
- 1 -

Test Intelligence: How Modern Analyses and Visualizations
in Teamscale Support Software Testing

Jakob Rott*
CQSE GmbH, Munich

ABSTRACT

Software development, as well as software testing, of a system
spawns lots of different artifacts of that many remain unused in
further engineering of the system. In practice, we see a possible
reason in the lack of knowledge how these artifacts can be processed
to profit the most. This is a problem as additional information can
improve software testing by making it more effective and efficient.
If unused, as a consequence, the testing process is suboptimal, either
slow or expensive and might, in a worse case, also result in a bad
overall system quality.

In this paper, we give an overview about how modern analyses and
visualizations enable the access to processed artifacts that support
software testing and make benefits clear to the engineering and
management stakeholders of a system. We focus on analyses in
the tool Teamscale which is an application for software quality
evaluation. For each analysis presented, we state which problem it
addresses and in which context it can be used.

With this summarized presentation, we equip the reader with valu-
able analyses that are in the right scope for stakeholders in software
testing. We present how test data can be used in a continuous feed-
back process by showcasing the analysis visualizations. Many of
them are already successfully employed in the software engineering
process of companies from a variety of industry sectors.

Index Terms: Test Intelligence—Artifacts of Software Engineering
and Testing—Visualization Techniques; Effective Software Testing—
Test Gap Analysis; Efficient Software Testing—Test Selection and
Prioritization—Test Impact Analysis / Pareto Testing

1 INTRODUCTION

Successful software systems grow. This holds true for applications
that are developed for all industrial sectors and comes with the
difficulty that large systems require extensive and thus costly testing.

Academia makes steady progress in their suggestions on how to
improve and optimize software testing processes in different aspects.
However, when considering the recent study of Hynninen et al.
(2018) who report on industry standards in software testing it seems
that in many testing environments fine-grained optimization is not
yet an option as for several basic testing tasks no tool support is
currently established at all on which one could build upon. [5]

If no tool is used, artifacts like code coverage of test runs, change
information from the version control system, or tickets from issue
trackers can most likely not be respected in further testing plans.
This is coherent to what the authors observe in their regular work as
quality engineers in diverse industry projects.

Consequently, test managers often direct the available resources
for testing based on their experience (subjective) and do not put
artifacts from past test runs and other data sources into consideration
which would allow a more objective source of decision-taking. The
reason for this might be that interpretation of the large amount of raw

*e-mail: rott@cqse.eu

data is not possible but needs extensive preprocessing. Also suitable
tool support and benefits might be unknown. As a consequence,
several problems and questions remain:
– Even with parallelization, tests run too long to finish in a reason-

able time frame. [1]
– After a testing phase—no matter whether for a single ticket or a

large new release—it is unclear whether the executed tests ran
over all changed code regions. In uncovered regions no faults
can have been detected and research has shown that a substantial
number of changes reaches production untested. [2]

– A large part of the testing budget is used to test code areas in
which bugs are more unlikely than in other areas.

– Given a time budget for testing, a useful subset and execution
order of test cases is unknown. [11]

– Test feedback reaches developers too late. [1]
– Are requirements, code and tests still in sync after one of them

changes? [12]
– Which code change led to a test failure? [11]

In research, test analyses were proposed that can help to answer
the mentioned questions. In industry, a modern tool like Teamscale
[4] that implements these approaches offers in addition meaningful
visualizations. The latter play an important role when it comes to
making the use of modern approaches widespread as they clearly
show the relations of different artifacts and highlight the benefits of
using analysis results to all stakeholders.

Our contribution is an overview about different analyses and their
visualization offered by Teamscale. To the best of our knowledge
so far there is no publication that covers such a synopsis for any
tool. The visualizations in this paper were not generated ad hoc but
stem from the analyses of different software systems performed in
the past years by professional quality engineers employed at CQSE
and are approved to be reused in this context (see ack., p. 6). All
involved creators lead or accompany the quality control process of
diverse software development projects and the examples in this work
were carefully chosen. The paper sums up for which purpose to use
which analysis [Purp.], their required input data [Inp.], the resulting
benefit [Benef.] and which roles they target [Targ.]. If present, we
enrich the presentation with experiences from their application in
industry and refer to evaluation studies.

The analyses relate to the research areas Change-Driven Testing
(test process oriented towards changes, e.g., test case selection,
prioritization and coverage gap analysis) and Test Intelligence (usage
of available artifacts from software development and testing). [1]

The remainder of this work is organized as follows. In Section 2,
we present Test Gap analyses that identify recent changes that re-
mained uncovered in the tests. Section 3 discusses an integrated
analysis of system requirements and test results into a verification
matrix. Section 4 describes three analyses that cover test case selec-
tion and test case prioritization. An analysis to highlight changes
that were done since a preceding test run in order to find the cause
of test failures is presented in Section 5. In Section 6, we report on
visualizations that reveal interrelations of testing data and statically
calculated measures. Finally, Section 7 concludes the paper with a
short statement regarding these modern techniques and their general
application in testing and possible future work.

preprint of
Rott, J. (2022, October). Test Intelligence: How Modern Analyses and Visualizations in 
Teamscale Support Software Testing. In 2022 First International Workshop on Visualiza-
tion in Testing of Hardware, Software, and Manufacturing (TestVis) (pp. 15-21). IEEE.



- 2 -

Figure 3: A Test Gap treemap can be generated for a single ticket
(lower right side). The color coding is the same as in Fig. 1. Only
modified methods are shown in the Issue Test Gap treemap, so, it is
smaller and, in agile development, more actionable.

right side), [Purp.] which allow a quick overview even of many tick-
ets. [Benef.] Larger Test Gaps are immediately visible. In a sensible
combination with filters, all tickets of the current iteration can be
viewed or all tickets that one has developed themself. A filter could
also exclude issues that are still being processed.

Industrial Experience. Employees of CQSE, who are in charge
of quality engineering, use the view as presented in Figure 2 for
quality reports such as monthly assessments. Those are brief reports
evaluating the code changes and testing efforts of the last month.
The quality engineers use the overview in conjunction with issue
queries (»What are issues that themselves or their belonging parent
issues were closed in the past month?«) to identify relevant tickets
for which the Test Gap is high.

This shape of TGA and a possible depiction was first published by
Rott et al. as Ticket Coverage and is now usually referred to as Issue
Test Gap [13]. In their paper the approach was evaluated on manual
executed test cases and the responsible developers were surveyed
whether identified Issue Test Gaps would have been needed to be
classified as relevant, what they affirmed.

2.2.2 Issue Test Gap Treemap
Visualization. Changing the point of view to Issue Test Gaps from
a quantitative to a qualitative angle, the treemap presentation intro-
duced in Section 2.1 can again be used. [Purp.] All methods included
in an Issue Test Gap treemap (Fig. 3) have been changed as part of a
ticket; no unchanged methods are shown. Again, only green methods
have been executed in the tests after their latest modification. The
charm of this visualization is that it is reduced to the essentials [Targ.]
for someone who is responsible for testing a single issue. [Benef.] If
Test Gaps remain after writing automated tests or after executing a
corresponding test plan, these can be quickly recognized as familiar
and not as unknown program parts (as many gaps would be in a
system-wide TGA). Developers who write automated tests for their
application code, know the methods that can appear as Test Gaps and
can extend their tests fast. Manual testers can form a feedback loop
with the developers until all gaps are closed. The treemap is best
integrated into a view that carries the issue context and shows other
relevant data as assignee, issue description, comments, associated
commits, . . . to gather all information in a single location.

2.3 Test Gap Trend
The ratio of untested code changes should not increase. Thus it is
important [Purp.] to monitor the evolution of Test Gaps in a system
over time. A means to do so is the Test Gap Trend chart (Fig. 4).
[Benef.] On the one hand, this answers whether set goals for improve-
ment are met or whether they are being approached. On the other

Figure 4: The evolution of Test Gaps over time is shown as a stacked
line chart (Test Gap Trend). This sample chart shows that on May 24th,
methods were changed and added to the system. Shortly thereafter,
parts of them were run in the tests. However, some methods remained
uncovered and formed a Test Gap. This was reduced over time, so by
June 11th there was almost none left.

Figure 5: This verification matrix was automatically generated by
Teamscale. Linkage of test cases (rows) to requirements (columns)
and integration of test data into the tool enabled this. It reveals that
requirement DP-540 is not checked by any test and that the test for
DP-548 is skipped on one test environment and fails on the other.

hand, deteriorations in the coverage, which can lead to a larger Test
Gap can be detected quickly.

3 TEST RESULTS IN VERIFICATION MATRIX

A verification matrix provides an overview over which requirements
are covered by which tests and, for example, whether tests succeed
on every platform. [Purp.] It answers further questions like:
– »Are there any requirements without associated tests?«
– »Which tests verify too many requirements?«
– »Which tests of a given requirement fail?«
They are used as part of requirements tracing, which is itself part
of requirements management. This, in turn, is heavily used in the
engineering of safety-critical systems and prescribed in standards
for automotive engineering, development of avionic systems and
medical technology applications. [12]

[Inp.] If linkage of requirements, code and tests is well maintained,
[Benef.] the verification matrix—which is otherwise laborious to
create—can nowadays be generated automatically. Teamscale vi-
sualizes the result of this analysis in its web-UI (see Fig. 5) and
makes the results further examinable. All test results in the matrix
are linked to so-called test details views which show a variety of
information: test name, data from the most recent executions like
duration, outcome (passed/failed + recording from standard error)
and which methods have been executed.

Visualization. An example verification matrix is given in Fig-
ure 5. The columns list different requirements and the rows indicate
implemented or specified test cases. The filled fields inside the ma-

Figure 1: The treemap shows a system-wide Test Gap analysis (TGA)
and gives an overview how thoroughly changes within a timespan (in
this case, from release x-1 to x) are covered by tests. Each rectangle
represents a method in the source code. Its size corresponds to the
length of the method (SLOC). Grey methods remained unchanged
in the codebase since the last release. Defects would probably have
been recognized since the code is regularly executed in a produc-
tive environment. Colored methods have been changed (orange) or
added (red) since the last release but were not tested since the last
modification. The green ones have either been changed or added
and were executed by a test after the latest modification.
The shown treemap was created only a few days before the planned
release. It revealed several larger untested modules (white borders).
Based on this TGA, it was decided to shift the release date to enhance
testing, since the Test Gaps were considered too grave.

2 TEST GAPS

Research has shown that the probability of bugs in code regions that
have been changed since the last release but not tested afterwards
is five times higher than in other areas of the codebase [2]. [Purp.]
To reveal untested changes, Test Gap analysis (TGA) combines
[Inp.] change information from the version control system with test
coverage from automated and manual tests. [Benef.] It highlights
which methods (or equivalents in other prog. languages) have been
changed since a certain baseline but were not tested afterwards. The
analysis results are usually depicted in a treemap (Fig. 1).

Industrial Experience. One benefit investigation of TGA was
recently published in 2020 [8]. The publication evaluates benefits of
TGA usage on a large enterprise application portfolio. As baseline
serves the study of Eder et al. [2] with systems from the same
portfolio as study objects. Before TGA has been introduced to the
projects, around half of the changed methods were released without
an execution during the tests. Today, due to TGA, the percentage of
untested changes amounts to 10% or less. The application of TGA
has caused a decrease in the percentage of field bugs in changed
code from 60% to 28%, so by more than half.

2.1 System Test Gaps

Scoping Test Gap analysis to the whole system [Purp.] allows a view
that shows for all changes in the codebase within a certain time
frame which additions or modifications have not been run in the
tests. [Benef.] It enables a fact-based decision on whether the risk of
current gaps in testing are acceptable. For example, shortly before
publishing a release x as successor of release x 1, TGA makes
untested code changes since the last release transparent which helps
to decide whether the release can be published, or additional tests
need to be performed to lower the risk of field bugs.

Visualization. A major reason why TGA is attractive for its
users lies in its visualization. This makes the results of the anal-
ysis tangible and allows to drill down to conspicuous parts of the
program. A common view of the results are treemaps. Methods
are represented in the diagram as rectangles, with the size of the

Figure 2: Bar charts on the right side indicate the Test Gap for single
issues. For a list of issues this allows a quick overview which ones
are still lacking method coverage significantly. In Teamscale this list
can be filtered by specifying issue queries (e.g., tickets assigned to
me, tickets belonging to the current sprint).

rectangle representing the length (SLOC) of a method. The color of
a rectangle shows whether the method has been changed (colored)
or not (grey) since the baseline. The color code also distinguishes
whether a method has been newly added (red) or an existing one
has been modified (yellow). Methods in green are either new or
changed and have been executed in a test run after the latest change.
Teamscale’s implementation of this view is interactive. Users can
move the cursor over individual rectangles and a tooltip displays
metadata and the TGA result of the method. Source code that resides
in the same folder is displayed side by side in the diagram, thus the
treemap provides a quick overview of whether there are particularly
noticeable Test Gaps in certain areas of the system. [Targ.] This view
is particularly useful for persons that are responsible for the overall
testing of an application, for example, test managers.

Industrial Experience. Figure 1 shows the Test Gap treemap
of a large business information system shortly before an upcoming
release. TGA uncovered a large amount of new code being untested.
Investigation revealed that this was induced by miscommunication
between different teams. It was decided to shift the release date and
make up for the missing tests. After a successful re-testing phase,
the application was released having the most important gaps closed.

2.2 Issue Test Gaps
TGA can also be applied using a more focused scope, both in terms
of time and changes/system parts considered. Issue Test Gap anal-
ysis combines [Inp.] information from the version control system
and from testing with data from an issue tracker. [Purp.] This makes
sense in many modern development processes in which responsibil-
ity is divided among sub-areas of a system. Rather than (re)viewing
all Test Gaps of a system, in everyday life, the question is usually
»Have I tested the feature, bug fix or other unit of work that I am
supposed to verify in sufficient detail?«, asked by both developers
and testers. The former, who are responsible for writing automated
unit tests need to decide whether their changes are sufficiently tested
and ready to be merged into the main branch. The latter, colleagues
who run manual tests, follow a test description and can without
TGA not be sure that undocumented changes will slip through the
test process. [Benef.] Issue Test Gap analysis allows both a quick
overview over a set of issues (Sect. 2.2.1) and to investigate the Test
Gaps of a single ticket in detail (Sect. 2.2.2).

2.2.1 Overview Test Gaps of Many Issues
Visualization. Approaching Issue Test Gap from a numerical per-
spective, it reveals the proportion of untested methods that have been
changed (incl. added) during the development of an issue. These
proportions can be displayed as horizontal bar charts (see Fig. 2,



- 3 -

Figure 3: A Test Gap treemap can be generated for a single ticket
(lower right side). The color coding is the same as in Fig. 1. Only
modified methods are shown in the Issue Test Gap treemap, so, it is
smaller and, in agile development, more actionable.

right side), [Purp.] which allow a quick overview even of many tick-
ets. [Benef.] Larger Test Gaps are immediately visible. In a sensible
combination with filters, all tickets of the current iteration can be
viewed or all tickets that one has developed themself. A filter could
also exclude issues that are still being processed.

Industrial Experience. Employees of CQSE, who are in charge
of quality engineering, use the view as presented in Figure 2 for
quality reports such as monthly assessments. Those are brief reports
evaluating the code changes and testing efforts of the last month.
The quality engineers use the overview in conjunction with issue
queries (»What are issues that themselves or their belonging parent
issues were closed in the past month?«) to identify relevant tickets
for which the Test Gap is high.

This shape of TGA and a possible depiction was first published by
Rott et al. as Ticket Coverage and is now usually referred to as Issue
Test Gap [13]. In their paper the approach was evaluated on manual
executed test cases and the responsible developers were surveyed
whether identified Issue Test Gaps would have been needed to be
classified as relevant, what they affirmed.

2.2.2 Issue Test Gap Treemap
Visualization. Changing the point of view to Issue Test Gaps from
a quantitative to a qualitative angle, the treemap presentation intro-
duced in Section 2.1 can again be used. [Purp.] All methods included
in an Issue Test Gap treemap (Fig. 3) have been changed as part of a
ticket; no unchanged methods are shown. Again, only green methods
have been executed in the tests after their latest modification. The
charm of this visualization is that it is reduced to the essentials [Targ.]
for someone who is responsible for testing a single issue. [Benef.] If
Test Gaps remain after writing automated tests or after executing a
corresponding test plan, these can be quickly recognized as familiar
and not as unknown program parts (as many gaps would be in a
system-wide TGA). Developers who write automated tests for their
application code, know the methods that can appear as Test Gaps and
can extend their tests fast. Manual testers can form a feedback loop
with the developers until all gaps are closed. The treemap is best
integrated into a view that carries the issue context and shows other
relevant data as assignee, issue description, comments, associated
commits, . . . to gather all information in a single location.

2.3 Test Gap Trend
The ratio of untested code changes should not increase. Thus it is
important [Purp.] to monitor the evolution of Test Gaps in a system
over time. A means to do so is the Test Gap Trend chart (Fig. 4).
[Benef.] On the one hand, this answers whether set goals for improve-
ment are met or whether they are being approached. On the other

Figure 4: The evolution of Test Gaps over time is shown as a stacked
line chart (Test Gap Trend). This sample chart shows that on May 24th,
methods were changed and added to the system. Shortly thereafter,
parts of them were run in the tests. However, some methods remained
uncovered and formed a Test Gap. This was reduced over time, so by
June 11th there was almost none left.

Figure 5: This verification matrix was automatically generated by
Teamscale. Linkage of test cases (rows) to requirements (columns)
and integration of test data into the tool enabled this. It reveals that
requirement DP-540 is not checked by any test and that the test for
DP-548 is skipped on one test environment and fails on the other.

hand, deteriorations in the coverage, which can lead to a larger Test
Gap can be detected quickly.

3 TEST RESULTS IN VERIFICATION MATRIX

A verification matrix provides an overview over which requirements
are covered by which tests and, for example, whether tests succeed
on every platform. [Purp.] It answers further questions like:
– »Are there any requirements without associated tests?«
– »Which tests verify too many requirements?«
– »Which tests of a given requirement fail?«
They are used as part of requirements tracing, which is itself part
of requirements management. This, in turn, is heavily used in the
engineering of safety-critical systems and prescribed in standards
for automotive engineering, development of avionic systems and
medical technology applications. [12]

[Inp.] If linkage of requirements, code and tests is well maintained,
[Benef.] the verification matrix—which is otherwise laborious to
create—can nowadays be generated automatically. Teamscale vi-
sualizes the result of this analysis in its web-UI (see Fig. 5) and
makes the results further examinable. All test results in the matrix
are linked to so-called test details views which show a variety of
information: test name, data from the most recent executions like
duration, outcome (passed/failed + recording from standard error)
and which methods have been executed.

Visualization. An example verification matrix is given in Fig-
ure 5. The columns list different requirements and the rows indicate
implemented or specified test cases. The filled fields inside the ma-

Figure 1: The treemap shows a system-wide Test Gap analysis (TGA)
and gives an overview how thoroughly changes within a timespan (in
this case, from release x-1 to x) are covered by tests. Each rectangle
represents a method in the source code. Its size corresponds to the
length of the method (SLOC). Grey methods remained unchanged
in the codebase since the last release. Defects would probably have
been recognized since the code is regularly executed in a produc-
tive environment. Colored methods have been changed (orange) or
added (red) since the last release but were not tested since the last
modification. The green ones have either been changed or added
and were executed by a test after the latest modification.
The shown treemap was created only a few days before the planned
release. It revealed several larger untested modules (white borders).
Based on this TGA, it was decided to shift the release date to enhance
testing, since the Test Gaps were considered too grave.

2 TEST GAPS

Research has shown that the probability of bugs in code regions that
have been changed since the last release but not tested afterwards
is five times higher than in other areas of the codebase [2]. [Purp.]
To reveal untested changes, Test Gap analysis (TGA) combines
[Inp.] change information from the version control system with test
coverage from automated and manual tests. [Benef.] It highlights
which methods (or equivalents in other prog. languages) have been
changed since a certain baseline but were not tested afterwards. The
analysis results are usually depicted in a treemap (Fig. 1).

Industrial Experience. One benefit investigation of TGA was
recently published in 2020 [8]. The publication evaluates benefits of
TGA usage on a large enterprise application portfolio. As baseline
serves the study of Eder et al. [2] with systems from the same
portfolio as study objects. Before TGA has been introduced to the
projects, around half of the changed methods were released without
an execution during the tests. Today, due to TGA, the percentage of
untested changes amounts to 10% or less. The application of TGA
has caused a decrease in the percentage of field bugs in changed
code from 60% to 28%, so by more than half.

2.1 System Test Gaps

Scoping Test Gap analysis to the whole system [Purp.] allows a view
that shows for all changes in the codebase within a certain time
frame which additions or modifications have not been run in the
tests. [Benef.] It enables a fact-based decision on whether the risk of
current gaps in testing are acceptable. For example, shortly before
publishing a release x as successor of release x 1, TGA makes
untested code changes since the last release transparent which helps
to decide whether the release can be published, or additional tests
need to be performed to lower the risk of field bugs.

Visualization. A major reason why TGA is attractive for its
users lies in its visualization. This makes the results of the anal-
ysis tangible and allows to drill down to conspicuous parts of the
program. A common view of the results are treemaps. Methods
are represented in the diagram as rectangles, with the size of the

Figure 2: Bar charts on the right side indicate the Test Gap for single
issues. For a list of issues this allows a quick overview which ones
are still lacking method coverage significantly. In Teamscale this list
can be filtered by specifying issue queries (e.g., tickets assigned to
me, tickets belonging to the current sprint).

rectangle representing the length (SLOC) of a method. The color of
a rectangle shows whether the method has been changed (colored)
or not (grey) since the baseline. The color code also distinguishes
whether a method has been newly added (red) or an existing one
has been modified (yellow). Methods in green are either new or
changed and have been executed in a test run after the latest change.
Teamscale’s implementation of this view is interactive. Users can
move the cursor over individual rectangles and a tooltip displays
metadata and the TGA result of the method. Source code that resides
in the same folder is displayed side by side in the diagram, thus the
treemap provides a quick overview of whether there are particularly
noticeable Test Gaps in certain areas of the system. [Targ.] This view
is particularly useful for persons that are responsible for the overall
testing of an application, for example, test managers.

Industrial Experience. Figure 1 shows the Test Gap treemap
of a large business information system shortly before an upcoming
release. TGA uncovered a large amount of new code being untested.
Investigation revealed that this was induced by miscommunication
between different teams. It was decided to shift the release date and
make up for the missing tests. After a successful re-testing phase,
the application was released having the most important gaps closed.

2.2 Issue Test Gaps
TGA can also be applied using a more focused scope, both in terms
of time and changes/system parts considered. Issue Test Gap anal-
ysis combines [Inp.] information from the version control system
and from testing with data from an issue tracker. [Purp.] This makes
sense in many modern development processes in which responsibil-
ity is divided among sub-areas of a system. Rather than (re)viewing
all Test Gaps of a system, in everyday life, the question is usually
»Have I tested the feature, bug fix or other unit of work that I am
supposed to verify in sufficient detail?«, asked by both developers
and testers. The former, who are responsible for writing automated
unit tests need to decide whether their changes are sufficiently tested
and ready to be merged into the main branch. The latter, colleagues
who run manual tests, follow a test description and can without
TGA not be sure that undocumented changes will slip through the
test process. [Benef.] Issue Test Gap analysis allows both a quick
overview over a set of issues (Sect. 2.2.1) and to investigate the Test
Gaps of a single ticket in detail (Sect. 2.2.2).

2.2.1 Overview Test Gaps of Many Issues
Visualization. Approaching Issue Test Gap from a numerical per-
spective, it reveals the proportion of untested methods that have been
changed (incl. added) during the development of an issue. These
proportions can be displayed as horizontal bar charts (see Fig. 2,



- 4 -

Figure 7: This collage briefly visualizes the concept of the test se-
lection mechanism in Teamscale’s test impact analysis. Given the
set of changed methods (upper treemap), it is checked which of the
previously ran tests (the other 11 treemaps) executed some of the
changed methods. Only tests that covered the changed methods in
the past (blue border) are selected to be run.

Figure 8: This graph visualizes the application of Pareto Testing: How
much method coverage compared to the whole test suite can be
achieved with a limited testing time budget. According to the available
time (can be set using the slider) and coverage from previous test
runs, an optimized test execution list is generated. As far as possible,
this approach maximizes a broad coverage over different code areas
of the software system.

of having to wait until the following day, developers now receive
feedback on their work much faster. In addition, the entire test suite
is run overnight to ensure that no test failures go unnoticed.

5 FIND CODE THAT CAUSED A TEST FAILURE

When a test case fails, it is beneficial if one can identify methods
covered by the test that have been modified since the last successful
run. This is because the reason of the failure is likely within the
recent changes and thus [Benef.] the starting point of where to im-
prove the code and fix the test. [Inp.] Prerequisite is the recording
of coverage per test case, which can be combined with the change
information since the last test pass. [Purp.] When test suites take a
long time to execute, they often run over the weekend. After the test
suite has finished, (say Monday) someone will see that a number
of test cases failed. However, since the test suite did not run over a
specific changeset, but over all changes from the previous week, it
is difficult to find out which change actually caused the test failure.

Visualization. Figure 9 shows the result presentation of this
analysis in Teamscale. The treemap shows methods that have either

Figure 9: In Teamscale’s »Test Details View«, a treemap shows the
methods that have been changed (light blue) or added (blue) since
the last successful test run. It can be used to identify the reason
of a test failure as the cause is likely within the recent changes.
In case of lacking this information a manual inspection has to be
performed which is laborious especially when the test suite is large
and dependencies between tests and code changes are not clear.

been changed (light blue) or added (blue) since the last successful run
of the test case. This chart is embedded into a view that summarizes
data related to a single test case, such as a test execution history
(results of the recent test runs), coverage of the test run and (if the
testing framework is supported) the source code of the test.

6 CHARTS REVEALING INTERRELATIONS

[Purp.] »What are the implications of certain areas of the codebase
being less tested than others? Can one spot differences?« These
questions do not only arise when it comes to auditing systems, root-
cause analyses or to convincing people of certain analyses. In day-
to-day development, too, it is important to keep certain connections
in mind. [Targ.] Researchers can profit from interrelations analyses
just like managers and any other project stakeholder.

Two analyses and their forms of representation are given in the
following. With their key takeaways they have a strong educational
effect. [Inp.] Both times, test coverage is compared to other metrics
of the system. First, the frequency with which a code area needs
to be touched in a bug ticket, and second, the overall frequency of
changes—at different code- and coverage granularities, and with
different visualizations.

6.1 Coverage and the Frequency of Being Subject in a
Bug Ticket

Visualization. The comparison of two treemaps can be used to
check the interrelations of different metric values of certain areas in
the source code of a system. For this purpose, the rectangles in both
treemaps can be colored with different degrees of opacity according
to the measured value. Is the same area in both treemaps noticeable—
for example very dark in one and light in the other treemap, this
argues for a relation.

This can be used for various investigations. [Inp.] Frequently, the
change rate of files or sources belonging to a particular module is
of interest. [Purp.] When focusing on changes that are made as part
of issues which are classified as bug tickets, this count represents a
measure of defect density. If the defect density is particularly high
somewhere, a lot of expenditure will probably flow into this area,
and it is worth taking countermeasures. But against what? It might
be that many faults slip through simply because the coverage is low,

trix show the test result of a row’s test that covers the corresponding
requirement in the column. The illustration reveals that requirement
DP-540 is not checked by any test and that the test for DP-548 is
skipped on one test environment and fails on the other.

4 TEST CASE SELECTION AND PRIORITIZATION

The selection of test cases and their prioritization are means to still
test efficiently, despite ever growing and complex systems. For
extensive applications, the test suites are often huge. Countless tests
verify that the system behaves as expected. The tests are executed
automated or by hand, some can run in parallel and some involve
hardware that is of limited availability. No matter how the tests
are carried out, in more and more projects the problem arises that
the tests take too long to provide feedback in a meaningful time.
Fast feedback is especially important for developers that have to fix
their code. Since the mental model for a code region fades with
the passing time, fast feedback makes fixing a recently introduced
bug easier for the developer (no anew familiarization). [Purp.] The
points above justify the increasing number of different algorithms
that have been proposed in the literature to select (test case selection,
TCS) the most useful tests from a large test suite [9]. [Benef.] With
TCS, tests that are unlikely to find any failures are not executed,
thus time is saved. In addition, a set selected this way can be
placed in a specific execution order (test case prioritization, TCP)
in order to optimize against a target; for example, to cover many
different areas of the codebase as quickly as possible. In research,
also regarding prioritization, a number of different strategies have
been proposed [10]. A combined approach of TCS and TCP is
implemented in Teamscale and named test impact analysis (TIA).

4.1 Which Test Would Cover My Test Gap

Visualization. The Issue Test Gap treemap was introduced in Sec-
tion 2.2.2 and Figure 3. [Inp.] If coverage from past test runs is
available per test case, [Benef.] it is possible to »predict« before a
subsequent test execution which test is likely to execute all or some
of the changed methods. With the extension »Which Test Would
Cover My Test Gap?«, in a treemap, methods that have not been
tested so far but could be executed by running a »known« test are
colored in mint green (Fig. 6). Hovering over such a method reveals
the names of test cases that covered this method in past runs. If the
system under test is solely checked automatically, this form of repre-
sentation might bring little added value. However, if tests are either
also or exclusively carried out manually and if there is uncertainty as
to which test will close the Test Gap that is still open, this analysis
and visualization can be of great advantage.

Even though ten years ago the importance of finding an expedient
way to select manual test cases has been highlighted [7], no solution
has emerged as a standard so far and nowadays the question regard-
ing a general approach is still open [3]. We are confident that the
presented approach can reveal test cases that would have not been
respected without the appropriate tool support.

4.2 Showing the Benefits of Test Impact Analysis

TIA, as a combination of TCS and TCP, in general does not require a
graphical representation. It works integrated in the build system and
calculates [Benef.] a sorted test list to be executed by the automated
test runner [Inp.] based on code changes, coverage from previous
test runs and a prioritization strategy. [Purp.] Conversely, a visualiza-
tion exists that highlights how propagation of coverage in a system
evolves during the test execution. In case the test execution does not
follow any particular strategy, the spread of coverage over different
system areas is in most cases inefficient. The visualization to demon-
strate this problem is constructed by using animated treemaps and
has been used in both scientific and product presentations (example
video: https://cqse.eu/vid/no-tia-testrun).

Figure 6: If coverage is available per test case, one can view which
methods could additionally be covered by executing one of the im-
pacted tests. The four rectangles on the left side follow the known color
code in Test Gap treemaps. Without enabling the option »Overlay
test coverage of existing tests« the right rectangle would be displayed
as a Test Gap (colored in yellow). In the screenshot the option is
enabled and since Teamscale »knows« two tests that have executed
the corresponding method in a past run, the method is colored in mint
green indicating that the Test Gap could–likely–be closed by running
one of the tests shown in the tooltip. Especially but not exclusively,
this can improve a manual software testing process and gives testers
valuable information.

Visualization. Starting with a treemap that shows the changes
that should be tested (Fig. 7 at the top), the coverage of a single test
case per frame is added. It becomes clear that many of the tests do
not run using the changed methods and that these tests can barely
reveal any faults there. In Figure 7 only the test cases with a blue
border line cover changes.

For the presented approach and visualization here, we refer to
its publication in [6]. Amongst others, this paper reports on the
evaluation of TIA on 12 open-source systems and describes the
approach to be able to use, on average, only 2% of the execution
time of the total test suite to reach the first failing test in a build.
They use time to first failure as metric since they aim for as short
feedback times to developers as possible. With a first test failure in
the build, it is clear that a developer has to work on their code again.

4.3 Pareto Testing
Pareto Testing takes its name from the Pareto principle. The ulterior
motive here is that the 80/20 rule also applies to testing—that is,
[Purp.] by using a fixed fraction of the total execution time of the
test suite, a large part of the overall possible coverage is gained. In
contrast to TIA, favorable tests are not always selected on the basis of
current changes, but rather [Benef.] a longer-valid test execution list
is calculated once [Inp.] based on the coverage of past test executions.
Pareto Testing is therefore primarily carried out when updating the
test list is not feasible for each test run (e.g., because of technical
reasons).

Visualization. The Pareto Testing chart (Fig. 8) shows how much
coverage can be achieved using a specified time budget, in relation
to the execution of the entire test suite. The slider is used to set how
much testing time is available. As a result [Targ.] a test manager can
see which tests should be run and which relative method coverage
of the system can be reached.

Industrial Experience. An experience report has been published
in the article [11]. Before Pareto Testing was introduced, the nightly
execution of integration tests took approximately 12 hours. With
Pareto Testing, this problem was tackled and a reduced and sorted
test list was generated. With a runtime of approximately one hour,
this covers 99.2% of all methods the entire suite would cover. Instead



- 5 -

Figure 7: This collage briefly visualizes the concept of the test se-
lection mechanism in Teamscale’s test impact analysis. Given the
set of changed methods (upper treemap), it is checked which of the
previously ran tests (the other 11 treemaps) executed some of the
changed methods. Only tests that covered the changed methods in
the past (blue border) are selected to be run.

Figure 8: This graph visualizes the application of Pareto Testing: How
much method coverage compared to the whole test suite can be
achieved with a limited testing time budget. According to the available
time (can be set using the slider) and coverage from previous test
runs, an optimized test execution list is generated. As far as possible,
this approach maximizes a broad coverage over different code areas
of the software system.

of having to wait until the following day, developers now receive
feedback on their work much faster. In addition, the entire test suite
is run overnight to ensure that no test failures go unnoticed.

5 FIND CODE THAT CAUSED A TEST FAILURE

When a test case fails, it is beneficial if one can identify methods
covered by the test that have been modified since the last successful
run. This is because the reason of the failure is likely within the
recent changes and thus [Benef.] the starting point of where to im-
prove the code and fix the test. [Inp.] Prerequisite is the recording
of coverage per test case, which can be combined with the change
information since the last test pass. [Purp.] When test suites take a
long time to execute, they often run over the weekend. After the test
suite has finished, (say Monday) someone will see that a number
of test cases failed. However, since the test suite did not run over a
specific changeset, but over all changes from the previous week, it
is difficult to find out which change actually caused the test failure.

Visualization. Figure 9 shows the result presentation of this
analysis in Teamscale. The treemap shows methods that have either

Figure 9: In Teamscale’s »Test Details View«, a treemap shows the
methods that have been changed (light blue) or added (blue) since
the last successful test run. It can be used to identify the reason
of a test failure as the cause is likely within the recent changes.
In case of lacking this information a manual inspection has to be
performed which is laborious especially when the test suite is large
and dependencies between tests and code changes are not clear.

been changed (light blue) or added (blue) since the last successful run
of the test case. This chart is embedded into a view that summarizes
data related to a single test case, such as a test execution history
(results of the recent test runs), coverage of the test run and (if the
testing framework is supported) the source code of the test.

6 CHARTS REVEALING INTERRELATIONS

[Purp.] »What are the implications of certain areas of the codebase
being less tested than others? Can one spot differences?« These
questions do not only arise when it comes to auditing systems, root-
cause analyses or to convincing people of certain analyses. In day-
to-day development, too, it is important to keep certain connections
in mind. [Targ.] Researchers can profit from interrelations analyses
just like managers and any other project stakeholder.

Two analyses and their forms of representation are given in the
following. With their key takeaways they have a strong educational
effect. [Inp.] Both times, test coverage is compared to other metrics
of the system. First, the frequency with which a code area needs
to be touched in a bug ticket, and second, the overall frequency of
changes—at different code- and coverage granularities, and with
different visualizations.

6.1 Coverage and the Frequency of Being Subject in a
Bug Ticket

Visualization. The comparison of two treemaps can be used to
check the interrelations of different metric values of certain areas in
the source code of a system. For this purpose, the rectangles in both
treemaps can be colored with different degrees of opacity according
to the measured value. Is the same area in both treemaps noticeable—
for example very dark in one and light in the other treemap, this
argues for a relation.

This can be used for various investigations. [Inp.] Frequently, the
change rate of files or sources belonging to a particular module is
of interest. [Purp.] When focusing on changes that are made as part
of issues which are classified as bug tickets, this count represents a
measure of defect density. If the defect density is particularly high
somewhere, a lot of expenditure will probably flow into this area,
and it is worth taking countermeasures. But against what? It might
be that many faults slip through simply because the coverage is low,

trix show the test result of a row’s test that covers the corresponding
requirement in the column. The illustration reveals that requirement
DP-540 is not checked by any test and that the test for DP-548 is
skipped on one test environment and fails on the other.

4 TEST CASE SELECTION AND PRIORITIZATION

The selection of test cases and their prioritization are means to still
test efficiently, despite ever growing and complex systems. For
extensive applications, the test suites are often huge. Countless tests
verify that the system behaves as expected. The tests are executed
automated or by hand, some can run in parallel and some involve
hardware that is of limited availability. No matter how the tests
are carried out, in more and more projects the problem arises that
the tests take too long to provide feedback in a meaningful time.
Fast feedback is especially important for developers that have to fix
their code. Since the mental model for a code region fades with
the passing time, fast feedback makes fixing a recently introduced
bug easier for the developer (no anew familiarization). [Purp.] The
points above justify the increasing number of different algorithms
that have been proposed in the literature to select (test case selection,
TCS) the most useful tests from a large test suite [9]. [Benef.] With
TCS, tests that are unlikely to find any failures are not executed,
thus time is saved. In addition, a set selected this way can be
placed in a specific execution order (test case prioritization, TCP)
in order to optimize against a target; for example, to cover many
different areas of the codebase as quickly as possible. In research,
also regarding prioritization, a number of different strategies have
been proposed [10]. A combined approach of TCS and TCP is
implemented in Teamscale and named test impact analysis (TIA).

4.1 Which Test Would Cover My Test Gap

Visualization. The Issue Test Gap treemap was introduced in Sec-
tion 2.2.2 and Figure 3. [Inp.] If coverage from past test runs is
available per test case, [Benef.] it is possible to »predict« before a
subsequent test execution which test is likely to execute all or some
of the changed methods. With the extension »Which Test Would
Cover My Test Gap?«, in a treemap, methods that have not been
tested so far but could be executed by running a »known« test are
colored in mint green (Fig. 6). Hovering over such a method reveals
the names of test cases that covered this method in past runs. If the
system under test is solely checked automatically, this form of repre-
sentation might bring little added value. However, if tests are either
also or exclusively carried out manually and if there is uncertainty as
to which test will close the Test Gap that is still open, this analysis
and visualization can be of great advantage.

Even though ten years ago the importance of finding an expedient
way to select manual test cases has been highlighted [7], no solution
has emerged as a standard so far and nowadays the question regard-
ing a general approach is still open [3]. We are confident that the
presented approach can reveal test cases that would have not been
respected without the appropriate tool support.

4.2 Showing the Benefits of Test Impact Analysis

TIA, as a combination of TCS and TCP, in general does not require a
graphical representation. It works integrated in the build system and
calculates [Benef.] a sorted test list to be executed by the automated
test runner [Inp.] based on code changes, coverage from previous
test runs and a prioritization strategy. [Purp.] Conversely, a visualiza-
tion exists that highlights how propagation of coverage in a system
evolves during the test execution. In case the test execution does not
follow any particular strategy, the spread of coverage over different
system areas is in most cases inefficient. The visualization to demon-
strate this problem is constructed by using animated treemaps and
has been used in both scientific and product presentations (example
video: https://cqse.eu/vid/no-tia-testrun).

Figure 6: If coverage is available per test case, one can view which
methods could additionally be covered by executing one of the im-
pacted tests. The four rectangles on the left side follow the known color
code in Test Gap treemaps. Without enabling the option »Overlay
test coverage of existing tests« the right rectangle would be displayed
as a Test Gap (colored in yellow). In the screenshot the option is
enabled and since Teamscale »knows« two tests that have executed
the corresponding method in a past run, the method is colored in mint
green indicating that the Test Gap could–likely–be closed by running
one of the tests shown in the tooltip. Especially but not exclusively,
this can improve a manual software testing process and gives testers
valuable information.

Visualization. Starting with a treemap that shows the changes
that should be tested (Fig. 7 at the top), the coverage of a single test
case per frame is added. It becomes clear that many of the tests do
not run using the changed methods and that these tests can barely
reveal any faults there. In Figure 7 only the test cases with a blue
border line cover changes.

For the presented approach and visualization here, we refer to
its publication in [6]. Amongst others, this paper reports on the
evaluation of TIA on 12 open-source systems and describes the
approach to be able to use, on average, only 2% of the execution
time of the total test suite to reach the first failing test in a build.
They use time to first failure as metric since they aim for as short
feedback times to developers as possible. With a first test failure in
the build, it is clear that a developer has to work on their code again.

4.3 Pareto Testing
Pareto Testing takes its name from the Pareto principle. The ulterior
motive here is that the 80/20 rule also applies to testing—that is,
[Purp.] by using a fixed fraction of the total execution time of the
test suite, a large part of the overall possible coverage is gained. In
contrast to TIA, favorable tests are not always selected on the basis of
current changes, but rather [Benef.] a longer-valid test execution list
is calculated once [Inp.] based on the coverage of past test executions.
Pareto Testing is therefore primarily carried out when updating the
test list is not feasible for each test run (e.g., because of technical
reasons).

Visualization. The Pareto Testing chart (Fig. 8) shows how much
coverage can be achieved using a specified time budget, in relation
to the execution of the entire test suite. The slider is used to set how
much testing time is available. As a result [Targ.] a test manager can
see which tests should be run and which relative method coverage
of the system can be reached.

Industrial Experience. An experience report has been published
in the article [11]. Before Pareto Testing was introduced, the nightly
execution of integration tests took approximately 12 hours. With
Pareto Testing, this problem was tackled and a reduced and sorted
test list was generated. With a runtime of approximately one hour,
this covers 99.2% of all methods the entire suite would cover. Instead



- 6 -

REFERENCES

[1] S. Amann and E. Jürgens. Change-Driven Testing. In S. Goericke,
editor, The Future of Software Quality Assurance, chapter 1. Springer
Nature, 2019.

[2] S. Eder, B. Hauptmann, M. Junker, E. Jürgens, R. Vaas, and K.-H.
Prommer. Did We Test Our Changes? Assessing Alignment between
Tests and Development in Practice. In Proceedings of the 8th Interna-
tional Workshop on Automation of Software Test (AST), 2013.

[3] R. Haas, D. Elsner, E. Jürgens, A. Pretschner, and S. Apel. How
Can Manual Testing Processes Be Optimized? Developer Survey,
Optimization Guidelines, and Case Studies. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages
1281–1291, 2021.

[4] R. Haas, R. Niedermayr, and E. Jürgens. Teamscale: Tackle Technical
Debt and Control the Quality of Your Software. In Proceedings of the
2nd International Conference on Technical Debt (TechDebt’19). IEEE,
2019.

[5] T. Hynninen, J. Kasurinen, A. Knutas, and O. Taipale. Software testing:
Survey of the industry practices. In 2018 41st International Conven-
tion on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), pages 1449–1454. IEEE, 2018.

[6] E. Jürgens, D. Pagano, and A. Göb. Test Impact Analysis: Detecting
Errors Early Despite Large, Long-Running Test Suites. Whitepaper,
CQSE GmbH, 2018.

[7] E. Jürgens, B. Hummel, F. Deissenboeck, M. Feilkas, C. Schlögel, and
A. Wübbeke. Regression Test Selection of Manual System Tests in
Practice. In 2011 15th European Conference on Software Maintenance
and Reengineering, pages 309–312. IEEE, 2011.

[8] E. Jürgens, U. Proft, and J. Rott. Benefits of TGA at Mu-
nich Re. In CQSE Spotlight #2/2020, page 5. CQSE GmbH, 2020.
https://cqse.eu/en/spotlight-2020-2.

[9] R. Kazmi, D. N. Jawawi, R. Mohamad, and I. Ghani. Effective re-
gression test case selection: A systematic literature review. ACM
Computing Surveys (CSUR), 50(2):1–32, 2017.

[10] M. Khatibsyarbini, M. A. Isa, D. N. Jawawi, and R. Tumeng. Test case
prioritization approaches in regression testing: A systematic literature
review. Information and Software Technology, 93:74–93, 2018.

[11] R. Nömmer and J. Rott. Pareto Testing at BVK. In CQSE Spotlight
#2/2021, page 9. CQSE GmbH, 2021. https://cqse.eu/en/spotlight-
2021-2.

[12] D. Pagano, M. Feilkas, J. Rott, and D. Transiskus-Riering. Agile
Requirements Tracing. In CQSE Spotlight #1/2021, pages 6–7. CQSE
GmbH, 2021. https://cqse.eu/en/spotlight-2021-1.

[13] J. Rott, R. Niedermayr, E. Jürgens, and D. Pagano. Ticket Coverage:
Putting Test Coverage into Context. In Proceedings of the 8th Workshop
on Emerging Trends in Software Metrics (WETSoM’17), 2017.

Figure 10: In these two treemaps, rectangles represent source code
files. The shade of color in the upper treemap is darker, the higher
the test coverage of the respective file is. The lower treemap shows
for the same system how often certain files were changed in the
context of bug tickets; the darker the blue is, the higher the number
of changes. The center area of the treemaps is striking and reveals
clearly an interrelation: The area of the system that shows the lowest
code coverage needed the most bugfixes.

that is, more and better tests are needed. Just another possible reason
is poor code quality which can be further investigated and controlled
using static code analyses. [Benef.] If one has identified a reason for
the high defect density, a decision can be made for further work on
it. In the case of a bad code structure, for example, refactorings can
help to make the code more maintainable.

Industrial experience. In the treemaps shown in Figure 10, the
center area of the treemaps is striking. The upper diagram shows
line coverage in percent. The layout of the diagram below is in
conformity with the upper one, i.e., same files are drawn in the same
location. There, however, the coloring shows the frequency of how
often a file had to be changed as part of a bug ticket. The darker
area below lines up with the almost white area above—it was the
UI code of the analyzed system. A survey among the development
team revealed that testing the UI was often avoided because of a bad
testability at that time; UI tests were difficult to write. Only with the
help of these two treemaps which made the problem very apparent,
it was addressed. The decision was taken to refactor the UI code to
make it more testable.

6.2 Coverage and Measures from Static Analyses
[Purp.] Context-dependent, a comparison of a system’s metric values
in a scatter plot can be more forthright. [Benef.] An interactive map
that puts measures of the system in relation can help, especially
when it comes to uncovering outlier classes or files in a system.

Visualization. We stay with the example from the last section,
[Inp.] coverage and change frequency. In the scatter plot in Figure 11,
each file is represented as a circle. The larger the circle, the longer
(SLOC) the corresponding file. Line coverage is plotted on the y-
axis, the frequency of change on the x-axis. The color of the circles
also displays the line coverage of the files separated by thresholds—
files with high coverage in green, medium coverage in yellow and
low coverage in red. In general, the color semantics, as well as the
metrics that are plotted on the two axes, can be freely configured.
The color could, for example, also indicate how many different
committers have changed a file or how high the finding density from
static code analyses is.

7 CONCLUSION AND FUTURE WORK

We presented various analyses and their visualizations. Each one of
them allows the existing test processes in software development to
be scrutinized and improved. In practice, we see the need for this,
because systems are becoming more and more extensive nowadays
and it is not always possible to achieve improvements in testing

Figure 11: A scatter plot can set multiple measures of a system
in relation. Beside the location (x- and y-coordinates) of a circle
depicting an entity also the size and the color of the circle can encode
information. In this case, line coverage within a certain file is set in
relation to how often the file is changed, additionally the circle size
depicts the file size (SLOC). The plot allows to detect files that are
often changed and have at the same time a low line coverage. Due to
its interactivity in the UI, a drill down to striking files is easily possible.

simply through more tests, more parallelization or more hardware,
but the actual causes of the problems must be combated. From
industry cooperation, we know that projects which use one or more
of these analyses report positive on the benefits. The advantage
seems to be especially high if (1) teams receive support from an
experienced quality engineer and (2) establish a continuous process
to regularly check on their code and test quality.

For the future, we would like the use of the analyses to be embed-
ded simpler in the development process, so that even more develop-
ers, testers, etc. can benefit from them, and ultimately the software
quality of systems they work with can be pushed to a higher level.
In practice, we have found that, today, many persons in charge are
unfamiliar with analyses such as we presented in this paper, yet.
Therefore, artifacts from software development and testing are not
adequately used to achieve improvements in future engineering.

From a scientific point of view, further studies are desirable in
addition to the existing ones in order to further prove the effects of
using the analyses in diverse development environments. In addition
the capabilities of other tools should be examined and how they
compare to the here presented ones implemented in Teamscale.

It should be explicitly emphasized that the advantages are not
limited to a few sub-sectors of the economy for which software is
being developed, but that effects can be found equally in, for exam-
ple, the development of hospital software, mobile app development
and embedded software development.

ACKNOWLEDGMENTS

This work was partially funded by the German Federal Ministry of
Education and Research (BMBF), grant “Q-Soft, 01IS22001A”. The
responsibility for this article lies with the authors.

Many thanks to CQSE GmbH that provided many of the graphics
used in the paper, and to the colleagues who were involved in im-
plementing and generating them based on different audited software
systems. This includes but is not limited to: Florian Deißenböck,
Florian Dreier, Martin Feilkas, Benjamin Hummel, Elmar Jürgens,
Raphael Nömmer, Dennis Pagano and Fabian Streitel.

We also thank Roman Haas for his valuable review and Andreas
Göb for the impulse to write this paper.



- 7 -

REFERENCES

[1] S. Amann and E. Jürgens. Change-Driven Testing. In S. Goericke,
editor, The Future of Software Quality Assurance, chapter 1. Springer
Nature, 2019.

[2] S. Eder, B. Hauptmann, M. Junker, E. Jürgens, R. Vaas, and K.-H.
Prommer. Did We Test Our Changes? Assessing Alignment between
Tests and Development in Practice. In Proceedings of the 8th Interna-
tional Workshop on Automation of Software Test (AST), 2013.

[3] R. Haas, D. Elsner, E. Jürgens, A. Pretschner, and S. Apel. How
Can Manual Testing Processes Be Optimized? Developer Survey,
Optimization Guidelines, and Case Studies. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages
1281–1291, 2021.

[4] R. Haas, R. Niedermayr, and E. Jürgens. Teamscale: Tackle Technical
Debt and Control the Quality of Your Software. In Proceedings of the
2nd International Conference on Technical Debt (TechDebt’19). IEEE,
2019.

[5] T. Hynninen, J. Kasurinen, A. Knutas, and O. Taipale. Software testing:
Survey of the industry practices. In 2018 41st International Conven-
tion on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), pages 1449–1454. IEEE, 2018.

[6] E. Jürgens, D. Pagano, and A. Göb. Test Impact Analysis: Detecting
Errors Early Despite Large, Long-Running Test Suites. Whitepaper,
CQSE GmbH, 2018.

[7] E. Jürgens, B. Hummel, F. Deissenboeck, M. Feilkas, C. Schlögel, and
A. Wübbeke. Regression Test Selection of Manual System Tests in
Practice. In 2011 15th European Conference on Software Maintenance
and Reengineering, pages 309–312. IEEE, 2011.

[8] E. Jürgens, U. Proft, and J. Rott. Benefits of TGA at Mu-
nich Re. In CQSE Spotlight #2/2020, page 5. CQSE GmbH, 2020.
https://cqse.eu/en/spotlight-2020-2.

[9] R. Kazmi, D. N. Jawawi, R. Mohamad, and I. Ghani. Effective re-
gression test case selection: A systematic literature review. ACM
Computing Surveys (CSUR), 50(2):1–32, 2017.

[10] M. Khatibsyarbini, M. A. Isa, D. N. Jawawi, and R. Tumeng. Test case
prioritization approaches in regression testing: A systematic literature
review. Information and Software Technology, 93:74–93, 2018.

[11] R. Nömmer and J. Rott. Pareto Testing at BVK. In CQSE Spotlight
#2/2021, page 9. CQSE GmbH, 2021. https://cqse.eu/en/spotlight-
2021-2.

[12] D. Pagano, M. Feilkas, J. Rott, and D. Transiskus-Riering. Agile
Requirements Tracing. In CQSE Spotlight #1/2021, pages 6–7. CQSE
GmbH, 2021. https://cqse.eu/en/spotlight-2021-1.

[13] J. Rott, R. Niedermayr, E. Jürgens, and D. Pagano. Ticket Coverage:
Putting Test Coverage into Context. In Proceedings of the 8th Workshop
on Emerging Trends in Software Metrics (WETSoM’17), 2017.

Figure 10: In these two treemaps, rectangles represent source code
files. The shade of color in the upper treemap is darker, the higher
the test coverage of the respective file is. The lower treemap shows
for the same system how often certain files were changed in the
context of bug tickets; the darker the blue is, the higher the number
of changes. The center area of the treemaps is striking and reveals
clearly an interrelation: The area of the system that shows the lowest
code coverage needed the most bugfixes.

that is, more and better tests are needed. Just another possible reason
is poor code quality which can be further investigated and controlled
using static code analyses. [Benef.] If one has identified a reason for
the high defect density, a decision can be made for further work on
it. In the case of a bad code structure, for example, refactorings can
help to make the code more maintainable.

Industrial experience. In the treemaps shown in Figure 10, the
center area of the treemaps is striking. The upper diagram shows
line coverage in percent. The layout of the diagram below is in
conformity with the upper one, i.e., same files are drawn in the same
location. There, however, the coloring shows the frequency of how
often a file had to be changed as part of a bug ticket. The darker
area below lines up with the almost white area above—it was the
UI code of the analyzed system. A survey among the development
team revealed that testing the UI was often avoided because of a bad
testability at that time; UI tests were difficult to write. Only with the
help of these two treemaps which made the problem very apparent,
it was addressed. The decision was taken to refactor the UI code to
make it more testable.

6.2 Coverage and Measures from Static Analyses
[Purp.] Context-dependent, a comparison of a system’s metric values
in a scatter plot can be more forthright. [Benef.] An interactive map
that puts measures of the system in relation can help, especially
when it comes to uncovering outlier classes or files in a system.

Visualization. We stay with the example from the last section,
[Inp.] coverage and change frequency. In the scatter plot in Figure 11,
each file is represented as a circle. The larger the circle, the longer
(SLOC) the corresponding file. Line coverage is plotted on the y-
axis, the frequency of change on the x-axis. The color of the circles
also displays the line coverage of the files separated by thresholds—
files with high coverage in green, medium coverage in yellow and
low coverage in red. In general, the color semantics, as well as the
metrics that are plotted on the two axes, can be freely configured.
The color could, for example, also indicate how many different
committers have changed a file or how high the finding density from
static code analyses is.

7 CONCLUSION AND FUTURE WORK

We presented various analyses and their visualizations. Each one of
them allows the existing test processes in software development to
be scrutinized and improved. In practice, we see the need for this,
because systems are becoming more and more extensive nowadays
and it is not always possible to achieve improvements in testing

Figure 11: A scatter plot can set multiple measures of a system
in relation. Beside the location (x- and y-coordinates) of a circle
depicting an entity also the size and the color of the circle can encode
information. In this case, line coverage within a certain file is set in
relation to how often the file is changed, additionally the circle size
depicts the file size (SLOC). The plot allows to detect files that are
often changed and have at the same time a low line coverage. Due to
its interactivity in the UI, a drill down to striking files is easily possible.

simply through more tests, more parallelization or more hardware,
but the actual causes of the problems must be combated. From
industry cooperation, we know that projects which use one or more
of these analyses report positive on the benefits. The advantage
seems to be especially high if (1) teams receive support from an
experienced quality engineer and (2) establish a continuous process
to regularly check on their code and test quality.

For the future, we would like the use of the analyses to be embed-
ded simpler in the development process, so that even more develop-
ers, testers, etc. can benefit from them, and ultimately the software
quality of systems they work with can be pushed to a higher level.
In practice, we have found that, today, many persons in charge are
unfamiliar with analyses such as we presented in this paper, yet.
Therefore, artifacts from software development and testing are not
adequately used to achieve improvements in future engineering.

From a scientific point of view, further studies are desirable in
addition to the existing ones in order to further prove the effects of
using the analyses in diverse development environments. In addition
the capabilities of other tools should be examined and how they
compare to the here presented ones implemented in Teamscale.

It should be explicitly emphasized that the advantages are not
limited to a few sub-sectors of the economy for which software is
being developed, but that effects can be found equally in, for exam-
ple, the development of hospital software, mobile app development
and embedded software development.

ACKNOWLEDGMENTS

This work was partially funded by the German Federal Ministry of
Education and Research (BMBF), grant “Q-Soft, 01IS22001A”. The
responsibility for this article lies with the authors.

Many thanks to CQSE GmbH that provided many of the graphics
used in the paper, and to the colleagues who were involved in im-
plementing and generating them based on different audited software
systems. This includes but is not limited to: Florian Deißenböck,
Florian Dreier, Martin Feilkas, Benjamin Hummel, Elmar Jürgens,
Raphael Nömmer, Dennis Pagano and Fabian Streitel.

We also thank Roman Haas for his valuable review and Andreas
Göb for the impulse to write this paper.



- 8 -

Centa-Hafenbrädl-Straße 59
81249 Munich

info@cqse.eu
+49 89 9982717 51

mailto:info@cqse.eu

