


2

Change-Driven Testing
Dr. Sven Amann and Dr. Elmar Jürgens – CQSE GmbH

Abstract—Today, testers have to test ever larger amounts of software in ever smaller periods of time. This makes it infeasible to
simply execute entire test suites for every change. Also it has become impractical—if it ever was—to manually ensure that the
tests cover all changes. In response to this challenge, we propose Change-Driven Testing. Change-Driven Testing uses Test-Impact
Analysis to automatically find the relevant tests for any given code change and sort them in a way that increases the chance of
catching mistakes early on. This makes testing more efficient, catching over 90% of mistakes in only 2% testing time. Furthermore,
Change-Driven Testing uses Test-Gap Analysis to automatically identify test gaps, i.e., code changes that lack tests. This enables us
to make conscious decisions about where to direct our limited testing resource to improve our testing effectiveness and notifies us
about where we are missing regression tests.

I. A Vicious Circle

Today, testers have to test ever larger amounts of software in
ever smaller periods of time. This is not only because software
systems grow ever larger and more complex, but also because
development processes changed fundamentally. Ten years ago,
software was commonly released at most once or twice a year
and only after an extensive test period of the overall system.
Today, we see consecutive feature-driven releases within a few
months, weeks, or even days. To enable this, development
happens on parallel feature branches, and testing, consequently,
needs to happen on each such branch as well as on the overall
system.
In response to this fast-growing demand for testing, compa-

nies invest in test automation and continuous integration (CI)
to speed up test execution. However, we increasingly see that
even automated test suites run for multiple hours or even days,
especially on larger systems. As a result, such long-running
test suites are typically excluded from CI and executed only
nightly, on weekends, or even less frequent. As a result, the
time between the introduction of a mistake in the code and its
detection grows. This has severe consequences:

• Large amounts of changes pile up between two consec-
utive test runs, such that it becomes difficult to identify
which particular change contains the mistake.

• Developers get feedback from tests only long after they
did the changes that introduced the mistake, again making
it more difficult for them to identify the mistake.

• The effects of multiple mistakes may overlap, such that
one mistake may only be detected after another is fixed.

To make things worse, test automation addresses only half
the problem: While it improves the efficiency of test execution,
it does nothing to ensure that the testing is effective. In
practice, we see that about half of the changes may escape even
rigorous testing processes [2], [3]. And as testers strive to make
test suites more comprehensive by adding additional tests, they
also add to the runtime of the suites, thus, jeopardizing the
benefits of automated tests and CI.
So how can we break this vicious circle and make our testing

processes efficient and effective at the same time? The answer
is surprisingly simple: We align our testing efforts with the
changes. With an increasing number of changes to be tested,
it has become infeasible to simply execute all tests after every
change and it has become impractical—if it ever was—to

manually ensure that all changes are tested adequately. But
instead of resolving to test only rarely, we should keep testing
frequently with focus on the changes, i.e., the code that might
contain new mistakes. We call the idea of aligning our testing
with the changes in application code Change-Driven Testing.
Change-Driven Testing identifies 90% of the mistakes that our
entire test suite may find in only 2% of the suite’s runtime [4]
and informs us about any change to the code that we did not
test [2], [3].

II. Test Intelligence
To achieve high-quality testing, we commonly need to

answer questions such as which test we need to run, what else
we need to test, or whether our test suite contains redundant
tests. Since it is difficult to correctly answer such questions
manually, our goal is to automatically answer them using
existing data from the software development process. This
approach is similar to the approach of Business Intelligence,
which analyzes readily available data to gain insights on
business processes. Therefore, we refer to our approach as Test
Intelligence. Figure 1 illustrates it.

The questions we want to answer through Test Intelligence
concern both our tests and the code changes under test.
Therefore, we collect data about both the tests and the changes.
Much of this data is already available in the development
environment and needs only be extracted for our purposes.

To communicate the extracted data to testers, developers,
and managers alike, we use treemaps. Figure 2a shows such
a treemap that represents the code of a UI component of the
software system Teamscale. Each box on the map represents
a single method in the code. The size of the box is proportional
to the size of that method in lines of code. We color the boxes
to highlight particular properties of the respective code.

A. Version-Control Systems
Version-control systems (VCS), such as git or TFS, are

a de-facto standard in today’s software development. Gener-
ally speaking, a VCS keeps a chronological history of code
changes committed by developers and helps them to coordinate
their changes. Within the VCS, changes may be organized in
branches, where a branch is an isolated line of changes that is
based on a particular version of the code and may be merged
into a later version of the code. If developers use a dedicated



3

Code Version
History

Test
Coverage

Tickets Test
Runtime

…

Test Intelligence

» Where are we missing tests? «

» Which tests do we need to run? « » Which tests are redundant? «

» What causes a particular test failure? « » …? «

Fig. 1. Test Intelligence: Combining readily available data from various data sources in the software development process to automatically answer questions
about testing.

branch for the implementation of a particular feature, we call
it a feature branch.
From the change history in a version-control system, we

may extract the list of changes since any given baseline, be it a
particular release, the last test run, the start of a feature branch,
or any other point in time. Figure 2b shows code changes on a
treemap. Methods that were added by one of these changes are
highlighted in red, methods that were changed are highlighted
in yellow, and methods that remain unchanged are highlighted
in grey.

B. Ticket Systems
Ticket systems, such as Jira or GitHub Issues, are used

in most software projects to keep track of change requests, such
as bug reports, feature requests, or maintenance tasks. Such
systems allow the development team to manage each request
as a ticket, which usually has a unique ID, an assignee, and a
status, among other metadata.
It is a widely used practice that developers annotate changes

in the version-control system with the ID of the ticket(s) that
motivated the changes, usually by adding the ID to the commit
message that describes the respective change. Using these
annotations of the code changes and the metadata from the
ticket system, we can group all changes that belong to the same
ticket. This allows us to focus on only the changes motivated
by a particular ticket.
Figure 2c shows the changes related to a single ticket on a

treemap. Methods that were added by a change are highlighted
in red and methods that were changed are highlighted in
yellow.

C. Profilers
Profilers, such as Jacoco or gcov, record which parts of the

application code are executed, i.e., they record code coverage.

Depending on the technology in use, profiling approaches
range from instrumenting the target code, over attaching a
profiler to a virtual machine, to using hardware profilers.
Regardless, profiling is always possible.

Different profilers record coverage at different granularity,
e.g., they record which methods, statements, or branches get
executed. With most profilers, a finer granularity results in
a larger performance penalty. Recording coverage on method
level is, in our experience, always feasible with an acceptable
overhead.

When a profiler records the coverage produced by a test,
we speak of test coverage. Recording test coverage is a widely
used practice for automated tests in CI and uncommon in
other types of test environments. Technically, however, we may
profile any type of execution, be it through a unit test or an
end-to-end test, automated or manual. Thus, using a profiler,
we may obtain the coverage of each test in our entire test suite.

Existing profilers typically aggregate the coverage of all tests
executed in a single test run, because they work independently
of the test controller and simply trace execution from start to
end of the run. However, conceptually, we may also record test-
wise coverage, i.e., separate coverage for each test case. When
we record test-wise coverage, we may also trivially record each
test’s individual runtime.

Figure 2d shows the aggregated coverage of a test suite on a
treemap. Methods that were executed are highlighted in green
and methods that were not executed are highlighted in grey.

III. Change-Driven Testing

Change-Driven Testing is one particular instance of Test In-
telligence that makes testing both more efficient and effective.
Figure 3 depicts the idea. The key insight behind Change-
Driven Testing is that existing tests will only fail if new



4

(a) Source Code as a Treemap. Each box represents one
method. The size of the box is proportional to the lines
of code in that method.

(b) Code Changes since a Fixed Baseline. New methods
are red, changed methods are yellow, and methods that
remain unchanged are grey.

(c) Code Changes for Ticket TS-15717. New methods
are red and changed methods are yellow.

(d) Test Coverage on Method-level. Methods that have
been executed are green, all other methods are grey.

Fig. 2. Treemaps that show Data about the Software System Teamscale from
the Version-Control System, the Ticket System, and Profiling Test Execution.

mistakes are introduced,1 and that new mistakes can only be
introduced through changes. Consequently, when considering
the (possibly buggy) changes between two versions of our

1Leaving aside causes for sporadic test failures, such as flaky tests or
interaction with 3rd-party systems, which typically indicate a problem with
the test setup rather than with the system under test.

DevelopmentVersion A Version B

!

!

!

Existing Tests

!

! !
!

!
!! !

!
!

! !

""
" !

! !

Sy
ste

m
 C

od
e

Te
st 

Su
ite

… …

Ch
an

ge
-D

riv
en

Te
sti

ng

Missing Tests

Test-Gap
Analysis

Impacted Tests

Test-Impact
Analysis

Fig. 3. Change-Driven Testing: Testing efficiently by running only the tests
impacted by changes. Testing effectively by testing all changes.

system, e.g., two consecutive releases of the system before
and after implementing a particular feature, we proceed in two
phases:

1) To make our testing more efficient, we test just the
changes, excluding all other parts of the system. We
automatically identify the existing tests that are relevant
to the changes, i.e., the impacted tests, through a Test-
Impact Analysis.

2) To make our testing more effective, we ensure that we
test all changes. To guide us towards this goal and to
verify whether we achieved it, we automatically identify
changes that lack tests through a Test-Gap Analysis.

Both analyses are only interested in changes that require
testing. Therefore, we use static code analyses to identify
relevant changes. We consider a change relevant if it modifies
the behaviour of the code and, thus, may contain mistakes
that later cause errors. Consequently, we filter out changes that
correspond to refactorings, such as changes to documentation
and renaming or moving of methods or variables.

A. Test-Impact Analysis
Figure 4 depicts the process of the Test-Impact Analysis

(TIA). It combines relevant code changes (see Section II-A)
with test runtimes and test-wise coverage (see Section II-C)
to compute a subset of the entire test suite that identifies as
many mistakes as early as possible. The process consists of
two steps:

1) In the Test Selection step, TIA selects the impacted tests,
i.e., all tests that execute any changed method, according
to the recorded coverage. It also includes all tests that
were added or modified by the change, because it cannot
know which parts of the code those tests cover.

2) In the Test Prioritization step, TIA orders the impacted
tests such that all changes are covered as quickly as
possible, to find new mistakes as early as possible.
Since computing the optimal ordering of the tests is
infeasible, TIA uses a greedy heuristic: It selects that
test next, which covers the most additional changed code
per execution time.



5

Relevant Changes

Accumulated
Test Coverage

Test Gaps

Relevant Changes

Test-wise
Coverage & Runtime

Test-Gap
Analysis

Test-Impact
Analysis
Test Selection

Test Prioritization
Impacted Tests
Ordered by
Likelihood to

Find a New Mistake

Version-Control
System

Execution of
All Tests

Execution of
All Tests

Version-Control
System

Fig. 4. Process of the Test-Impact Analysis (TIA). Given a set of changes, TIA selects the impacted tests and orders them by their likelihood to find a new
mistake in the changes.

Relevant Changes

Accumulated
Test Coverage

Test Gaps

Relevant Changes

Test-wise
Coverage & Runtime

Test-Gap
Analysis

Test-Impact
Analysis
Test Selection

Test Prioritization
Impacted Tests
Ordered by
Likelihood to

Find a New Mistake

Version-Control
System

Execution of
All Tests

Execution of
All Tests

Version-Control
System

Fig. 5. Process of the Test-Gap Analysis (TGA). From a given set of changes TGA identifies those changes that were not yet tested, i.e., test gaps.

In a study with twelve software systems [4] we found that
the impacted tests selected by TIA find 99.3% of all randomly
inserted mistakes that the entire test suite could find. The
impacted tests found more than 90% of those mistakes in all
study systems and even 100% in seven of them.
In a second study with over 100 different systems [5] we

found that TIA identifies on average over 90% of the mistakes
that the entire test suite identifies in only 2% of the execution
time of the entire suite. Using TIA is especially beneficial for
small and local changes, where test selection results in a small
set of tests. This perfectly suits our need to quickly test many
incoming change, which are usually small compared to the
code of the entire system.

B. Test-Gap Analysis
Figure 5 depicts the process of the Test-Gap Analysis

(TGA). It matches relevant code changes (see Section II-A)
with the aggregated test coverage (see Section II-C) to identify
those changes that were not covered by any test. We call these
changes test gaps.
To determine test gaps, TGA considers the chronological

order of changes and test runs: New changes invalidate any
previous test coverage of the changed code and open new
test gaps. With subsequent testing, new coverage is recorded,
which closes respective test gaps on earlier changes. Conse-
quently, TGA can give us an update on our test gaps after every
test run and every code change. And since the analysis works
incrementally, it computes the update in a matter of seconds,
even for very large systems.

In a case study on a large industrial software system [2]
TGA revealed that more than 55% of the code changes in
two consecutive releases remained untested. In retrospect, we
traced over 70% of the reported field bugs back to untested
code.

In a second case study on another industrial software
system [6] TGA found 110 test gaps in the changes from 54
tickets, which corresponds to 21% of the 511 change methods.
Provided with the data, developers found 35% of these gaps
worth testing. Interestingly, they also found that 49% of the
gaps resulted from cleanup work that was not part of the ticket
description and, thus, remained untested even after the change
requested by the ticket was thoroughly tested.

C. Limitations

To make best use of the analyses, it is important to be aware
of their limitations. One limitation of both TIA and TGA is
changes on the configuration or data level. Since such changes
are not reflected in the code, they remain hidden from the
analyses. Consequently, TIA cannot adequately select impacted
test and TGA cannot show impacted parts of the code as
untested.

A related limitation of TIA comes from the use of indirect
calls. For example, if a test executes all classes with a
certain annotation, TIA typically does not select this test when
the annotation is added to another class, because the test’s
historical impact did not include that class and the test itself
did not change on the code level.



6

Fig. 6. Feature Request TS-15717: Enable Deleting Account Credentials.

TIA assumes that the coverage of test cases is stable,
i.e., that executing the same test twice results in the same
coverage. If this is not the case, e.g., because manual test steps
are performed differently with every execution, TIA cannot
properly capture the impact of the test and, therefore, cannot
adequately select impacted tests. In practice, even the coverage
of automated tests may vary between runs, e.g., due to garbage
collection. Though the effects are typically small, this means
that TIA cannot guarantee that the impacted tests always find
all the mistakes that the entire test suite may find. To the
best of our knowledge, there is no test-selection strategy that
gives such a guarantee under these conditions. Therefore, we
recommend to regularly execute the entire test suite to ensure
that nothing slipped through and to keep the data about test
runtimes and coverage up to date. This is the same as using
a traditional regular (e.g., nightly) testing strategy, except that
we now have the additional fast feedback from the immediate
testing using TIA, which already captures the majority of
mistakes.
Another limitation of TGA is that it does not consider how

thoroughly a change was tested, but only whether the methods
containing the change were at all executed in a test. Like
any other testing approach, TGA cannot prove the absence of
mistakes in the code. However, by revealing changes that have
not been tested at all, it identifies changes for which we are
certain that no mistakes can have been found. Such untested
changes are five times more likely to contain mistakes [3].
In our experience, TGA usually reveals substantial test gaps
and, thereby, enables significant improvements of the testing
process.

IV. Using Change-Driven Testing

To illustrate the use of Change-Driven Testing, we follow
the development of a feature of our own software product
Teamscale. Teamscale is a platform that assists software
development teams in the analysis, monitoring, and optimiza-
tion of code and test quality. For this purpose, it integrates
with various other development tools, such as version-control
systems, build servers, and ticket systems. Its web frontend

provides an administration perspective that allows to manage
credentials for such external systems. Figure 6 shows feature
request TS-15717 that asked to add the possibility to delete
such external credentials.

Before starting to work on TS-15717, our developer cre-
ates a feature branch to work on. Then she implements the
relatively small feature, writes a new test, and commits the
changes as

TS-15717: Allow external-credentials deletion.
The treemap in Figure 2c shows all of these code changes.

A. Testing with TIA

Triggered by the commit, our CI environment starts building
Teamscale and testing the change. In the testing stage, the CI
queries TIA to learn which tests to execute. To compute its
response, TIA uses the test-wise runtime and coverage of each
of the roughly 6.5k tests (including unit tests, integration tests,
system tests, and UI tests) in our test suite. To obtain this data,
we augmented the CI environment with profilers that record
test-wise coverage in both the Javascript code of the frontend
and the Java code of the backend and ran the entire test suite
once, which took about 45 minutes. Based on this data, TIA
now determines a list of six tests impacted by the changes:
Five regression tests covering parts of the changed code and
the new test that came with the changes. The entire CI run
with these impacted tests takes about 1.5 minutes, saving us
over 96% runtime.

Thanks to TIA, only 1.5 minutes after committing her
changes, our developer learns that the new test (ranked second
by TIA) fails. With her changes still fresh in her mind, she
investigates the problem and fixes it in about 10 minutes,
committing the new changes as

TS-15717: Fix deletion of external credentials.
Since the fix is very local, TIA selects only a single impacted
test, namely the test that previously failed. Therefore, the
second CI run takes only about 45 seconds in total. This time
all tests pass.



7

0 5 10 15 20 25 30 35 40 45 50

CI with TIA

Regular CI

Time [min]

Build Test Execution Fixing Rebuild Retest

!
Fixing the Bug

!

"

"

Fig. 7. The Gain from Using Test-Impact Analysis. Two consecutive CI runs using TIA plus correcting a mistake take less time than one CI run with
Teamscale’s full test suite.

Fig. 8. Issue Test Gaps for TS-15717 after Executing the Impacted Tests
Identified by TIA. TGA reveals one remaining test gap.

Overall, two consecutive CI runs using TIA plus correcting
the mistake in between took less time than one execution of
our full test suite. Figure 7 illustrates this improvement.

B. Testing with TGA
To ensure that all her changes are properly tested, our

developer next looks at the test-gap treemap for her changes in
the context of TS-15717. Figure 8 shows how TGA displays
the test coverage recorded in the two previous CI runs. The
treemap shows what we call the Issue Test Gaps of TS-15717:
most of the code changes were tested (the green rectangles),
but one test gap remains (the red rectangle in the lower right).
To decide whether the remaining test gap is worth closing,

our developer drills down from the treemap into the code. She
discovers that the untested code is responsible for requesting
an additional confirmation, when a user attempts to delete
credentials that are still used by Teamscale. Since this code
is relatively simple and unlikely to ever change, she decides
to test it once manually.
Our developer starts the development version of Teamscale

from her local machine, using a manual-test startup script
that we maintain with our code. She opens the system under

test in a browser, navigates to the administrative perspective,
and checks whether the additional confirmation is indeed
requested. It is, and so she shuts down the system under
test, which causes the startup script to automatically provide
the recorded coverage for TGA. As a result, all changes for
TS-15717 were now tested, verifiably documented by an all-
green test-gap treemap.

Since our developer opted for a manual exploratory test,
there is no regression test for this particular functionality.
However, since TGA is aware of the chronological order of
changes and test coverage, it will again report a test gap should
the functionality ever change in the future. Thanks to this
safety net, it is reasonable to opt for a quick manual check
instead of writing an automated UI test or a manual test for
code that is unlikely to ever change again.

C. Closing the Loop
At this point, our developer is satisfied with her changes

and sends them to one of her peers for code review. Once she
and the reviewer agree that the changes are fine, he merges
the feature branch. In response, our CI environment runs our
entire test suite. This ensures that the main product line is error
free, even if TIA should have mistakenly excluded a relevant
test, and also records coverage and test execution times to
keep our data up to date. Note that the vast majority of CI
runs still benefits from TIA, since merging feature branches
happens much less frequently than committing changes to
feature branches.

Before each Teamscale release (as of this writing, every
six weeks) a test architect inspects all remaining test gaps
on changes since the last release across the entire system.
This provides us with a second quality gate, to ensure that
no critical functionality accidentally slipped through testing. In
this process, the architects uses the same data that was used in
the development process of the features, but on a treemap that
represents the entire code instead of only the code changes
for an individual feature. Figure 9 shows a section of this
global test-gap treemap, representing one of Teamscale’s UI
components.



8

Fig. 9. Test-Gap Treemap for a UI Component of Teamscale. A global
analysis of remaining test gaps serves as an additional quality gate before a
release.

V. Adapting Change-Driven Testing

In practice, we encounter very different testing setups and
strategies, depending on the concrete requirements and the
history of the respective projects. Consequently, the implemen-
tation of Change-Driven Testing should be adjusted to deliver
the most value given the project’s parameters. We subsequently
discuss some aspects that we encounter repeatedly, without
aiming for an exhaustive list.

• Both Test-Impact Analysis and Test-Gap Analysis may
consider test coverage from all testing stages as well as
from a combination of both automated and manual tests.
The type of test literally makes no difference for the
benefits of Test-Gap Analysis. Test-Impact Analysis, on
the other hand, is especially beneficial if test are time
consuming, i.e., if excluding tests saves significant time,
and if testing time is limited, because test prioritization
makes it likely that we catch mistakes early, even if we
cannot afford to run all impacted tests.

• If development mostly happens on feature branches, a
sensible strategy is to use Test-Impact Analysis for testing
changes and Issue Test Gaps to avoid test gaps on these
branches. In addition, to ensure no mistakes slip through
testing, the full test suite should be executed upon merge
of a feature branch. If, on the other hand, development
happens on a main branch, we may use Test-Impact
Analysis to test individual changes and run the full test
suite periodically or before a release.

• It is always possible to combine Test-Impact Analysis
with other test-selection strategies, e.g., if some tests for
highly critical functionality should always run. We then
simply run the union of the impacted tests selected by TIA
and the tests identified by any complementary strategy.

• We found that it is most efficient to investigate Issue
Test Gaps, because the ticket provides us with additional
context when analyzing the gaps. However, even if TGA
cannot map code changes to tickets, it can reveal test gaps
for the system as a whole. Such a system-wide TGA is
valuable on its own as much as in addition to Issue Test
Gaps, as a second-level quality gate.

• In many projects, the people analyzing test gaps are not
necessarily the developers who wrote the code changes,
but testers or architects. Such a separation of work
sometimes makes the interpretation of test gaps more

difficult, because the analysts may be unaware of possible
reasons for a particular change or test gap. In such cases,
the data from the version-control system again proves
helpful, because it names the developer responsible for
any change, telling the analysts who to talk to.

• While it is the theoretical ideal, it is never a goal in itself
to reach an all-green treemap, i.e., 100% test coverage. In
many situations, leaving test gaps is quite reasonable, e.g.,
if the gap is on code that prepares future functionality, but
that it not yet live or if it is on code that is only rarely used
internally, such that testing resources are better invested
elsewhere. In the end, the testing process is always subject
to tradeoffs and prioritization. TGA enables us to make
conscious decisions about where to direct our limited
resources.

VI. Conclusion
Today, testers have to test ever larger amounts of software in

ever smaller periods of time. This makes it infeasible to simply
execute even fully automated test suites in their entirety for
every change. Also it has become impractical—if it ever was—
to manually ensure that the tests cover all changes. Therefore,
we need to rethink our testing strategies to become both more
efficient and effective.

In this chapter, we introduced Change-Driven Testing. In
Change-Driven Testing, we analyze existing data from the
software development process to automatically answer ques-
tions that drive our testing. We use Test-Impact Analysis to
automatically find the impacted tests for any given code change
and sort them in a way that increases the chance of catching
mistakes early on. This makes testing more efficient, catching
over 90% of mistakes in only 2% testing time. We use Test-Gap
Analysis to automatically identify test gaps, i.e., code changes
that lack testing. This enables us to make conscious decisions
about where to direct our limited testing resource to improve
our testing effectiveness.

VII. Legal Notice
This text was originally published as “Change-Driven Test-

ing” in “The Future of Software Quality Assurance” [1] by
Springer Open, under the Creative Commons Attribution 4.0
International License.

References
[1] Amann, S., Jürgens, E.: Change-Driven Testing. Springer Open (2019)
[2] Eder, S., Hauptmann, B., Junker, M., Juergens, E., Vaas, R., Prommer,

K.H.: Did we test our changes? assessing alignment between tests and
development in practice. In: Proceedings of the Eighth International
Workshop on Automation of Software Test (AST’13) (2013)

[3] Juergens, E., Pagano, D.: Did We Test the Right Thing? Experiences with
Test Gap Analysis in Practice. Whitepaper, CQSE GmbH (2016)

[4] Juergens, E., Pagano, D., Goeb, A.: Test Impact Analysis: Detecting Errors
Early Despite Large, Long-Running Test Suites. Whitepaper, CQSE
GmbH (2018)

[5] Rott, J.: Empirische Untersuchung der Effektivität von Testprior-
isierungsverfahren in der Praxis. Master’s thesis, Technische Universität
München (2019)

[6] Rott, J., Niedermayr, R., Juergens, E., Pagano, D.: Ticket coverage: Putting
test coverage into context. In: Proceedings of the 8th Workshop on
Emerging Trends in Software Metrics (WETSoM’17) (2017)


