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Abstract

The increasing size and complexity of software systems leads to an increase in the
use of regression testing. With large software systems, tests can give the developer
confidence that the project still works after changes have been made, or new features
have been introduced. However, when not carefully implemented, the cost of testing
can get unreasonably high. The high cost of running tests can lead to test suites getting
rarely executed because they are too expensive to run. Oversized test suites also make
maintenance harder which can lead to a lot of failing tests and, again, rarely executed
test suites with results that are difficult to evaluate due to the large amounts of changed
code. Test suite minimization strives to reduce the cost of testing by selecting a subset
of relevant tests and removing the remaining, ideally redundant, tests. In this thesis,
we present a weighted-sum test suite minimization algorithm that aims to find the
subset of most relevant tests by selecting test cases that find the most faults in the least
amount of time and cover the most code. We evaluate this new algorithm based on
open source projects as well as closed source industry projects to include as many
scenarios as possible. By comparing our algorithm to a greedy minimization algorithm,
we want to find out, how it matches with a well-established test suite minimization
algorithm. We find that, with the new algorithm, we can reduce the runtime of the
open source projects’ test suites by 85% while maintaining, on average, 97% of the
full test suite’s line coverage as well as 95% of its fault detection capability. For the
closed source projects, the algorithm maintained around 90% coverage on average,
performing not quite as well as with the smaller open source projects. In both cases, the
weighted-sum algorithm outperforms the greedy algorithm in terms of its time savings
and the mutation coverage. Our experimental results show that the weighted-sum
algorithm allows us to target a steep runtime reduction of 85% while maintaining
good code and mutation coverage. Depending on the requirements, the weights of the
individual criteria can be changed, allowing for a more customizable minimization
compared to the greedy algorithm. The main hurdle of the algorithm for large projects
are mutation score calculations which become infeasible for long-running test suites.
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1 Introduction

Modern software projects increase in size and complexity. At the same time, the speed
with which they evolve is increasing. In actively developed projects, changes are pushed
to a project’s repository up to multiple times a minute [AKM08; Shi+14; Bir+09; Bri+14].
These factors are the reason for the increasing use and importance of software testing.

However, as software evolves and gets bigger, the associated test suite usually grows
alongside it. For large scale software projects, test suites can take days or even weeks
to run [Rot+99; ST02]. This causes delayed feedback to the developers, which is
compounded by the fact that a test suite that takes several days can not be executed
as often. This delayed feedback causes difficulties for the developers. Less frequently
executed tests lead to more changed code for each test run. It also means that the time
since the developer has worked on the code is increased. Both of these issues make it
harder for developers to find the fault from which a test failure originates.

The problems caused by over-sized test suites have given rise to three different
approaches to coping with the problem. Test Case Prioritization, Test Case Selection
and Test Suite Minimization. While test suite minimization and test case selection are
concerned with reducing the overall runtime of a test suite, test case prioritization
focuses on getting feedback to the developer as fast as possible. This is achieved by
prioritizing tests based on criteria like coverage of changed code, their speed or overall
coverage. The whole test suite is still executed, however, the order of execution changes
in every run.

The second approach, test case selection, aims to pick the most relevant tests for
each run and execute only those, while the rest of the test suite is skipped. To achieve
this, tests are selected based on their coverage of changed code, that is, only tests that
cover code that has been changed since the last test run, are executed. This means that,
though tests are picked, the test suite as a whole stays unchanged and a new selection
is made for the next test run based on the changes made in-between these two runs.

Test suite minimization, the final approach, is the only one that permanently changes
test suites. The idea behind this method is, to permanently remove redundant tests,
that is, tests that contribute nothing or very little to the overall quality of the test suite.
The main difficulty of this approach is determining whether a test case is redundant.
Most implementations of test suite minimization use one or more criteria, such as
code coverage, mutation coverage, mc/dc coverage, or execution time. The tests are
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1 Introduction

selected based on how much they contribute to satisfying the selected criteria. Tests
that add nothing or very little to the satisfaction of the minimization criteria are omitted.
Ideally, this leads to a test suite that can be executed quicker and is easier to maintain
due to the reduced size, without drastically impacting its fault detection capability or
structure. For this thesis, we only analyze test suite minimization, which means from
here onward, only this method is relevant.

Despite its apparent benefits, test suite minimization is rarely used in practice.
Though there might be more reasons why it is not used, we identified two central
difficulties with test suite minimization.

The first is that the changes that are made with test suite minimization are permanent,
that is, tests are usually permanently removed. Removing tests permanently that might
at some point still find bugs might be a difficult thing to do. Though there are ways
around this like smoke tests, the deletion of test cases can prevent people or companies
from considering tests suite minimization and make them gravitate towards the other
solutions like test case selection and prioritization. However, these other solutions are
not widely implemented either.

The reason for this is most likely similar to the second reason test suite minimization
is not often adopted: It is challenging to implement. The main issue is obtaining the
data that is used for minimization. Depending on the size of the project, it can be
challenging to get even code coverage data. The type of data plays a vital role in how
difficult it is to get. While collecting coverage data is still possible with rather large
projects, def-use coverage and mutation coverage get expensive quickly with increasing
size.

Problem Statement In modern, large scale software projects, regression testing can
slow down development with long runtimes and late feedback. One approach to
combat this problem is test suite minimization, which aims to reduce the runtime of a
test suite by removing redundant or useless tests from a test suite. The main problem
to solve with test suite minimization is determining when a test case is redundant or
useless. This can be done based on a variety of different criteria, but the selection is
never perfect. Even though test suite minimization could provide valuable benefits in
practice, it is not yet widely used in practice due to the problems mentioned above.
With the following contributions, we aim to improve the applicability of test suite
minimization in a realistic environment.

Contribution We provide two core contributions to increase the understanding and
viability of test suite minimization.

- Proposal of a test suite minimization algorithm with a new criterion
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1 Introduction

Our first contribution is a new test suite minimization algorithm. It uses a
criterion that we consider essential for the quality of a test suite, the locality.
By including this, we want the resulting test suite to not only maintain its fault
detection capability but also maintain or even improve its overall quality in the
process. The overall quality here refers to a test suite’s maintainability and its
structure, that is, how well it conforms to the test pyramid. Contrary to most
test suite minimization algorithm which optimizes for the lowest number of tests,
our proposed algorithm aims to improve runtime while maintaining coverage,
mutation coverage and quality of the test suite as much as possible.

- Use of test suite minimization on large scale industry projects
The second core contribution of this thesis is the use of large software projects
from industry. We could not find any prior research that has been conducted on
similar projects. Since these are the projects, where test suite minimization would
provide a real-world benefit, it is vital to test suite minimization on this kind of
project. However, since it is a lot harder to get access to this type of project as
opposed to open source projects.

Besides these major contributions, a minor contribution is the focus on runtime. As
previously mentioned, most research focuses on the test suite size before and after
minimization. However, in most cases, the problem is not the number of tests but rather
the time the tests take to run and the quality of the test suite.

Overview In Chapter 2, we give an overview of some fundamentals of software
testing, mutation testing, and test suite minimization, which are required for the rest of
the thesis. We then take a look at some of the related research that has been done so far
in Chapter 3. In Chapter 4, we explain the approach we took to test suite minimization
and how we implemented it. We present and discuss our study at the hand of five
research questions in Chapter 5. Finally, we present our conclusion in Chapter 6 and
some interesting possibilities for future research of the topic in Chapter 7.

3



2 Terms and Definitions

In this chapter, we lay out some fundamentals, necessary to understand the rest of the
thesis. We begin with an overview of testing terms and definitions. We describe test
suite minimization, which aims to reduce the size and runtime of a test suite while
keeping the impact on the overall quality of the test suite as low as possible. Finally,
we look at the tools that we used for mutation testing and obtaining test coverage.

2.1 Testing

Software testing aims to improve the quality of published software. It consists of several
different activities, which can be both manual and automated. However, the relevant
kind for our research is automated testing. Automated testing can be used to achieve a
variety of different goals, including testing the performance of an application or testing
if an application still runs well under load, which evaluates non-functional aspects of a
system. However, we only concern ourselves with functional tests, that is, tests that
have the goal to assure that a system acts according to its specifications. In practice,
this means they test for faults and software bugs in the system.

2.1.1 Test Cases and Test Suites

The definitions of a test case and a test suite vary in the literature. We define a test
case as a single executable test function. A parametrized test is also only counted as
a single test case, even though the test case is executed multiple times. A test suite,
in our scenario, is defined as all the test cases of a single project, so every project has
exactly one associated test suite.

The idea of the test pyramid is to give a guideline on how to structure a test suite.

2.1.2 Test Pyramid

The test pyramid is a model for how to structure a test suite, so it is efficient and scales
well. Mike Cohn developed the concept of the test pyramid in 2004 and presented
it later in his book Succeeding with Agile [Coh10]. The test pyramid divides tests into
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2 Terms and Definitions

different categories according to the level at which they test. Though the naming can
be inconsistent, most often varying names for the following three levels are used:

Figure 2.1: Test Pyramid

- System Tests
System tests, depending on the application also called UI tests, cover the whole
integrated system. These emulate user input or interact with a system’s outward
API. This is great for making sure that the actual interactions that a user has with
the system work correctly. However, because the user interface can change inde-
pendently from the underlying logic, these tests can break from non-functional
changes to the system, making them more unstable than the other kinds of tests.
In conclusion, even though system tests are important for testing a complete
software system, they should not be used exhaustively for testing.

- Integration Tests
Integration testing aims to verify the internal interfaces between components
of a system against its design. In a web application for example, a system test
might simulate user inputs to a web browser, while an integration test would
directly make the HTTP call to the server. This means it would test the REST API
of the server but exclude the UI from its test. Though similar in what they test,
integration tests are faster than system tests but usually slower than unit tests
and cover more code than a unit tests but less than a system test.

- Unit Tests
Unit tests are concerned with a specific, usually short section of code like a single
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function. Instead of going through the whole application stack, they directly
check a part of the code. They are the lowest level tests and normally run a
lot faster than the other levels since they do not need to wait for UI changes or
database queries. Finding a software fault from a failed unit test is usually also
quicker than it is for the other test levels because a unit test covers less code than
the higher-level tests. Due to them being short and finely targeted tests, they are
typically also easier to write, understand, and maintain.

The visualization of the test pyramid in Figure 2.1 shows the levels of test and the
intended distribution of tests. Unit tests should make up the bulk of a test suite since
they run quick and reliably. Integration tests should be used to cover areas that are
not addressed by unit tests, that is, interfaces of components of a system. Even though
they are still important to make sure everything works as intended, UI tests should be
implemented sparingly, since they are slow and prone to problems like flickering tests
where they occasionally fail unpredictably.

2.1.3 Mutation Testing

Mutation testing can be used to determine the quality of a test suite in terms of its
ability to detect faults. To achieve this, artificial faults which are called mutants are
introduced into a system. Mutants aim to emulate real fault as closely as possible.
Detecting one of these mutants is called killing a mutant. When the test suite does not
find a mutant, the mutant has survived. The Mutation Score of a test suite tells us
how good the test suite is at detecting mutants [JH10]. It is determined by the ratio
between mutants which are killed the number of overall mutants and can be calculated
with the following formula:

MutationScore =
numberOfKilledMutants

numberOfIntroducedMutants

In Figure 2.2, we show how mutation testing typically works in practice. First, we run
a mutant generator on the source code. The mutant generator creates a list of mutants,
each of which is essentially a copy of the source code which includes an artificially
introduced fault. The selected mutation operators determine the types of introduced
faults. The number of mutants can be manually limited. If the number is not limited,
mutants are generated wherever possible. After the mutants have been generated, we
run tests for each mutant. To increase performance, only tests that can potentially find
the mutant, that is, tests that cover the part of the code in which the current mutant is
located, are considered. The result of mutation testing is a report in which killed, and
surviving mutants are listed.
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2 Terms and Definitions

Figure 2.2: Mutation Testing

Since it is vital to know whether the detection of these artificial faults has any impact
on a test suite’s ability to find real faults, several studies have been conducted which
investigate this issue. It has been found that there is a significant correlation between
mutation detection and real fault detection [ABL05; Jus+14; DT96].

Mutation testing also has some inherent flaws caused by the mutators. Some of the
mutants might be impossible to find because they cause an endless loop or sometimes,
a mutant can be logically identical to the original source code. This means that,
depending on the mutation operators, a perfect mutation score is often not possible.

2.2 Test Suite Minimization

The goal of test suite minimization is to find and remove redundant test cases from a
test suite to decrease runtime, increase maintainability, and reduce the overall size of the
test suite. Note that in the following chapters, when we mention testing requirements,
we do not refer to traditional requirements in software engineering which tell us what
a system should be able to do. Instead, a testing requirement denotes a single unit of a
minimization criterion. This could, for example, be a single covered line, a single killed
mutant or a def-use pair covered.

Test suite minimization is often treated as a variation of the minimal hitting set
problem. Rothermel et al. defined the minimization problem as follows: Given a test
suite T consisting of test cases t1, t2, . . . , tm, testing requirements r1, r2, . . . , rn which
can be fulfilled by T and subsets T1, T2, . . . , Tn of T where Ti contains all test cases
that satisfy ri, find a representative set of test cases from T that satisfies all testing
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2 Terms and Definitions

requirements ri. The representative set ideally is a minimal subset of T that satisfies
the testing requirements. With this goal, test suite minimization can be described as
finding a minimal hitting set of test cases that meet the testing requirements.

Because the minimal hitting set problem is NP-complete [GJ02], previous research on
the test suite minimization was often concerned with finding better heuristics for the
minimal hitting set problem [HGS93; CL96].

We divide test suite minimization techniques into categories. We make the fist
differentiation between single and multi criteria test suite minimization algorithms.
There are a number of different testing requirements that can be used for test suite
minimization, like line coverage, data flow coverage, decision coverage, or mutation
coverage. Additional factors like runtime or complexity can be used for preferential
selection of tests. A single criterion test suite minimization algorithm optimizes the
reduced test suite to fulfill one criterion, while a multi criteria algorithm takes multiple,
sometimes competing criteria into consideration. We make the second differentiation
between adequate and inadequate minimization techniques. An adequate technique
requires all ri to be satisfied while an inadequate method allows for some ri to be left
unsatisfied.

Especially multi criteria algorithms are often inadequate since, if we have multiple,
sometimes conflicting criteria, satisfying 100% of all test requirements would mean
reducing the size of the test suite by very little.

2.3 Tools

In this section, we present the tools that were used for the implementation of our
minimization approach. We used third party tools for coverage collection and mutation
testing.

2.3.1 Coverage Collection

We used coverage from two different sources for our research. The coverage that we
collected ourselves was captured using JaCoCo, while we got the OpenCover results
for one of our industry projects.

The first tool, JaCoCo, is an open source coverage collection tool for Java. Since Jacoco
starts profiling when a JVM starts and ends when that JVM stops, we need a modified
version of JaCoCo. That is why we used the Teamscale JaCoCo Agent1. It allows us to
start and stop coverage collection for a test case by sending HTTP messages when a

1https://github.com/cqse/teamscale-jacoco-agent
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test case starts and stops. With these signals, the JaCoCo agent can write coverage after
every test case.

The second source of coverage is OpenCover2 which provides testwise coverage
for .NET. OpenCover provides testwise coverage by default, so no modifications were
necessary here.

2.3.2 Mutation Testing Tool

For mutation testing, we used Pitest (PIT) 3, an open source tool for mutation testing
in Java. Pitest provides a variety of mutation operators that aim to replicate real faults
as closely as possible, which means, they aim to be neither too difficult nor too easy to
find. Manually injected faults tend to be more difficult to find compared to real faults
[ABL05] . Another goal of the mutation operators used by Pitest is to minimize the
number of equivalent mutants.

2https://github.com/OpenCover/opencover
3http://pitest.org
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3 Related Work

The most straightforward regression test suite minimization techniques use a single
criterion and are based on finding a minimal hitting set for some type of coverage,
like code coverage or all-uses coverage. Among these algorithms, the most prominent
is the greedy algorithm which we explain in detail in Subsection 4.2.1. A simplified
explanation of the greedy algorithm is, it always chooses the test case that hast the
most additional coverage until 100% of the original coverage is achieved. Chen and
Lau used two variations of the greedy algorithm in a simulation study, the GE(Greedy
Extended) and the GRE(Greedy Redundant Extended) [CL96]. The GE algorithm starts
by selecting essential test cases, that is, test cases that cover testing requirements that
are not covered by any other tests. After these tests are selected, the standard greedy
algorithm is applied, which means that iteratively, the test case which covers the most
remaining requirements is selected. The GRE algorithm adds an additional step to
the GE algorithm. Before applying the GE heuristic, the GRE algorithm removes all
redundant test cases, that is test cases that are completely covered by one or more other
test cases.

Chen and Lau compared the results of these two algorithms to the HGS (Harrold-
Gupta-Soffa) algorithm, which was introduced by Harrold et al. in their paper 1993
paper "A Methodology for Controlling the Size of a Test Suite" [HGS93]. Their heuristic
selects test cases based on the cardinality, which is defined by the requirement covered
by a test that is covered by the least number of other tests. At the example of line
coverage, this means, a test that covers a line that is only covered by this test has a
cardinality of one. On the other hand, a test that only covers lines that are covered by
at least two other tests has a cardinality of three. The tests are selected from lowest to
highest cardinality until full coverage is achieved. For tests with the same cardinality,
tests with higher overall coverage are preferred. The comparison between GE, GRE,
and HGS by Chen and Lau showed that no heuristic is better than the others in all
cases [CL96].

Tallam and Gupta introduced another variation on the greedy algorithm in 2006
[TG06]. They suggested a delayed greedy algorithm which, before applying the greedy
approach, applies two improvements. First, if the coverage of a test case ti is a subset
of the coverage of another test case tj, then ti is removed. The second step is to remove
redundant requirements. A requirement ri is considered redundant if all tests that cover
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it, also cover another requirement rj. After these redundancies have been removed, the
normal greedy algorithm is applied. They found that their algorithm performed either
equally as good or better than the HGS algorithm in their experiments.

A different approach to single criterion test suite minimization was taken by Horgan
and London who implemented an implicit enumeration algorithm for test suite min-
imization with ILP (Integer Linear Programming) in their testing tool ATAC [HL92].
Wong et al. later used ATAC to minimize randomly generated test suites and found that
they can significantly reduce the size while maintaining good fault detection capability
[Won+98].

In a more recent study, Shi et al. conducted extensive experiments on 18 GitHub
open source projects using several single criterion test suite minimization algorithms
[Shi+14]. They also analyzed the differences between code coverage based minimization
and mutation score based minimization. In terms of the minimization algorithms, they
found that the differences between greedy, GE, GRE, HGS and ILP are marginal, which
is why we decided to use the greedy algorithm as a baseline for the evaluation of our
proposed weighted-sum algorithm. In terms of the different criteria, they concluded
that, even though it is a bit worse in terms of the size of the resulting test suite, the
minimization with mutation score as the basis is more beneficial since it retains better
fault detection capability.

The second notable category of test suite minimization techniques are multi criteria
based test suite minimization approaches. These consider more than one criterion for
test suite minimization. The simplest type of multi criteria algorithms are ones like
the extended HGS by Jeffrey and Gupta, which still use single criterion algorithms
but check for redundancy with respect to two or more criteria [JG05]. This means that
if a test is deemed redundant according to the first criterion, the second criterion is
checked, and only if it is redundant for both, it is removed. Using edge coverage as
their primary criterion and ATAC as their secondary criterion, they maintained better
fault detection compared to a single criterion while still achieving a substantial size
reduction.

In their 2007 paper, Yoo and Harman took a different approach to multi criteria
test suite minimization [YH07]. They used a Pareto efficient approach using up to
three criteria which they compared to the greedy algorithm. Wei et al. used the same
approach and compared a number of different Pareto efficient algorithms [Wei+17].
Both of these papers used a criterion to represent the fault detection capability, and
they found that including this as a minimization criterion improves the fault detection
of the minimized test suites significantly.

Black et al. pursued a different approach to combining multiple criteria [BMK04].
They combined def-use coverage and historic fault data as a weighted-sum. For
selecting the best tests according to the two criteria, they used ILP. Hsu and Orso also
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used ILP to perform multi criteria test suite minimization [HO09]. They extended the
work of Black et al. by adding the execution time, using more and larger projects and
by evaluating seven weighted-sum and one prioritized minimization policy.

In recent years, a new type of test suite minimization has appeared. These new
algorithms don’t use coverage or other previously obtained statistics about the code
but instead operate solely on the source code. They target large scale projects for which
performance is essential, and obtaining coverage or other metrics is too expensive.

Philip et al. used their machine learning based tool FastLane to select tests based on
the testing history and the commit log of a project [Phi+19]. They managed to reduce
the runtime of a test suite by roughly 1/5 while maintaining 99.99% test accuracy.

A different approach to test suite minimization for massive systems was taken by
Cruciani et al., who used a similarity based approach for finding a representative subset
of test cases [Cru+19]. They found that their approach delivers results, similar to code
coverage based state of the art techniques while running in a fraction of the time.

12



4 Implementation

In this thesis, we want to evaluate the effectiveness of a new, multi-criteria, weighted-
sum minimization algorithm. The goal of this new algorithm is to reduce a test suite’s
runtime with as little reduction in the overall capabilities of the test suite as possible.
To assess the performance of the proposed algorithm, we use a code coverage based
greedy algorithm as a baseline. As described in Chapter 3, the greedy algorithm is
a well-known minimization algorithm, and since the differences between the single
criteria based minimization algorithm have been minor in previous studies, we decided
to use the simple greedy algorithm. In Figure 4.1, we depict the procedure which we
used for test suite minimization. We begin by recording the minimization data that we
require, which means running the test suite while tracking coverage and runtime of
the individual tests. The mutation report is also generated at this stage. The obtained
data is then combined to one report which we use as input for minimization. With this
report, we then use either greedy or weighted-sum algorithm to minimize the test suite.

Figure 4.1: Implementation

13



4 Implementation

4.1 Minimization Data

The greedy algorithm only requires testwise coverage as its input. However, our
weighted sum algorithm additionally requires time measurements and, if it is feasible
in regards to runtime, mutation coverage as minimization criteria. In this section, we
describe how we obtained the data for minimization, and we discuss the usefulness of
our selected minimization criteria.

4.1.1 Obtaining Minimization Data

To obtain testwise coverage, we use the modified JaCoCo agent, previously described
in Subsection 2.3.1. By implementing the RunListener interface from JUnit4 or the
TestExecutionListener interface from JUnit5, we can listen to test execution and notify
the JaCoCo agent via HTTP when a test starts and ends as well as the tests name to
assign coverage to each test case. The TestListener implementation also allows us to
measure test execution times.

For the mutation coverage, we use Pitest, previously mentioned in Subsection 2.3.2.
It allows us to generate a full mutation matrix. This means, Pitest doesn’t stop running
tests for a mutant as soon as it is killed but instead runs all tests that could possibly
kill a mutant. From this, a report is generated that shows which mutant is killed by
which tests.

We combine this matrix with the testwise coverage report and the test execution
times to get the input data for our weighted sum test suite minimization algorithm. The
greedy algorithm uses the same input data, however, it only considers code coverage
when selecting tests.

4.1.2 Minimization Criteria

We have chosen four minimization criteria, which we found to be some of the most
relevant criteria for choosing good tests and respectively rejecting redundant tests.

Code Coverage Code coverage is widely used for measuring a test suite’s adequacy in
software projects. Even though covering code does not tell us anything about whether
faults in the covered code are found. However, with uncovered code, we can be sure
that no faults are found and assuming that the developers intend to find faults when
testing the code, we can assume that a test suite that covers more code is generally
preferential to one that covers less. We count code as covered when it is covered by
one test. This means that tests that subsequently cover the same code do not gain any
additional score in our algorithm from this coverage.

14



4 Implementation

Mutation Score Since, as previously mentioned, code coverage does not tell us any-
thing about how well the tests detect faults in the covered code, we use the mutation
score as our second criterion for test suite minimization. The goal of the mutation score
is to indicate a test’s fault detection capability. More details about mutation testing can
be found in Subsection 2.1.3. For the mutation score, we want to find as many faults
as possible. That is, kill as many mutants as possible. We want to find each fault only
once, which means that a test does not gain from finding faults that are detected by
another already selected test.

Execution Time One of the central goals of test suite minimization is to reduce the
cost of regression testing. This means, we want to reduce the execution time of the
minimized test suites. To achieve this, we prefer faster tests over slower ones.

Locality The fourth and last criterion we use for test suite minimization is what we
call locality. It means that we prefer tests that cover fewer classes over tests that cover
more. The reason for this criterion is that we want the minimized test suite to conform
to the concept of the test pyramid, explained in Subsection 2.1.2. Because the lower
levels of the test pyramid are easier to maintain and it is typically easier to find faults
from their failures, we prefer these over system or UI tests.

4.2 Minimization Algorithms

For our evaluation, we implemented two test suite minimization algorithms. Our first
algorithm is a coverage based implementation of the greedy algorithm. We use it as
a baseline to compare our weighted-sum algorithm to. Since the greedy algorithm
has been well researched and widely used in literature, it is well suited as a baseline
to compare a more novel algorithm to. Our second algorithm follows an enhanced
weighted-sum approach. It selects tests to be included based on a score calculated from
multiple criteria as opposed to the greedy algorithm’s single criterion.

4.2.1 Greedy

The code coverage based greedy algorithm is an adequate test suite minimization
algorithm. This means, it chooses tests until all the requirements r1 . . . rn which are
satisfied by the original test suite are fulfilled with the minimized test suite. Tests
are chosen based on the coverage they add to the existing selection of tests. For the
implementation of the algorithm this means that after we add the test case ti which
currently fulfils the most testing requirements rl . . . rm, we subtract its coverage from
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all remaining test cases. By ignoring what has already been covered and iteratively
adding the test with the most additional coverage, the greedy algorithm’s goal is to
satisfy all requirements r1 . . . rn with as few test cases as possible.

4.2.2 Weighted-Sum

Our weighted-sum algorithm selects test cases on the basis of their score which is
derived from three or four minimization criteria. The three criteria which we use for all
projects are execution time, code coverage and locality. For all projects where mutation
testing is feasible in terms of runtime, we additionally use mutation coverage. In the
following section, when coverage is mentioned, we refer to both, code coverage and
mutation coverage.

Score Calculation The first step we take is to normalize all the values by bringing
them into a range from zero to one. Since for time and locality low values are good
and for coverage and mutation coverage high values are good, there are two cases
for normalization, as shown in Equation 4.1. In this and the following equations in
this chapter, the i denotes the index of the test case for which the score is currently
calculated. Max and Min denote the highest and lowest value of the respective criterion
among all test cases. The first equation shows the formula for values where higher is
better and the second on where lower is better. We then take the square root to slightly
reduce the impact that a single test with a large amount of coverage or a very fast tests
case has.

normValueHighi =

√
valuei

valuemax

normValueLowi =

√
valuemin

valuei

(4.1)

We then add the normalized coverage, mutation and locality scores in a weighted-sum
as shown in Equation 4.2. Since we regard mutation score and coverage as the more
relevant criteria, we give them a higher score than the locality.

weightedSumi = 2 ∗
√

coveragei
coveragemax

+ 2 ∗
√

mutationsi

mutationsmax
+

√
localitymin

localityi
(4.2)

By using the time score as a factor instead of an addend, we decrease the overall score
if the test is slow. Time influencing the other factors better represents our goals since a
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fast test without coverage should not have a high value and a slow test that covers a lot
can be worse than a fast test that covers little. On the other hand, using time alone can
rate a test as useless even though it adds a lot of coverage. To consider this case, we
add a base value of 0.2 to the time factor.

We also add a penalty factor for tests without any coverage at all. This has a value of
1 if the test adds any coverage and 0.5 if it does not. A test case that does not touch
many classes and is very fast might not add much cost, but we still prefer tests that
add additional coverage.

scorei =

(√
timemin

timei
+ 0.2

)
∗
(

2 ∗
√

coveragei
coveragemax

+ 2 ∗
√

mutationsi

mutationsmax
+

√
localitymin

localityi

)
∗ penalty (4.3)

Algorithm The algorithm starts by calculating an initial score for each test case in
the test suite, according to Equation 4.3. Then, same as the greedy algorithm, the best
test is selected iteratively according to the score. After every selected test, the coverage
values for the remaining tests are updated, that is, the coverage from the newly added
test is subtracted from the remaining tests. This means the scores have to be updated
after every round as well to represent the current additional coverages.

Since our weighted-sum implementation is an inadequate test suite minimization
algorithm, it doesn’t aim for 100% mutation or code coverage but instead selects
additional tests until a time limit is reached.

4.3 Limitations of the Implementation

Though our implementation of test suite minimization itself is independent of the
language of the project, the tools we have used to obtain our data, we are limited to
Java. The only exception is the Siemens project which is a .NET project. For this project,
we got testwise coverage from Siemens.

When combining testwise coverage with the mutation report, we need to match the
test cases from both reports. For parameterized tests, this does not always work. Pitest,
in some cases, reports distorted test names when handling parameterized tests. This
means that for some parameterized tests in the testwise coverage report, we cannot
assign the according entries in the mutation report. However, due to the low number
of parameterized tests in the test suites of our study subjects, we decided to accept this
limitation since fixing it would have required making changes to Pitest.
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Our research revolves around two central questions. First, we want to find out how well
our proposed weighted-sum multi criteria test suite minimization algorithm performs
when it is applied to real world projects. The second question is, how well test suite
minimization performs when using it on large scale, closed source industry projects,
and how they compare to open source projects. We begin this chapter with a description
of our research questions followed by a section on the study subjects. We then explain
our study design and present and discuss the results. Finally, we consider threats to
the validity of our study.

5.1 Research Questions

We have posed five research questions that address different aspects of the above
mentioned two central questions that this thesis aims to answer.

RQ1 – What is the sweet spot between execution time and coverage of our
proposed weighted sum algorithm?

With our weighted sum approach, we don’t aim for 100% coverage on any of the criteria.
Instead, the algorithm aims to select the most relevant tests until a set time limit is
reached. The goal of this research question is to find a sweet spot between runtime and
coverage where a significant amount of time can be saved while keeping as much as
possible of the original line coverage.

RQ2 – How well does our weighted-sum algorithm maintain the fault detection
capability of a test suite?

Since a test suite’s primary purpose usually is to find faults, test suite minimization
is useless, if it does not maintain most of the fault detection capabilities of the full
test suite. We want to find out how well the time target that was determined in RQ1
maintains a test suite’s fault detection capability.
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RQ3 – How does our proposed algorithm compare with the greedy algorithm

To get a reference on how well our weighted-sum algorithm performs in test suite
minimization, we compare it to one of the most well-known minimization algorithms,
the greedy algorithm. Our implementation of the greedy algorithm is a single criterion
test suite minimization algorithm that is based on code coverage, making it a lot simpler
than the weighted-sum approach. If the new algorithm does not perform considerably
better than the greedy algorithm, the high cost of collecting the additional criteria
might be a good reason to stick with the simpler greedy algorithm. To get an overview
of the strengths and weaknesses of each algorithm, we compare them based on several
important characteristics of a minimized test suite.

- in regards to line coverage? Line coverage is the primary goal of the greedy
algorithm, and since we use the adequate variant of the greedy algorithm, it is
better in terms of coverage. However, we want to know how much of a difference
there is between the two algorithms. We also analyze how coverage behaves over
time, that is, how much code coverage can be achieved with how much test suite
runtime with each algorithm.

- in regards to mutation coverage? Since mutation coverage is not a criterion of
the greedy algorithm, while it is one of the weighted-sum’s criteria, we expect the
weighted-sum algorithm to perform better than the greedy algorithm in terms
of the mutation coverage of the minimized test suite. Depending on how much
the mutation-score is correlated with coverage, the greedy algorithm might be
similarly good or even better.

- in regards to test execution time? The test suite execution time reduction of the
weighted-sum algorithm is what we set as goal for the minimization process.
However, we want to find out whether there is a significant benefit compared to
the greedy algorithm.

- in regards to the files covered per test? Ideally, we maintain the characteristics
of a test pyramid when using test suite minimization, that is, keep mostly unit
tests and fewer integration and system tests. By comparing the number of files a
test covers, we want to find out, how test suite minimization affects the shape of
the test pyramid, that is, how it changes the number of files touched per test. We
expect the greedy algorithm to perform worse in this comparison, since this is
not part of its minimization criteria and preferring tests that cover as much code
as possible is a disadvantage in this category.
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RQ4 – Do results from large scale, industry projects differ from those of open
source projects?

A vital factor for test suite minimization is that it has to work with massive closed
source projects as well as open source ones. This is vital since the larger a project
is, the more likely it is that it actually has the problem of an oversized test suite.
Because we did not find any papers evaluating test suite minimization with large scale
industry projects, this is one central contribution of this thesis. We use open source
projects as well as closed source, large scale projects which are developed in an industry
environment for our analyses. Our goal is to determine whether test suite minimization
algorithms perform comparatively well with closed source projects as they do with
open source ones.

RQ5 – How well do the minimization algorithms scale with large projects?

The minimization algorithms are only useful if they can be calculated with reasonable
effort. By testing the algorithm with projects of varying sizes, we want to find out
whether the runtime of the test suite minimization algorithms scales well with project
size.

5.2 Study Subjects

To answer the posed research questions, we analyzed ten software systems. We have
divided the ten projects into two different types of projects. Eight of them are open
source projects from GitHub while the remaining two are closed source industry
projects. The open source projects are Java based and use Maven as their build system.
They range from 9k SLOC (Source Lines of Code) to 175k SLOC. We chose these projects
based on several limitations. We wanted all of the projects to be of a certain size and to
have a comprehensive test suite, preferably implemented in JUnit. Another important
criterion for the open source projects was that Pitest needs to run on them without
major modifications to the test suite. Pitest can run into problems when tests need to
be run in a specific order due to, for example, files being written to disk or when a
project has a very complex build.

We did not require the closed source projects to be able to run Pitest. Due to these
projects being considerably larger in scale and the test suites taking at least two orders
of magnitude longer to execute, mutation testing was not viable for these projects in
the time we had for our research. Including large projects with high test suite duration
was an important aspect for us since large projects which have been in development for
a long time are much more likely to have the problem of oversized test suites.
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Table 5.1: Study Subjects
Open Source Projects SLOC SLOC Project SLOC Test Test Coverage # Tests # Mutants
AC Collections 62,934 28,708 34,226 86% 15,183 8,253
AC Lang 75,467 27,825 47,642 95% 3,484 13,088
AC Math 174,522 86,131 88,391 92% 4,828 37,674
AssertJ 161,306 35,650 125,656 91% 14,685 10,354
Ebean 170,656 99,317 71,339 77% 2,618 25,056
JOpt Simple 9,433 7,023 2,410 98% 838 678
JSoup 20,136 12,037 8,099 84% 671 4,711
Spoon 112,650 60,619 52,031 83% 1,619 15,877
Closed Source Projects
Siemens Unknown 203,964* Unknown 75% 5,366 -
Teamscale 516,949 407,678 109,271 76% 2,979 -

In Table 5.1, we show a detailed overview of the ten selected systems. The SLOC
count counts all lines in code files, excluding empty lines and source code comments.
The SLOC and test coverage numbers are as reported by JaCoCo. The number of tests
includes all tests which we could successfully track testwise coverage for.

The Siemens project is the only project for which we do not have the source code,
which is the reason for the incomplete table entry. Contrary to all other projects, it
is implemented in .Net, and the tool OpenCover was used to obtain coverage. We
worked with the resulting coverage reports from a test run. That is the reason that
some numbers for the Siemens project are unknown. We only know the code that was
covered. The SLOC for the Siemens project are only coverable lines which means that
import statements and class declarations are not included. However, since we do not
know the actual number, we use the coverable lines as an indicator of the size of the
project. The actual number can be expected to be considerably higher.

5.3 Study Design

Here, we give a short description of how we designed the experiments for each of our
research questions.

RQ1 – What is the sweet spot between execution time and coverage of our
proposed weighted sum algorithm?

To answer this question, we used the weighted-sum algorithm on the test suites of the
projects with which mutation testing was possible and set the time goal to a specific
percentage of the full time. We iterate in one percent steps from one percent to 100
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percent. We then plot the results, combine them into a line graph, and try to find a
time where all projects reach a sufficiently high coverage and achieve substantial time
savings compared to the full test suite. Though an individual sweet spot could be
found for every project, we try to find one sweet spot that delivers satisfying results for
all projects.

RQ2 – How well does our weighted-sum algorithm maintain the fault detection
capability of a test suite?

To check, whether our sweet spot from RQ1 maintains good fault detection capability,
we take the tests that are selected with the sweet spot for each of our projects and
evaluate the mutation coverage. We compare the fault detection capability, which we
achieve with the tests selected at the sweet spot from RQ1 with the fault detection
capability of the complete test suite.

RQ3 – How does our proposed algorithm compare with the greedy algorithm

We partitioned this question into several aspects that can be used to determine the
performance of a test suite minimization algorithm. For each criterion, we determine
the performance of both algorithms and compare them to each other.

- in regards to line coverage? To evaluate the algorithms’ performance in terms
of line coverage, we compare how well they perform when they are normally
executed as well as how they perform over time, that is, at what time they achieve
what coverage on average.

- in regards to mutation coverage? We compare the mutation score in a similar
fashion to the code coverage. This means we compare the values when the
algorithms are executed normally as well as how well they perform across test
suite runtime limits.

- in regards to test execution time? For the third part of this comparison, we
measure the speedup of each algorithm relative to the full test suite, that is, how
many times longer does the full test suite need than the minimized test suites.

- in regards to the files covered per test? For the final point of comparison, we
check, how many files a test covers on average with each algorithm. For this, we
simply count the number of files that are part of a test’s code coverage.
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RQ4 – Do results from large scale, industry projects differ from those of open
source projects?

For our second but last research question, we analyze the two closed source industry
projects which we have shown in Section 5.2. We compare the coverage of the closed
source projects to the open source ones for both algorithms.

RQ5 – How well do the minimization algorithms scale with large projects?

To evaluate our last research question, we look at how long the test suite minimization
takes for all projects and, more importantly, how the runtime changes with the size of
the project and the number of tests.

5.4 Results and Discussion

In this section, we present and discuss our obtained results and their potential implica-
tions.

Answering RQ1 – What is the sweet spot between execution time and coverage of
our proposed weighted sum algorithm?

In Figure 5.1, we have plotted the relative runtime on the x-axis and coverage, relative
to the full test suite, on the y-axis. Note that we omitted the lower 50% relative coverage
of the y-axis for better visibility of the relevant chart area. We can see that most of the
curves follow a similar path. The coverage of all projects is above 90% from 11% onward
of the original runtime when tests are selected with the weighted sum algorithm. To
determine a sweet spot between execution time and coverage, we picked a value where
the average is significantly above 90% and, equally important, we don’t lose too much
coverage in the worst case.

We decided to set the target test suite duration to 15% of the original test suite’s
runtime. The red vertical line in Figure 5.1 marks the target of 15% relative runtime. In
Table 5.2, we have listed the resulting coverage for each project at the determined sweet
spot. With the average loss being only 3.07% coverage and the worst-case coverage
retention with 93.61% still closer to 95% than to 90%, the loss in coverage is quite
small. The average total coverage drops from 88.25% to 85.67% which, at under 3%, is
satisfactory. We experience the highest loss in absolute coverage with the project Spoon
at 5.11%, which is still a rather small loss in coverage.

We can observe clear differences in how well the minimization performs between the
different projects. Our results seem to indicate that there is a correlation between the
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Figure 5.1: Coverage over Time of the Weighted-Sum Test Suite Minimization Algorithm

total coverage before minimization and how well the minimization algorithm performs.
For the projects with higher test coverage, the results we get for our study subjects are
better with the only two projects which are below 80% absolute coverage delivering
the worst results and the projects with over 90% total coverage delivering some of the
best results. This finding makes sense when considering that at these high coverages,
increasing the coverage more easily leads to the introduction of redundant tests in
terms of code coverage.

Overall, the loss of only 3.07% coverage with a run time reduction of 85%, which
equates to an execution time of 1/6 of the original test suite, is very promising. We
noticed, that for the different projects, the weighing factors of Equation 4.2 have different
ideal values. An individualization of the formula we used for calculating the test score
could improve upon the results that we obtained in our experiments.

Answering RQ2 – How well does our weighted-sum algorithm maintain the fault
detection capability of a test suite?

To answer our second research question, we plotted a similar graph to the one from the
first question. In Figure 5.2, we display the runtime, relative to the full test suite on the
x-axis and the mutation score, also relative to the mutation score of the full test suite,
on the y-axis. We once again cut off the lower 50% of relative mutation coverage to
show more detail in the relevant area of the chart. At the goal of 15%, we have a very
solid mutation score for five of the projects, however the projects Spoon, JOpt Simple
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Table 5.2: Weighted-Sum Algorithm - Coverage
Absolute Coverage Absolute Coverage - W-S Relative Coverage - W-S

AC Collections 86% 82.49% 95.91%
AC Lang 95% 94.67% 99.65%
AC Math 92% 91.57% 99.54%
AssertJ 91% 89.41% 98.25%
Ebean 77% 72.08% 93.61%
JOpt Simple 98% 95.17% 97.11%
JSoup 84% 82.09% 97.73%
Spoon 83% 77.89% 93.84%
Average 88.25% 85.67% 96.93%

and AssertJ are a bit lower at around 90%.

Figure 5.2: Mutation Score over Time of the Weighted-Sum Test Suite Minimization
Algorithm

We show the exact mutation score values at the target of 15% relative runtime in
Table 5.3. In the table, we can see that the average loss in mutation score is quite low at
4.79%. An interesting result here is that the mutation score appears to vary considerably
stronger than the coverage. We can see that in Figure 5.2 , the lines are a lot farther
apart than in Figure 5.1. Table 5.3 confirms this finding, the results in relative mutation
coverage range from 88.12% to 99.71% which means, we have a 11.59% difference
between the highest and the lowest value. For coverage, the maximum difference was
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only 6.04%. The mutation scores are also in groups, while the coverage is more evenly
spread between best and worst results. In terms of the total mutation score, we have a
loss of 3.69%, making the minimization technique quite promising.

Another interesting finding is that we see no obvious connection between the total
mutation score and the mutation score retention with the weighted-sum algorithm. AC
Collections and AC Lang both have very high mutation score retention, while AC Lang
has a fairly high total mutation score and AC Collections a low one. The same goes for
projects with lower mutation score retention like Spoon and JOpt Simple. They differ
quite strong in their total mutation score but both have a relatively low mutation score
retention compared to the rest.

Table 5.3: Weighted-Sum Algorithm - Mutation Score
Mutation Score Mutation Score - W-S Relative Mutation Score - W-S

AC Collections 41.50% 41.38% 99.71%
AC Lang 83.56% 83.20% 99.58%
AC Math 74.73% 73.80% 98.75%
AssertJ 80.43% 70.87% 88.12%
Ebean 42.75% 40.74% 95.32%
JOpt Simple 94.81% 85.18% 89.84%
JSoup 64.35% 63.88% 99.27%
Spoon 71.62% 65.25% 91.11%
Average 69.23% 65.54% 95.21%

Answering RQ3 – How does our proposed algorithm compare with the greedy
algorithm

We split the comparison of the greedy algorithm and the weighted-sum algorithm into
multiple parts. In each part, we compare a key characteristic of the minimized test
suites.

- in regards to line coverage? Since we have implemented a coverage based,
adequate greedy algorithm, it has 100% relative line coverage per definition. In
Figure 5.3, we have plotted the coverage relative to the coverage of the full test
suite. We see that the full test suite and the greedy algorithm both have 100% as is
to be expected. The weighted-sum algorithm trails behind with 96.93%, however,
the difference is quite small. In Figure 5.4, we show the average relative coverage
of all projects over time for greedy and weighted-sum algorithm. Note that for
this graph, we did not cut off the lower 50% coverage as we did above. We can
see that the coverage of the weighted-sum algorithm is superior to the greedy
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Figure 5.3: Coverage Comparison of the Two Minimization Algorithms

algorithm for most of the graph. However, the greedy algorithm actually reaches
100% coverage first at 72% runtime while the weighted-sum algorithm reaches
100% coverage at 83‚% runtime. While this only tells us the worst case, it shows
that running the weighted-sum algorithm in an adequate manner towards line
coverage provides bad results.

The diagram also shows that the greedy algorithm is considerably worse when it
comes to inadequate performance because, for the most part, the greedy curve is
below the weighted-sum algorithm’s curve. If, for example, we assumed a limit
of 5% coverage loss, we could get 65% runtime savings with the greedy algorithm,
while we could achieve 87% with the weighted-sum algorithm. While this differ-
ence might not seem that large, the resulting tests suite with the weighted-sum
algorithm is 2.7 times faster compared to the greedy algorithm.

Also if we look at the 15% target of the weighted-sum algorithm which is indicated
by a red vertical line in the diagram, we can see that the weighted-sum algorithm
is almost 30% above the standard greedy algorithm.

- in regards to mutation coverage? While the greedy algorithm has a slight advan-
tage in the code coverage of the minimized test suites, the resulting mutation
coverage is significantly worse. In Figure 5.5, we show the mutation score reten-
tion of the different test suites. The weighted-sum algorithm loses 4.68% mutation
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Figure 5.4: Average Coverage over time for the Two Minimization Algorithms

score. The greedy algorithm, on the other hand, loses over 22.22% mutation score
which means that 1/5 of the faults that were previously found would slip through
after the minimization, almost five times as many as with the weighted-sum
algorithm.

This is a very important aspect if test suite minimization is to be used in practice.
Loosing 4.68% means that less than every 20th fault that could be detected before
goes unnoticed by the test suite after test suite minimization. However, 1/5 of the
faults that were found before slipping through might very well turn off a lot of
people who might otherwise have a need for test suite minimization.

This difference between the two algorithms is even more pronounced when we
look at Figure 5.6, where we mapped the average mutation score of all projects to
the runtime for both algorithms. Because the greedy algorithm’s only criterion is
code coverage, additional killed mutants are not considered when selecting tests.
This results in rather bad behavior in terms of its mutation score which is visible
in the first half of the chart where there is an almost 40% difference between the
relative mutation coverage of the two algorithms.

- in regards to test execution time? In Figure 5.7, we display the resulting speedup
of the minimized test suite as compared to the full test suites with the two
algorithms as well as for the full test suite. We decided to show the speedup
instead fo the percentage reduction because we think it pronounces the most
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Figure 5.5: Mutation Score Comparison of the Two Minimization Algorithms

Figure 5.6: Average Mutation Score over Time for the Two Minimization Algorithms
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relevant result here. How much faster is the resulting test suite than the full test
suite.

Combined with the previous results, this metric shows one of the main benefits
of the weighted-sum algorithm over the greedy algorithm. While the greedy
algorithm more than halves the runtime, the weighted-sum algorithm leaves less
than 1/6 of the original duration. This difference is not immediately visible when
we only look at the time reduction percentages of 54.75% for the greedy algorithm
and 85% for the weighted-sum algorithm.

Figure 5.7: Speedup Comparison for the Two Minimization Algorithms

- in regards to the files covered per test? As a basis of comparison, we used the
average number of files that is covered when running the full test suite. That
is the reference value of 100% in Figure 5.8. Note that in this diagram, a lower
number equates to fewer classes covered per test, which means lower percentages
are better.

Our first finding is that introducing locality as a factor had the intended result, as
with the weighted-sum algorithm, we could reduce the number of files that a test
runs through by around 33%. This suggests that we achieved the intended result
of making a test suite conform to a test pyramid by preferably removing system
and integration tests.

Interestingly, the greedy algorithm has the opposite effect. It increases the average
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number of classes that a test from the test suite runs through. It does not shape
the minimized test suite in the testing pyramid but rather into what is often
referred to as an ice cream cone where system tests are preferred. The reason
for this is how the greedy algorithm selects its tests. By purely prioritizing the
tests with the most coverage, system tests are the preferable kind of tests since
they run through the whole system and thus often cover lots of code with only
one test. While this gives a good result for the remaining number of tests, which
is often stated as the target of test suite minimization in literature, the overall
quality of the test suite suffers significantly from this way of minimization.

Figure 5.8: Files per Test Comparison of the Two Minimization Algorithms

Answering RQ4 – Do results from large scale, industry projects differ from those
of open source projects?

We have split the results of the experiments we conducted for this question into two
charts for better visibility. In Figure 5.9, we display the results for the greedy algorithm
and in Figure 5.10, we have plotted the results for the weighted-sum algorithm. In
each line-chart, we show the average of the open source projects and separate lines for
Teamscale and the Siemens project.

Besides the number of SLOC, another important difference between the open source
and the closed source projects is the duration of the test suites. While the longest
running test suite of the open source projects takes roughly three and a half minutes,
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the test suite of the Siemens projects takes a bit over 85 hours to run. For projects like
that, test suite minimization is way more relevant since a test suite that takes under
five minutes to run won’t pose a problem for many people while one that runs over
three days can be a hindrance to development.

In Figure 5.9, we see that for the greedy algorithm, the average result of the open
source projects lies between the results of the Siemens project and Teamscale. Test suite
minimization works very well with the Siemens project but not well at all for Teamscale.
When looking at the Teamscale curve, one can see that it reaches 100% coverage at
around 90%. Full coverage is reached with over 99% of the original runtime, making it
virtually useless in terms of reducing the duration of the minimized test suite. For the
Siemens project, the greedy algorithm reduces the test suite’s duration by around 55%,
which puts it at the average for the greedy algorithm as displayed in Figure 5.9.

Figure 5.9: Coverage over Time of the Greedy Algorithm for the Closed Source Projects

For the weighted-sum algorithm in Figure 5.10, the Siemens project shows very
similar results to the open source projects. Teamscale, again, behaves significantly
worse than the open source projects. At the goal of 85% reduction in runtime, we have
97.4% of the full test suite’s line coverage with for the Siemens project and 82.55% for
Teamscale. With Teamscale, the reduction target of 85% reduction in runtime is too
high. A target of around 50% which would result in around 95% coverage would be
more sensible here.

From the bad results for Teamscale for both algorithms, we conclude that Teamscale
is not well suited for minimization, meaning it has considerably fewer redundant tests
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in its test suite. That the greedy algorithm barely removes any tests means that almost
every test adds additional coverage. Since the total coverage is more distributed over
the test suite, minimization does not work to the extent that it does with the other
projects.

For the Siemens project, which has the problem of an overly large test suite, test suite
minimization works just as well as it did on the open source projects which shows us
that test suite minimization is viable for large scale, closed source industry projects.

Figure 5.10: Coverage over Time of the Weighted-Sum Algorithm for the Closed Source
Projects

Answering RQ5 – How well do the minimization algorithms scale with large
projects?

With our final research question, we want to find out, whether the two test suite
minimization algorithms scale well with project size. In Table 5.4, we have listed the
runtime of the test suite minimization itself with both algorithms for each of the projects
we analyzed. As expected, the weighted-sum algorithm is, for the most part, more
expensive in its execution duration.

For most of the projects, the minimization runs for less than one minute. The only
project which exceeds that is the Siemens project which is considerably larger than
all the others. With the un-minimized test suite taking around 85 hours to run, a
minimization duration of under four minutes is not an issue.
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5 Empirical Assessment

The most surprising result is that for JSoup the weighted-sum algorithm is faster
than the greedy algorithm. One expensive part of the algorithm is the subtraction of the
coverage of a newly selected test from the rest. However, the weighted-sum algorithm
has additional steps that increase the runtime, like updating the scores and updating
mutation scores after a test has been selected.

Table 5.4: Runtime Test Suite Minimization Algorithms in Seconds
AC Coll AC Lang AC Math AssertJ Ebean JOptSimple JSoup Spoon Siemens Teamscale

Greedy 11.09 3.08 15.64 22.74 2.48 0.087 0.587 8.32 19.09 7.11
Weighted-Sum 43.56 3.81 20.97 45.65 5.88 0.102 0.513 13.41 196.47 39.28

Another difference between the algorithms that affect the runtime is the number of
selected tests. Since the operations all have to be performed once per test, an increased
number of selected tests leads to a higher runtime. The greedy algorithm attempts to
minimize the number of tests by selecting the tests that add the most coverage. Because
the weighted-sum algorithm does not only aim for a reduction of the number of tests
but also of runtime, for the most part, results in a minimized test suite with more tests
remaining as can be seen in Table 5.5.

Table 5.5: Number of Remaining Tests
AC Coll AC Lang AC Math AssertJ Ebean JOptSimple JSoup Spoon Siemens Teamscale

Greedy 955 1635 1541 2318 812 99 238 431 2860 2829
Weighted-Sum 3877 1802 4604 3337 1725 149 328 605 4353 2507

5.5 Threats to Validity

In this section, we discuss possible threats to the validity of our study and what
measures we took to minimize said threats.

External Threats The most relevant threat is that the results we obtained may not be
universally applicable, that is, they may not be representative beyond the projects we
analyzed. To reduce the risk of this, we chose projects from different developers and of
different sizes. We also considered open source and closed source projects. Our study
subjects were mostly arbitrarily chosen, so there is no inherent connection between
them. The only restriction which limits the choice of our study subjects is that they had
to be able to run Pitest.

For the closed source projects, the main issue is that our sample size was small.
With only two projects, these results might not be universal. Though, the fact that the

34



5 Empirical Assessment

results of the closed source project that had the problem of an oversized test suite were
very similar to the open source ones suggests that the behavior could be similar in
general. However, projects that do not have that many redundancies appear to behave
differently, both for open and closed source projects.

Internal Threats Another potential issue is the implementation of mutation testing,
which we used for our research. While Pitest is one of the most comprehensive mutation
testing tools, it cannot get around the issues that inherently plague mutation testing.
The first issue is the selection of mutation operators. There is only a limited amount of
mutation operators, and they typically represent certain kinds of faults. Even though
mutation testing has been proven to be a reliable representation of real world faults,
mutation operators are sill more predictable than real faults.

The second issue we see with mutation testing is the occurrence of infinite loops and
equivalent mutants. While they are not an essential issue, they still make the results
of mutation testing less accurate than it would ideally be. To get around the problem
of false positives for infinite loops, we gave the tests as much time as we could afford.
This reduces the number of Pitest timeout reports that are not caused by infinite loops.
Equivalent are mutants that cannot be found. While they are a problem of mutation
testing, the relative mutation score of the minimized test suites is not affected by them.
This makes the overall mutation score less accurate, however, it is not a problem when
looking at the relative mutation scores of the reduced test suites.
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6 Conclusion

We proposed a multi criteria based weighted-sum test suite minimization algorithm
that aims to balance the trade-offs between a high reduction in runtime and maintaining
as much of the original fault detection capability, coverage and quality of the test suite
as possible.

We evaluated this algorithm based on eight medium sized open source projects and
two large scale closed source projects. We found that we can achieve an average line
coverage of around 97% and mutation coverage of around 95% while reducing the
runtime by 85%. When comparing the weighted-sum algorithm to a code coverage
based greedy algorithm, it is superior in almost every way. While the relative coverage of
the greedy algorithm is slightly higher, in terms of retained mutation coverage, runtime
improvements and the average files touched per test, the weighted-sum algorithm
outperforms the greedy algorithm by a lot. The speedup of the weighted-sum algorithm
is around three times higher at a factor of around 6.7 versus 2.2 for the greedy algorithm.
The loss in fault detection capability is less than 1/4 of the greedy algorithm’s at 4.7%
versus 22.2%. For the files touched per test, the greedy algorithm has a negative
effect, increasing the amount by around 6.4% compared to the full test suite while the
weighted-sum algorithm decreases the number by roughly 32.4%.

Our second central goal besides introducing a new algorithm and evaluating its
performance was to find out how well test suite minimization performs with large scale
closed-source projects. All of our open source projects have test suite runtimes where
test suite minimization is not necessary. The closed-source test suites, on the other
hand, have up to 85 hours of runtime. Our evaluation showed that both algorithms
work similarly well with large scale, closed source projects as they do with medium
sized open source ones. However, we also found that the performance highly depends
on the degree of redundance in a test suite. Depending on how much overlapping
coverage and similar tests there are, test suite minimization can deliver better or worse
results.

Overall, we found that the proposed weighted-sum algorithm performs very well
when compared to the well established greedy heuristic, outperforming it in almost
every way. For the closed source projects, our results show that test suite minimization
can work well, but, same as with open source projects, it depends on the degree of
redundancy in a test suite. However, for the closed source projects, our sample size
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was small, which means that more research is necessary to confirm these results with
a larger sample size. The main difficulty here is that it is considerably harder to
investigate closed source projects since they are not as readily available and can be
harder to set up since they often have more complicated builds. Open source projects
are often easy to set up and run because they rely on contributions from outside
developers.
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7 Future Work

During the making of this thesis, we found three topics that seem particularly interesting
for future research based on this study.

The first possible option to go from here is to perform a similar but expanded analysis
of additional large scale projects. One of the limiting factors of our study was getting
access to suitable, large scale projects. Since these are typically closed source industry
projects, they are a lot harder to obtain than open source projects. Because large projects
with long running test suites are the real target of test suite minimization, they are
particularly relevant for the use in real world environments. Finding these kinds of
projects is challenging but provides excellent insight into the capabilities of test suite
minimization in practice.

The second topic is to perform mutation testing on larger projects. Due to time and
performance constraints, we only used mutation testing for the small to medium sized
projects. Since the primary purpose of test suites is to detect faults, not to cover as
much code of a project as possible, mutation testing is a more meaningful metric to
use for minimization, compared to line coverage. On the other hand, mutation testing
increases the test execution duration by at least a factor of 100 from our experience,
making it difficult for big projects. Depending on whether a test suite supports parallel
execution, the speed of mutation testing could be increased a lot with more powerful
hardware. Another way of reducing the cost of mutation testing would be to reduce
the number of mutants and restrict the selection of mutants to the most relevant ones.
For this, it should be analyzed how many mutants are needed to keep the significance
of the mutation report at a high enough level and which mutants are more or less
relevant.

The third and final topic to research from this thesis is adjusting the weighted-
sum algorithm to the project that is currently analyzed. This means adjusting the
constant factors in Equation 4.2 so they deliver the best results for the current project.
Additionally, the goal should be individualized per project since the requirement is
not always a reduction of 85% and, as we saw, the degree of redundancy and thus the
performance of test suite minimization varies between projects. When evaluating the
projects with the weighted-sum algorithm, we already noticed that the constant factors
have a significant impact on the outcome and can behave very differently with the
different projects. From these observations, we think that the results of the weighted-
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sum algorithm could be improved considerably by adjusting the constant factors and
the reduction target.
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