
Test Impact Analysis: Detecting Errors Early
Despite Large, Long-Running Test Suites

Elmar Jürgens
CQSE GmbH

juergens@cqse.eu

Dennis Pagano
CQSE GmbH

pagano@cqse.eu

Andreas Göb
CQSE GmbH
goeb@cqse.eu

Abstract—Large test suites often take a long time to execute.
Therefore, in practice, they are usually not executed as part of
continuous integration (CI), but only less frequently and in later
test phases. As a result, many errors remain unrecognized during
CI and are found late, which causes high costs.

Test Impact Analysis allows us to run only those tests affected
by code changes since the last test run. As a result, it is possible
to only execute that section of a large test suite during CI that
is most likely to find new errors. In our studies, we were able
to spot 90% of failed builds in 2% of the test execution time.
This enables fast CI feedback with high error detection rates,
regardless of the size and duration of the entire test suite.

I. MOTIVATION

As software grows, its test suite must also grow in order
to reliably detect bugs. But this also increases the total test
execution time. In practice, we are increasingly seeing test
suites that run for several hours or even days.

In our experience, however, long-running test suites are
typically excluded from continuous integration (CI). Often,
they are executed only in subsequent test phases that take
place, e.g., before each release. Due to the less frequent
execution of the test suite, however, the period between error
introduction and error detection grows. This has extensive
negative consequences:

• Errors can overlap each other and can only be detected
after other errors have been corrected.

• Debugging regression errors becomes more complex, as
an increasing number of code changes may have caused
the error.

• Bug fixes take longer because developers have to invest
more time understanding their own code if an error is
discovered weeks after it has been introduced.

These effects increase as systems and test suites grow.
Ironically, this jeopardizes the effectiveness of continuous
integration, especially for large systems. These often have
a particularly high strategic value, and hence short feedback
cycles would be particularly important. How can we prevent
this and quickly find new bugs despite longer execution times
of our test suites in continuous integration?

Our Test Impact Analysis (TIA) approach addresses this
problem by selecting and prioritizing test cases based on code
changes. This is done by analyzing the code changes that have
been made since the last successful test run. Then, only those
test cases are selected that run through changed code. These

Figure 1. Changes for implementing a feature: Modified code is shown in
yellow, new code is red, and unchanged code is gray.

Figure 2. Test coverage of nine automated tests. If a test executes a method,
it is shown in green, otherwise in gray.

tests are then sorted so that they find errors as early as possible
in the test run. The more frequently TIA is performed, the less
changes are made between two test runs, and the greater the
expected execution time savings are.

Figures 1 and 2 show an example from our own develop-
ment. Each of the illustrations shows a treemap. Each small
rectangle in the treemap represents a method in the source code
of the system under test. Figure 1 shows the changes that were
made as part of the development of a feature. Unchanged code
is gray, modified code is orange, and new code is red. Figure 2
shows the code coverage of 9 automated test cases (unit tests
and integration tests). If a test case executes a method, it is



All tests

Test selection

Test prioritization

Test impact analysis Impacted tests

321 2

Test environment

3

Figure 3. Phases of test impact analysis

displayed in green. Gray methods were not executed by the
test case. In the example, only the three test cases whose
treemaps are outlined in blue execute any modified code at
all. The remaining six test cases cannot find any errors caused
by the implementation of the new feature. Their duration can
therefore be saved during CI.

In this article we introduce TIA, outline previous work, and
then describe our approach and the empirical studies that we
conducted to quantify the applicability and utility of TIA in
practice. For the analyzed study objects, we were able to show
that TIA can considerably reduce test times during CI: For
our study objects, the test time can be reduced by 98%, but
still 90% of all erroneous builds are recognized as such. The
central contribution of this article is therefore showing that the
proposed TIA process, which is based on research in the field
of test selection and test prioritization, is ready for continuous
use in practice under the conditions described in this article.

II. TEST IMPACT ANALYSIS

The goal of test impact analysis is to propose a subset of
the entire test suite for the current code of the system under
test, which can be used to find as many errors as quickly as
possible. As shown in Figure 3, the analysis basically consists
of two steps:

• Test selection: On the basis of selected metrics, a subset
of the entire test suite to be executed is selected. We call
this selected subset »impacted tests«.

• Test prioritization: The impacted tests are sorted so that
errors are found as quickly as possible. This can be based
on data from previous test runs.

TIA can be performed using only test selection or test pri-
oritization, as well as a combination of both. The particular
algorithmic implementation of these two steps is the pri-
mary distinguishing feature among various approaches. The
approaches to test selection and test prioritization described
in the literature often vary widely in their complexity and
effectiveness. For example, there are randomized approaches
or those that select or prioritize based on test case-specific
coverage. We have summarized the most important approaches
in Section IV. The approach we choose uses a combination of
selection and prioritization. We describe this approach in more
detail in Section V. The resulting selected and sorted tests are
finally executed in the test environment in the defined order.

Because TIA uses only part of the entire test suite, in
practice it is necessary to run all tests at regular intervals.
We describe the limitations of TIA in the following section.

III. LIMITATIONS FO TEST IMPACT ANALYSIS

Like any analysis method, TIA has limitations. Knowing
about these is critical to making good use of TIA. One such
limitation is changes that are made at the configuration level
without code being altered, which keeps them hidden from the
analysis.

Some approaches perform selection or prioritization based
on coverage that was recorded in a past run. A limitation of
these approaches is the assumption of a certain test coverage
stability, since changes to the code or tests can in principle lead
to situations in which the next run no longer runs through the
previously recorded methods.

If the selection or prioritization algorithm depends on the
test coverage, then it must also be recorded for each test case.
This typically requires performing the tests in isolation from
each other.

Another limit of TIA is the use of indirect calls. For
example, if reflection is used in a test case to test classes
with a certain annotation, then such a test case is typically not
selected if that annotation is added to another class.

Although there are techniques in literature to determine a
subset of the tests demonstrably finding all bugs (that can be
found by the entire test suite), these are often not usable in
practice or do not bring any real benefit. Practical TIA can
therefore typically give no guarantees for this. Therefore, all
tests must be executed at regular intervals. The use of TIA,
however, means that errors are usually found much earlier
compared to only having dedictaed scheduled test phases,
which in practice is usually associated with a significant
reduction in costs.

IV. EXISTING WORK ON TEST IMPACT ANALYSIS

There are two established research fields related to TIA
in literature: test selection and test prioritization. However,
the work in the respective areas does not solve the problem
presented above in practice. Our approach therefore combines
findings from both areas and makes them usable in practice.

In the following, we present various existing approaches and
position our approach. Since the contribution of this article is
primarily investigating TIA’s suitability for practical use, due
to the limited space, we refrain from differentiating the various
approaches in detail.

A. Test Selection1

Engström et al. [1] present a meta-study classifyig existing
work on test selection in different categories. Following this
classification, we will present representative existing work on
the topic of automated TIA.

1) DejaVu-based Selection: DejaVu-based techniques [2]
use fine-grained test coverage data to derive which tests run
through modified code. These tests are then selected. The
underlying assumption here is that errors are likely to be
caused by these changes. Most of these Deja-Vu techniques
use control flow graphs for each individual method to select

1Also called »Selective Regression Testing« in literature.



the minimum set of tests that run through the changed code.
The disadvantage of this technique is that it requires high
computational effort to process the fine-grained coverage data.
The approach we evaluated in practice (see Section V) uses
a DejaVu-based selection phase, which, however, records
coverage only on method granularity. We also limit the com-
putational burden by deducting simple refactorings [3].

2) Firewall-based Selection: Firewall-based selection ap-
proaches were first described by Leung and White [4] and
are limited to integration tests. They build a dependency
graph between the modules of a system and then mark all
modules that have been changed or have a direct dependency
on changed modules as »inside the firewall«. Subsequently,
all integration tests that execute code within the firewall are
selected. This approach is safe [5], so it guarantees that the
same errors can be found with the selected tests as with all
tests. However, this safety has its price, because in general a
lot of test cases are selected, even if they do not execute any
changed code. Existing studies have shown that a very large
proportion of all tests are often selected, even if the changes
themselves are very small [6].

3) Dependency-Based Selection: Dependency-based selec-
tion approaches [7] use a static function call graph to describe
dependencies between parts of the software system. They
then select those tests that directly or transiently execute
changed functions. The advantage of this technique is that
it is coverage-agnostic. Its drawback lies in the creation of
the function call graph, which is language-specific and even
depends on frameworks used (e.g., Dependency Injection).

B. Test Prioritization

Test prioritization aims at sorting a set of tests so that errors
are found as quickly as possible. For this purpose, there are
various approaches in the literature that calculate such an order
using different factors. In any case, errors should be found
faster than if the tests are run in random order. Rothermel et
al. [8] describe several approaches, which we group into four
categories:

• Total Coverage: Test cases are prioritized based on their
combined coverage, so that those test cases are executed
first, which produce the highest coverage. The granularity
of the recorded coverage may vary (e.g., branch coverage
or method coverage).

• Additional Coverage: Test cases are ordered by their
additional coverage. Starting from a coverage level, the
test case that generates the most additional coverage is
selected. Again, the granularity of the coverage may vary.

• Potential for error detection: Test cases are arranged so
that those test cases are executed first that have the most
potential to actually detect errors. In order to estimate
this potential, mutation tests are performed beforehand.

• Total error: those test cases that have failed most often
in the past are executed first.

In the experiments conducted by Rothermel et al. [8], a com-
bination of additional statement coverage and error detection
potential turned out to be the best prioritization technique.

The approach we evaluated in practice (see next section)
uses a combination of additional line coverage and expected
test execution time as the prioritization technique.

V. OUR TEST IMPACT ANALYSIS APPROACH

Figure 4 (see next page) gives a structural overview of TIA
as we use it. As shown, the analysis can roughly be divided
into two phases.

The goal of phase 1 is to obtain coverage for individual
test cases and to measure their execution time. To do this,
test cases are executed individually and fully automatically in
the test environment using a profiler. The profiler measures
which parts of the source code are executed per test case and
how much time it takes. This »test impact data« is stored in
a database.

The goal of phase 2 is to actually generate suggestions
on which test cases should be executed in which order. This
phase is performed whenever changes have been made to the
source code of the system under test and tests are about to
be executed. Such a proposal is generated based on these
changes and the test case-specific test impact data collected
in the previous phase:

• Test Selection: selects all tests executing the given
changes (as well as new or modified tests)

• Test Prioritization: The selected test cases are sorted so
that all changes are covered as quickly as possible. This
problem can be reduced to the set coverage problem,
which is NP-complete. Therefore, we use a greedy
heuristic that sorts tests by their additional coverage and
is fast enough in practice even with large test sets.

VI. EMPIRICAL STUDY: APPLICABILITY OF TEST IMPACT
ANALYSIS

The empirical study examines the applicability and useful-
ness of TIA in practice. First, we describe the study objects
and the study design. Then we describe the individual research
questions and their results. Since performing the calculation of
selection and prioritization requires only fractions of a second
for all study objects, the study focuses on the utility of the
results rather than on the TIA calculation time.

A. Study Objects

The study was conducted on 12 systems, all implemented
in Java. To make the study reproducible, we selected 11
open source systems. In addition, we included the commercial
software analysis tool Teamscale2 because we, as Teamscale’s
developers, know it very well and can best validate the study
results here. The study objects differed in size, history length
and number of test cases. The smallest systems comprise 7k
LOC (application and test code), the largest over 300k, history
lengths go from 44 to 82,164 commits. Due to the large
differences between the systems, it is unlikely that a system-
specific single effect dominates the study results. A detailed
overview of the study objects can be found in Table I.

2https://www.teamscale.io



2

All tests Test environment

Test impact data

Test case specific 
coverage and runtime

0III0
0III00III
0 III00III00III
0 III00III00III00III
0 III00III00III00III
0 III00III
0 I0
I000I0 II0 I0
I000II
0000IIII00
0I0000II00II

0 III0
0III00III
0 III00III00III
0 III00III00III00III
0 III00III00III00III
0 III00III
0 I0
I000I0 II0 I0
I000II
0000IIII00
0I0000II00II

0 III0
0III00III
0 III00III00III
0 III00III00III00III
0 III00III00III00III
0 III00III
0 I0
I000I0 II0 I0
I000II
0000IIII00
0I0000II00II1 2 3

Test selection

Test prioritization

Version control system

Changes

23

Sorted subset
of tests relevant
for the changes

Test case recommender
1

Figure 4. Test Impact Analysis as we use it

Table I
OVERVIEW OF STUDY OBJECTS

Study Objects
kLOC

CommitsΣ Application Test
Apache Commons Collections 62 31 31 3,235
Apache Commons Lang 75 27 48 5,486
Apache Commons Math 178 87 91 7,156
Histone Template Engine 2 14 12 2 1,133
JabRef 122 94 27 10,645
Joda-Time 83 28 55 2,105
Lightweight-Stream-API 23 8 15 529
LittleProxy 9 4 5 1,037
OkHttp 52 26 26 3,548
RxJava 242 84 158 6,000
Symia Commons Math Parser 7 6 2 44
Teamscale 336 270 67 82,164

B. Study Design

TIA always compares two versions of a system. We call the
first version the baseline, the second the working copy. For the
study, we used mutation testing to automatically incorporate
errors into the study objects. As a result, we know all the
errors we have and can determine what percentage of them
can be found by TIA how quickly. We did the following in
our study to create the study objects:

1) As baseline, we selected an official release of each
study object. As the initial version of the working copy,
we then took a version that follows the baseline in
the version history and made sure that there were a
substantial number of changes between versions. Then
we incorporated an error via mutation testing into this

version to create the working copy. The particular loca-
tion of the error in the code was chosen randomly.

2) We generated between 100 and 1,000 pairs of baseline
and working copy per study object. (We chose the
number so that for every study object, all these pairs
could be evaluated in less than one day of computation
time).

For each study object, we performed all automated tests on
each working copy created in this way. If at least one test
failed, the built-in error was considered detected.

Finally, we performed TIA on each pair of baseline and
working copy to determine the impacted tests. Based on this
data, we will answer the research questions below.

C. How Reliable is Test Impact Analysis?

TIA only executes impacted tests, i.e., a subset of all tests
in a system. In principle, therefore, errors could go undetected
because they are not found by the impacted tests, but would
be found by the remaining tests. The goal of this research
question is to quantify the proportion of errors that are not
found by the impacted tests in practice.

To do this, we calculate the percentage of errors that the
impacted tests reveal in relation to the percentage of errors
that the complete test suite uncovered. Of the 6,661 synthezied
errors, 4,102 were detected by running all tests on the system.
(Since the remaining 2,559 errors were not recognized by
any test, they cannot be detected by TIA either). Of these
4,102 detected mutated-in errors, 4,073, or 99.29%, are also
detected by the impacted tests alone. In 7 of the 12 study
subjects, 100% of the errors were detected, in the remaining 5



Table II
TIME-SAVINGS DUE TO EXECUTION OF IMPACTED TESTS ONLY

Study Object
Execution Time (ms)

SavingAll Tests Impacted Tests
Apache Commons Collections 25,277 610 97.59%
Apache Commons Lang 24,987 3,111 87.55%
Apache Commons Math 160,391 114,042 28.90%
Histone Template Engine 2 34,603 32,204 6.93%
JabRef 119,849 40,721 66.02%
Joda-Time 20,782 1,297 93.76%
Lightweight-Stream-API 1,523 480 68.48%
LittleProxy 155,334 150,406 3.17%
OkHttp 96,671 76,457 20.91%
RxJava 464,018 170,575 63.24%
Symia Commons Math Parser 528 528 0.00%
Teamscale 1,249,088 196,684 84.25%

study objects between 90.6% and 98.7% were detected3. TIA
recognizes over 90% of the errors in all projects. In more than
half of the projects, all errors were identified.

D. How Much Time Does Restricting Test Execution to Im-
pacted Tests Save?

The purpose of this research question is to quantify by how
much the duration of tests is be accelerated in practice, if only
impacted tests are executed.

For this we calculate the saving of the execution time of
the impacted tests compared to the execution time of all tests.
This saving occurs during each test run, even if no error is
found.

The savings range from 0% to 97.6%, which is very
different between the study objects. On average, selection
saves 52% of the test execution time, the median being 64%
across all study objects. Detailed results are shown in Table
II.

The big differences in saving are due to the different
amount of code that is executed by each test in the different
study objects. In Apache Commons Collections, most tests go
through very little code, which varies greatly between tests.
This greatly benefits the selection phase of TIA. In the case
of Symia Commons Math Parser, on the other hand, many
tests start the entire parser. As a result, much of the code
is executed by all tests, which reduces the usefulness of the
selection phase.

E. When does Test Impact Analysis find the first failing test?

When the first test case fails, we already know that the
system under test is not bug-free (and, e.g., the build result
should not be deployed). We know this without having to
wait for the results of the remaining test cases. This research
question quantifies how quickly TIA finds the first failing test.

To do this, we calculate how fast the built-in error is found
when we run the impacted tests in the proposed order.

3In-depth analysis of the 29 unrecognized errors revealed that the majority
were related to non-deterministic test cases (and thus unstable test coverage).
A customized measure of test coverage that executes test cases multiple times
and only counts coverage for those methods that are executed in each pass
would likely reduce those issues.

Figure 5. Distribution of Execution Times Until The First Error is Found

For all 4,073 pairs of baseline and working copy, for which
the impacted tests did find the error, we have determined after
which execution time the first test fails. Then, for each pair
we determined the relative duration until the first error was
detected. For example, if the first error was found after 3
seconds, but the entire suite takes 100 seconds, the result is
3%.

Statistical distributions are shown in figure 5. For each
system, the distribution of values is shown as a box plot4.
Since most of the values are in the range of less than 5%,
only the range of 0% to 30% of the execution times is shown,
in order not to squeeze the box plots even more. Each box plot
represents the values of the second and third quartile in the
box. The median is displayed as a vertical line inside the box.
For some systems, the values are so crowded (e.g., JabRef)
that the box collapses to a narrow vertical bar. The box plots
clearly show that the overwhelming majority of values are
between 0% and 2%.

F. How likely are errors detected using limited time?

To guarantee that test execution is completed on time during
CI, it is not sufficient to stop test execution as soon as the first
error is detected: If there is no error, then all impacted tests are
executed (which, as seen above, will in some cases result in the
execution of the entire test suite). Instead, test execution must
be terminated after a predefined period of time. Therefore, this
research question quantifies how reliably TIA detects a system
being faulty within a limited time span.

For this we evaluated what fraction of the errors is found
when only a subset of the impacted tests is executed that can
fit into 1%, 2%, 5% or 10% of the test suite’s total execution
time. The results are shown in Table III. Using only 1% of
the time, already between 60.8% and 98.1% of the errors are
found, with a median of 89.6% and an average of 85.7%.
Using 2% of the time, between 77.1% and 98.6% of all errors
are found, with a median of 92.7% and an average of 91.4%.

4For a more detailed description of how to interpret box plots, see e.g.
https://en.wikipedia.org/wiki/Box_plot.



Table III
PERCENTAGE OF FAULTY SYSTEM VERSIONS DETECTED BY EXCEUTION

TIME LIMIT

Studienobjekt 1% 2% 5% 10%
Apache Commons Collections 84.25 96.58 99.83 100.00
Apache Commons Lang 94.23 96.43 98.49 99.31
Apache Commons Math 80.20 85.92 91.55 92.96
Histone Template Engine 2 88.46 88.46 88.46 88.46
JabRef 95.71 95.71 95.71 95.71
Joda-Time 98.10 98.61 99.11 99.87
Lightweight-Stream-API 60.76 90.73 94.74 97.25
LittleProxy 74.29 77.14 80.00 80.00
OkHttp 90.70 90.70 90.70 96.51
RxJava 91.89 94.59 94.59 94.59
Symia Commons Math Parser 78.46 86.15 89.23 89.23
Teamscale 91.86 95.93 96.57 96.57

VII. OUTLOOK

We plan to develop TIA in the following directions:
Teamscale Development Process: We recently integrated

TIA into our own development process. Developers can decide
for themselves on their feature branches whether all tests
or only the impacted tests should be executed. We plan to
introduce TIA for all of our branches as the default test
strategy, as we gain further experience.

Programming Languages: Currently, we only use TIA for
Java. We plan to extend both the tool support and the studies
to other programming languages.

Benchmark: We are currently using a mutation-based
benchmark to answer the research questions. We are in the
process of building a benchmark based on real open source
bug fixes to quantify the research questions based on the errors
historically found in these projects during CI. In ongoing work,
437 faulty versions of 31 projects were analyzed. The results
are very similar to the mutation-based benchmark results in
this paper, but are not yet final.

Test Types: We are currently working on a research
project evaluating TIA for hardware-in-the-loop testing of em-
bedded ECU software. The initial results are very promising,
but this study is also still ongoing.

TIA Strategies: We plan to evaluate further approaches
to TIA based on both the mutation-based benchmark and the
error data from real projects. We want to do this not only to
check if there are better approaches than what we are pursuing,
but also which approaches are feasible, if e.g. no test case-
specific coverage can be obtained.

VIII. SUMMARY

Our approach to test impact analysis selects and prioritizes
test cases based on code changes since the last test run. This
allows one (small) part of a large test suite to be run for each
CI pipeline. In our empirical study, we quantified the reliability
and usefulness of our approach on 12 Java systems in practice.

In practice, TIA has a very high reliability of 99.26% over
all study objects (in the worst individual case of 90.6%). While
the savings on execution time of all impacted tests vary widely
between systems, time savings until the first error is detected
are significant across all systems.

TIA’s greatest potential, therefore, is to shorten the time
between the start of a test run and the first error being detected.
With only 1% test execution time, TIA reveals a faulty system
version on average (and median) in over 80% of cases, with
2% test run time in more than 90% of cases.

In other words, the test execution time can be shortened
by 98% and yet only in 10% of the cases faulty builds are
not recognized as such. Especially for systems whose tests
run so long that they are not executed at all during CI, this
represents a substantial improvement, since now 90% of all
errors are detected during CI, and not revealed only in late
test phases that may not take place until months later.

Since TIA does not detect all errors, all tests must still
be executed at regular intervals. However, since most errors
are already detected during CI, comparatively fewer errors
should occur during the execution of all tests. This should also
reduce the extra effort caused by the time delay and possibly
overlapping errors.

ACKNOWLEDGEMENTS

This paper builds on previous work and ideas by Florian
Dreier, Jakob Rott and Rainer Niedermayr, to whom we
would like to express our heartfelt thanks. This work was
partially funded by the German Federal Ministry of Education
and Research (BMBF), grant »SOFIE, 01IS18012A«. The
responsibility for this article lies with the authors.

REFERENCES

[1] E. Engström, P. Runeson, and M. Skoglund, “A systematic review on
regression test selection techniques,” Inf. Softw. Technol., vol. 52, pp. 14–
30, Jan. 2010.

[2] G. Rothermel and M. J. Harrold, “A safe, efficient regression test selection
technique,” ACM Trans. Softw. Eng. Methodol., vol. 6, pp. 173–210, Apr.
1997.

[3] F. Dreier, E. Jürgens, and A. Göb, “Detection of refactorings,” bachelor’s
thesis, Technische Universität München, 2015.

[4] H. Leung and L. White, “A study of integration testing and software
regression at the integration level,” in Proceedings of the 1990 Conference
on Software Maintenance, 1990.

[5] G. Rothermel and M. J. Harrold, “Analyzing regression test selection tech-
niques,” IEEE Transactions on Software Engineering, vol. 22, pp. 529–
551, Aug 1996.

[6] E. Jürgens, B. Hummel, F. Deissenboeck, M. Feilkas, C. Schlögel,
and A. Wübbeke, “Regression test selection of manual system tests in
practice,” in Proceedings of the 15th European Conference on Software
Maintenance and Reengineering (CSMR’11), pp. 309–312, 2011.

[7] Y. Wu, M.-H. Chen, and H. M. Kao, “Regression testing on object-
oriented programs,” in Proceedings of the 10th International Symposium
on Software Reliability Engineering, ISSRE ’99, (Washington, DC, USA),
pp. 270–, IEEE Computer Society, 1999.

[8] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test
cases for regression testing,” IEEE Transactions on Software Engineering,
vol. 27, pp. 929–948, Oct. 2001.


