
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Learning a Static Analyzer from Code

Stefan Knilling

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Learning a Static Analyzer from Code

Maschinelles Lernen von statischen Analysen
aus Code

Author: Stefan Knilling
Supervisor: Prof. Dr. Dr. h.c. Manfred Broy
Advisors: Dr. Elmar Jürgens (TUM)

Dr. Benjamin Hummel (CQSE GmbH)
Dr. Stefan Krüger (CQSE GmbH)

Submission Date: November 15, 2021

I confirm that this master’s thesis is my own work and I have documented all sources and
material used.

Munich, November 15, 2021 Stefan Knilling

Abstract

Static code analysis helps to detect defects and code smells early in the software lifecycle
and thus leads to a decrease in maintenance cost. However, manually crafting rules for a
static code analysis is a hard task. The analyzer should be sound and precise. It therefore
needs to consider edge cases and program-specific environments. To support the creation
of analysis rules, Bielik et al. [1] propose an approach to learn analysis rules from program
code. The approach uses decision trees to learn analysis rules from input-output samples.
To improve the generalization of the analysis rules, additional input-output samples are
generated through code modification.

In this thesis, we replicate the approach of Bielik et al. to learn analysis rules for an allocation
site analysis. The goal of an allocation site analysis is to detect source code locations that
result in a heap allocation. An allocation site analysis is for example used underneath in static
analyzers or directly assists developers to find memory leaks and bottlenecks. In addition
to the implementation, our contribution is an in-depth case study to evaluate whether the
learning approach is applicable to a production-ready static code analysis. The case study
evaluates the learned analysis rules on a generated dataset of input-output samples and
additionally on code from open source projects.

We show that accuracy, precision, and recall of the analysis rules are high for data from
the generated dataset that is structurally similar to the training data. However, accuracy,
precision, and recall are significantly lower for our evaluation of the learned analysis rules
on open source code. We thus conclude that the rules are not yet sufficient for practical
application.

iii

Kurzfassung

Statische Code-Analyse hilft dabei, Fehler und Code-Smells früh im Software-Lebenszyklus
zu erkennen und führt daher zu geringeren Wartungskosten. Analyseregeln für eine statische
Code-Analyse manuell zu erstellen ist jedoch eine schwierige Aufgabe. Das Analyseprogramm
soll gründlich und präzise sein. Daher muss es Randfälle und die programmspezifischen Um-
gebungen berücksichtigen. Um die Erstellung von Analyseregeln zu unterstützen, schlagen
Bielik et al. [1] einen Ansatz zum Erlernen von Analyseregeln aus Programmcode vor. Der
Ansatz verwendet Entscheidungsbäume, um Analyseregeln aus Input-Output-Beispielen zu
lernen. Um die Generalisierbarkeit der Analyseregeln zu verbessern, werden durch Code-
Modifikation zusätzliche Input-Output-Beispiele erzeugt.

In dieser Masterarbeit replizieren wir den Ansatz von Bielik et al., um Analyseregeln
für eine Allocation-Site-Analyse zu erlernen. Das Ziel der Allocation-Site-Analyse ist es,
Quellcodestellen zu erkennen, die zu einer Allokation von Heap-Speicher führen. Eine
Allocation-Site-Analyse wird beispielsweise als Bestandteil statischer Analyseprogramme
eingesetzt oder unterstützt Entwickler direkt beim Finden von Speicherlecks und -engpässen.
Neben der Implementierung besteht unser Beitrag in einer ausführlichen Fallstudie, die
untersucht, ob der Lernansatz auf eine für den produktiven Einsatz geeignete statische Code-
Analyse anwendbar ist. Die Fallstudie evaluiert die Analyseregeln auf einem generierten
Datensatz bestehend aus Input-Output-Beispielen und zusätzlich auf Code von quelloffenen
Projekten.

Wir zeigen, dass Accuracy, Precision und Recall der Analyseregeln für Datenpunkte aus
dem erzeugten Datensatz, die den Trainingsdaten strukturell ähneln, hoch sind. Accuracy,
Precision und Recall sind jedoch deutlich geringer für unsere Auswertung der erlernten
Analyseregeln auf quelloffenem Code. Wir schließen daraus, dass die erlernten Regeln noch
nicht für eine praktische Anwendung geeignet sind.

iv

Contents

Abstract iii

Kurzfassung iv

1 Introduction 1

2 Theoretical Foundations 3
2.1 Static Code Analysis . 3

2.1.1 Areas of Application . 3
2.1.2 Sensitivities . 3
2.1.3 Code Representations . 4
2.1.4 Allocation Site Analysis . 4

2.2 Machine Learning . 5
2.2.1 Definition and Classification . 5
2.2.2 Decision Trees . 6
2.2.3 Evaluation Metrics . 7

2.3 Application of Machine Learning to Static Code Analysis 7

3 Related Work 9
3.1 Learning Analysis Rules from Code . 9
3.2 Static Analysis and Machine Learning . 10
3.3 Static Analysis Without Machine Learning . 11

4 Approach 13
4.1 Program Synthesis . 14

4.1.1 Analysis Soundness and Precision . 15
4.1.2 Language Template for Analysis Rules 16
4.1.3 Learning Analysis Rules . 16

4.2 Oracle . 20
4.2.1 Determine Modification Positions . 21
4.2.2 Selection of Modifications . 21

5 Instantiation and Implementation 23
5.1 Variable Instantiation . 23
5.2 Domain-Specific Language . 24

5.2.1 Specification of Syntax and Semantics . 24
5.2.2 Implementation . 28

v

Contents

5.3 Data Collection . 28
5.4 Program Synthesis . 30
5.5 Oracle . 31

5.5.1 Determine Modification Positions . 31
5.5.2 Selection of Modifications . 31

5.6 Line-Based Analysis for Allocation Sites . 32

6 Evaluation 34
6.1 Research Questions . 34
6.2 Study Objects . 35
6.3 Study Procedure . 37
6.4 Results . 40
6.5 Discussion . 49
6.6 Threats to Validity . 50

6.6.1 Implementation Errors . 50
6.6.2 Selection of Validation Data . 50
6.6.3 Amount of Validation Data . 50
6.6.4 Comparability With the Results of Bielik et al. 51

7 Future Work 52
7.1 Application of Different Generalization Techniques 52
7.2 Use of Specific Training Data . 52
7.3 Application to Different Problems . 52
7.4 Application to Different Programming Languages 53

8 Conclusion 54

Bibliography 56

vi

1 Introduction

With an increasing size and complexity of modern software systems arises the risk of an
increasing amount of defects and code smells. Humphrey [2] found that software systems
contain more than 100 defects per 1,000 source lines of code and Jones [3] discovered about
five bugs per function point. According to Shull et al. [4], finding and fixing defects after
delivery is 100 times more expensive than in an earlier project phase. Analogously, code smells
can hint towards issues with the quality of the code and eventually lead to the introduction of
faults [5]. Therefore, it is important to find defects and code smells early in the development
process to prevent an increase in maintenance effort.

One approach that helps to detect defects and code smells during development is static
code analysis. A static code analysis, conducted by a static analyzer, examines programs
without executing them. Static analyzers are often applied in between compilation and testing
[6]. In recent development environments, many static analyzers are integrated to provide
immediate feedback and to thereby support program development [7].

Defining a static analyzer and the underlying analysis rules is a hard task. The analyzer
should scale to large software systems, be precise to avoid false positives, and be thorough
to not miss too many issues within the program code. These requirements are further
complicated by language-specific corner cases that should be considered and program-
specific environments, for instance functions from the standard library or from third party
dependencies, that have to be modeled by the analysis [1].

To help experts to craft scalable and robust analyzers, Bielik et al. [1] introduced an
approach to apply machine learning to learn static analysis rules from code. Given a dataset
of training samples and a domain-specific language to describe analysis rules, the goal of
the approach is to learn analysis rules that can then be used to conduct static analyses. Each
training sample maps source code locations to the expected analysis output. Based on a
dataset of training samples, decision tree learning is applied to derive analysis rules in the
given domain-specific language. To increase the robustness of the analysis, additional training
samples are derived by modifying the original samples and feeding the created modifications
back into the training procedure.

This work aims to replicate and to complement the approach introduced by Bielik et al. [1].
Our contribution is to reimplement the learning approach of Bielik et al. [1], apply it to the use
case of allocation site analysis for JavaScript, and provide an in-depth evaluation. Allocation
sites are locations within the source code where objects are created and heap memory is
allocated [8]. The goal of an allocation site analysis is to find these source code locations. We
then use the learned analysis rules to create a static analysis called line-based analysis that
determines whether a line of code can be considered an allocation site. Using the learned
analysis rules and the line based analysis, we conduct a case study to thoroughly evaluate

1

1 Introduction

the learning approach. The evaluation of Bielik et al. [1] for the allocation site analysis
relies on manual evaluation of analysis rules and is thus rather sparse. In our case study, we
therefore extend the evaluation of Bielik et al. by measuring accuracy, precision, and recall of
the learned analysis rules for a dataset of labeled allocation site samples. Furthermore, we
analyze the correlation of the size of the training dataset and the accuracy of the analysis.
Beyond the dataset, we analyze the generalization of the learned analysis rules for open
source code using the implemented line-based analysis. Thereby, we want to determine
whether the learned analysis rules are applicable to a production-ready static code analysis.
Our results show that we can learn analysis rules that are accurate for structurally similar
data, but do not generalize well to open source code. We conclude that the learned analysis
rules are not applicable in practice.

The following chapter introduces theoretical foundations and concepts that appear through-
out this thesis. After covering related work, we detail the approach to learn the analysis
rules. Subsequently, we describe the instantiation and implementation of the approach for
the allocation site analysis for JavaScript. Finally, the approach and the implementation are
evaluated in a case study.

2

2 Theoretical Foundations

This chapter covers the fundamental concepts that are related to this thesis. The first section
defines and describes static code analysis. Subsequently, machine learning is introduced with
a focus on concepts that are applied in the approach described in Chapter 4. In the final
section, we address the intersection of static code analysis and machine learning.

2.1 Static Code Analysis

In 1978, Johnson [9] introduced Lint, a tool to detect and report error-prone and wasteful
code constructions in C programs. This early work reflects the origin of static code analyses
as an idea to enforce additional, stricter rules on program code than those provided by the
compiler. More generally, static code analysis is an approach to reason about computer
programs without executing them [7]. In the following subsections, we first present areas of
application and then discuss sensitivities of static code analyses. We further look at input
representations of the program code for static analysis with a focus on abstract syntax trees
that we use in our implementation in Chapter 5. Finally, with the allocation site analysis, we
introduce a specific kind of static analysis that occurs throughout the subsequent chapters.

2.1.1 Areas of Application

Static code analysis has various areas of application. It can be applied to optimize compilers
by providing relevant program properties. With information about unreachable code, for
instance, compilers can reduce the code size. Furthermore, static code analysis is used to
reason about program correctness by targeting generic correctness properties. For example,
such properties might assure that variables are initialized before they are used and that there
do not exist inputs that might lead to a division by zero. Finally, static code analysis is a key
feature in modern IDEs to support program development, for example by annotating variables
with potential types or by specifying the location of the definition of a called function [7].

2.1.2 Sensitivities

In this subsection, we introduce sensitivities of static code analyses. We cover context, flow,
and path sensitivity.

Context sensitivity A context sensitive analysis utilizes additional information about the
context of variables and abstract objects. This additional information is used by the
analysis to distinguish between different executions. There are various forms of context

3

2 Theoretical Foundations

sensitivity based on the type of the context such as call-site sensitivity, object sensitivity,
and type sensitivity [10]. A call-site sensitive analysis, for example, considers the
supplied arguments of a function call as context and can thus distinguish multiple
executions of a function for different sets of arguments [11].

Flow sensitivity Flow sensitivity implies that an analysis adheres to the control flow of a
program. That is, a flow sensitive analysis considers the order of statements, while a
flow insensitive analysis can handle statements in any order [10].

Path sensitivity A path sensitive analysis distinguishes between different execution paths of
a program [12]. For an if-statement, for example, the analysis considers both execution
paths that result from evaluating the condition of the if-statement.

2.1.3 Code Representations

The representations of code extend along the compilation pipeline from developer-written
source code through several intermediate representations to the executable machine code.
One of the intermediate representations that is of interest for this thesis is Abstract Syntax
Trees. An Abstract Syntax Tree (AST) represents source code as a tree and abstracts details
like punctuation or delimiters [13]. To generate an AST, the source code is parsed based on
the context-free grammar (CFG) of the respective programming language. Each internal node
of the AST relates to a non-terminal and leaves relate to terminals in the CFG [14]. That is,
internal nodes correspond to language constructs such as function declarations or expression
statements and leaves, for example, to concrete values of identifiers or literals. Edges describe
a parent-child relation between the connected nodes. Figure 2.1 shows a code snippet in
JavaScript and the corresponding AST according to the ESTree1 specification. The internal
nodes denote non-terminals like VariableDeclaration, FunctionDeclaration, or Identifier and the
leaves contain terminal values like the string greeting or the function name print. Each node is
connected to its parent with an undirected edge.

2.1.4 Allocation Site Analysis

An allocation site analysis is a static code analysis to detect source code locations that result
in a heap allocation [1]. These source code locations are called allocation sites [8]. A source
code location can for example be denoted by a line number, a start and end position, or a
node in the AST. An allocation site analysis is used underneath in static analyzers [1]. For
instance, allocation sites are used as abstract heap locations in a points-to analysis, which
computes the set of abstract heap locations a variable points to [1, 10]. With the line-based
analysis, we introduce a variant of an allocation site analysis that can be used directly to
support developers in Section 5.6.

1https://github.com/estree/estree

4

2 Theoretical Foundations

1 let greeting = 'Hello World';

2 function print() {

3 console.log(greeting);

4 }

5 print();

(a) JavaScript code fragment

greeting print

print

Hello World

ExpressionStatementFunctionDeclaration

BlockStatement

...

CallExpression

VariableDeclaration

VariableDeclarator

Identifier Identifier

Identifier

Literal

Program

(b) Abstract Syntax Tree (AST) derived from the code fragment in (a)

Figure 2.1: Exemplary JavaScript code snippet and the corresponding AST according to the
ESTree specification

2.2 Machine Learning

Besides static code analysis, machine learning in the form of decision trees plays an important
role in this thesis. Therefore, this chapter first defines machine learning and the categorization
into supervised and unsupervised learning, and finally introduces decision trees as an
approach to machine learning.

2.2.1 Definition and Classification

Machine learning was already approached in 1959 by Samuel [15] to program computers to
be able to learn from data instead of programming everything in detail. The term machine
learning implies the philosophical question of how machines can learn. One approach is to
see learning as a change in behavior of a program that was not explicitly programmed. For a
program to change and to learn new behavior, Joshi [16] points out three factors: (1) Data
that is consumed by the program, (2) a distance or error metric to determine the gap between
current and expected behavior, and (3) a feedback mechanism that uses the error to improve
the program’s behavior.

5

2 Theoretical Foundations

Machine learning approaches are commonly classified into the two categories supervised and
unsupervised learning.

Supervised learning Supervised learning models learn from labeled training data and apply
that knowledge to new unlabeled data [17]. The training data consist of example input-
output pairs that are used to train a learning function. The knowledge, the learning
function thereby gains, is then used to label previously unlabeled data [18].

Unsupervised learning Unsupervised learning on the other hand utilizes unlabeled input
samples. Therefore, unsupervised learning methods try to find patterns and relation-
ships within data without utilizing a predefined context [17].

2.2.2 Decision Trees

A decision tree is a supervised approach to machine learning that classifies data based on its
features [19]. A tree is built from a dataset of training samples where each sample consists of
a set of feature values and a class label [20]. The root node and each internal node within the
tree represent the label of a feature. Leaves contain class labels and edges depict concrete
feature values [19].

c1
b1

a1

F1

False

False False

True

True

TrueTrue

F2

F3 F4

a2

a3 b3 a4 b4

b2
c2

Figure 2.2: Example of a decision tree for binary classification (Adapted from [19]).

Figure 2.2 shows an example of a decision tree with four features F1, F2, F3, and F4. A
hypothetical instance with feature values ⟨F1 : a1, F2 : c2, F3 : a3, F4 : b4⟩ would be routed
through the nodes F1, F2, and F4 to finally be classified with class label False.

To induce a decision tree from a dataset of training samples, different approaches that for
example rely on an information gain or gini index to find the best split for the training data
can be applied [19]. One algorithm to induce decision trees is the ID3 algorithm [21] that is
applied in an adapted manner in the approach in Chapter 4.

6

2 Theoretical Foundations

2.2.3 Evaluation Metrics

Evaluation metrics are used to examine the performance of machine learning models on test
data. In our evaluation, we use the metrics accuracy, precision, and recall. To calculate these
metrics, machine learning models are executed on test data and the prediction of the model
for each sample is recorded. Accuracy, precision, and recall [22, 23] are then defined as

Accuracy :=
True Positives + True Negatives

True Positives + TrueNegatives + False Positives + False Negatives

Precision :=
True Positives

True Positives + False Positives

Recall :=
True Positives

True Positives + False Negatives
.

Accuracy is a simple metric that provides a fast insight into the performance of a model by
relating correct to incorrect predictions. However, accuracy does not properly account for
imbalanced data with a dominant negative class [23]. We therefore additionally use precision
and recall to get insights on the rate of true positives in comparison to false positives and false
negatives, respectively. In summary, accuracy provides a quick overview and in combination
with precision and recall a complete picture for our evaluation.

2.3 Application of Machine Learning to Static Code Analysis

Having introduced both static code analysis and machine learning, the final section of this
chapter discusses approaches on how to utilize machine learning techniques for static code
analysis. We distinguish between the usage of machine learning to create and to refine a static
analysis.

Machine learning to create a static analysis Machine learning can be used as a building
block to support the creation of static analyses. An exemplary application of machine
learning is to derive analysis rules from source code. The approach by Bielik et al. [1]
that is replicated in this thesis and described in detail in Chapter 4 extracts analysis
rules that can then be used as a building block to create a static analysis. Another area
where machine learning is used to create static code analyses is malware detection.
For example, sources and sinks within source code are classified to prevent injection
vulnerabilities [24] or to detect malicious code in network traffic [25].

Machine learning as an analysis re�nement Furthermore, machine learning can help to re-
fine static analyses. For example, machine learning techniques are applied to filter out
false positives produced by an analysis. Typically, a classifier is trained to separate true
positive from false positive analysis results [26, 27].

To apply machine learning to static code analysis, machine learning models are fed with
different representations of code as input data. These can either be meta information like

7

2 Theoretical Foundations

source code comments, the source code itself, or an intermediate representation as described
in Section 2.1.3. The code representation that we use in this thesis are Abstract Syntax Trees.
ASTs are used as input for different machine learning techniques. Many applications of ASTs
as input can be found in combination with neural networks [13, 28]. However, ASTs can also
be used as input for decision trees [1] which we will cover in more detail in Chapters 4 and
5.

8

3 Related Work

In this chapter, we first discuss the relation between our work and the approach of Bielik et
al. [1] that we aim to replicate. We then continue with related approaches that apply machine
learning techniques to the field of static code analysis. Finally, we cover related work that
uses the traditional approach of crafting static analyzers manually without applying machine
learning techniques.

3.1 Learning Analysis Rules from Code

Bielik et al. [1] propose an approach to learn rules for a static code analysis from source
code. They generate a dataset of input-output samples each consisting of program code
and a corresponding analysis label by instrumenting the source code of the programs and
subsequently executing these instrumented programs. They use this dataset of labeled
programs to learn analysis rules in a given domain specific language. The domain specific
language specifies the syntax of the analysis rules. Given the domain specific language and
the dataset of input-output samples, decision trees are used to learn analysis rules with an
adapted version of the ID3 algorithm. As the authors aim to create rules that generalize
beyond the dataset of input-output samples used for training, they additionally propose
a counter-example guided learning procedure. This procedure efficiently generates new
input-output samples by modifying the source code of programs from the initial dataset.
First, the procedure performs program modifications such as inserting dead code or renaming
variables to create new potential samples. Subsequently, candidate analysis rules that have
been learned from the initial dataset of input-output samples are evaluated against these
newly created samples. If the candidate analysis rules do not produce the expected analysis
result for a modified sample, it is added to the initial dataset and consequently used to learn
more general analysis rules.

Bielik et al. [1] implement their approach for an allocation site analysis and a points-to
analysis for JavaScript code. In their evaluation, they report a high precision of 99.9% of
the learned analysis rules for the points-to analysis. For this evaluation, they used a dataset
derived from the programs of the original dataset by applying various code modifications.
Bielik et al. do not evaluate the analysis rules on code that is unrelated to the training dataset.
They furthermore do not examine the precision or comparable metrics of the allocation site
analysis.

Our goal is to replicate the promising results of Bielik et al. [1] to learn analysis rules for
an allocation site analysis from JavaScript source code. We provide our own implementation
of the approach of Bielik et al. to first learn and to then refine the analysis rules. Our

9

3 Related Work

implementation uses decision trees and the adapted version of the ID3 algorithm proposed by
Bielik et al. to learn analysis rules. We additionally implement the counter-example guided
learning procedure to improve the generalization of the learned analysis rules. Following
Bielik et al., we implement a tool to automatically generate training data from instrumented
programs. In contrast to Bielik et al., we focus on the implementation of the allocation site
analysis and do not implement the points-to analysis. A key difference to the work of Bielik
et al. is our in-depth evaluation of the allocation site analysis that systematically examines
the performance of the learned analysis rules measuring accuracy, precision, and recall. We
evaluate the learned analysis rules for the allocation site analysis both on subsets of the
generated dataset and on code from open source projects. For the evaluation on open source
code, we implement a static code analysis on top of the learned analysis rules that examines
code files and determines whether a line of code within a file is an allocation site. In summary,
our evaluation has a broader scope and aims to investigate the practical applicability of the
learned analysis rules.

To the best of our knowledge, there are no other comparable approaches in literature that
aim to learn the underlying analysis rules of a static analysis from code.

3.2 Static Analysis and Machine Learning

The application of machine learning techniques to the field of static code analysis is a common
topic in recent literature and many different approaches are proposed. In the following, we
give a few related examples where machine learning techniques are applied to static code
analysis.

Alikhashashneh et al. [27] and Koc et al. [29, 26] provide similar approaches that use
machine learning to distinguish between relevant true positive and false positive analysis
reports. They both point out that current static code analysis tools report many false positives.
Their approaches therefore apply different machine learning methods such as Support Vector
Machines or Random Forests to train a classifier that is able to distinguish between relevant
and non-relevant analysis reports. Similar to our work, they use machine learning techniques
to improve static code analyses. While the approaches of Alikhashashneh et al. and Koc et al.
aim to improve the results of already given static code analyses in a downstream process step,
we use machine learning to create analysis rules with the goal of preventing false positive
reports upfront.

Chibotaru et al. [30] present an approach to detect sources, sinks, and sanitizers in source
code to then automatically find paths from sources to sinks without a sanitizer. These paths
pose a security risk because they are prone to injection vulnerabilities. The authors use linear
optimization to learn a specification that describes sources, sanitizers, and sinks from a dataset
of programs in a semi-supervised fashion. They manually annotate a small subset of the
dataset of programs and use these labeled samples alongside the unlabeled data to infer the
specification. This specification is then used to find vulnerable, unsanitized program paths.
In their experimental evaluation on Python code, they show that the learned specification
reaches a precision of 67% on average. Similar to our approach, Chibotaru et al. learn rules

10

3 Related Work

that describe program properties from a dataset of programs. Our learning approach is
fully supervised and operates on labeled training samples only. While the semi-supervised
learning procedure of Chibotaru et al. requires a small amount of manually labeled training
data, we automatically generate a big dataset of labeled data from program execution to
avoid manual labeling. With our supervised learning approach, we aim to reach a higher
precision by using labeled training data only.

The work of Raychev et al. [31] utilizes Structured Support Vector Machines to learn a
probabilistic model from code which is subsequently used to predict properties of programs.
They apply this model to predict type annotations and variable names of JavaScript programs.
Both type annotations and meaningful variable names help developers to better understand
source code. Analogous to Raychev et al., we use program code to learn and predict properties
of programs. However, we do not learn a probabilistic model, but use decision trees to learn
analysis rules from program code. These rules are then used as part of a static analysis to
reason about a program.

Paletov et al. [32] infer security rules for cryptographic APIs from code changes. They mine
code changes from open source repositories and derive usage changes from the mined code
changes. Non-relevant usage changes are filtered out and the remaining usage changes are
clustered into semantically related groups using hierarchical clustering. Finally, the authors
manually derive security rules from these clusters. Similar to our work, Paletov et al. use
Abstract Syntax Trees (AST) as input code representation and aim to derive a set of rules. In
difference to our approach, they do not directly learn from code but from changes to the code.
In addition, our approach does not require a final manual step to derive the analysis rules
but instead learns the rules fully automatically.

To detect malicious JavaScript code, Wang et al. [33] use a deep learning model and
logistic regression. They design and train a model for a Stacked Denoising Autoencoder with
JavaScript code snippets encoded in a binary format. Each code snippet is labeled either as
malicious or benign. A logistic regression uses these features to detect malicious code. In
line with our work, the model of Wang et al. learns features of JavaScript code so that these
features do not have to be crafted manually. We also extract features from JavaScript code
based on a training dataset, but our features are represented in the form of analysis rules and
aim to detect allocation sites in JavaScript code rather than malicious code snippets. Instead
of a deep learning model, we use decision trees to learn the analysis rules. We further use
ASTs as input representation unlike Wang et al. who use a binary representation of JavaScript
code.

3.3 Static Analysis Without Machine Learning

This section covers related approaches that manually define and create static code analyses.
We focus on approaches that operate on JavaScript code as we also learn analysis rules for
JavaScript in this thesis.

Kashyap et al. [34] implement a static analyzer that can for example be applied to type
inference and pointer analysis. The design of their analyzer consists of an intermediate code

11

3 Related Work

representation for JavaScript called notJS, abstract semantics for notJS, and abstract domains.
All these analysis components are designed manually. For example, the intermediate code
representation notJS contains specific design decisions such as a differentiation between pure
expressions that are guaranteed to not throw an exception and impure statements without
this guarantee. In line with this thesis, Kashyap et al. craft the underlying rules of static code
analyses. However, they rely on the traditional way of designing the components of the static
analysis by hand. The approach we use instead tries to reduce the effort and complexity of
creating a static analyzer by providing analysis rules learned from code. These rules can be
integrated into existing static analyzers to improve their performance or can be used to craft
new analyzers.

The work of Lee et al. [35] introduces a static analysis framework for JavaScript called
SAFE. To support various different analyses, the authors specify several intermediate code
representations of JavaScript and formally defined analysis components. Similar to our work,
Lee et al. aim to provide a foundation that can be used to create static analyzers. Their
detailed formal specifications of the intermediate representations require a deep knowledge of
the JavaScript standard. The approach we use instead creates components of a static analysis
in the form of analysis rules without requiring a deep understanding of each edge case of the
language by directly learning the analysis rules from code.

12

4 Approach

A major part of this thesis is the reimplementation of the approach to learn analysis rules
introduced by Bielik et al. [1]. Before we describe the implementation for the use case of an
allocation site analysis in Chapter 5, we first introduce the approach in an abstract manner
that is applicable to different types of analyses. Thereby, this chapter closely follows the initial
work of Bielik et al. [1].

Oracle

No counter-

examples, i.e

return

Learned Candidate
Analysis

Counterexamples

Synthesizer

 Dataset

Template
Language for
Analyis Rules

Figure 4.1: Overview of the approach to learn static analysis rules. During Synthesis, a
candidate analysis pa is learned from a dataset D. The language L is used to
describe the rules. The oracle generates new data that is fed back to the synthesis
to improve analysis generalization (Adapted from [1]).

The approach consists of two major components: the synthesizer and the oracle. Figure 4.1
provides an overview of both components and their interactions. The synthesizer takes a
dataset D, consisting of pairs of programs and their respective desired analysis output, and a
domain-specific language L as input. It returns a candidate analysis pa ∈ L. To improve the
generalization of the model beyond the training data, the oracle takes a candidate analysis pa
as input and derives new, unseen training samples. For this, the code of the initial samples in
D is modified to find samples that are not yet correctly classified by pa. These incorrectly
classified samples are then fed back to the synthesizer. Both components, the synthesizer and
the oracle, are interconnected in a counter example guided loop. The following subsections
describe the synthesis of analyses and the oracle to create new training samples in detail.

13

4 Approach

4.1 Program Synthesis

The goal of the program synthesis is to learn an analysis pa ∈ L that is both sound and
precise. The analysis is learned from a dataset D = {⟨xj, yj⟩}N

j=1 of tuples consisting of
programs xj from a programming language TL and expected analysis outputs yj from an
abstract domain of analysis results. Figure 4.2 shows an example of learning analysis rules
for an allocation site analysis from code. Figures 4.2a and 4.2b show the code to learn from
and its AST representation, respectively. The dataset D consisting of two training samples is
shown in Figure 4.2c. Each sample maps a node within the AST to a boolean that determines
whether or not the given node is considered an allocation site. The variable declaration
VarDeclaration : obj is an allocation site as a new object is instantiated and heap memory
is allocated. In contrast, the node VarDeclaration : str is not considered an allocation site
because strings are primitive data types in JavaScript and no new object is created. Thus, in
our example, a program xj is concretely represented by the source code given in Figure 4.2a
and a position within the code in the form of an AST node. The decision tree in Figure 4.2d
represents a candidate analysis that is learned from D. The analysis consists of one guard
that checks whether the child of a node in the AST is a NewExpression. If the guard evaluates
to true, a node is considered an allocation site. Otherwise, it is no allocation site. In the
following, we will refer to this example in order to illustrate the theoretical explanations with
a concrete application.

1 const obj = new Date();

2 const str = 'someStr';

(a) An exemplary JavaScript code snippet.

Program

VarDeclaration: obj VarDeclaration: str

Literal: ‘someStr’NewExpression: Date

(b) The simplified AST for the code in (a).

D = {
⟨VarDeclaration : obj, {true}⟩,
⟨VarDeclaration : str, { f alse}⟩
}

(c) The training Data D.

if (Child == NewExpression)

{true} {false}

true false

(d) A candidate analysis pa learned from D.

Figure 4.2: An Example of learning rules for an allocation site analysis from code.

As a first step, we recap the soundness and precision of an analysis as defined by Bielik et al.
[1]. Next, we describe the template language L that is used to construct analysis rules and
then introduce the procedure to learn these rules.

14

4 Approach

4.1.1 Analysis Soundness and Precision

A candidate analysis pa is a function pa : TL → P(A) that maps a program xj ∈ TL to the
abstract domain of analysis results P(A). While A represents the set of potential analysis
results, its power set P(A) contains all subsets of A and thus denotes the abstract domain of
analysis results. An analysis is considered sound and precise if it correctly maps each program
xj in D to the expected analysis result yj. This can be formalized as

∀j ∈ {1, . . . , N} : yj = pa(xj). (4.1)

However, a perfectly sound and precise analysis for large datasets as defined in (4.1) is
unrealistic in practice due to noisy data. A simple example of noisy data can be given by two
samples ⟨x, y⟩ ∈ D and ⟨x, y′⟩ ∈ D with y ̸= y′. While both programs x are equal, a different
analysis result is expected in each case. These contradicting requirements cannot be fulfilled
by any learned analysis since pa can only map the program x to either y or y′.

Analysis Soundness To be able to handle noisy data, Bielik et al. [1] slightly relax the
definition above. An analysis pa is sound, if the condition

∀j ∈ {1, . . . , N} : yj ⊆ pa(xj) (4.2)

is fulfilled. An equality of the produced analysis result pa(xj) and the expected result
yj is no longer required. Instead, the analysis may approximate the expected analysis
result by taking a superset of all yj.

As an example, consider A = {true, f alse} as potential analysis results and a dataset
D consisting of two noisy samples s1 = ⟨x, {true}⟩ ∈ D and s2 = ⟨x, { f alse}⟩ ∈ D.
A candidate analysis pa can now map a noisy sample to the superset {true, f alse}
as approximation to produce a sound analysis. Given the approximation pa(s1) =

pa(s2) = {true, f alse}, we can derive that

{true} ⊆ pa(s1) ∧ { f alse} ⊆ pa(s2)

=⇒ ∀j ∈ {1, 2} : yj ⊆ pa(xj)

and thus pa is sound as defined in (4.2).

Hence, according to the definition of soundness in (4.2), we can learn a sound analysis
for data that includes noise. However, the definition of soundness no longer guarantees
a precise analysis. Consider a trivially sound analysis that maps each program xj to
the union of all expected analysis results ∪N

j=1yj ⊆ A of a dataset D as analysis result.
While such an analysis is sound according to (4.2), it is also imprecise.

Analysis Precision To compute the precision of an analysis pa ∈ L on a dataset D, a cost
function is defined. First, the cost r of a sample ⟨x ∈ TL, y ⊆ A⟩ ∈ D given a candidate
analysis pa ∈ L is calculated as

r : TL x A x L→ R, r(x, y, pa) =

{
1, y ̸= pa(x)

0, else
. (4.3)

15

4 Approach

If the result produced by pa differs from the expected result y, a cost of 1 is incurred.
Otherwise, there is no cost.

The cost of an analysis pa for the complete dataset D is then defined as the sum of the
costs for all samples

cost(D, pa) := ∑
⟨x,y⟩∈D

r(x, y, pa). (4.4)

If cost(D, pa) = 0, (4.4) entails that pa is sound and precise according to the definition
in (4.1) as a cost of 0 implies that

∀j ∈ {1, . . . , N} : r(xj, yj, pa) = 0 (4.5)

has to hold. It follows from (4.3) and (4.5) that

∀j ∈ {1, . . . , N} : yj = pa(xj)

which exactly corresponds to the definition of a correct analysis.

Example Looking at our example in Figure 4.2 on page 14, we can conclude that the analysis
pa given in Figure 4.2d is both sound and precise for the training data D (Figure 4.2c).
The analysis returns the correct labels {true} and { f alse} for the first and second sample,
respectively. Hence, pa is sound as ∀j ∈ {1, 2} : yj ⊆ pa(xj) holds. Furthermore, as
∀j ∈ {1, 2} : y = pa(x), we also know that cost(D, pa) = 0 and therefore, pa is precise.

4.1.2 Language Template for Analysis Rules

Before we describe how analysis rules are learned, we first introduce the template for the
language L, which is used to describe analysis rules. Figure 4.3 gives an overview of the
language template. The language L consists of actions, guards, and if-then-else statements that
combine actions and guards in a recursive manner. A learned analysis pa ∈ L can thus be
represented as a tree with guards for if-then-else statements as internal nodes and actions
as leaves. For if-then-else statements, a guard is used as a condition and depending on the
evaluation of the guard, the respective if or else branch is taken. The concrete specification
and semantics of actions and guards is context specific for each analyzer that should be
learned. We show a detailed example for the allocation site analysis in Section 5.2.

4.1.3 Learning Analysis Rules

Having defined the language L, the next step is to learn an analysis pa ∈ L from a dataset D.
The learned analysis should be sound while minimizing over-approximation. The authors [1]
thus define that a learned analysis pa should be sound on the samples provided in D while
minimizing the cost cost(D, pa) for the sake of precision.
As previously noted, an instance of L can be represented as a tree with guards as internal
nodes and actions as leaves. Thus, to learn an analyzer, decision tree learning is applied.

16

4 Approach

a ∈ Actions

g ∈ Guards

l ∈ L ::= a | if g then l else l

(a) Grammar of the template language L.

g1

g2

false

false

true

true

a1

a2 a3

(b) Example of an analysis pa ∈ L with guards g and actions a displayed as a decision tree.

Figure 4.3: Specification of the grammar of the template language L and an exemplary analysis
composed from L (adapted from [1]).

Algorithm 1 Synthesis algorithm to learn an analyzer pa ∈ L from a dataset D.

procedure Synthesize(D)
abest ← genAction(D)

if cost(D, abest) = 0 then return abest
end if
gbest ← genBranch(abest, D)

if gbest = ⊥ then return approximate(D)

end if
p1 ← Synthesize({⟨x, y⟩ ∈ D | gbest(x)})
p2 ← Synthesize({⟨x, y⟩ ∈ D | ¬gbest(x)})
return i f gbest then p1 else p2

end procedure

17

4 Approach

Bielik et al. [1] propose an adapted version of the ID3 [21] algorithm. Following ID3, the
algorithm recursively creates a decision tree top-down in a greedy fashion. The algorithm
guarantees soundness of the resulting analysis and locally maximizes an information gain
metric to create branches. Algorithm 1 outlines the procedure as pseudo code. To generate
actions and branches, the algorithm specifies three helper functions genAction, genBranch
and approximate that are detailed in the following.

genAction The function genAction selects the best analysis abest that only consists of actions.
The criterion for the best analysis is the minimization of cost given by

abest = genAction(D) := argmin
a∈Actions

cost(D, a).

Simply put, genAction returns the action abest with the lowest cost for a given dataset D.
In an optimal scenario, cost(D, abest) = 0 which indicates a sound and precise analysis
that can directly be returned. Otherwise, the algorithm continues with generating a
new branch.

Example In our running example of learning an allocation site analysis in Figure 4.2
on page 14, we have to consider two actions NewAlloc and NoAlloc that mark a node
in the AST as an allocation site and as no allocation site, respectively. To select the
best analysis abest for the complete dataset D, we first calculate the cost for an analysis
that only consists of one of the two actions NewAlloc and NoAlloc. For an analysis
consisting of NewAlloc only, this calculation yields

cost(D, NewAlloc)

= r(VarDeclaration : obj, {true}, NewAlloc) + r(VarDeclaration : str, { f alse}, NewAlloc)

= 0 + 1 = 1.

Analogously, cost(D, NoAlloc) = 1. As the cost for both analyses is 1, either of the two
analyses can be selected as abest. However, we cannot find an action with a cost of 0 and
the algorithm thus creates a new branch.

genBranch Branches are created by splitting the dataset into two parts based on a condition
g ∈ Guards. To determine which condition is selected, an information gain that
quantifies the gain in analysis correctness over selecting the imprecise analysis abest is
defined.

The information gain metric is based on a standard entropy definition. For a vector
w = ⟨w1, ..., wk⟩ with wi ∈ C, where C can be any set, the entropy H is defined as

H(w) := −∑
c∈C

count(c, w)

k
log2

(
count(c, w)

k

)
.

The function count(c, w) := |{i ∈ {1, . . . , k} | wi = c}| calculates the occurrences of
c ∈ C in a vector w. In the context of branch generation, a specific vector wabest

d is defined

18

4 Approach

for a dataset d = {⟨xi, yi⟩}|d|i=1 ⊆ D as

wabest
d := ⟨r(xi, yi, abest) | i ∈ {1, . . . , |d|}⟩.

Thus, wabest
d contains the cost of each sample in a dataset d with respect to abest. A guard

g ∈ Guards is a function that maps a program x to a co-domain that consists of two
distinct values. Therefore, it is used to split the dataset D into two distinct subsets
Dg and D¬g. They are defined as Dg := {⟨x, y⟩ ∈ D | g(x)} and D¬g := D \ Dg. The
information gain is then constructed as follows:

IGabest(D, g) := H(wabest
D)− |D

g|
|D| H(wabest

Dg)− |D
¬g|
|D| H(wabest

D¬g).

Using this definition of the information gain, the guard gbest with the highest information
gain that yields the best split of D can now be determined as

gbest = genBranch(abest, D)

:=

{
argmaxg∈Guards IGabest(D, g), ∃g ∈ Guards : IGabest(D, g) > 0

⊥, else
.

If there exists at least one guard with positive information gain, the guard with highest
information gain is selected. Otherwise, the information gain is 0 for all guards and
⊥ is returned which denotes that the respective branch of the analysis has to be
approximated.

Example Returning to the example shown in Figure 4.2 on page 14, we assume that
abest = NewAlloc. We analyze one guard g with the condition Child == NewExpression
as depicted in Figure 4.2d. This guard splits the dataset D into the subsets Dg =

{⟨VarDeclaration : obj, {true}⟩} and D¬g = {⟨VarDeclaration : str, { f alse}⟩}. For the
vectors w, we thus get wNewAlloc

D = ⟨0, 1⟩, wNewAlloc
Dg = ⟨0⟩ and wNewAlloc

D¬g = ⟨1⟩. We can
now calculate the information gain

IGNewAlloc(D, g) = H(wNewAlloc
D)− |D

g|
|D| H(wNewAlloc

Dg)− |D
¬g|
|D| H(wNewAlloc

D¬g)

= 1− 1
2
· 0− 1

2
· 0 = 1.

As our guard g has a positive information gain, it is selected as best guard gbest = g.
The sythenize procedure then continues with the next recursion steps given datasets Dg

and D¬g as input.

approximate An information gain of 0 is a consequence of noisy data with contradicting labels
as previously illustrated in Section 4.1.1. In this case, the analysis result for the current
branch has to be over-approximated to be equal to the abstract domain of possible

19

4 Approach

analysis results A. Theoretically, this asserts a sound analysis according to definition
(4.2). In practice, only few branches should require approximation. The analysis
result for samples that run into an approximated branch is ambiguous. Therefore,
approximated branches reduce the precision of the analysis rules.

The synthesize procedure is called recursively to derive the final analyzer pa ∈ L for a dataset
D.

4.2 Oracle

The second major component besides the synthesizer is the oracle. While analyses produced
by the synthesizer are sound and precise for the training data D, they might not generalize
well to data beyond D. This overfitting leads to correct analysis results for samples that are
included in the initial dataset D, but to incorrect analysis results for samples that are not part
of D.

The candidate analysis pa shown in Figure 4.2d on page 14 is an example of an analysis
that does not generalize well. We previously saw that it is both sound and precise for the
corresponding dataset D. The analysis pa considers all AST nodes with a NewExpression
as child to be an allocation site. However, there are exceptions to this rule: if the object
constructor in JavaScript is called with an object as argument, it only returns the argument’s
object reference and therefore does not allocate new heap memory. Figure 4.4 shows an
example of this edge case. In line one, a new empty object obj is allocated and passed to the
object constructor in the second line. The object constructor then returns the reference to obj
and does not allocate new heap memory. However, pa would still consider the declaration of
noAlloc in the second line as an allocation site. Thus, pa does not generalize to the given edge
case and is partly imprecise.

1 let obj = {};

2 const noAlloc = new Object(obj);

Figure 4.4: Invoking the object constructor with an object as argument does not allocate new
heap memory, but instead returns the argument’s object reference.

To address the problem of overfitting, Bielik et al. [1] propose the oracle to automatically
derive new programs that are incorrectly evaluated by an analysis pa from the available
samples in D. That is, for the set of programs PD = {x | ⟨x, y⟩ ∈ D}, the oracle finds counter
examples p ∈ TL where p ̸∈ PD and the analysis soundness as defined in equation 4.2 is
violated for program p and the given analysis pa. The derived programs are added to the
training data in D and used in addition to train a new analysis. To find suitable programs,
the oracle performs two steps: determining positions for modifications within programs from
PD and executing selected modifications at these positions.

20

4 Approach

4.2.1 Determine Modification Positions

The oracle should be able to quickly find counter examples. However, the space of potential
programs in TL is large and thus naively modifying programs at random positions is not
feasible. Hence, Bielik et al. [1] suggest to select program positions that are traversed during
the execution of an analysis pa. As we have previously seen, an analysis pa ∈ L can be
represented as a decision tree containing different paths. Modifying program positions in
program p, which are relevant for path selection in pa, are likely to affect the selected analysis
path. A different path in pa might finally lead to a different analysis results. The traversed
program positions when running an analysis are recorded by instrumenting the analyzer.

4.2.2 Selection of Modifications

Besides the approach to find relevant program positions, the authors [1] define techniques
to modify these positions to derive potential counter examples. The techniques can either
preserve or potentially alter the program’s semantics.

Semantic-preserving modi�cations The first technique modifies a program in a way that
preserves the original semantics of the program. Furthermore, the transformations
should not influence the results of the analysis pa. Given a program p ∈ PD, a set of
programs with the same semantics is created. Formally, the transformation is a function
Fsp : TL × X → P(TL). The function Fsp takes a program and a position within the
program, for example a program counter or an AST node, as input and returns a set of
modified programs. A correct analysis implies that

∀p′ ∈ Fsp(p, n) : pa(p) = pa(p′) (4.6)

holds. That is, the analysis pa produces the same result for the original program and
all of the modified program variants. If (4.6) is violated for a program p′ ∈ Fsp(p, n),
the oracle has found a suitable counter example and the analysis pa is thus incorrect.
The counter example p′ is returned to the synthesis. Examples for semantic-preserving
modifications are inserting dead code and renaming user-defined identifiers.

Modi�cations that may not be semantic preserving Modifications that may alter the seman-
tics are specified by the transformation function Fsa : TL×X → P(TL). The transformed
programs come with different behaviors that may not be part of any program p ∈ PD.
These programs’ behaviors are thus not incorporated in an analyzer pa that was trained
on a dataset D. Modifications that may impact the semantics are, for instance, changing
values of constants or adding arguments and parameters to functions.

Bielik et al. [1] show that finding a counter example for a given analysis pa by carefully
selecting the modification positions is far more efficient than simply applying modifications
to randomly selected program positions. These counter examples help to improve the
generalization of the analysis rules beyond the training data. For the example in Figure 4.2 on
page 14, the synthesis could come up with an alternative analysis as shown in Figure 4.5. This

21

4 Approach

analysis is based on the assumption that a variable declaration is an allocation site if its right
sibling in the AST also is a variable declaration. For the first training sample of D, the node
VarDeclaration : obj has a variable declaration as right sibling and is considered an allocation
site by the analysis. The second node of the training data VarDeclaration : str does not have
a variable declaration as its right sibling and is therefore correctly labeled as no allocation
site. Hence, the analysis is sound and precise for the training data D. However, the relation
between an allocation site and the node type of the right sibling is a coincidence specific to
the example and the analysis does thus not generalize to arbitrary code. To eliminate this
coincidental relation, the oracle could create a counter example that inserts dead code in
between the two code lines of Figure 4.2a on page 14. Given this additional counter example,
the synthesis might produce an analysis that better generalizes to data beyond the training
samples.

if (RightSiblling == VarDeclaration)

{true} {false}

true false

Figure 4.5: An alternative analysis for the example in Figure 4.2 that overfits to the training
data D.

In the next chapter, we cover the implementation details of the synthesis and the oracle.

22

5 Instantiation and Implementation

In this chapter, we describe the concrete instantiation and the implementation details to learn
analysis rules for an allocation site analysis following the approach in Chapter 4. Our learned
analysis aims to find allocation sites in JavaScript code. The implementation is also written
in JavaScript to make use of the rich ecosystem. Our implementation tries to closely follow
the approach taken by Bielik et al. [1]. However, as we do not have access to the source code
or similar implementation details, this chapter is based on our specific implementation and
might therefore partly diverge from the original implementation by Bielik et al. [1].

In the first section, we examine how the abstract variables introduced in Chapter 4 are
instantiated with concrete values for learning rules for the allocation site analysis. Next, we
describe the syntax, semantics, and implementation details of the domain-specific language
Lalloc used to describe analysis rules for the allocation site analysis. We then continue
with the implemented approach to collect training data. Finally, we present our JavaScript
implementation of the program synthesis and the oracle.

5.1 Variable Instantiation

This section covers how the abstract properties as described in Chapter 4 are mapped
to concrete values for the allocation site analysis. We saw that an analysis is a function
pa : TL → P(A). The set of potential analysis results A = {true, f alse} for an allocation
site analysis holds the two elements true representing an allocation site and f alse denoting
no allocation site. The abstract domain {{true}, { f alse}, {true, f alse}} ⊂ P(A) includes all
non-empty subsets of A. We do not consider the empty set as it is not a potential result of
the allocation site analysis. Further, we define TL := AST × X as a set of tuples containing
JavaScript programs t ∈ AST in their abstract syntax tree (AST) representation and positions
n ∈ X within t. In our implementation, X denotes all nodes within the respective AST and a
position n is one of these nodes. In summary, an analysis pa maps a node within a given AST
to one of the sets {true}, { f alse}, or, in case of approximation, {true, f alse}.

For the branch generation, Bielik et al. [1] further instantiate the set C := {true, f alse} that is
used to calculate the information gain. The oracle modification functions Fsp : TL×X → P(TL)

and Fsa : TL × X → P(TL) take an additional modification position from X as input where X
is again defined as the set of all program nodes of the AST t from TL.

The instantiation of the domain-specific language Lalloc is more complex and described in
the following section.

23

5 Instantiation and Implementation

5.2 Domain-Specific Language

As previously introduced, the template language L consists of actions, guards, and if-then-else
statements. A summary of the template is shown in Figure 4.3 on page 17. For the task of
learning an allocation site analysis, Bielik et al. [1] instantiate L to provide a domain-specific
language Lalloc. The underlying idea of the domain-specific language is to define means to
navigate and condition an AST. In the following, we first discuss the specification of the
syntax and the semantics of Lalloc. Afterwards, we cover implementation details.

5.2.1 Specification of Syntax and Semantics

In this subsection, we detail the syntax and semantics of the domain specific language Lalloc.

Syntax Figure 5.1 gives an overview of the syntax of Lalloc. The authors [1] define two basic
instruction types: moves and writes. Moves define operations to navigate the AST and
writes collect information about properties of traversed AST nodes. For the allocation
site analysis, an action can either denote an allocation site (NewAlloc), no allocation site
(NoAlloc), or an approximation of the result (Approx). Guards of Lalloc are composed
of move operations and one write operation. Furthermore, a context ctx determines the
right side of the condition of an if-then-else statement.

m ∈ Move := Up | Left | Right | DownFirst | DownLast | PrevNodeValue | PrevNodeType
w ∈Write := WriteValue | WritePos | WriteType | HasPrevNodeValue

a ∈ Actions := NewAlloc | NoAlloc | Approx
g ∈ Guards := Move∗ ; Write

ctx ∈ Context := (N ∪ Σ ∪N∪ {true, f alse})
l ∈ Lalloc := ϵ | a | if g = ctx then l else l

Figure 5.1: Syntax of the domain-Specific language Lalloc to describe rules for an allocation
site analysis (adapted from [1]).

Semantics Computing an analysis pa utilizes a program state σ := ⟨s, t, n, ctx⟩ ∈ Lalloc ×
AST × X× Context. A program s consists of program instructions from Lalloc. Initially,
before any operations from s are computed, s describes the complete analysis pa. The
variable t is an AST, n the current position in the tree, and ctx the current program
context. The context ctx consists of either a non-terminal symbol N from the tree, for
example a node type, a terminal symbol, for instance a value of a literal, a natural
number N, or a boolean value. A computation executes an operation op from s, for
example a move or a write, and transforms the state σ to a new state σ′ denoted as
σ→ σ′. We describe the semantics of the language elements of Lalloc in the following in
detail.

24

5 Instantiation and Implementation

Writes A Write operation is a function

wr : Write× AST × X → Context

that takes a specific write operation w ∈ Write, an AST t ∈ AST as well as a
position n ∈ X within t as input and returns a value ctx ∈ Context. Our write
operations as listed in Figure 5.1 are specified as follows based on Bielik et. al’s [1]
definitions:

• wr(WriteValue, t, n) = ctx writes the value of the node n. This value is a
terminal symbol from Σ. If the node at position n does not contain a terminal
symbol, the special value ∅ is returned.

• wr(WritePos, t, n) = ctx returns the index i ∈ N of the node at position n
within an array of children kept by the parent of n.

• wr(WriteType, t, n) = ctx writes the type of the node at the current position n
as context. The type is a non-terminal symbol from the domain N.

• wr(HasPrevNodeValue, t, n) = ctx determines whether the value of the current
node was previously seen within the same function or the global scope and re-
turns either true or f alse. To formalize this constraint, wr(HasPrevNodeValue, t, n)
can be alternatively written as

wr(HasPrevNodeValue, t, n)

=

{
true, ∃ n′ < n ∧ wr(WriteType, t, n) = wr(WriteType, t, n′)

f alse, else
.

Given these definitions, a write operation op ∈Write is computed as

op ∈Write ctx′ = wr(op, t, n)

⟨op :: s, t, n, ctx⟩ → ⟨s, t, n, ctx′⟩
. (Write)

That is, we detach the next operation op that is a Write from a program op :: s.
As op is a write instruction, the context is modified to ctx′ leaving s ∈ Lalloc as
remaining operations. The abstract syntax tree t and the position within the tree n
stay unchanged.

Moves Similar to Write, a move is a function

mv : Move× AST × X → X.

The write operation is replaced by a move operation m ∈ Move and instead of a
context, mv returns a new position n′ ∈ X within t. Following Bielik et al. [1], we
define the semantics of move operations:

• mv(Up, t, n) = n′ moves the current position to the parent node n′ within t. If
n has no parent, ⊥ is returned.

25

5 Instantiation and Implementation

• mv(Left, t, n) = n′ returns the left sibling n′ of n or ⊥ if n has no left sibling.

• mv(Right, t, n) = n′ returns the right sibling n′ of n or ⊥ if n has no right
sibling.

• mv(DownFirst, t, n) = n′ moves to the first child n′ of n or returns ⊥ if n has
no children.

• mv(DownLast, t, n) = n′ moves to the last child n′ of n or returns ⊥ if n has
no children.

• mv(PrevNodeValue, t, n) = n′ finds the closest node n′ with the same node
value as n within the same function or in the global program scope. More
formally, the function searches for n′ such that n′ = max{n̂ | n̂ < n} and
wr(WriteValue, t, n) = wr(WriteValue, t, n′) within the same program scope. If
no such position n′ exists, ⊥ is returned.

• mv(PrevNodeType, t, n) = n′ is very similar to PrevNodeValue, but instead
finds the closest node n′ with the same node type as n such that n′ =

max{n̂ | n̂ < n} and wr(WriteType, t, n) = wr(WriteType, t, n′). If no prior
node with the same value exists within the given scope, again ⊥ is returned.

The computation of a move is twofold as moves may be successfully returning a
new position n′ or fail an return ⊥. A successful move alters the position of the
program state from n to n′ as

op ∈ Move n′ = mv(op, t, n) n′ ̸= ⊥
⟨op :: s, t, n, ctx⟩ → ⟨s, t, n′, ctx⟩

. (Move)

If a move fails, the program is set to the empty instruction ϵ and the position to
n′ = ⊥:

op ∈ Move n′ = mv(op, t, n) n′ = ⊥
⟨op :: s, t, n, ctx⟩ → ⟨ϵ, t, n′, ctx⟩

. (Move-Fail)

Actions The Actions of an analysis correspond to the leaves of the respective decision
tree and can thus be viewed as return statements. The action NewAlloc returns
{true} as an analysis result, NoAlloc returns { f alse}. Lastly, if a branch of an
analysis has to be approximated, the action Approx returns {true, f alse}.

If-then-else-statements Similar to Bielik et al. [1], we define the formal semantics of
if-then-else statements as

op ∈ if g = ctx then ltrue else l f alse

⟨g, t, n, ∅⟩ → ⟨ϵ, t, n′, ctx′⟩ ctx = ctx′ (If-True)

⟨op, t, n, ctx⟩ → ⟨ltrue, t, n, ctx⟩

26

5 Instantiation and Implementation

and

op ∈ if g = ctx then ltrue else l f alse

⟨g, t, n, ∅⟩ → ⟨ϵ, t, n′, ctx′⟩ ctx ̸= ctx′ (If-False)

⟨op, t, n, ctx⟩ → ⟨l f alse, t, n, ctx⟩

. The condition checks whether a guard g evaluates to a given context ctx. If the
result of the guard is equal to the expected context, the first case If-True is applied
and the program continues the execution with the instructions ltrue. Otherwise,
If-False triggers the execution of the instructions l f alse.

As a guard is a sequence of Move operations and one Write operation, the rules
for moves and writes apply to the evaluation of a guard. The moves set the current
position within the given AST to a node of interest and the write operation deter-
mines the value of a guard that is then compared to the context. The subsequent
example illustrates how a guard works. At first, we rewrite the candidate analysis
of Figure 4.2d on page 14 using the syntax of Lalloc. The resulting analysis is
depicted in Figure 5.2.

if (DownFirst WriteType == NewExpression)

NewAlloc NoAlloc

true false

Figure 5.2: Candidate analysis of the example in Figure 4.2 rewritten with the syntax of Lalloc.

The guard consists of one move operation DownFirst and one write operation
WriteType. The expected context ctx := NewExpression is equal to the AST node
type NewExpression. The starting position is set to the node n := VarDeclaration :
obj of the AST t depicted in Figure 4.2b. Furthermore, the execution context
ctx′ := ∅ is initially empty. This initialization results in a starting state σ =

⟨DownFirst :: WriteType, t, VarDeclaration : obj, ∅⟩. The computation of the
operations of the guard are shown in Figure 5.3 and result in the final state
σ′ = ⟨ϵ, t, NewExpression : Date, NewExpression⟩. The final execution context ctx′

of σ′ is compared to the expected context ctx of the guard. Both ctx and ctx′

are equal to NewExpression. Thus, ctx′ = ctx holds and the operations ltrue are
executed. In the example, ltrue consists of the action NewAlloc.

27

5 Instantiation and Implementation

⟨DownFirst :: WriteType, t, VarDeclaration : obj, ∅⟩

mv(DownFirst,t,VarDeclaration:obj)=NewExpression:Date−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
⟨WriteType, t, NewExpression : Date, ∅⟩

wr(WriteType,t,NewExpression:Date)=NewExpression−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
⟨ϵ, t, NewExpression : Date, NewExpression⟩

Figure 5.3: Steps to compute the guard of the analysis depicted in Figure 5.2 for the abstract
syntax tree t of Figure 4.2b.

5.2.2 Implementation

As the domain-specific language Lalloc operates on ASTs, we use the ESTree1 specification
as tree representation. To convert JavaScript code to its ESTree AST representation, we
utilize the parser Acorn2. The implementation of Lalloc consists of two modules: the language
functionality and an interpreter that is able to execute programs from Lalloc.

The language functionality is implemented according to the specification of the semantics
in Section 5.2.1. Each Move and Write is represented by a function that implements the
traversal over the AST or the collection of writable information.

To execute a program from Lalloc, the interpreter runs through the program instructions
recursively. For an action, the interpreter either returns a boolean value true or f alse for
NewAlloc and NoAlloc or a specific string in case of approximation. To evaluate an if-then-
else-statement, the sequence of move and write operations defined by the guard is executed
and the written value is evaluated against the expected context. Based on the evaluation, the
execution is either continued with the operations of the then-branch ltrue or the else-branch
l f alse.

5.3 Data Collection

The supervised approach to learn a decision tree from data requires labeled training samples.
A training sample ⟨xj, yj⟩ = ⟨⟨ t, n⟩, a⟩ ∈ D for the allocation site analysis consists of a
program t converted to an AST, a node n within t as position, and a label a that is either
true if the given position is an allocation site or f alse otherwise. As manually labeling data
is tedious or even infeasible for large amounts of data, we implemented an approach to
automatically derive training samples by executing instrumented JavaScript programs. Our
approach is inspired by Bielik et al.[1]. It first instruments the source code of programs, runs
the executed programs to create a trace of information, and then derives training samples

1https://github.com/estree/estree
2https://github.com/acornjs/acorn

28

5 Instantiation and Implementation

from the created trace.

Source code instrumentation In our implementation, a position n of a training sample is a
node of type Identifier as defined by ESTree. Identifiers, for example, can be names of
variables or functions. The instrumentation injects custom code into each program. This
code contains a function that assigns a unique ID to each JavaScript object. Furthermore,
we inject a function that is used to wrap Identifiers, to write information about the
wrapped Identifier to the trace, and to finally return the value of the Identifier. The
information written includes the unique ID if the value represented by the Identifier is
of type object or function. Otherwise, we note that an Identifier is neither of type object
nor of type function. The trace is written to a file for each executed program.

For the actual instrumentation, we need to individually decide for an AST node how
a respective Identifier is wrapped by the injected function based on the type of the
node. For example, an Identifier that names a variable in a variable declaration cannot
be directly wrapped by a function since this would result in an invalid syntax. We
therefore wrap these Identifiers naming variable declarations in a separate statement
that directly follows the variable declaration. On the other hand, Identifiers tied to
binary expressions, for instance, are wrapped directly. Our implementation supports all
JavaScript language features up to and including ECMAScript 20193.

Derivation of training data By executing the instrumented programs, we create a trace for
each program that is used to derive training samples. Each entry in the trace corresponds
to one Identifier in the source code. For each Identifier, we only select its first appearance
in the trace to, for example, account for loop iterations and function calls. From each of
these selected Identifiers, we derive one training sample. To decide on the label of a
sample, we execute the following steps, which we adapted from the approach of Bielik
et al. [1]:

1. If an entry is neither an object nor a function, it is no allocation site and thus
labeled with f alse. This applies, for example, to primitive data types such as
numbers or strings.

2. If the entry is an object or a function, we check whether the unique ID has been
seen before within the trace.

a) If the ID has been seen before, the object already appeared earlier within the
source code, is not considered an allocation site, and thus receives the label
f alse.

b) Otherwise, the entry corresponds to the first appearance of an object and is
therefore labeled with true as a new allocation site.

Given an entry of a trace for a program, we create a training sample ⟨⟨t, n⟩, a⟩ with the
AST t of the program, the Identifier as node n, and the computed label a.

3https://262.ecma-international.org/10.0/

29

5 Instantiation and Implementation

5.4 Program Synthesis

We implemented the synthesis according to Algorithm 1, presented in Section 4.1.3. The
synthesis receives a dataset D that is generated as described in the previous section as input.
The core of the implementation consist of the functions genAction and genBranch. In the
following, we describe the implementation of these two functions and additionally the special
case of approximation.

genAction To find the best action abest, the implementation calculates the cost for the two
actions NewAlloc and NoAlloc on the dataset D. Subsequently, the action with the
lowest cost is returned.

genBranch For branch generation, we need to find a guard that yields a high information
gain. In the first step, our tool preselects potential guards that are further investigated.
As guards according to the syntax of Lalloc consist of a theoretically infinite amount
of move operations, we need to narrow the search space for potential guards to trade
off between a high information gain and the runtime of the synthesis. Bielik et al. [1]
propose to evaluate programs up to size six consisting of five move operations and one
write operation as guards. We tried different guard constellations ranging from size
four (three moves and one write) up to size six (five moves and one write). To evaluate a
specific setting, we look into the information gain of guards and the required amount of
branches of a learned candidate analysis. A low amount of branches indicates that we
are able to find guards with a suitable information gain that recursively split the dataset
into two comparably large subsets. Therefore, we aim for a setting that minimizes the
amount of branches. Based on our test of different settings for guards, we decide to use
a preselection of 1, 000 uniformly sampled guards from all possible guards up to size
six. A preselection that uses more or different sized guards does not have a positive
impact on the amount of analysis branches and the information gain.

In the next step, we determine the expected context ctx of guards that is the right hand
side of the condition. For this, our implementation runs each of the 1,000 preselected
guards on the current dataset and identifies guard-context combinations that appear
most often. Each guard-context combination consists of a guard with up to six operations
and an expected context as right hand side of the condition.

In the final step, our tool calculates the information gain for a select amount of guard-
context combinations. Bielik et al. [1] use the ten guard-context combinations that
appear most often and calculate the information gain for each of these guards. However,
for our dataset, this selection approach proves to be too fragile and results in many
approximated branches. For these branches, the information gain for all ten selected
guards is zero. We therefore adapted the approach to select the 40 guard-context
combinations that appear most often and calculate their information gain. If none of the
40 guards yield a positive information gain, the procedure is repeated up to ten times
so that up to 400 guards are evaluated.

30

5 Instantiation and Implementation

With this selection procedure, we assure that only few branches have to be approxi-
mated. The reasoning behind the selected values of 40 guards per chunk and up to ten
repetitions is the balance between the runtime of the learning procedure and the quality
of the selected guards. In general, a bigger chunk size evaluates the information gain of
more guards. Thus, with more analyzed guards, a guard with a higher information gain
may be found. However, calculating the information gain is computationally expensive.
We therefore empirically settled for a chunk size of 40 guards to find a guard with
suitable information gain in a reasonable amount of time. Only if none of these initial
40 guards provides any information gain, we analyze up to 360 additional guards. In
up to ten iterations, we find a suitable guard with positive information gain in most
cases and rarely need to approximate analysis branches.

approximate There usually are still a few branches where approximation is required due to
noisy data. In this case, our implementation returns the action Approx.

5.5 Oracle

The oracle creates new training samples given a candidate analysis pa and a dataset D. Our
implementation follows Section 4.2 and, as a first step, determines positions for modifications
within the programs in D. Then, it executes selected modifications to find new samples that
are incorrectly labeled by pa.

5.5.1 Determine Modification Positions

To determine the positions for program modification, we run the analysis pa for all training
samples ⟨⟨t, n⟩, a⟩ from our dataset D. During the execution for a training sample, we collect
all visited nodes from the AST t of this sample. Hence, we generate a set of nodes to modify
for each training sample in D. From these sets, we remove the node n which itself should not
be modified.

5.5.2 Selection of Modifications

We select the modifications in line with Bielik et al. [1]. Table 5.1 gives an overview of
both the semantic-preserving modifications Fsp and the modifications that might alter the
semantics Fsa. We again do not have any information about the authors’ implementation of
these modifications which might therefore diverge from our implementation.
We consider the following for the two types of modifications in our implementation:

Semantic-preserving modi�cations From Section 4.2.2 we know that the label of modified
training samples a is not influenced by the modification and stays the same. Moreover,
the node n within the sample remains unchanged after the modification. The applied
changes are thus only reflected in the code and the corresponding AST t. To make
sure that we do not unintentionally provide structural patterns within the created

31

5 Instantiation and Implementation

Table 5.1: Selected program modifications for the oracle that preserve program semantics Fsp

and that may alter semantics Fsa.

Program Modifications
Fsp Fsa

Insertion of dead code Addition of function arguments
Renaming of variables Addition of function parameters
Renaming of functions Changing of constant values

Addition of expressions

modifications, the selection of the specific modifications is randomized. If, for example,
variables are always renamed to the same identifier, the analysis might pick up this
regularity and create a rule from it. Instead, we use random identifiers of variable
length to rename variables and functions. For both the insertion of dead code and the
addition of expressions, we provide a selection of code snippets to randomly choose
from.

Modi�cations that may not be semantic preserving Even though these modifications could
alter the program semantics, we keep the label and the node of a modified sample
unchanged. Thus, we implement the modifications such that the analysis result remains
the same. We made the deliberate decision to not make any changes to the label of a
training sample to avoid forging training samples with a predefined label. We again
use identifiers of variable length and composition as additional function parameters.
Additional function arguments are also either generated identifiers or constant values
that are not objects and thus cannot directly influence the label of a training sample.
The value of constants is changed to a random number, string, or boolean.

Each of the program modifications is applied to all suitable nodes that we previously de-
termined. If one of these nodes, for instance, is a variable or function declaration, we can
rename it. To select new training samples from the created modifications, we check if the
analysis pa produces the correct result true or f alse for each modified sample. We then select
the samples that are incorrectly classified by pa to further refine the analysis.

5.6 Line-Based Analysis for Allocation Sites

To put the learned rules for the allocation site analysis into practice, we implemented a static
code analysis that examines lines of source code for allocation sites. This analysis can for
example be used to find bottlenecks in memory-intensive applications or to prevent potential
memory leaks early on during development.

The line-based analysis works on lines of individual code files. For each line of code, the
analysis determines whether the line is considered an allocation site. To distinguish between

32

5 Instantiation and Implementation

allocation sites and non-allocation sites, we use the learned analysis rules. These rules are
applied to each Identifier of the ESTree AST representation of the code file. If a line of code
includes at least one Identifier that is considered an allocation site according to the analysis
rules, it is altogether labeled as an allocation site. Otherwise, if a line of code either does not
include an Identifier or no Identifier is rated as allocation site, the line is not considered an
allocation site.

Regarding sensitivities, the line-based analysis is not context or path sensitive. We do
neither differentiate between executions based on additional context information nor between
different execution paths. However, the analysis is flow sensitive and partly depends on the
order of statements in a given code file. The underlying analysis rules, for example, consider
whether a specific Identifier has been seen and initialized before to determine whether the
Identifier is an allocation site.

33

6 Evaluation

We evaluate our approach and implementation answering six research questions. To learn
and test analysis rules for allocation sites, we generate a dataset as described in Section 5.3.
Our evaluation thereby goes beyond the initial evaluation of Bielik et al. [1] who evaluated
the learned analysis rules for the allocation site analysis by manually inspecting selected rules.
Overall, the evaluation of Bielik et al. for the allocation site analysis is rather sparse. We
thus conduct our own evaluation by examining accuracy, precision, and recall of synthesized
analyses. In addition to the generated dataset, we use validation data extracted from code of
open source projects to evaluate analysis rules. In some research questions of our evaluation,
we refer to the results of Bielik et al. for comparison. However, we cannot conduct a detailed
comparison due to a lack of data as Bielik et al. do not provide metrics such as accuracy,
precision, or recall for the allocation site analysis.

6.1 Research Questions

This section describes the research questions that are answered in the evaluation.

RQ 1: To what degree does the learned analysis approximate results?

The first question aims to clarify if we are able to learn analysis rules that are not only sound,
but also precise for the dataset used for training. That is, we want to analyze whether a
learned analysis is able to properly map the training samples to their respective labels or if
many analysis branches have to be approximated at the cost of precision.

RQ 2: How well does the learned analysis generalize for a train-test split of a
given dataset?

In the next step, we examine the generalization of a learned analysis for a test set that is a
subset of the generated dataset. The goal of this RQ is to evaluate the analysis generalization
for data that is not used for training but is structurally similar to the training data.

RQ 3: To what extent does the oracle improve the analysis generalization for a
train-test split of a given dataset?

Building on RQ 2, we aim to investigate in RQ 3 whether the oracle improves the generalization
of learned analysis rules for test data that is part of the generated dataset but not used for the
learning procedure.

34

6 Evaluation

RQ 4: How well does the learned analysis generalize to data beyond the given
dataset?

RQ 4 analyzes the generalization of a learned analysis for data beyond the generated dataset.
That is, the analysis is learned from the generated dataset, but unlike RQ 2, the data to
evaluate the analysis is not part of this dataset. With this RQ, we want to find out if the
learned analysis rules are applicable to a practical static analysis.

RQ 5: To what extent does the oracle improve analysis generalization beyond the
given dataset?

In RQ 5, we separately asses the effect of the oracle on the generalization of a learned analysis
on data that is not a subset of the generated dataset.

RQ 6: What is the impact of the size of the training dataset on the quality of the
learned analysis?

Finally, we want to find out whether more training data leads to an improved analysis quality
in RQ 6. This question seeks to determine whether more data to synthesize an analysis
improves the generalization for test samples form the generated dataset and for samples
beyond that dataset. This question is relevant because the generation of training data is costly
and it is therefore beneficial to use as little data as possible to obtain a high quality analysis.

6.2 Study Objects

For the evaluation, we use two different datasets. The first is a dataset of training samples DT

for the allocation site analysis that is generated according to our data collection procedure
described in Section 5.3. The generated dataset is used to train and test analyses. Second, we
collect validation data DV from open source projects and manually crafted validation samples
to further evaluate analysis rules on data beyond the generated dataset.

Generated dataset DT for training and testing We derive the dataset DT that is used to train
and test analysis rules from the ECMAScript Test Suite1. We therefore instrument the
source code and subsequently execute each test case. To generate the dataset, we mainly
use the ECMAScript Test Suite for three reasons:

1. The ECMAScript Test Suite was also used by Bielik et al. [1] to generate a dataset.
As we aim to reproduce the results, we want to create a comparable dataset.

2. The test suite comprehensively covers built-in JavaScript functionality and related
edge cases that should be covered by analysis rules.

3. Our approach to generate training data requires executable programs. Therefore,
we benefit from the many small and easily executable programs included in the
ECMAScript Test Suite.

1https://github.com/tc39/test262

35

6 Evaluation

We instrument a total of 31, 318 test files and derive 125, 130 training samples. The
detailed composition of DT is displayed in Table 6.1.

Table 6.1: Composition of the generated dataset DT used to learn and test rules for the
allocation site analysis.

Composition of DT

Allocation Sites Non-Allocation Sites Total Samples

42, 052 83, 078 125, 130

Validation data DV Besides the generated dataset DT, we create additional data for analysis
validation DV from open source code and manually crafted code snippets. We derive
validation data from the code of the two open source JavaScript projects Axios2 and
Strapi3. Axios is a promise-based HTTP client both for the browser and Node.js. Strapi
is a Content Management System (CMS) to make content easily accessible via custom
APIs. Both projects are actively maintained and popular with 88.5 and 40.3 thousand
stars on Github. Thus, the two projects contain code that is highly relevant for an
examination.

We manually evaluate randomly selected code files from both projects. Within each of
the files, we mark lines of code either as allocation sites or as non-allocation sites by
hand. Whether or not a line is considered an allocation site follows the definition in
Section 5.6: a line of code is rated as allocation site if we at least consider one Identifier
within the line to be an allocation site. Thus, we can use the validation data to evaluate
the line-based analysis and to thereby examine the underlying analysis rules. In addition
to the data from open source projects, we manually craft samples to specifically validate
analysis rules for built-in JavaScript functionality and edge cases. Table 6.2 provides
an overview of the open source projects and the structure of the validation data. We
analyzed 341 lines of code (LOC) from Axios and Strapi. Furthermore, we added 30
LOC of manually crafted samples. Table 6.2 additionally displays the number of LOC
that include at least one Identifier. As the underlying analysis rules of the line-based
analysis target Identifiers, we evaluate the accuracy, precision, and recall of the analysis
only on the 146 LOC of DV that include Identifiers. Thus the calculation, for instance,
does not consider empty lines or lines that only contain a curly bracket as correctly
classified non-allocation sites to avoid artificially increasing the accuracy.

2https://github.com/axios/axios
3https://github.com/strapi/strapi

36

6 Evaluation

Table 6.2: Composition of the additional validation data DV to assess analysis rules. The data
is extracted from open source projects and augmented with manually created data
points. The table shows the project names, the total number of analyzed lines of
code (LOC), the number of LOC that contain at least one identifier as well as the
number of allocation and non-allocation sites.

Validation Data

Project
LOC LOC with Allocation Non-Allocation
Total Identifiers Sites Sites

Axios 196 79 29 167
Strapi 145 41 16 129

Manually Crafted 30 26 14 16

Combined 371 146 59 312

6.3 Study Procedure

We now describe our approach to answer the research questions introduced in Section 6.1.
The setup used for the evaluation is summarized in Table 6.3. For RQ 1, RQ 2, and RQ 3,
we use train-test splits of the dataset DT to evaluate different analysis properties. We split
DT or selected subsets of DT into two distinct sets Dtrain

T and Dtest
T . Dtrain

T is used as training
data to synthesize the analysis and contains 80% of the selected samples. The test set Dtest

T
consists of the remaining 20% of the data and is used to examine various analysis properties
depending on the research question. The samples for Dtrain

T and Dtest
T are selected uniformly

at random. For RQ 4 and RQ 5, we synthesize the analysis from the complete dataset DT. We
then evaluate the learned analysis on the validation set DV . To answer RQ 6, we use both
train-test splits of DT and the validation set DV .

RQ 1: To what degree does the learned analysis approximate results?

To evaluate whether we are able to learn a precise analysis for the data that is used in the
synthesis procedure, we analyze the number of approximated analysis branches. A branch is
considered approximated if its leaf contains the action Approx. Each branch of an analysis
that results in approximation reduces the precision of the analysis for the training data as
at least one sample is mapped to the approximated branch. Furthermore, we evaluate the
number of samples that end up in approximated branches. For this, we use train-test splits
of DT to see how many test samples from Dtest

T are approximated. We examine the number
of approximated branches for analyses synthesized from training sets Dtrain

T of various sizes
from 10, 000 to 100, 104 training samples. The number of approximated samples is then
evaluated on the respective test sets Dtest

T .

37

6 Evaluation

Table 6.3: Summary of the setup for the evaluation. Sets of training data Dtrain
T and test data

Dtest
T are non-overlapping subsets of DT. From validation set DV , we only use code

lines that include at least one Identifier.

Study Setup
RQ Training Data Evaluation Data

1 Dtrain
T : 10, 000 to 100, 104 samples Dtest

T : 2, 500 to 25, 026 samples
2 Dtrain

T : 100, 104 samples Dtest
T : 25, 026 samples

3
Dtrain

T : 10, 000 to 40, 000 samples
Dtest

T : 2, 500 to 10, 000 samples
+ 5, 000 to 20, 000 samples from 5 oracle iterations

4 DT: 125, 130 samples DV : 146 LOC with Identifiers

5
DT: 125, 130 samples

DV : 146 LOC with Identifiers
+ 50, 000 samples from 5 oracle iterations
Dtrain

T : 10, 000 to 100, 104 samples Dtest
T : 2, 500 to 25, 026 samples

6
+ 5, 000 to 20, 000 samples from 5 oracle iterations + DV : 146 LOC with Identifiers

RQ 2: How well does the learned analysis generalize for a train-test split of a
given dataset?

For the second research question, we aim to create the best possible analysis and therefore
use the maximum amount of training data from DT while still retaining some data for testing.
We split the complete dataset DT of 125, 130 samples into datasets Dtrain

T (80%) to train and
Dtest

T (20%) to evaluate the analysis. We do not refine the learned candidate analysis using the
oracle, but directly examine the analysis synthesized from Dtrain

T . We calculate the metrics
accuracy, precision, and recall of the analysis synthesized from Dtrain

T for the corresponding
test set Dtest

T . As the samples of Dtest
T are not used to train the analysis, we use these three

metrics to draw conclusions about analysis generalization for data included in DT.

RQ 3: To what extent does the oracle improve the analysis generalization for a
train-test split of a given dataset?

In difference to RQ 2, we train and evaluate multiple analyses on smaller subsets of DT split
into Dtrain

T and Dtest
T . We rely on these smaller subsets to be able to perform more oracle

iterations. While we train and refine an analysis on the complete dataset DT to answer
RQs 4 and 5, we cannot use this analysis to answer this RQ as no data for testing remains.
Synthesizing analyses for large amounts of data is computationally expensive and requires
costly hardware. A further effort to synthesize and refine an analysis consisting of 80% of the
complete dataset is thus beyond the scope of this thesis.

The initial candidate analyses used to answer this RQ are refined over five oracle iterations.
To prevent the size of Dtrain

T from increasing too much with each iteration, we limit the
maximum number of newly added samples to 10% of the initial size of Dtrain

T . If the limit

38

6 Evaluation

is reached, the maximum number of samples is randomly selected from all the samples
generated by the oracle.

RQ 4: How well does the learned analysis generalize to data beyond the given
dataset?

To answer RQ 4, we use the line-based analysis and the validation set DV . We first synthesize
analysis rules from all available training samples DT without oracle refinement. These rules
are then used by the line-based analysis. We execute the line-based analysis on code of the
two open source projects Axios and Strapi as well as manually crafted code. Subsequently, we
compare the results from the execution with the pre-labeled dataset DV . For the comparison,
we calculate the accuracy, precision, and recall of the line-based analysis individually for each
project and combined for all projects. To calculate accuracy, precision, and recall, we only
consider lines of code that at least include one Identifier and are thus not trivially considered
non-allocation sites.

RQ 5: To what extent does the oracle improve analysis generalization beyond the
given dataset?

In difference to the procedure described in RQ 4, we refine the synthesized analysis in five
oracle iterations. To again avoid an exploding size of the training data after each iteration, we
limit the number of newly added samples within an oracle iteration to 10, 000. After each
iteration, we record the intermediate analysis. We then evaluate all recorded analyses as part
of the line-based analysis as detailed in the procedure of RQ 4.

RQ 6: What is the impact of the size of the training dataset on the quality of the
learned analysis?

For RQ 6, we investigate how accuracy, precision, and recall of a learned analysis change
with an increasing size of the training dataset. We again train and evaluate multiple analyses
on randomly sampled subsets of DT that are split into training data Dtrain

T and test data Dtest
T .

The size of the subsets range from 12, 500 samples (10, 000 training samples | 2, 500 test
samples) to 125, 130 (100, 104 training samples | 25, 026 test samples).

Besides the test sets Dtest
T , we examine the analyses’ quality with the help of DV . For this,

we use each of the learned analyses as rules in the line-based analysis and compare the
resulting accuracy, precision, and recall on DV . We again only consider lines of code that
include Identifiers.

39

6 Evaluation

6.4 Results

We provide the results for the research questions following the procedures described in the
previous section.

RQ 1: To what degree does the learned analysis approximate results?

Table 6.4 summarizes the results for RQ 1. The absolute number of approximated branches
ranges from 7 for an analysis trained with 20, 000 samples to 35 for 125, 130 training samples.
This corresponds to a percentage of 0.64% to 1.22% and an arithmetic mean of 0.98% of
approximated branches. The evaluation of analyses on test data results in 19 to 138 approxi-
mated test samples which is between 0.27% and 0.96% of the overall amount of test data. On
average, 0.54% of the samples of the test set are approximated.

These results show that comparably little approximation is required as on average 0.98% of
branches and 0.54% of samples are approximated. However, the number of approximated
samples is not negligible as it may have a significant impact on the precision or recall. For
an approximated sample, we cannot clearly state whether it is an allocation site. Thus,
approximated samples are counted either as false positive or false negative predictions. The
results in RQ 2 show that precision drops by 1.57 percentage points in the worst case when
considering all approximated samples as false positives. In this case, the recall remains the
same. On the other hand, if we rate all approximated samples as false negatives, the recall
decreases by 1.58 percentage points. In summary, we conclude that we can learn an analysis
that is precise for its training data and does only approximate a small number of branches
and samples. Nevertheless, we need to consider the approximated samples as incorrect
predictions in practice since they negatively impact the quality of the analysis rules.

Table 6.4: Amount and percentage of approximated samples of Dtest
T for analyses synthesized

from different sets of training data Dtrain
T . In addition, the absolute and relative

amount of approximated analysis branches is displayed.

Approximated Samples and Branches
Total

Dtrain
T Dtest

T
Approximated Analysis Approximated

Data Test Samples Branches Branches

12, 500 10, 000 2, 500 24 (0.96%) 745 8 (1.07%)

25, 000 20, 000 5, 000 19 (0.38%) 1, 096 7 (0.64%)

50, 000 40, 000 10, 000 27 (0.27%) 1, 827 18 (0.99%)

125, 130 100, 104 25, 026 138 (0.55%) 2, 870 35 (1.22%)

40

6 Evaluation

RQ 2: How well does the learned analysis generalize for a train-test split of a
given dataset?

As Table 6.5 reveals, the accuracy of the analysis synthesized from Dtrain
T and evaluated on

Dtest
T is 98.02%. The calculation of the accuracy also considers the 138 approximated samples

as incorrectly classified by the analysis. The precision of the analysis is 97.75% and the recall
is 98.02%. For both precision and recall, we do not consider the approximated samples as we
cannot explicitly classify them as either false negatives or false positives. If we rate all of the
138 approximated samples as false positives, the precision drops to a lower bound 96.18%.
Otherwise, if we classify the approximated samples as false negatives, the recall decreases by
1.58 percentage points to its lower bound of 96.44%.

Table 6.5: Accuracy, precision, and recall of the analysis synthesized from Dtrain
T and evaluated

on Dtest
T .

Analysis generalization for DT

Total
Dtrain

T Dtest
T Accuracy Precision Recall

Data

125, 130 100, 104 25, 026 98.02% 97.75% 98.02%

The high precision of at least 96.18% shows that we can reliably detect allocation sites. In
addition, the high recall with a lower bound of 96.44% confirms that non-allocation sites are
mostly classified correctly. We still have to consider that 2 to 4 false positives within 100
samples might be too many, for example if the analysis rules are used as part of a larger static
analyzer. In this case, the missing precision of different analysis components could add up
and lead to a static analysis that is too imprecise for practical application. Altogether we
infer from the comparably high values for accuracy, precision, and recall that the synthesis
procedure derives analysis rules that generalize well for structurally similar data.

RQ 3: To what extent does the oracle improve the analysis generalization for a
train-test split of a given dataset?

The line charts in Figure 6.1 show the development of the accuracy (Figure 6.1a), precision
(Figure 6.1b) and recall (Figure 6.1c) for three analyses A1 (12, 500 samples), A2 (25, 000
samples), and A3 (50, 000 samples) over five oracle iterations. All three analyses are trained
on a subset of the generated dataset DT. The first synthesis, iteration 0, uses 80% of the
12, 500, 25, 000, and 50, 000 samples, respectively, as training data and the remaining 20%
for the evaluation. In each iteration, the oracle adds the maximum of 10% of the initial
training samples to the training data. For example, for A1, 1, 000 samples are added in each
iteration.Thus, in the final iteration, A1 is synthesized from a total of 15, 000 training samples
consisting of the initial 10, 000 samples and an additional 5, 000 samples created by the oracle.

The variation of accuracy, precision, and recall over the course of five oracle iterations is

41

6 Evaluation

86,00%

88,00%

90,00%

92,00%

94,00%

96,00%

98,00%

100,00%

0 1 2 3 4 5

A
cc
u
ra
cy

Iterations

A1: 12500 A2: 25000 A3: 50000

(a) Accuracy

86,00%

88,00%

90,00%

92,00%

94,00%

96,00%

98,00%

100,00%

0 1 2 3 4 5
P
re
ci
si
o
n

Iterations

A1: 12500 A2: 25000 A3: 50000

(b) Precision

86,00%

88,00%

90,00%

92,00%

94,00%

96,00%

98,00%

100,00%

0 1 2 3 4 5

R
e
ca

ll

Iterations

A1: 12500 A2: 25000 A3: 50000

(c) Recall

Figure 6.1: Development of the accuracy, precision, and recall for analyses A1, A2, and A3

synthesized and evaluated on datasets of 12, 500, 25, 000, and 50, 000 samples for 5
oracle iterations. Iteration 0 denotes the evaluation of the analysis after the initial
synthesis. To make the small differences between the three analyses visible, the
scale of the y-axis of the diagrams does start at 86% instead of 0.

42

6 Evaluation

small. For A1, the accuracy ranges from 92.56% in the initial iteration 0 to 94.24% in the
final iteration 5. The precision is between 88.93% (iteration 0) and 91.49% (iteration 3). The
lowest value for the recall is 91.20% (iteration 1) and the highest value is 91.60% (iteration 3).
Analysis A2 has an accuracy of 95.56% (iteration 5) to 96.02% (iteration 3), the precision ranges
from 93.42% (iteration 4) to 94.44% (iteration 3), and the recall is between 93.99% (iterations 4
and 5) and 94.90% (iteration 3). Finally, the accuracy of A3 is between 96.42% (iteration 4)
and 96.89% (iteration 0), precision between 95.23% (iteration 3) and 95.62% (iteration 0), and
the recall ranges from 95.80% (iteration 0) to 96.52% (iteration 2).

The results of our experiments do not indicate a consistent improvement of the analysis
generalization for analyses A1, A2, and A3 that are refined with the oracle. The iteration with
the maximum and minimum value for accuracy, precision, and recall varies for the three
analyses. For analysis A1, the accuracy is lowest before the first oracle iteration at 92.56% and
highest after five iterations at 94.24% which indicates an improvement of the accuracy with an
increasing number of iterations. For analysis A3, however, the accuracy reaches its minimum
of 96.42% in iteration 4 and its maximum of 96.89% before even executing the oracle once in
iteration 0. Besides these variations, the difference between maximum and minimum values
of accuracy, precision, and recall for subsequent oracle iterations is comparably small and
ranges from 0.39 to 2.56 percentage points with an arithmetic mean of 0.96 percentage points.
Looking at all three analyses A1, A2, and A3, we cannot identify a consistent improvement of
either accuracy, precision, or recall over five oracle iterations.

A possible explanation why the oracle does not improve the analysis generalization is
the increasing number of analysis branches and thus analysis rules with each iteration. For
analyses A1, A2, and A3, the number of branches after iteration 5 is significantly higher than
after the first synthesis in iteration 0. Figure 6.2 depicts the increase of analysis branches over
the five iterations.

The goal of the oracle is to avoid analysis branches that do not generalize well beyond the
training data. Thus, we would expect the oracle to consolidate analysis branches that are
based on properties specific to the training data. However, instead of a branch consolidation,
the increasing number of analysis branches hints towards the addition of new rules for the
samples created by the oracle. Therefore, the oracle does not lead to more generic, but rather
to more specific rules that might finally decrease accuracy, precision, and recall of an analysis.

RQ 4: How well does the learned analysis generalize to data beyond the given
dataset?

The line-based analysis that uses rules learned from the dataset DT has an accuracy of 76.03%,
a precision of 72.22%, and a recall of 66.10% combined for all projects and the manually
crafted samples from DV . Table 6.6 provides a detailed overview of the accuracy, precision,
and recall individually for each project, combined for the open source projects Axios and
Strapi, and cumulatively for all projects. For the project Strapi, the line-based analysis has the
overall highest accuracy of 80.49% and the highest recall of 75.00%. The maximum precision
is 88.89% for the manually crafted code samples. The accuracy and recall are lowest for the
manual samples at 73.08% and 57.14%, respectively. The analysis has the lowest precision for

43

6 Evaluation

Axios at 65.52%.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5

A
m

o
u
n
t

o
f

B
ra

n
ch

e
s

Iterations

A1: 12500 A2: 25000 A3: 50000

Figure 6.2: Development of the number of analysis branches for the three analyses A1, A2,
and A3 over five oracle iterations.

Table 6.6: Accuracy, precision, and recall of the line-based analysis on validation set DV . The
underlying analysis rules are synthesized from DT without oracle refinement.

Analysis generalization for DV

Project Accuracy Precision Recall

Axios 74.68% 65.52% 65.52%
Strapi 80.49% 75.00% 75.00%

Manually Crafted 73.08% 88.89% 57.14%

Axios + Strapi 76.67% 68.89% 68.89%

Total 76.03% 72.22% 66.10%

Our results show that accuracy, precision, and recall significantly drop for the evaluation
of samples from validation set DV in comparison to structurally similar samples from the
generated dataset DT. For the open source projects Axios and Strapi, 76.67% of the lines
that include at least one Identifier are accurately classified by the line-based analysis. In
comparison, as we saw in RQ 2, the accuracy for data from a test set from DT was 98.02%.
With 68.89%, precision and recall are even lower than the accuracy due to many false positives
and false negatives produced by the line-based analysis. In Figure 6.3, we provide examples
of false positives and false negatives taken from the evaluated code of Axios and Strapi.
The example in Figure 6.3a shows a false positive as the variable declaration of PORT is
considered an allocation site even if it is initialized with a number. A number is a primitive
data type in JavaScript and does not allocate new heap memory. We expect the analysis rules
to be precise for this type of variable declaration. In contrast, in the example in Figure 6.3b,

44

6 Evaluation

the variable url is initialized by calling a user-defined function getAbsoluteAdminUrl which
returns a string which again is a primitive data type. While this example is a false positive, it
is a shortcoming of the line-based analysis which does not evaluate the actual body of the
called function and we thus cannot expect this case to be covered by the analysis rules.

const PORT = argv.p || 3000;

(a) False positive: variable initialization with
a number.

const url =

getAbsoluteAdminUrl(strapi.config);

(b) False positive: constant initialization via a
function that returns a string.

async function pingDashboard(url,

multipleTime = false) {...}

(c) False negative: function declaration.

var fs = require('fs');

(d) False negative: module import.

Figure 6.3: Code lines from Axios and Strapi that were incorrectly classified as either false
positives or false negatives.

In the example of Figure 6.3c, a new function pingDashboard is declared. We consider this
line to be a false negative as declaring a function allocates new heap memory, but it is rated
as non-allocation site by the line-based analysis. Similarly, the code shown in Figure 6.3d
implements a module import that leads to an allocation of new heap memory, but is not
considered an allocation site by the line-based analysis. We would expect both these false
negative cases to be covered by the learned analysis rules.

With an accuracy of 73.08%, the evaluation of the line-based analysis on manually crafted
code yields a high precision of 88.89% at the cost of recall which is at 57.14%. In terms of edge
cases, the analysis incorrectly considers the call to the object constructor with an argument of
type object as seen in Figure 4.4 on page 20 as an allocation site. This edge case is covered
by our training data and should thus not be missed. In contrast, the rules shown by Bielik
et al. [1] do consider this edge case. Analogously, the analysis partially handles built-in
JavaScript functions that are included in the ECMAScript Test Suite incorrectly. False negative
predictions, for instance, contain calls to built-in functions like Object.entries or Array.filter.
Both these functions create a new array and thus allocate new heap memory, but are not
consistently rated as allocation sites. The incorrect classification of edge cases and built-in
functionality that is covered by training data indicates an overfitting of the learned analysis
rules to the training data.

RQ 5: To what extent does the oracle improve analysis generalization beyond the
given dataset?

The line charts in Figure 6.4 summarize the development of the accuracy, precision, and
recall of the line-based analysis for Axios and Strapi (Figure 6.4a), the manually crafted code
samples (Figure 6.4b), and for all projects combined (Figure 6.4c). For the code of the open
source projects Axios and Strapi, the accuracy of the line-based analysis reaches a minimum

45

6 Evaluation

of 70.00% (iteration 3) and a maximum of 80.00% (iteration 4). Precision and recall range
from 58.49% (iteration 3) to 71.43% (iteration 4) and 68.89% (iterations 0, 3 and 5) to 77.78%
(iterations 1 and 4), respectively.

Furthermore, the line-based analysis has an accuracy between 57.69% (iteration 5) and
76.92% (iteration 1) for the manually crafted samples. The precision is lowest at 61.54%
(iteration 5) and highest at 88.89% (iteration 0). The recall varies from 57.14% (iterations 0
and 5) to 85.71% (iterations 1, 2 and 4).

In total, the accuracy is between 68.49% (iteration 5) and 78.77% (iteration 1), the precision
ranges from 60.00% (iteration 5) to 72.22% (iteration 0), and the recall is between 66.10%
(iterations 0 and 5) and 79, 66% (iterations 1 and 4).

Similar to RQ 3, there is no consistent improvement of the analysis generalization with an
increasing number of oracle iterations. On the contrary, we see that accuracy and precision of
the line-based analysis evaluated on all samples of validation data DV decrease by 7.53 and
12.22 percentage points, respectively, from iteration 0 to iteration 5. At the same time, the
number of analysis branches of the underlying analysis rules increases from 3, 274 branches
in iteration 0 to 8, 698 branches in the final iteration 5. In comparison, Bielik et al. only report
135 branches for their analysis trained with 134, 721 training samples. Instead of becoming
more generic, our analysis rules seem to become more specific with each oracle iteration. This
increased specificity might lead to more overfitting of the analysis to the training data and
thus to a decrease in generalization.

In comparison to RQ 4, the oracle neither improves precision nor recall for edge cases and
built-in functionality. The precision of the line-based analysis decreases by 27.35 percentage
points over the five oracle iterations while the recall remains the same.

RQ 6: What is the impact of the size of the training dataset on the quality of the
learned analysis?

We first look at the results of analyses that are learned from training data Dtrain
T and evaluated

on test data Dtest
T . The line charts in Figure 6.5 reveal that the accuracy, precision, and recall

increase with the number of training samples for both the rules synthesized with (Figure 6.5b)
and without (Figure 6.5a) oracle refinement. Without oracle refinement, the accuracy for an
analysis synthesized from 10, 000 training samples and evaluated on 2, 500 test samples is
92.56% and increases to 98.02% for 100, 104 training and 25, 026 test samples. Similarly, the
precision increases from 88.93% to 97.75% and the recall from 91.35% to 98.02%.

For the case with oracle refinement over five iterations, we evaluate analyses synthesized
from 10, 000 to 40, 000 samples of training data on 2, 500 to 10, 000 test samples. Analogous to
the case without oracle refinement, the accuracy of 94.24%, precision of 91.25%, and recall
of 91.47% for 10, 000 training samples (2, 500 test samples) increases to 96.71%, 95.31%, and
96.40% for 40, 000 training samples (10, 000 test samples). The results of the evaluation of the
analyses on test data Dtest

T thus show that accuracy, precision, and recall steadily improve
with an increasing amount of training data Dtrain

T for both analyses with and without oracle
refinement. From this improvement, we deduce that the number of training samples positively
impacts analysis quality for structurally similar data from the dataset DT.

46

6 Evaluation

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0 1 2 3 4 5

Pe
rc
e
n
ta
g
e

Iterations

Accuracy Precision Recall

(a) Axios and Strapi

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0 1 2 3 4 5

Pe
rc
e
n
ta
g
e

Iterations

Accuracy Precision Recall

(b) Manually Crafted

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0 1 2 3 4 5

Pe
rc
e
n
ta
g
e

Iterations

Accuracy Precision Recall

(c) Total

Figure 6.4: Development of accuracy, precision and recall of the line-based analysis using
analysis rules refined over five oracle iterations. The three metrics are calculated
for the code excerpts from Axios and Strapi, the manually crafted samples, and
for all three projects combined.

47

6 Evaluation

84,00%

86,00%

88,00%

90,00%

92,00%

94,00%

96,00%

98,00%

100,00%

10000 20000 40000 100104

Pe
rc

e
n
ta

g
e

Amount of Training Samples

Accuracy Precision Recall

(a) Analysis that is synthesized without oracle re-
finement.

84,00%

86,00%

88,00%

90,00%

92,00%

94,00%

96,00%

98,00%

100,00%

10000 20000 40000

Pe
rc

e
n
ta

g
e

Amount of Training Samples

Accuracy Precision Recall

(b) Analysis that is refined over five oracle itera-
tions.

Figure 6.5: Comparison of the metrics accuracy, precision, and recall of synthesized analysis
rules based on a train-test split. The analyses are synthesized from different
amounts of training data Dtrain

T with and without oracle refinement. To evaluate
the analyses, the corresponding test sets Dtest

T are used. The y-axis deliberately
starts at 84% to better differentiate visually between the accuracy, precision and
recall.

Besides the evaluation on test sets Dtest
T , we examine the analysis rules on the dataset DV as

part of the line-based analysis. The charts in Figure 6.6 summarize the results for line-based
analyses with the underlying rules synthesized from 10, 000 to 125, 130 training samples.
Without oracle refinement (Figure 6.6a), the accuracy is lowest for an analysis based on 40, 000
training samples with 67.81% and highest for 125, 130 samples with 76.03%. The precision
varies between 59.68% for 40, 000 training samples and 72.22% for 125, 130 samples. The
analyses with rules synthesized from 20, 000 and 40, 000 training samples provide the lowest
recall of 62.71%. The highest recall is 74.58% for 10, 000 training samples. For the case with
five oracle iterations (Figure 6.6b), accuracy is between 66.44% (20, 000 training samples) and
75.17% (40, 000 training samples). The precision ranges from 57.35% (20, 000 training samples)
to 67.69% (40, 000 training samples) and the recall from 66.10% (10, 000, 20, 000, and 125, 130
training samples) to 74.58% (40, 000 training samples).

The picture is therefore different for the evaluation of the analyses on the validation data
DV . For the analyses without oracle refinement, accuracy, precision, and recall decrease for
the evaluation of an analysis trained with 10, 000 training samples to an analysis trained
with 20, 000 samples. While accuracy and precision are highest for the maximum number of
125, 130 training samples, the recall peaks at only 10, 000 training samples. For the analyses
with oracle refinement, accuracy and precision drop by 3.42 and 5.00 percentage points with
an increase of the initial amount of training data from 10, 000 to 125, 130 samples. The recall
remains the same. In summary, there is no clear evidence that an increase in training samples
from 10, 000 up to 125, 130 leads to a better generalization of the learned analyses beyond
data from DT.

48

6 Evaluation

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

10000 20000 40000 125130

Pe
rc

e
n
ta

g
e

Amount of Training Samples

Accuracy Precision Recall

(a) Line-based analysis based on rules that are
synthesized without oracle refinement.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

10000 20000 40000 125130

Pe
rc

e
n
ta

g
e

Amount of Training Samples

Accuracy Precision Recall

(b) Line-based analysis based on rules that are syn-
thesized and refined over five oracle iterations.

Figure 6.6: Accuracy, precision, and recall for line-based analyses evaluated on the validation
set DV . The analysis rules for the line-based analyses are synthesized from
different amounts of training data with and without oracle refinement.

6.5 Discussion

In this section, we discuss the results of the research questions. In RQ 1, we show that only
few analysis branches and test samples are approximated. We conclude from these results
that we are able to learn an analysis that is not only sound but reasonably precise for the
training data. This is an important insight as it confirms that our implementation produces
potentially interesting analysis rules that are not just sound due to trivial approximation.

RQ 2 indeed yields promising results for data that is structurally similar to the training
data. Without oracle refinement, the analysis rules learned from 100, 104 training samples
correctly predicts the allocations site labels of 98.02% of the 25, 026 test samples. However, we
could not confirm the high accuracy in the evaluation of the line-based analysis in RQ 4 on
validation data from open source projects. Accuracy (76.67%), precision (68.89%), and recall
(68.89%) of the line-based analysis significantly drop for our evaluation on open source code.
In addition, edge cases are missed and built-in functions are partly handled incorrectly. Thus,
the performance of the line-based analysis trained without oracle for both the open source
code and the manually crafted cases is not sufficient for a production-ready static analysis.

If we refine the analyses over five oracle iterations, accuracy, precision, and recall do
not improve consistently and significantly both for the evaluation of the analysis on test
data in RQ 3 and validation data in RQ 5. The oracle thus misses its goal of improving
analysis generalization. With each oracle iteration, new analysis branches are created rather
than consolidated. Thus, contrary to the expectations, the specificity of the analysis seems
to increase with each oracle iteration. We conclude that the oracle does not improve the
generalization of the analysis rules.

The results of RQ 6 indicate that more training data leads to an improvement of analysis
generalization for test data from DT. Again, this statement does not hold for the line-based
analysis that is evaluated on the validation data from DV . For the line-based analysis, more

49

6 Evaluation

training data even leads to worse analysis results in some cases which further indicates
overfitting to the training data.

In summary, the implementation of the line-based analysis has low accuracy, precision,
and recall. In addition, it misses edge cases and partly labels built-in functionality incor-
rectly. It therefore stands to reason that the analysis overfits to the training data. Thus, our
implementation of the line-based analysis does not prove to be applicable in practice.

6.6 Threats to Validity

In the final section of the evaluation, we discuss topics that could potentially threaten the
validity of our results. We cover threats that concern the validity of our results and might
endanger the generalizability of our findings. We further consider threats that influence the
comparability of our results with the results of Bielik et al. [1].

6.6.1 Implementation Errors

Our custom implementations might include bugs which finally influence the results of the
evaluation. Both errors in the implementation of the approach and the generation of training
data could impact the properties of the learned analysis rules. We rely on automatic tests to
make sure that the core functionality of the learning procedure is properly implemented. For
instance, we test whether the move and write operations of the language specification Lalloc
or the modifications performed by the oracle adhere to their expected behavior. In addition,
we manually check random samples of the generated training data DT to assure that the data
correctly maps code locations to the proper label to denote allocation sites. Nevertheless, we
might have missed bugs in the implementation and cannot manually evaluate all training
samples. Thus, an element of risk still remains.

6.6.2 Selection of Validation Data

The two selected projects Axios and Strapi both stem from the same JavaScript open source
ecosystem. We thus cannot be sure that the results would not differ for validation data
selected from projects with different characteristics such as closed-source projects from a
corporate environment. To mitigate this threat, we select popular projects that are actively
maintained and contain a reasonable number of contributors. Additionally, we manually
craft validation samples which might be biased and thus artificially improve the evaluation
results. We therefore report the results for the open source projects and these manually
crafted samples separately.

6.6.3 Amount of Validation Data

The dataset DV used to evaluate the line-based analysis has a relatively small number of
samples. From the total number of 371 LOC as samples, 146 include at least one Identifier
and are thus considered for the evaluation. We do not assume that the small number of

50

6 Evaluation

validation samples affects our conclusion that the analysis rules are not applicable in practice.
We expect to see the same classification errors for larger datasets and therefore consider it to
be unlikely that more validation data significantly improves the analysis results. On the other
hand, validity is still at risk, as we cannot rule out the possibility that the results deteriorate
with a larger validation set. However, worse results lead to the same conclusion that the
learned analysis rules are not applicable in practice.

6.6.4 Comparability With the Results of Bielik et al.

We do neither have access to the source code nor to the training dataset of Bielik et al. [1].
Thus, the implementation details of the approach of Bielik et al. to learn analysis rules from
code and the procedure to generate training data are subject to our interpretation.

We for example use a different algorithm to select guards for the if-then-else statement of
the analysis rules. In addition, the implementation of the fundamentals might differ. This
concerns, for instance, the implementation of the write and move operations of Lalloc as well
as the selection of the underlying AST specification.

As for the dataset, we mine our dataset from the ECMAScript Test Suite analogously
to Bielik et al. However, we derive training samples from a current state of the test suite
using our custom implementation. Therefore, both the source of the training data and the
implementation differ and the datasets are thus likely to diverge.

51

7 Future Work

This chapter discusses potential future improvements and extensions to this work. For
improvements, we cover the application of different generalization techniques and the use of
more specific training data. The approach could further be expanded to problems other than
allocation site analysis and to different programming languages.

7.1 Application of Different Generalization Techniques

As seen in our evaluation, the oracle did not consistently improve the generalization of the
analysis. Therefore, different techniques to decrease the complexity of the learned analysis
rules could be applied. A generic approach to improve the generalization of decision trees is
pruning which aims to remove statistically insignificant branches from the tree [36].

A technique tied to the learning approach could be to restrain the domain-specific language
LAlloc. For example, the composition of guards could be constrained to a more specific
sequence of move and write operations. Such constraints could help to avoid guards that
reflect overly specific properties of the training data.

7.2 Use of Specific Training Data

Instead of using training data that tries to cover all notions of allocation sites, more specific
sets of data could be used to cover project or case-specific requirements. For project-specific
use cases, training data could be generated from the test suite of a project. The rules learned
from this training data might better capture specific features of the project’s code, such as
user-defined functions.

To cover case-specific requirements like edge cases or functions from libraries, a specific
dataset that only contains these specific cases could be used to learn rules that individually
cover the corresponding requirements. These case-specific rules could then, for example, be
used as part of a larger analysis to consider more cases and to thus improve the analysis
quality.

7.3 Application to Different Problems

In this thesis, we applied the approach to learn rules for static code analyses to the use case of
detecting allocation sites. However, the approach as described in Chapter 4 is not tied to this
specific use case. A first step could be the reproduction of the results of Bielik et. al [1] for a

52

7 Future Work

points-to analysis to statically compute a set of objects to which a variable may hold a pointer
at runtime. A further potential area of application is the inference of types for dynamically
typed languages.

7.4 Application to Different Programming Languages

Besides applying the learning approach to a different problem, it can also be applied to
a different programming language. Each language comes with different characteristics
and a different ecosystem. These different characteristics yield diverse edge cases and the
ecosystems provide functionality specific to the language. Therefore, it might be beneficial to
learn rules for an allocation site analysis for other programming languages besides JavaScript.

53

8 Conclusion

Manually crafting rules for static code analyses that consider both corner cases and the
program-specific environment is a hard task. We replicate the approach of Bielik et al. [1]
to learn analysis rules from code and provide a more detailed evaluation than Bielik et al.
that aims to examine the practical applicability of the learned analysis rules. The approach
consists of two components: the synthesis and the oracle. The synthesis uses decision tree
learning to derive analysis rules from training data. To reduce the overfitting of the learned
analysis rules to the training data, the oracle efficiently creates new training samples that are
fed back to the synthesis to refine the rules.

We implemented this approach to learn rules for an allocation site analysis for JavaScript.
An allocation site analysis is a static code analysis to detect source code locations that lead
to the allocation of new heap memory. To learn rules for the allocation site analysis, we
generated training data by instrumenting and executing programs from the ECMAScript
Test Suite. Subsequently, we evaluated our implementation and the analysis rules generated
with our implementation. Our results show that only few branches need to be approximated
due to noisy data and we can thus learn a precise analysis for the training data. We then
investigated how well the learned analysis rules with and without oracle refinement are
applicable to test data from our generated dataset. The evaluation yielded a high accuracy,
precision, and recall for the analysis rules with and without oracle refinement examined on
test data. However, the oracle did not lead to a consistent improvement of the analysis quality.

To evaluate the generalization of the analysis rules beyond the generated dataset, we
integrated the synthesized analysis rules in a static code analysis that we call line-based
analysis. This analysis determines whether a line of code is considered an allocation site.
According to our results, the line-based analysis built on top of the learned analysis rules did
not perform well for code from open source projects. Furthermore, important edge cases were
missed and built-in JavaScript functionality was partly misjudged. Finally, our experiments
show that the analysis quality improves with an increasing number of training samples for
the evaluation on the generated dataset. However, an increase in training data does not lead
to improved evaluation results on data extracted from open source code.

In summary, our implementation yielded analysis rules for the allocation site analysis that
are accurate for data that is structurally similar to the training data. Accuracy, precision, and
recall dropped significantly for the evaluation data from open source code which leads us
to conclude that our generated analysis rules are not applicable to a production-ready static
code analysis. We identified a possible cause in the complexity of the analysis rules. This
complexity is reflected in the high number of branches of an analysis. Instead of the expected
reduction in complexity, the oracle further increased the number of analysis branches. In
comparison to the findings of Bielik et al. [1], our analysis rules contain up to almost 65 times

54

8 Conclusion

more branches and are thus significantly more complex. While the evaluation of Bielik et al.
[1] does not provide metrics comparable to accuracy, precision, or recall for the allocation site
analysis, they show that their analysis rules are able to detect edge cases that our rules miss.
A next step could therefore aim at improving the generalization of the analysis rules beyond
the training data, for example by applying different generalization techniques.

One difficulty we encountered during this thesis is the fine line between generating unbiased
training data and indirectly defining analysis rules by assigning predefined labels to selected
samples. This was especially evident during the implementation of the modifications for
the oracle. Defining a fixed label for a modified sample based on the type of modification
might help to increase the generalization of the analysis. However, as this fixed label follows
a specific rule, it might be easier to directly implement this rule instead of learning it from
code. It is therefore important to asses on a situational basis whether it is the greater effort to
generate training data and subsequently learn the analysis rules or to directly craft the rules
by hand.

55

Bibliography

[1] P. Bielik, V. Raychev, and M. Vechev. “Learning a static analyzer from data”. In:
International Conference on Computer Aided Verification. Springer. 2017, pp. 233–253.

[2] W. S. Humphrey. “A personal commitment to software quality”. In: European Software
Engineering Conference. Springer. 1995, pp. 5–7.

[3] C. Jones. “Geriatric issues of aging software”. In: CrossTalk 20.12 (2007), pp. 4–8.

[4] F. Shull, V. Basili, B. Boehm, A. W. Brown, P. Costa, M. Lindvall, D. Port, I. Rus,
R. Tesoriero, and M. Zelkowitz. “What we have learned about fighting defects”. In:
Proceedings eighth IEEE symposium on software metrics. IEEE. 2002, pp. 249–258.

[5] M. Fowler. Refactoring: improving the design of existing code. Addison-Wesley Professional,
2018.

[6] P. Louridas. “Static code analysis”. In: Ieee Software 23.4 (2006), pp. 58–61.

[7] A. Møller and M. I. Schwartzbach. Static program analysis. 2021.

[8] D. Clifford, H. Payer, M. Stanton, and B. L. Titzer. “Memento mori: Dynamic allocation-
site-based optimizations”. In: ACM SIGPLAN Notices 50.11 (2015), pp. 105–117.

[9] S. C. Johnson. “Lint, a C Program Checker”. In: Comp. Sci. Tech. Rep. 1978, pp. 78–1273.

[10] Y. Smaragdakis and G. Balatsouras. “Pointer analysis”. In: Foundations and Trends in
Programming Languages 2.1 (2015), pp. 1–69.

[11] H. Shahriar and M. Zulkernine. “Classification of static analysis-based buffer overflow
detectors”. In: 2010 Fourth International Conference on Secure Software Integration and
Reliability Improvement Companion. IEEE. 2010, pp. 94–101.

[12] S. Krüger. “CogniCrypt-the secure integration of cryptographic software.” PhD thesis.
University of Paderborn, Germany, 2020.

[13] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu. “A novel neural source
code representation based on abstract syntax tree”. In: 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE. 2019, pp. 783–794.

[14] Y. Wang and H. Li. “Code completion by modeling flattened abstract syntax trees as
graphs”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. 16. 2021,
pp. 14015–14023.

[15] A. L. Samuel. “Some studies in machine learning using the game of checkers”. In: IBM
Journal of research and development 3.3 (1959), pp. 210–229.

[16] A. V. Joshi. “Introduction to AI and ML”. In: Machine Learning and Artificial Intelligence.
Springer, 2020, pp. 3–7.

56

Bibliography

[17] V. Kotu and B. Deshpande. Predictive analytics and data mining: concepts and practice with
rapidminer. Morgan Kaufmann, 2014.

[18] S. J. Russell and P. Norvig. Artificial intelligence: A modern approach. Third edition,
Global edition. Prentice Hall series in artificial intelligence. Boston: Pearson, 2016. isbn:
1292153970.

[19] S. B. Kotsiantis, I. Zaharakis, P. Pintelas, et al. “Supervised machine learning: A review
of classification techniques”. In: Emerging artificial intelligence applications in computer
engineering 160.1 (2007), pp. 3–24.

[20] S. K. Murthy. “Automatic construction of decision trees from data: A multi-disciplinary
survey”. In: Data mining and knowledge discovery 2.4 (1998), pp. 345–389.

[21] J. R. Quinlan. “Induction of decision trees”. In: Machine learning 1.1 (1986), pp. 81–106.

[22] D. M. Powers. “Evaluation: from precision, recall and F-measure to ROC, informedness,
markedness and correlation”. In: arXiv preprint arXiv:2010.16061 (2020).

[23] B. Juba and H. S. Le. “Precision-recall versus accuracy and the role of large data sets”.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 01. 2019, pp. 4039–
4048.

[24] S. Rasthofer, S. Arzt, and E. Bodden. “A machine-learning approach for classifying and
categorizing android sources and sinks.” In: NDSS. Vol. 14. 2014, p. 1125.

[25] Y. Elovici, A. Shabtai, R. Moskovitch, G. Tahan, and C. Glezer. “Applying machine
learning techniques for detection of malicious code in network traffic”. In: Annual
Conference on Artificial Intelligence. Springer. 2007, pp. 44–50.

[26] U. Koc, P. Saadatpanah, J. S. Foster, and A. A. Porter. “Learning a classifier for false
positive error reports emitted by static code analysis tools”. In: Proceedings of the 1st
ACM SIGPLAN International Workshop on Machine Learning and Programming Languages.
2017, pp. 35–42.

[27] E. A. Alikhashashneh, R. R. Raje, and J. H. Hill. “Using machine learning techniques
to classify and predict static code analysis tool warnings”. In: 2018 IEEE/ACS 15th
International Conference on Computer Systems and Applications (AICCSA). IEEE. 2018,
pp. 1–8.

[28] L. Büch and A. Andrzejak. “Learning-based recursive aggregation of abstract syntax
trees for code clone detection”. In: 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE. 2019, pp. 95–104.

[29] U. Koc, S. Wei, J. S. Foster, M. Carpuat, and A. A. Porter. “An empirical assessment
of machine learning approaches for triaging reports of a java static analysis tool”. In:
2019 12th ieee conference on software testing, validation and verification (icst). IEEE. 2019,
pp. 288–299.

[30] V. Chibotaru, B. Bichsel, V. Raychev, and M. Vechev. “Scalable taint specification infer-
ence with big code”. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 2019, pp. 760–774.

57

Bibliography

[31] V. Raychev, M. Vechev, and A. Krause. “Predicting program properties from" big code"”.
In: ACM SIGPLAN Notices 50.1 (2015), pp. 111–124.

[32] R. Paletov, P. Tsankov, V. Raychev, and M. Vechev. “Inferring crypto API rules from
code changes”. In: ACM SIGPLAN Notices 53.4 (2018), pp. 450–464.

[33] Y. Wang, W.-d. Cai, and P.-c. Wei. “A deep learning approach for detecting malicious
JavaScript code”. In: Security and Communication Networks 9.11 (2016), pp. 1520–1534.

[34] V. Kashyap, K. Dewey, E. A. Kuefner, J. Wagner, K. Gibbons, J. Sarracino, B. Wieder-
mann, and B. Hardekopf. “JSAI: A static analysis platform for JavaScript”. In: Proceedings
of the 22nd ACM SIGSOFT international symposium on Foundations of Software Engineering.
2014, pp. 121–132.

[35] H. Lee, S. Won, J. Jin, J. Cho, and S. Ryu. “SAFE: Formal specification and implementa-
tion of a scalable analysis framework for ECMAScript”. In: International Workshop on
Foundations of Object-Oriented Languages (FOOL). Vol. 10. Citeseer. 2012.

[36] J. Mingers. “An empirical comparison of pruning methods for decision tree induction”.
In: Machine learning 4.2 (1989), pp. 227–243.

58

	Abstract
	Kurzfassung
	Contents
	Introduction
	Theoretical Foundations
	Static Code Analysis
	Areas of Application
	Sensitivities
	Code Representations
	Allocation Site Analysis

	Machine Learning
	Definition and Classification
	Decision Trees
	Evaluation Metrics

	Application of Machine Learning to Static Code Analysis

	Related Work
	Learning Analysis Rules from Code
	Static Analysis and Machine Learning
	Static Analysis Without Machine Learning

	Approach
	Program Synthesis
	Analysis Soundness and Precision
	Language Template for Analysis Rules
	Learning Analysis Rules

	Oracle
	Determine Modification Positions
	Selection of Modifications

	Instantiation and Implementation
	Variable Instantiation
	Domain-Specific Language
	Specification of Syntax and Semantics
	Implementation

	Data Collection
	Program Synthesis
	Oracle
	Determine Modification Positions
	Selection of Modifications

	Line-Based Analysis for Allocation Sites

	Evaluation
	Research Questions
	Study Objects
	Study Procedure
	Results
	Discussion
	Threats to Validity
	Implementation Errors
	Selection of Validation Data
	Amount of Validation Data
	Comparability With the Results of Bielik et al.

	Future Work
	Application of Different Generalization Techniques
	Use of Specific Training Data
	Application to Different Problems
	Application to Different Programming Languages

	Conclusion
	Bibliography

