Poster: Identification of Methods with Low Fault Risk

Rainer Niedermayr
University of Stuttgart, CQSE GmbH
Garching b. Miinchen, Germany
niedermayr@cqse.eu

ABSTRACT

Test resources are usually limited and therefore it is often not pos-
sible to completely test an application before a release. Therefore,
testers need to focus their activities on the relevant code regions.
In this paper, we introduce an inverse defect prediction approach
to identify methods that contain hardly any faults. We applied our
approach to six Java open-source projects and show that on average
31.6% of the methods of a project have a low fault risk; they contain
in total, on average, only 5.8% of all faults. Furthermore, the results
suggest that, unlike defect prediction, our approach can also be
applied in cross-project prediction scenarios. Therefore, inverse
defect prediction can help prioritize untested code areas and guide
testers to increase the fault detection probability.

ACM Reference Format:

Rainer Niedermayr, Tobias R6hm, and Stefan Wagner. 2018. Poster: Iden-
tification of Methods with Low Fault Risk. In ICSE 18 Companion: 40th
International Conference on Software Engineering Companion, May 27-June
3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3183440.3195022

1 INTRODUCTION

Software testing can be very time consuming and test resources are
usually scarce. Therefore, it is often not possible to completely test
the whole code base before each release. Consequently, develop-
ment teams must limit their testing scope and focus on code regions
that have the best cost-benefit ratio regarding test resources [2].
To support development teams in this activity, defect predic-
tion has been developed and studied extensively. Defect prediction
identifies code regions that are likely to contain a fault and should
therefore be tested [5, 7]. However, after several decades of research
on defect prediction, it is still hardly used in practice. Defect pre-
diction models need to be trained with precise historical fault data
from the project, which is often not available—especially in new
projects. Cross-project predictions, which use models trained from
data of other projects, are still considered as a difficult task [6, 8].
This paper suggests an alternative approach for prioritizing code
regions: inverse defect prediction (IDP). The idea behind IDP is to
identify code regions with low fault risk, which can be deferred
when writing automated tests if none yet exist. The main difference
to traditional defect prediction lies in the predicted classes and
in the optimization target. While defect prediction classifies an
artifact either as buggy or non-buggy, IDP identifies artifacts that

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ICSE ’18 Companion:
40th International Conference on Software Engineering Companion, May 27-June 3, 2018,
Gothenburg, Sweden, https://doi.org/10.1145/3183440.3195022.

Tobias R6hm
CQSE GmbH
Garching b. Miinchen, Germany
roehm@cqse.eu

Stefan Wagner
University of Stuttgart
Stuttgart, Germany
stefan.wagner@informatik.
uni-stuttgart.de

Table 1: Computed metrics for each method (excerpt).

Metric Name Type

M1  Source Lines of Code (SLOC) length
M2 Cyclomatic Complexity (CC) complexity

M3  Max. Nesting Depth max. value

M9  Array Accesses count
M11 Value Assignments count
M16  If Conditions count
M20 Loops count
M21  Method Invocations count
M23  Null Literals count
M24  Return Statements count
M29  Ternary Operations count
M30 Throw Statements count
M34  Is Constructor category
M36 Is Getter category

exhibit a low fault risk and does not make an assumption about the
remaining artifacts. Instead of predicting all non-faulty artifacts,
IDP aims to identify only those that contain no faults with high
certainty. Therefore, IDP strives to achieve a high precision for the
identified artifacts, while recall is less important. In contrast, defect
prediction aims at a high recall to detect as many faults as possible
and at a high precision such that only few false positives occur.

We applied IDP on the Defects4] dataset [3] at the method level.
We evaluated how many faults the identified low-fault-risk methods
contain and how much savings potential can be gained by ignoring
them during testing. Our results show that IDP can successfully
identify low-fault-risk methods, which contain considerably less
faults than an arbitrary method, and are frequent enough to provide
a worthwhile savings potential for QA activities. Moreover, our
results indicate that IDP can be an alternative to traditional defect
prediction in cross-project prediction scenarios.

2 APPROACH

The IDP approach to identify low-fault-risk methods comprises
the computation of source-code metrics for each method, the data
pre-processing before the mining, and the creation of a classifier
using association rule mining.

Like defect prediction models, IDP needs metrics to train a clas-
sifier and an indication whether a method was faulty at least once.
We computed for each method common software-analysis metrics,
metrics that count occurrences of Java language constructs, and
categories to which a method can belong to. Table 1 presents an
excerpt of the 39 used metrics.


https://doi.org/10.1145/3183440.3195022
https://doi.org/10.1145/3183440.3195022
https://doi.org/10.1145/3183440.3195022

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

As association rule mining computes frequent itemsets from
categorical attributes, our next step was to discretize the numerical
metrics. For the numeric software-analysis metrics, such as SLOC
and the cyclomatic complexity, we inspected the value distribution,
computed tertiles, and created a new binary metric for each tertile.
For all count metrics, we created a binary “has-no”-metric, which is
true if the value is zero, e.g., CountLoops = 0 = NoLoops = true.
For the method categories (setter, getter, ...), no transformation
was necessary since they are already binary.

Defect datasets are often highly imbalanced and contain only a
small portion of faulty methods [4]. Therefore, we applied SMOTE!,
a well-known algorithm for over- and under-sampling, to the train-
ing data to address the imbalance.

To identify low-fault-risk methods, we first mined association
rules of the type {Metricl, Metric2, Metric3, ...} — {NotFaulty} by
applying the Apriori algorithm [1] to the training data. Next, we
ordered the obtained rules descending by their confidence value.
The confidence of a rule expresses the proportion of methods that
are non-faulty and satisfy the metric predicates out of all methods
that satisfy the metric predicates. Thus, it can be considered as the
precision of a rule. Finally, to build the low-fault-risk classifier, we
combined the top n association rules with the highest confidence
values using the logical-or operator. Hence, we considered a method
to have a low fault risk if at least one of the top n rules matched. To
determine n, we computed the maximum number of rules until the
share of faulty methods in low-fault-risk methods of the training
set exceeded a certain threshold.

3 EVALUATION

We evaluated our approach on the Defects4] dataset [3], which
contains real faults for six open-source projects. We performed both
within- and cross-project predictions and evaluated the identified
methods. For within-project predictions, we applied 10-fold cross-
validation. We randomly sampled the dataset of each project into
ten stratified partitions of equal size and used each sample once
for testing the classifier, which is trained on the remaining nine
samples. Table 2 exemplarily presents resulting association rules.
For cross-project prediction, we evaluated each of the six projects
with a classifier trained on data from the respective other five
projects.

The results of the within-project predictions show that IDP clas-
sified between 16% and 75.3% of the methods as “low fault risk”
(median: 31.6%); the identified methods comprise between 5% and
68.5% of the SLOC (median: 14.2%). These methods are on average
six times less likely to contain a fault than an arbitrary method.
Low-fault-risk methods are usually short, but their source code
lines of code (SLOC) are still 3.4 times less likely to contain a fault.
Figure 1 illustrates the within-project results.

Cross-project IDP found between 18.4% and 31.2% of the methods
to have a low fault risk (median: 23.2%); they contain between
6.3% and 10.1% of the SLOC (median: 7.8%). Surprisingly, their
fault density is lower (compared to within-project predictions),
because they are nearly 11 times less likely to contain a fault than
an arbitrary method. Based on SLOC, they are 3.7 times less likely
to contain a fault.

ISynthetic Minority Over-sampling Technique

R. Niedermayr et al.

Table 2: Top three association rules for the project Apache
Commons Lang (within-project prediction, fold 1).

# Rule

1 {UniqueVariableldentifiersLessThan2, NoMethodInvocations}
= {NotFaulty}

9 {SlocLessThan4, NoAnyArithmeticOp, NoMethodInvocations}
= {NotFaulty}

3 {SlocLessThan4, MaxMethodChainingLessThan2,
UniqueVariableldentifiersLessThan2} = {NotFaulty}

100%

75% /
o \ //

25% ———
\ /
OO/D ' ' ' ' ' '
chart closure lang math mockito time

Figure 1: @ Proportion of low-fault-risk methods classified
by within-project IDP and e their share in faults of all faults.
In the project Google Closure Compiler, IDP classified 29.9% of the methods
to have a low fault risk; they contain only 4.7% of all faults.

4 CONCLUSION

Inverse defect prediction using association rule mining can be used
to identify low-fault-risk methods. The identified methods are in-
deed considerably less likely to contain a fault and can provide a
worthwhile savings potential for QA activities. This applies to both
within- and cross-project predictions.

ACKNOWLEDGMENTS

This work was partially funded by the German Federal Ministry of Education
and Research (BMBF), grant “Q-Effekt, 011S15003A”. The responsibility for
this article lies with the authors.

REFERENCES

[1] R Agrawal, R Srikant, and others. 1994. Fast Algorithms for Mining Association
Rules. In VLDB’%4.

[2] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. 2012. A Systematic
Literature Review on Fault Prediction Performance in Software Engineering. TSE
38, 6 (2012).

[3] R.Just, D. Jalali, and M. Ernst. 2014. Defects4]: A Database of Existing Faults to
Enable Controlled Testing Studies for Java Programs. In ISSTA’14. Tool demo.

[4] T. Khoshgoftaar, K. Gao, and N. Seliya. 2010. Attribute Selection and Imbalanced
Data: Problems in Software Defect Prediction. In ICTAI’10.

[5] T.Menzies, J. Greenwald, and A. Frank. 2007. Data Mining Static Code Attributes
to Learn Defect Predictors. TSE 33, 1 (2007).

[6] B.Turhan, T. Menzies, A. Bener, and J. Di Stefano. 2009. On the Relative Value of
Cross-Company and Within-Company Data for Defect Prediction. Empir. Softw.
Eng. 14, 5 (2009).

[7] E. Weyuker and T. Ostrand. 2008. What Can Fault Prediction Do for YOU?. In
TAP’08.

[8] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy. 2009. Cross-
Project Defect prediction: A Large Scale Experiment on Data vs. Domain vs.
Process. In ESEC/FSE’09. ACM.



