinement, an analysis that refines method
signatures or a field’s declared type, if possible. It can be employed for all method
parameters, method return types, and fields, where all usage contexts are known.
That is, a whole-program analysis can employ type refinement for all methods
and fields, while a library analysis can use this technique only for elements of the
library-private implementation.
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1 class Parser {
2

3 final Map<Long, String> fieldValues = new HashMap<>();
4

5 private void doSomething() {
6 Iterator<Entry<Long, String>> it = fieldValues.entrySet().iterator()
7 /∗ . . . ∗/
8 }
9 }

10

11 class HashSet <K,V> extends AbstractMap<K,V>
12 implements Map<K,V>, Cloneable, Serializable {
13

14 public Set<Map.Entry<K,V>> entrySet() {
15 Set<Map.Entry<K,V>> es;
16 return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
17 }
18

19 final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
20 public final Iterator<Map.Entry<K,V>> iterator() {
21 return new EntryIterator();
22 }
23 }
24 }

Listing 12.1.: Code example to demonstrate the benefits of type refinement.

b) CG algorithms should employ immutability analysis that determines whether a
given reference is read-only or an object immutable.

c) CG algorithms should employ escape analysis to newly instantiated objects, to see
whether these objects escape the local scope. If objects are only used locally, they
must not be considered as globally instantiated.

The first analysis could be precious for the type-based CG algorithms discussed in
this thesis, as refined method signatures could significantly reduce the number of prop-
agated types. Fortunately, many programs use specialized types, thereby providing
knowledge in code that we can leverage to refine types and thus constrain type sets. A
good example is Java’s collection API structure, which defines many specialized types
for various collections, such as lists, sets, or maps. Listing 12.1 shows simplified code
from java.time.format.Parsed and java.util.HashSet that indicates the possible
gains from type refinement. When we consider the method call chain at Line 6, the
number of involved types is immense when we only consider the declared types. First,
entrySet() is called on fieldValues which is of type java.util.Map. The latter has
over 100 overrides that all return a java.util.Set which has in turn over 90 sub-
types. Then the entrySet’s result is used to retrieve the final iterator, which has more
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than 250 subtypes. When all these types are considered instantiated, this simple call
chain introduces an incredible amount of call edges. However, that must not be the
case when we use refined type signatures. Then fieldValues (Line 3) would be known
to be java.util.HashMap, the entrySet method (Line 16) would be known to re-
turn java.util.HashMap$EntrySet, and the iterator (Line 21) would be known to be
java.util.HashMap$EntryIterator. Using type refinement might reduce the number
of types that will be propagated to a method or field. However, we can only apply type
refinement to methods and fields where all usage contexts are known, i.e., they belong
to the library-private implementation. When we additionally employ an immutability
analysis, an analysis that determines whether an object or a reference is immutable, we
can determine effectively final fields2. The latter’s type can then also be refined. While
an immutability analyses is hard to incorporate in a monolithic analysis, it is trivially
possible within Opal’s modular static analyses framework.

We could also employ an escape analysis to improve the CG. Some classes, e.g., itera-
tors or comparators, have a large type hierarchy but are often used only locally, i.e., their
objects are only used within a single method. Yet, once such an object is instantiated,
e.g., when using a RTA, it is considered at every other relevant callsite. However, when
an instantiated type never leaves its scope, it must be considered only locally. Further-
more, escape analyses can be used to approximate the library-private implementation
more precisely. For example, internal classes that provably do not escape the library-
private implementation must never be considered instantiated in the external world.
Moreover, Java 9 introduced a new module system where applications and libraries can
be divided into modules. Each module must declare its public interface and, thus, can
be separated in its public API and its module-private implementation. Again, escape
analysis can be employed to determine which types escape the module and, therefore,
must be considered within other modules.

Improving the Call-graph Product-line Our novel framework for modular CG con-
struction enables CGs to be modularly composed of different modules—each handling a
specific, well-delimited language feature—that are reusable across any method for resolv-
ing call targets. We identified such language features in Chapter 5. While our approach
has multiple benefits, we investigated only the modeling of context-insensitive CGs.
We argue that it would be interesting to extend the approach to cover both context-
insensitive and context-sensitive CGs of various levels of complexity, performance, and
precision. Thereby supporting algorithms ranging from CHA, over set-based algorithms,
to points-to-based call graphs. This might be achieved by introducing modules that ab-
stract over the concrete properties stored in the blackboard to allow individual CG
modules to be agnostic of the concrete source of type information required to resolve
calls. Such a system would enable the ultimate framework for CG construction that is
highly configurable with respect to precision, scalability, and sound(i)ness.

2An effectively final field is a field that is not declared final but is written only once.
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12. Future Work

Approximating the External World Our results show that library CGs must consider
the external world and that how we approximate the external world significantly in-
fluences the CG’s precision. We believe that it is possible to improve our model of
the external world by gathering more context about the analyzed library. A promising
source to approximate the context could be actual clients of the library. Instead of ana-
lyzing the library in the context of a concrete application, we can preanalyze a number
of known clients. To get to know a library’s clients, we could either scan build files
from code repositories (e.g., GitHub) or use data collected by Maven Central as they
provide dependee information for published libraries. For each client, we could then
extract a) which part of the library they access and b) which types they pass to the li-
brary. Hence, when constructing a library CG, we can use all previously gathered library
clients to approximate the library’s entry points, accessed fields, instantiated types, and
transferred types. Future work should investigate if such approximations benefit library
CGs precision and scalability as they only abstract over known scenarios instead of all
theoretically possible use cases.

176



Contributed Implementations and Data

Working on this thesis’s research topics, we have implemented several research prototypes
and collected data. We provide both implementations and datasets to enable other
researchers to comprehend our work and support further research. We believe that this
fosters good scientific practice and ask others to follow this example.

Hermes

We provide the implementation of Hermes as part of Opal in the following repository:

https://github.com/stg-tud/opal/tree/develop/TOOLS/hermes

Hermes builds on top of Opal. However, it can be used separately as a command-
line tool. Within its resource folder lies a Readme given instructions on how to use it.
Additionally, the resource folder provides one markdown file per query, explaining its
features.

Cats and Judge

We provide the implementation of Cats and Judge in the following repository:

https://bitbucket.org/delors/cats/src/master/

The repository contains many independent projects that modularize the actual test
framework, the test cases, and all test adapters. The repository contains a detailed
description explaining its structure and demonstrates how to add test cases.

Modular Call-graph Construction Framework

We provide the implementation of our modular framework for call graphs and static
analysis in general as well as our library call graphs here:

https://github.com/stg-tud/opal/

The framework became an integral part of Opal’s static analysis infrastructure. The
element, the blackboard, can be found under the name PropertyStore. Furthermore,
all analyses presented in Section 8.3 can be found under their respective name.
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Contributed Implementations and Data

Study Artifacts

We provide the results of our evaluation and study pertaining to Hermes, Cats, and
Judge within the following docker container:

https://hub.docker.com/r/mreif/jcg

We provide the results of our evaluation and our dataset pertaining to our study of
library call graphs here:

http://www.st.informatik.tu-darmstadt.de/artifacts/dlc/

The results of our evaluation of the modular framework for static analysis and a docker
container to reproduce them are provided here:

https://doi.org/10.5281/zenodo.3972736

https://hub.docker.com/r/mreif/blast
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[MH07] Eva Magnusson and Görel Hedin. Circular reference attributed grammars—
their evaluation and applications. Science of Computer Programming,
68(1):21–37, 2007.

[MNGL98] Gail C Murphy, David Notkin, William G Griswold, and Erica S Lan.
An empirical study of static call graph extractors. ACM Transactions on
Software Engineering and Methodology (TOSEM), 7(2):158–191, 1998.

[MPM+15] Luis Mastrangelo, Luca Ponzanelli, Andrea Mocci, Michele Lanza, Matthias
Hauswirth, and Nathaniel Nystrom. Use at your own risk: The java un-
safe api in the wild. In Proceedings of the 2015 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Languages,
and Applications, volume 50 of OOPSLA 2015, pages 695–710, New York,
NY, USA, 2015. ACM.

[Muc97] Steven Muchnick. Advanced compiler design implementation. Morgan Kauf-
mann, 1997.

[Mvn18] MvnRepository. Maven - Popular Projects.a. https://mvnrepository.

com/popular, [Online; accessed 15-July-2018].

[MYL16] Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. From datalog to flix:
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[RKE+19] Michael Reif, Florian Kübler, Michael Eichberg, Dominik Helm, and Mira
Mezini. Judge: identifying, understanding, and evaluating sources of un-
soundness in call graphs. In Proceedings of the 28th ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis, pages 251–261,
2019.
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[SBEV18] Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus Voelter.
Incrementalizing lattice-based program analyses in datalog. Proceedings of
the ACM on Programming Languages, 2(OOPSLA):1–29, 2018.

[SBKB15] Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin
Bravenboer. More sound static handling of java reflection. In Asian Sym-
posium on Programming Languages and Systems, pages 485–503. Springer,
2015.

[SBL11] Yannis Smaragdakis, Martin Bravenboer, and Ondřej Lhoták. Pick your
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A. Hermes: Example API Query

Listing A.1 shows an example of a Hermes query that computes the occurrences of
API calls. The query shown in the listing captures whether the given input pro-
gram performs calls to Java’s JDBC API. For example, it counts the callsites that
call java.sql.Connection’s createStatement method (cf. Line 34).

1 /∗ BSD 2−Clause License − see OPAL/LICENSE for details. ∗/
2 package org.opalj.hermes
3 package queries
4

5 import org.opalj.br.ObjectType
6 import org.opalj.collection.immutable.Chain
7 import org.opalj.hermes.queries.util.APIFeature
8 import org.opalj.hermes.queries.util.APIFeatureGroup
9 import org.opalj.hermes.queries.util.APIFeatureQuery

10 import org.opalj.hermes.queries.util.InstanceAPIMethod
11 import org.opalj.hermes.queries.util.StaticAPIMethod
12

13 /∗∗
14 ∗ Counts the amount of calls to certain JDBC api methods
15 ∗
16 ∗ @author Michael Reif
17 ∗/
18 class JDBCAPIUsage(implicit hermes: HermesConfig) extends APIFeatureQuery {
19

20 override val apiFeatures: Chain[APIFeature] = {
21 val DriverManager = ObjectType(”java/sql/DriverManager”)
22 val Connection = ObjectType(”java/sql/Connection”)
23 val Statement = ObjectType(”java/sql/Statement”)
24 val PreparedStatement = ObjectType(”java/sql/PreparedStatement”)
25 val CallableStatement = ObjectType(”java/sql/CallableStatement”)
26

27 Chain(
28

29 StaticAPIMethod(DriverManager, ”getConnection”),
30 InstanceAPIMethod(Connection, ”rollback”),
31

32 APIFeatureGroup(
33 Chain(
34 InstanceAPIMethod(Connection, ”createStatement”),
35 InstanceAPIMethod(Statement, ”execute”),
36 InstanceAPIMethod(Statement, ”executeQuery”),
37 InstanceAPIMethod(Statement, ”executeUpdate”)
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38 ),
39 ”creation and execution of\njava.sql.Statement”
40 ),
41

42 APIFeatureGroup(
43 Chain(
44 InstanceAPIMethod(Connection, ”prepareStatement”),
45 InstanceAPIMethod(PreparedStatement, ”execute”),
46 InstanceAPIMethod(PreparedStatement, ”executeQuery”),
47 InstanceAPIMethod(PreparedStatement, ”executeUpdate”)
48 ),
49 ”creation and execution of\njava.sql.PreparedStatement”
50 ),
51

52 APIFeatureGroup(
53 Chain(
54 InstanceAPIMethod(Connection, ”prepareCall”),
55 InstanceAPIMethod(CallableStatement, ”execute”),
56 InstanceAPIMethod(CallableStatement, ”executeQuery”),
57 InstanceAPIMethod(CallableStatement, ”executeUpdate”)
58 ),
59 ”creation and execution of\njava.sql.CallableStatement”
60 )
61 )
62 }
63 }

Listing A.1: The code of the JDBCAPIUsage Hermes query that checks a given
program for the occurence of call to the Java’s JDBC API.
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B. Hermes: Example Metric Query

Listing B.1 shows the code of Metrics Hermes query. The query computes several
metrics, namely fields per class (FPC), methods per class (MPC), classes per package
(CPP), number of children (NOC), and McCabe. Furthermore, the query computes for
every feature—a metric is considered a feature—four feature extensions.

Whereas the first three metrics are self-explanatory, we will next shortly introduce
McCabe and NOC. McCabe computes the cyclic complexity of a method’s control-flow.
The lower the metric, the less complicated the method is, e.g., a method without any
branches has linear complexity.

NOC computes the number of direct descendants (subclasses) for each class. Classes
with a large number of children are considered to be challenging to modify and usually
require more testing because of the effects on changes on all the children. They are also
considered more complex and fault-prone because a class with numerous children may
have to provide services in a larger number of contexts and, therefore, must be more
flexible [BBM96].

1 /∗ BSD 2−Clause License − see OPAL/LICENSE for details. ∗/
2 package org.opalj
3 package hermes
4 package queries
5

6 import scala.collection.mutable
7 import org.opalj.br.analyses.Project
8 import org.opalj.br.cfg.CFGFactory
9

10 /∗∗
11 ∗ Extracts basic metric information (Fields/Methods per Class; Classes per Package; etc.).
12 ∗
13 ∗ @author Michael Reif
14 ∗/
15 class Metrics(implicit hermes: HermesConfig) extends FeatureQuery {
16

17 /∗∗
18 ∗ The unique ids of the extracted features.
19 ∗/
20 override val featureIDs: Seq[String] = {
21 Seq(
22 ”0 FPC”, ”1−3 FPC”, ”4−10 FPC”, ”>10 FPC”, // 0, 1, 2, 3
23 ”0 MPC”, ”1−3 MPC”, ”4−10 MPC”, ”>10 MPC”, // 4, 5, 6, 7
24 ”1−3 CPP”, ”4−10 CPP”, ”>10 CPP”, // 8, 9, 10
25 ”0 NOC”, ”1−3 NOC”, ”4−10 NOC”, ”>10 NOC”, // 11, 12, 13, 14
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26 ”linear methods (McCabe)”, ”2−3 McCabe”, ”4−10 McCabe”, ”>10 McCabe” //
15, 16, 17 ,18

27 )
28 }
29

30 override def apply[S](
31 projectConfiguration: ProjectConfiguration,
32 project: Project[S],
33 rawClassFiles: Traversable[(da.ClassFile, S)]
34 ): TraversableOnce[Feature[S]] = {
35

36 val classLocations = Array.fill(featureIDs.size)(new LocationsContainer[S])
37

38 class PackageInfo(var classesCount: Int = 0, val location: PackageLocation[S])
39 val packagesInfo = mutable.Map.empty[String, PackageInfo]
40

41 val classHierarchy = project.classHierarchy
42

43 for {
44 (classFile, source) <− project.projectClassFilesWithSources
45 classLocation = ClassFileLocation(source, classFile)
46 } {
47 // FPC: fields per class
48

49 classFile.fields.size match {
50 case 0 => classLocations(0) += classLocation
51 case x if x <= 3 => classLocations(1) += classLocation
52 case x if x <= 10 => classLocations(2) += classLocation
53 case x => classLocations(3) += classLocation
54 }
55

56 // MPC: methods per class
57

58 classFile.methods.size match {
59 case 0 => classLocations(4) += classLocation
60 case x if x <= 3 => classLocations(5) += classLocation
61 case x if x <= 10 => classLocations(6) += classLocation
62 case x => classLocations(7) += classLocation
63 }
64

65 // noc
66

67 classHierarchy.directSubtypesOf(classFile.thisType).size match {
68 case 0 => classLocations(11) += classLocation
69 case x if x <= 3 => classLocations(12) += classLocation
70 case x if x <= 10 => classLocations(13) += classLocation
71 case x => classLocations(14) += classLocation
72 }
73
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74 // count the classes per package
75 val packageName = classFile.thisType.packageName
76 val packageInfo = packagesInfo.getOrElseUpdate(
77 packageName,
78 new PackageInfo(location = PackageLocation(packageName))
79 )
80 packageInfo.classesCount += 1
81

82 // McCabe
83 classFile.methods foreach { method =>
84 CFGFactory(method, project.classHierarchy) foreach { cfg =>
85 val methodLocation = MethodLocation(classLocation, method)
86 val bbs = cfg.reachableBBs
87 val edges = bbs.foldLeft(0) { (res, node) =>
88 res + node.successors.size
89 }
90 val mcCabe = edges − bbs.size + 2
91 mcCabe match {
92 case 1 => classLocations(15) += methodLocation
93 case x if x <= 3 => classLocations(16) += methodLocation
94 case x if x <= 10 => classLocations(17) += methodLocation
95 case x => classLocations(18) += methodLocation
96 }
97 }
98 }
99 }

100

101 packagesInfo.values foreach { pi =>
102 pi.classesCount match {
103 case x if x <= 3 => classLocations(8) += pi.location
104 case x if x <= 10 => classLocations(9) += pi.location
105 case x => classLocations(10) += pi.location
106 }
107 }
108

109 for { (featureID, featureIDIndex) <− featureIDs.iterator.zipWithIndex } yield {
110 Feature[S](featureID, classLocations(featureIDIndex))
111 }
112 }
113 }

Listing B.1: The code of the Metrics Hermes query that computes several metrics.
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C. Hermes: Example Custom Query

Listing C.1 shows an example of a Hermes query that computes the number of recursive
data structures, which can significantly limit the scalability of analyses [LSBM15].

1 /∗ BSD 2−Clause License − see OPAL/LICENSE for details. ∗/
2 package org.opalj
3 package hermes
4 package queries
5

6 import org.opalj.graphs.UnidirectionalGraph
7 import org.opalj.br.ObjectType
8 import org.opalj.br.analyses.Project
9

10 /∗∗
11 ∗ Identifies recursive data structures. Such data−structure can often significantly limit
12 ∗ the scalability of analyses.
13 ∗
14 ∗ @author Michael Eichberg
15 ∗/
16 class RecursiveDataStructures(implicit hermes: HermesConfig) extends FeatureQuery {
17

18 override def featureIDs: IndexedSeq[String] = {
19 IndexedSeq(
20 /∗0∗/ ”Self−recursive Data Structure”,
21 /∗1∗/ ”Mutually−recursive Data Structure\n2 Types”,
22 /∗2∗/ ”Mutually−recursive Data Structure\n3 Types”,
23 /∗3∗/ ”Mutually−recursive Data Structure\n4 Types”,
24 /∗4∗/ ”Mutually−recursive Data Structure\nmore than 4 Types”
25 )
26 }
27

28 override def apply[S](
29 projectConfiguration: ProjectConfiguration,
30 project: Project[S],
31 rawClassFiles: Traversable[(da.ClassFile, S)]
32 ): TraversableOnce[Feature[S]] = {
33

34 import project.classHierarchy.getObjectType
35

36 val g = new UnidirectionalGraph(ObjectType.objectTypesCount)()
37

38 val locations = Array.fill(featureIDs.size)(new LocationsContainer[S])
39
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40 // 1. create graph
41 for {
42 classFile <− project.allProjectClassFiles
43 if !isInterrupted()
44 classType = classFile.thisType
45 field <− classFile.fields
46 fieldType = field.fieldType
47 } {
48 if (fieldType.isObjectType) {
49 g += (classType.id, fieldType.asObjectType.id)
50 } else if (fieldType.isArrayType) {
51 val elementType = fieldType.asArrayType.elementType
52 if (elementType.isObjectType) {
53 g += (classType.id, elementType.asObjectType.id)
54 }
55 }
56 }
57

58 // 2. search for strongly connected components
59 for {
60 scc <− g.sccs(filterSingletons = true)
61 if !isInterrupted()
62 /∗ An scc is never empty! ∗/
63 sccCategory = Math.min(scc.size, 5) − 1
64 objectTypeID <− scc
65 objectType = getObjectType(objectTypeID)
66 } {
67 locations(sccCategory) += ClassFileLocation(project, objectType)
68 }
69

70 for { (locations, index) <− locations.iterator.zipWithIndex } yield {
71 Feature[S](featureIDs(index), locations)
72 }
73 }
74 }

Listing C.1: The code of the JDBCAPIUsage Hermes query that checks a given program
for the occurence recursive data structures.
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