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Summary. As a software project evolves over time, the associated test
suite usually grows with it. If test suites are not carefully maintained, this
can easily result in massive test execution duration, reducing the benefits
of regression testing because faults are found later in development or even
after release. Test suite minimization aims to combat long running test
suites by removing redundant test cases. Previous work mainly evaluates
test suite minimization techniques based on comparably small projects,
which are less practically relevant. In this paper, we compare four test
suite minimization techniques by applying them to several open source
software projects and evaluate the results. We find that the size and
execution time of all the test suites can be reduced by over 70% on
average. However, there is a substantial loss in fault detection capability
of, on average, around 12.5%, restricting the applicability of this form of
test suite minimization.

1 Introduction

The size of test suites tends to grow over time, which leads to an increasing
amount of time used for each test run [5]. Test suites of large projects may run
for days or even weeks. This is problematic for continuous integration where
tests are ideally executed after every commit to give feedback to the developers
as early as possible. The delay of feedback makes it harder to fix failures found
by the tests because the changes might have been made several days ago, requir-
ing the developer to refamiliarize himself with the changed code. Besides, more
changes might have been made to the same code since the tests have started run-
ning. Additionally, there is a lot more changed code at once, making it harder
to identify the fault that is the root cause of test failures. In the literature,
three research areas, coping with long running test suites, can be found. The
first approach is Test case selection where test cases to be executed are chosen
depending on the changes made since the last test run. Because unit tests cover
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specific areas of a system and, in general, changes over a limited time span are
limited to parts of a system, it is usually not necessary to execute all test cases
every time. The main difficulty of this approach is to identify, which test case
runs through which code after changes have been made. To get this information
precisely, the whole test suite would need to run again, rendering the test se-
lection approach useless. Usually, heuristics, based on test coverage data from
earlier test runs, are used to resolve this issue. The second option is test case
prioritization. In contrast to the other approaches, it does not aim for run time
reduction of test suites but instead for a faster fault detection. With this method,
test cases are executed in order of their relevance for the changes made. This
can be accomplished by executing fast test cases that cover changes first. So,
with this approach, the whole test suite is still executed, but the tests that are
executed first have the highest likelihood of finding faults. This allows for the
developers to get quick feedback without any loss in the overall fault detection.
The last approach, and the one we are using in this paper, is test suite min-
imization. Test suite minimization attempts to find redundant tests that have
little to no impact on fault detection capabilities of a test suite and remove them
permanently. There are several common ways of determining whether a test is
redundant, that is, has a low likelihood of detecting faults which are not found
by the remaining tests. For determining the redundancy of a test, one or multiple
criteria can be used, for example, statement coverage, execution cost, mutation
coverage, mc/dc coverage etc. The tests that satisfy the chosen criteria are then
selected and the rest is removed, ideally leading to a permanent reduction in the
runtime of a test suite.

Problem Statement. In many software projects, regression testing takes up
large amounts of time which can slow down development. Test suite minimization
can be used to reduce the time each test run takes by removing redundant test
cases. However, test suite minimization is rarely used in practice. We identified
two core reasons for this, the first of which is that it is not an easy task to perform,
especially with complex builds. The second reason is that removing test cases
always carries the risk of reducing the effectiveness of the test suite. Due to the
nature of test suite minimization, tests are usually removed permanently, which
is a risk that has to be taken compared to test case selection or prioritization.

Contribution. In this paper, we evaluate different algorithms for test suite
minimization with seven open source projects and make the following contribu-
tions:

– Random Mutation Testing for Evaluation
A lot of the papers on test suite reduction utilize manually introduced faults
in their underlying research for the evaluation of the loss in fault detection
capability. By using mutation testing instead, we can generate a higher number
of faults, equally spread over the whole project, which allows us to assess fault
detection capability at a larger scale.

– Real Open Source Projects
For the evaluation of test suite minimization, small test projects that were
published for research purpose only, are used [7,16]. We chose to use actively
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maintained open source projects which are developed by a variety of organi-
zations to investigate the applicability of test suite minimization techniques
in practice.

– Time Measurements of Minimized Test Suites
Test suite minimization approaches are often evaluated, based on the number
of tests that could be removed from the original test suite. Although, this is a
relevant statistic which we report as well, the biggest benefit of test suite min-
imization in practice is to save execution time. Since execution times for tests
can vary a lot in practice, the time savings need to be considered separately
from the number of tests. To find out whether the practical benefits of test
suite reduction are proportional to the number of removed tests, we analyze
execution times of test suite before and after minimization is applied.

2 Fundamentals

In the following, we describe two basic concepts in the field software testing that
we need for our study. The first is a formal description of test suite minimization,
a technique that aims to reduce the runtime of test suites by removing redundant
tests, the second concept is mutation testing which can be used evaluating the
fault detection capability of a test suite.

2.1 Test Suite Minimization

In their 2002 paper on test suite reduction, Rothermel et al. define the minimiza-
tion problem as follows: Given a test suite T that contains test cases t1, t2 . . . tn
and requirements r1, r2 . . . rn which can be satisfied by the test cases in T , find a
minimal subset of T that satisfies the same requirements as T itself [13]. When
all ri need to be satisfied, the technique is called adequate. An inadequate ap-
proach means that some of the requirements may be left unsatisfied. The ri can
be different functional or structural requirements, for example line coverage or
mutation coverage.

Selecting a minimal set of tests that satisfies the requirements means finding
a minimal hitting subset of T over the ri, which is an NP-complete problem.
Due to this difficulty, heuristics are a compelling option. There are many dif-
ferent heuristics that have been used and analyzed for the purpose of test suite
minimization [19] some of which we investigate in Section 3.

2.2 Mutation Testing

Mutation testing is a method of assessing a test suite where mutations, a set
of simple changes, supposed to represent typical faults, are introduced into a
system. The test suite is then rated based on how many of the introduced faults
are detected [9]. These faults are called mutants, and finding one of them is
called ’killing a mutant’. The score of a test suite is calculated as follows:
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MutationScore =
numberOfFoundMutants

numberOfIntroducedMutants

It has been shown that mutants are similar enough to real faults to allow the
mutation score to give a good indication of the real-world fault detection capa-
bility of a test suite [1]. There are, however, some inherent flaws of mutation
testing. It is, for example, possible for mutants to cancel each other out which
leads to undetectable mutants. Mutations can also cause infinite loops which
makes it hard to tell whether a test takes a long time or is stuck in an infinite
loop.

3 Related Work

The test suite minimization algorithms most commonly found in research are
variations of the greedy algorithm [3,10] which has been shown to be an effective
heuristic for the minimal hitting set problem [11]. Two well-known extensions of
the greedy algorithm are the GE (Greedy Essential) and GRE (Greedy Redun-
dant Essential) algorithms. Chen and Lau compared these two greedy variants
to another heuristic called HGS (Harrold-Gupta-Soffa) [3, 6]. Their results sug-
gested that, though there are differences, neither technique is better than the
others in all cases. Tallam and Gupta invented another version of the greedy
heuristic, the delayed greedy algorithm [15]. It avoids selecting test cases that
may later be rendered redundant by other selected test cases. This can happen
when large tests are selected early on but then the subsequently selected tests,
together, cover the same requirements. To avoid it, they removed the test cases,
whose coverage is either a subset of another test or is completely covered by
multiple other tests. After the tests are removed, the normal greedy heuristic is
applied.

Offut et al. used mutation testing but instead of evaluating the quality of
the minimized test suite on the basis of the resulting mutation score [10], they
used the score as a criterion for minimization, that is, the mutants are the re-
quirements that need to be satisfied by the algorithm. They compared statement
coverage to mutation score as testing requirements for minimization. Their mu-
tation score was based on manually created mutants. In our study, we used
automated mutation testing which allows for about two orders of magnitude
more mutants. The automation also allows us to use larger projects.

There are also approaches that use more than one objective for test suite
minimization. Selective redundancy is the approach used by Jeffrey and Gupta
[7,8] in their multi objective approach. Selective redundancy means that, if a test
is marked redundant by the first set of testing requirements, it is not removed
until it is also redundant with respect to the second set of requirements. Only if
a test is redundant for both sets of requirements, it is omitted. Gupta et al. used
branch-coverage and all-uses coverage as their criteria. Their results showed less
omitted tests but also an improvement to fault detection capability compared
to the HGS heuristic with only one requirement.
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Wei et al. also utilized mutation testing, but instead of evaluating their re-
sults with the mutation score, they used it as a goal for several different many-
objective evolutionary algorithms [16]. These algorithms can be used to optimize
many-objective problems with four or more conflicthing criterions. While this
provides a good approach for selecting tests, the resulting mutation score is not
comparable since tests are selected based on their mutation killing capability.
They also employed smaller test suites compared to our study subjects.

Regarding the fault detection loss of test suites through minimization, there
are conflicting results. While Rothermel et al. found significant losses in fault
detection effectiveness of test suites through the use of minimization [12, 13],
Zhang et al. found only small losses in fault detection when using test suite
reduction on the same projects from the Software-artifact Infrastructure Repos-
itository2 [20]. Wong et al. also found that the impact of test suite minimization
on a test suite’s ability to detect faults is negligible [17,18].

Shi et al. have taken a very similar approach to test suite reduction as we
do in this paper [14]. They used mutation testing to evaluate 18 open source
projects from GitHub. Their focus was on using the mutation score instead of line
coverage as testing requirement for minimization. They also evaluated adequate
and inadequate approaches and looked at different versions of the projects they
investigated. They found that mutant-based minimization is better with regard
to the fault detection loss while the statement-based approach delivers slightly
better minimization results.

4 Implementation

Our goal in this paper is to investigate the applicability of test suite minimization
techniques in practice. To achieve this, we implemented test suite minimization
and a way to run mutation testing, as an indicator of fault detection capability,
on the reduced test suites.

In Figure 1, we provide a structural overview of how we evaluate our chosen
test suite minimization algorithms. First, we recorded testwise coverage for the
tests of a project, using a modified version of JaCoCo3. We need this testwise
coverage to apply the coverage-based minimization algorithms we have chosen.
For our evaluation, we used two algorithms, a greedy algorithm, and the HGS
heuristic. The goal of both of these algorithms is to select a subset of tests
that covers the same as the original test suite but with different approaches.
For both of them, we used statement coverage as the testing requirements for
minimization. We used both, an adequate and an inadequate approach for each
of the two algorithms. The adequate approach selects test cases until all lines are
covered while, for the inadequate approach, new tests are selected until they no
longer contribute at least five lines of additional coverage to the chosen subset
of tests.

2 https://sir.csc.ncsu.edu/php/previewfiles.php
3 https://github.com/cqse/teamscale-jacoco-agent
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4.1 The Greedy Algorithm

The greedy algorithm selects test cases by iteratively choosing the test case with
the most additional statement coverage. First, the test with the most overall cov-
erage is selected, that is, the test case tk that satisfies the most testing require-
ments ri. The requirements rn . . . rm covered by this first test are then removed
from the coverage of all other test cases. This means that for each tj , j 6= k, the
operation {ry . . . rz} \ {rn . . . rm} where ry . . . rz are the requirements satisfied
by tj is performed. The result of the set-theoretic difference is the new set of
requirements satisfied by tj . With this, we optimize for additional coverage and
ignore what has already been covered. New tests are selected according to this
rule until no additional coverage can be achieved by selecting more tests. In case
of the inadequate approach, the heuristics stops earlier, in our case when no
more than five lines can be added by selecting an additional test case.

4.2 The HGS Algorithm

The HGS heuristic works by adding test cases based on their cardinality, starting
with the tests that have the lowest cardinality. To determine the cardinality of
test case tj take all testing requirements rn . . . rm covered by test case tj . For
rn . . . rm, check by how many test cases each ri is covered. The requirement ri
with the lowest number of test cases covering it, is the cardinality of test case
tj . For the algorithm this means, we start with the lines that are only covered
by one test case. This gives us a set of test cases. All these test cases need to be
added since they are essential, that is, they are the only tests that cover some
lines. We then proceed with requirements that are covered by two test cases and
iteratively add the test case with the highest additional coverage. We add test
cases one by one and go up in cardinality until all requirements are met.

4.3 Mutation Testing

After we have the full and minimized test suites, we use the mutation testing
tool Pitest4 on the resulting test suites to get an approximation of how well the
fault detection capability is maintained after the minimization is applied. Pitest
provides a list of mutators5, most of which are active by default. Their goal
is to emulate real faults as realistically as possible. The advantage of mutation
testing is the number of faults we can introduce and the randomness of them. By
using real-world projects instead of the fairly small projects from the Software-
artifact Infrastructure Repository, which are often used in research on test suite
reduction, we want to evaluate how well test suite minimization works in practice.

4 http://pitest.org
5 http://pitest.org/quickstart/mutators/
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Fig. 1. Approach

5 Empirical Assessment

In this section, we want to examine the performance of statement coverage based
test suite minimization. First, we describe our research questions followed by the
subjects we chose to examine to answer said questions. We then explain, how
we investigated each question and finally answer the questions according to the
results we obtained.

5.1 Research Questions

The goal of our research is to find out how much our chosen test suite mini-
mization techniques influence the fault revelation capability of test suites. Since
the mutation score of a test suite is linked to its fault detection capability the
resulting mutation score will give us an indication on how much the quality of a
test suite suffers when minimization is used. With our experiments, we answer
the following research questions.

RQ1 – How well is a test suite’s capability to kill mutants preserved
after test suite minimization is applied? Test suite minimization is only
useful if a test suite preserves its fault detection capability through the process.
We want to find out, if and how much worse a test suite gets at detecting faults,
represented by mutants, when test suite minimization is used.

RQ2 – How much does the mutant killing capability vary between
different test suite minimization techniques? We look at two different
techniques to find out whether there is a considerable difference. We chose a
simple greedy algorithm and compare it with a more complex algorithm, the
HGS heuristic, to investigate how much of a difference using a more sophisticated
algorithm, like the HGS, makes, compared to a simple greedy heuristic.

RQ3 – How does adequate test minimization perform compared
to inadequate test minimization with a lower limit of five lines per
test? Using adequate test suite minimization techniques means that even if it
covers only one additional line, a test case has to be included in the set of tests.
With an inadequate approach, we can fix a number of minimum required newly
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covered lines and only include a test if it exceeds the lower limit. We expect this
to reduce the number of tests considerably, improving the minimization result,
but with five lines as the minimum number of newly covered lines, it might also
have a substantial negative impact on the fault detection capability.

RQ4 – How big are the time savings and are they proportional to
the number of omitted tests? The goal of test suite reduction is to save test
execution time. To find out whether this goal is achieved, we analyze how much
time is actually saved in a test run after applying test suite minimization. Since
test cases can have vastly different runtime, we want to find out how much the
runtime reduction is connected to the reduced number of tests and whether this
behaves similarly in all study subjects.

5.2 Study Subjects

For our study, we examined seven systems, all of which are open source projects
hosted on GitHub6 and implemented in Java. We decided on Java because it is
the only language supported by Pitest which is one of the most comprehensive
and well maintained mutation testing tools we could find. The systems we chose
vary in size from around 1k SLOC (Source Lines of Code) to 170k SLOC. We
chose three projects from the Apache Software Foundation. They are well main-
tained, have a solid number of tests and are among our larger study subjects.
With Ebean and Spoon, we included two other fairly large projects. To cover a
wider set of different characteristics, we chose two smaller projects, JSoup, and
Faux-pas, as well. All of our subject projects use Apache Maven as their build
tool and use either JUnit version 4 or 5 for unit testing, which allows us to apply
mutation testing (using Pitest) to their tests.

Table 1 shows a detailed overview of our subject projects. The LLOC (Log-
ical Lines of Code) and coverage thereof are the numbers relevant for Pitest.
For this value, only lines that can actually be executed are counted. For exam-
ple, function headers and class declarations are not included in this metric. For
mutation testing, only these lines are relevant since they are the ones that can
potentially be mutated. For the SLOC metric, all lines that contain source code
are counted, so only empty lines and comments are excluded. The number of
mutants that are introduced is determined by Pitest according to the number of
possible mutations.

Also note that the number of tests in Table 1 are the test cases that we
executed. This number may be lower than the total number of tests in some
instances because we removed or ignored tests that caused problems. These
are, for the most part, tests that failed when running the test suite and some
parametrized tests which cannot properly undergo test suite minimization.

5.3 Study Design

In this section, we describe, how we approached answering each of our research
questions.

6 https://github.com
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Table 1. Study Subject Details.

Study Subjects SLOC SLOC Project SLOC Test LLOC Cov #Tests # Mutants

Commons Collection 62,897 28,708 34,189 46% 14,770 8,253
Commons Lang 75,408 27,825 47,583 95% 3,252 13,088
Commons Math 171,060 82,706 88,354 90% 4,825 37,674
Ebean 170,619 99,317 71,302 64% 2,598 25,056
Fauxpas 1,141 315 826 96% 81 50
JSoup 20,099 12,037 8,062 83% 666 4,711
Spoon 112,614 60,619 51,995 83% 1,608 15,887

RQ1 – How well is a test suite’s capability to kill mutants preserved
after test suite minimization is applied? To answer this question, we ran
mutation testing on the original test suite and on the test suite minimized by
the greedy algorithm for all our study subjects. We compare the mutation scores
and calculate the relative mutation score loss from the minimization. Besides
the timeout factor and constant, we used the default settings of Pitest. These
factors were increased to reduce the number of false positive timeouts, a timeout
is reported despite no infinite loop present. This increases the runtime but also
increases the accuracy of the results we get.

RQ2 – How much does the mutant killing capability vary between
different test suite minimization techniques? For our second research ques-
tion, we ran the greedy and the HGS algorithm on our study subjects. We used
mutation testing to find out how well the different minimization algorithms work
with our study subjects and whether there is a significant difference between the
techniques.

RQ3 – How does adequate test minimization compare to inade-
quate test minimization with a lower limit of five lines per test? For
this, we use the same set-up as for RQ2 and additionally use inadequate versions
of our algorithms. We compare the different approaches using mutation testing
and their respective reduction in test suite size.

RQ4 – How much time can be saved per test run and are the
time savings proportional to the number of omitted tests? To analyze,
how much time is saved per run, we measure the run time of each test suite.
We investigate both our algorithms in their adequate and inadequate forms. To
minimize the possibility of background tasks influencing our results, we take
five measurements for each project and minimization algorithm. We report the
average reduction in execution time for each project’s test suite.

6 Results and Discussion

In this section, we present and discuss the results of our experiments.
RQ1 – How well is a test suite’s capability to kill mutants preserved

after test suite minimization is applied?
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In Table 2, we display the number of killed mutants as well as the number
of tests before and after minimization. Our results for the reduction are closely
related to the results in the 2014 paper on test suite minimization by Shi et
al. [14] who applied a similar approach. Most of the projects have a reduction
in test suite size from roughly 60% to 75% with the median at 67%. The differ-
ence between our results and the results in the other paper can most likely be
attributed to the difference in project selection. We consider a reduction of more
than 50% in all projects very high and it was particularly impressive to us that
even for the small projects, we got a reduction in test suite size of more than
half.

The number that sticks out the most in terms of the test reduction is the
93% of the Apache Commons Collections library. On closer inspection we found
that a lot of the test cases of that project are focused on very few classes which
leads to an extreme effectiveness of the minimization as well as a low overall
mutations score. A hint to this can be found in the comparably low LLOC
coverage in Table 1 even though the number of tests is very high. In cases like
this, we ignore that the developer might have a reason for having many tests for
a small section of code. Even though this usually means that the minimization
is very effective, we have no way of knowing whether that code is particularly
important or complex and requires more testing.

The most important column of the table, however, is the relative MS (muta-
tion score) loss. Due to the fact that it ranges from 3.5% to 21% in our study,
the effectiveness appears to be dependent on the project in question and is not
strongly correlated with the size reduction percentage. Our results also show
that the Apache Foundation projects facilitate test suite minimization a lot bet-
ter than the other projects we tested. They have similar reduction rates to the
other projects but at a substantially lower loss in mutation score.

Overall, while the reduction figures are promising, the loss in mutation cov-
erage for some of the projects is quite high. Potentially missing 21% of faults is
unacceptable in a lot of cases. These results suggest that a stricter set of testing
requirements for minimization instead of only statement coverage could make
sense. This would likely limit the number of missed mutants but also reduce the
effectiveness of the minimization. Our results also show that there is potential
for test suite minimization in big software projects that are actively maintained.

Table 2. Comparison Full test suite and minimized Greedy.

Full Test Suite Minimized Test Suite
Study Subjects # Tests # MK MS # Tests # MK MS Reduct Rel MS Loss

Commons Collection 14,770 3,459 42% 960 3,145 38% 93% 9.5%
Commons Lang 3,252 11,285 86% 1,638 10,873 83% 50% 3.5%
Commons Math 4,825 29,721 79% 1,574 27,893 74% 67% 6,3%
Ebean 2,598 10,971 44% 811 9,565 38% 69% 21%
Fauxpas 81 47 94% 23 39 78% 72% 17%
JSoup 666 3,167 67% 240 2,660 56% 64% 16%
Spoon 1,608 11,229 71% 482 9,683 61% 70% 14%



An Evaluation of Test Suite Minimization Techniques 11

RQ2 – How much does the mutant killing capability vary between
different test suite minimization techniques?

In Table 3, we have listed the number of tests after minimization as well as
the number of killed mutants for both algorithms. We also display the relative
difference in the number of selected tests and mutant killing capability. Our main
finding here is that the differences between the greedy and the HGS algorithm
are very minute in terms of the number of retained tests as well their mutant
killing capability.

We observe that the HGS algorithm retains slightly fewer tests than the
greedy algorithm but the difference is at most around 3% and with a p value >>
0.05, the HGS algorithm is not significantly better than the greedy algorithm.
In terms of their mutation score, neither algorithm is superior as they are very
close for all study subjects and neither of the two consistently outperforms the
other.

These results confirm the results that Shi et al. found [14] which indicate
that the differences between the simple greedy algorithm and more sophisticated
algorithms is minute. Though we have only tried two algorithms, we observe that
the more expensive HGS heuristic does not result in a palpable benefit for any
of our study subjects. Though, because of the nature of test suite minimization,
the algorithm is only applied rarely, so a more time consuming, but slightly more
effective algorithm might still be worth it.

Table 3. Comparison Greedy HGS.

Greedy HGS
Study Subjects # Tests # MK # Tests # MK Rel Test Diff Rel MS Diff

Commons Collections 960 3,145 943 3,116 1.77% 0.92%
Commons Lang 1,638 10,873 1,632 10,883 0.37% 0.092%
Commons Math 1,574 27,893 1,544 27,574 1.91% 1.14%
Ebean 811 9,565 799 9,450 1.48% 1.20%
Fauxpas 23 39 23 41 0.0% 4.88%
JSoup 240 2,660 233 2,656 2.92% 0.15%
Spoon 482 9,683 477 10,123 1.04% 4.35%

RQ3 – How does adequate test minimization compare to inade-
quate test minimization with a lower limit of five lines per test?

We display our results for this question in Table 4. In the table, we can
see that the benefits of using the inadequate technique are quite substantial.
Compared to the adequate variants, the number of remaining tests is more than
halfed for most of our study subjects. Of course, the overall impact is significantly
lower with an absolute average decrease in the number of tests of 86.7% for
the inadequate greedy algorithm compared to 69.2% for the adequate greedy
algorithm. The HGS algorithm behaves very similar.

However, there is also a substantial drop in mutation score across most of our
study subjects. For most of our projects, the drop in fault detection capability
compared to the adequate version is considerably larger than the drop from the
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full test suite to the adequately minimized version. Compared to the adequate
version, the inadequate minimization is not worthwile due to the lower absolute
gain and the higher loss in fault detection capability.

There are different versions of inadequacy, for example we could also limit
the overall coverage we want to achieve instead of introducing a lower limit per
test.

Table 4. Comparison Adequate Inadequate

Greedy Hgs
Adequate Inadequate Difference Adequate Inadequate Difference

Study Subjects # Tests # MK # Tests # MK Tests MS # Tests MS # Tests # MK Tests MS

Commons Collections 960 3,145 401 2,522 58% 19.8% 943 3,116 434 2,598 54% 16.6%
Commons Lang 1,638 10,873 662 9,201 60% 15.4% 1,632 10,883 691 9,280 58% 14.7%
Commons Maths 1,574 27,893 725 26,053 54% 6.6% 1,544 27,574 793 26,089 49% 5.4%
Ebean 811 9,565 363 8,182 55% 14.5% 799 9,450 377 8,424 53% 10.9%
Fauxpas 23 39 6 27 74% 30.7% 23 41 6 28 74% 31.7%
JSoup 240 2,660 127 2,394 47% 10.0% 233 2,656 131 2,436 44% 8.3%
Spoon 482 9,683 233 9,447 52% 2.4% 477 10,123 239 9,563 50% 5.5%

RQ4 – How much time can be saved per test run and are the time
savings proportional to the number of omitted tests?

In Figure 2 we give an overview of the time savings of the different algo-
rithms applied to all of our study subjects. The y-axis shows the time savings
in percent of the runtime of the full test suite. First, we can observe that the
results vary a lot between the different projects. The time savings range from
4.5% to 68.6%. However, for most of our study subjects, the savings of all mini-
mization techniques exceed 35%, making the benefits of test suite minimization
quite attractive.

A, to us, surprising result is that the project with the smallest time savings,
the Apache Commons Collections library, also has the highest relative reduction
in its test suite size. This suggests that execution time of the test suites is not
equally distributed. The removal of few, long running tests has more impact than
omitting as many tests as possible. A good indicator for this is the difference
between the inadequate versions of the algorithms for the Apache Commons
Collections library and the adequate versions. The difference in the number of
selected tests is rather small but the savings increase a lot more than they did
with the first ~93% of removed tests.

Regarding the difference between the greedy and HGS algorithms, we can,
once again, not determine a consistently superior algorithm. However, the inad-
equate versions of both algorithms show clear improvement over their adequate
counterparts reaching from 4.4% to 24.3%.

By including the execution time of the individual test cases in the minimiza-
tion, the variation in the effectiveness of test suite minimization could most likely
be reduced considerably.
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Fig. 2. Time Savings of Test Suite Minimization

7 Threats to Validity

In this section, to understand the limitations of our evaluation of test suite
minimization, we discuss some possible threats that could affect the validity of
our results.

Internal Threats The first possible criticism of our method is the use of mutation
testing as a replacement for real faults. Though, it has been shown that the
ability of a test suite to kill mutants is highly correlated with its ability to detect
real faults [1,2,4], mutants are not the same thing as real faults. Another problem
of mutation testing are equivalent mutants which cannot be detected and endless
loops which can be caused by mutants. However, since our results involve mainly
comparisons of the loss of mutation score from test suite minimization, the overall
mutation score is not critical for the validity of our results.

Another issue of mutation testing is that timeouts can vary between test
runs. Since mutation testing can cause infinite loops, there is a timeout value
necessary to keep the mutation testing going when an infinite loop has been
created. However, this can also happen by accident if a test runs longer than it
should for some reason. We found a variation in timeouts between runs caused
by false positives in the determination of timeouts. However, the margin between
our runs did not exceed 1% in our results.

External Threats There is no guarantee that these results are representative
beyond the scope of our study subjects. Even though, we used actively devel-
oped open source projects from different developers, commercial, closed source
projects and other open source projects with very different characteristics may
behave different with regard to test suite minimization. The projects we chose
were limited in size due to the cost of mutation testing being fairly high and
it’s compatibility, especially with complicated builds being fairly low. Further-
more, we investigated only a small set of proposed minimization techniques to
evaluate applicability of test suite minimization techniques in practice. We have
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implemented two common test suite minimization algorithms but there are a
lot more, also incorporating different testing requirements instead of only using
statement coverage.

8 Conclusion

We evaluated the benefits and drawbacks of two test suite minimization algo-
rithms over a range of seven open source software projects. We used two different
statement coverage-based algorithms, the basic greedy algorithm and the HGS
algorithm. For both, we applied an adequate and an inadequate variant to all
of our study subjects. To find out, how well the fault detection capability of a
test suite is maintained after test suite minimization, we compared the results
of mutation testing of the full test suites and the minimized ones. We found
that with the algorithms we used, there is a considerable trade-off between the
reduction in test suite size and the loss in fault detection capability. The number
of test cases was reduced by at least 50% for all the study subjects; the average
reduction of our adequate algorithms being around 69% of tests removed.

To get an insight into the practical benefits of test suite minimization, we
measured the execution time of test suites of our study subjects before and
after the test suites were minimized. We found that, even though there were
substantial reductions in all projects, there is a huge range between the execution
time reduction of the individual projects (5% to 69%). The reduction in number
of tests appears to be a bad indicator for the reduction in execution time.

Overall, test suite minimization shows great potential in terms of test suite
execution time reduction. However, the implementation we chose in this paper
does not provide a great trade-off between runtime improvements and loss in
fault detection.

9 Future Work

We found that using statement coverage as the only criterion for minimization,
while producing great results in terms of test suite size, leads to a substantial
loss in fault detection capability which, in practice, will not be acceptable in
a lot of cases. That is why we plan on investigating multiple objective-based
algorithms, which could improve the outcome of test suite minimization in terms
of the maintained fault detection capability. Another factor in a multi objective
approach could be execution time, which shows substantial reductions in our
experiments but could most likely be improved by introducing it as a criterion
to be optimized for.

Another interesting possibility, which we want to pursue, is be to increase the
variety of study subjects by shifting the focus from only open source projects
to include closed source projects as well. Covering as many different ways of
software development as possible can increase the viability of test suite mini-
mization. So far it is rarely used in practice. Proving that commercial projects
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can gain from test suite minimization could benefit its propagation from the
domain of research into widespread use.

Future research could also evaluate test suite minimization techniques on the
basis of real faults from the past according to how many of them are found. This
would deliver even more relevant results than using mutation testing but finding
and extracting data of sufficient volume for this kind of evaluation is much more
difficult and laborious than using generated mutants.
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