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Abstract

When a developer works with an object-oriented framework that he does not know well,
it is easy to forget an important method call. We study a new technique for detecting
missing method calls in Java applications that was proposed by Monperrus et al. [14].
The technique does not rely on hard-coded rules or any input besides the source code
itself; instead, it detects outliers based on the majority rule: If a type is used in one
particular way many times and differently only once, this probably indicates a bug.

Based on the implementation by Monperrus et al., we develop a system that supports
three slightly different techniques for detecting missing method calls. To investigate
which one produces the best results, we evaluate them on a dataset of more than 600
open-source Android applications. We manually review the anomalies our implementation
finds in 10 randomly selected applications and also perform an automated benchmark
that relies on artificially degrading existing code.

In the comparison between the different variations, the original technique by Monperrus
et al. comes out ahead. However, even if it manages to uncover one true bug, its total
results are mediocre with only 3 true positives among 17 total findings. Additionally, our
evaluation points in the direction of the majority rule being sensible to input perturbations
and needing a lot of data that is not easy to obtain.

Finally, we propose utilizing the majority rule to detect superfluous or wrong method
calls, as well. We present an implementation of the proposed system and perform a
manual review of its findings. The outcome suggests that the majority rule is not suitable
for detecting this particular type of error.
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1 Introduction

Developers often use existing libraries or software frameworks, which expose their func-
tionality through an application programming interface (API), to take care of the most
complex tasks. These APIs would ideally be simple and easy to use, but there is always
a trade-off between usability and flexibility. More powerful frameworks in particular
struggle to provide a trivial API without limiting developers’ ability to take full advantage
of their functionality. Correctly using an API often requires a profound understanding
of it; not considering specific constraints and requirements can lead to serious bugs or
complications.
Sometimes, these problems could have been avoided if the developer had paid better

attention to the API’s documentation. However, documentation is often vague or
incomplete leading to misinterpretations or oversights. Moreover, even if it is of high
quality, the complexities of some libraries make it inevitable that there will be erroneous
invocations of their APIs. Regardless of their origin, mistakes can relate to parameter
choice, method order, or a range of other factors (some methods may need to be invoked
in a separate thread, a specific precondition may have to be satisfied, setup work may
need to be performed).

Examples, which come to mind in Java, are a programmer calling next() on an iterator
without first checking with hasNext() if it even contains another object, or a class which
overrides equals() without ensuring that an invocation of hashCode() always produces
the same output for two equal objects. Despite the fact that there might be numerous
appropriate ways to use an API, there are underlying patterns that the correct invocations
have in common. For the Java examples, they could take the form of “an object which
implements equals() must also implement hashCode()”, “if object A equals object B,
their hashCode() must also be equal” or “a call to next() on an iterator should be
preceded by a call to hasNext() to ensure that it actually contains another object”.

API usage patterns [22] can aid in detecting these kinds of defects in a software project,
by noting where the code deviates too far from the patterns associated with the API it
is employing. The challenge here is twofold. First, it is extracting and recognizing the
patterns. Second, it is understanding when a deviation from a pattern actually signifies
a code smell or an error that should be corrected.
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1 Introduction

1.1 Missing Method Calls

Of the many subtle mistakes a developer can make when working with an API, this work
focuses on one specific type: missing method calls, which occur in the context of Object
Oriented Programming (OOP). In OOP, an object of a specific type is almost always
used by invoking some of its methods. Types will then have underlying patterns, such
as “when methods A and B of type T1 are invoked, then method C is called as well” or
“methods X and Y of type T2 are always used together”. Given an object of type T1 on
which only methods A and B are called, we can say that a call to C is missing. Similarly,
if we have an object of type T2 where only X is invoked, we can say that a call to Y is
missing.

Developers often fail to make important method calls when using types with which they
are not deeply familiar. As this can occur with a new library, an extensive framework,
or even a whole platform (e.g., Android), we use these terms interchangeably. Lack of
familiarity may arise not just when using code from an external source, but also when
working on a large codebase. In large software projects it is common that one developer
does not know all of the code, and thus, they will often encounter types which they do
not know how to use correctly.
Studies have confirmed the intuition that missing method calls are common pitfalls

across a range of applications, even in mature code bases. In an informal review [14],
Monperrus et al. found bug reports1 and problems2 related to missing method calls in
many newsgroups, bug trackers, and forums. The issues range from runtime exceptions3
to problems in some corner cases, but generally reveal at least a code smell, if not worse.
They also performed an extensive analysis [15] of the Eclipse bug repository, searching
for syntactic patterns that they deemed related to missing method calls, such as: “should
call”, “does not call”, “is not called”, or “should be called”. Manual inspection confirmed
that more than half (117 of 211) of the bug reports located in this manner were indeed
related to a missing method call.

This number is, if anything, an underestimation of the total number of missing method
call bugs in the code base. After all, the researchers might have missed some syntactic
patterns, and the bug repository can only contain those bugs that have already been
discovered. All in all, it seems clear that automatically detecting missing method calls in
production code would be very helpful, not only saving developer time but also making
maintenance cheaper and more manageable.

1https://bugs.eclipse.org/bugs/show_bug.cgi?id=222305
2https://www.thecodingforums.com/threads/customvalidator-for-checkboxes.111943/
3https://issues.apache.org/jira/browse/TORQUE-42
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1.2 Detection – but how?

A simple and straightforward approach to detecting missing method calls would be to
build a set of hard-coded rules, such as:

• “always call setControl() after instantiating a TextView”

• “in Method onCreate() of classes extending AppCompatActivity always call
setContentView()”

• “when calling next() on an Iterator always call hasNext() (before)”

Well-crafted and -reasoned rules along these lines could facilitate precise detection of
missing method calls and contribute to better, less buggy code. However, creating and
maintaining a list of rules like this requires manual effort and likely demands tremendous
amounts of time and money, especially in a world where software is changing continually.
While the effort might even be justified for large and important libraries, it multiplies
with the size of the library to the point of being completely infeasible.

Instead, we propose automatically detecting locations in a code base where a method
call is potentially missing, using only the code itself as input. Such an approach would
adapt to changes without requiring additional work from a developer and could also be
applied to proprietary code, which is closed to the public. The locations this method
pinpoints might not be as accurate as those discovered by a hand-crafted list of rules,
but a second step could address this problem: manual examination by an expert, who
would determine the severity of the problem and, if necessary, issue a fix. Whether this
proves to save time and money hinges on the accuracy of the approach.

1.3 Contribution

To understand and tackle the missing method call problem, Monperrus et al. [14][15]
introduced the notion of type usages. A type usage is the list of method calls which are
invoked on an object of some type and occur in the body of some method. The idea
behind the technique by Monperrus et al. is to check for outliers among the type usages
by using the majority rule: If a type is used in one particular way many, many times
(that is, in the majority of cases) and differently only once (or a few times), this probably
indicates a bug.
In this work, we introduce some variants of this idea and examine if they yield any

improvements. Additionally, we propose using the majority rule to detect superfluous
or wrong method calls. Based on the implementation by Monperrus et al., we develop
a system for detecting missing method calls. We eliminate some minor inaccuracies
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1 Introduction

from their implementation and add a database backend which enables the system to
incorporate more data into its decisions.

To understand how well this approach works, we apply the system to a dataset of more
than 600 open source Android applications and manually analyze the results. Besides the
manual review, we also take the results of an automated benchmark into consideration.
We examine which of the variations performs best and give insight on the prerequisites
that this technique has with respect to input size and quality. Finally, we study if the
majority rule is well suited for detecting superfluous or wrong method calls.

1.4 Outline

In Chapter 2 we present previous work which goes in a similar direction. Chapter 3
explains the theoretical background of the method proposed by Monperrus et al. and in
Chapter 4 we propose some variations to their method. We explain the inner workings
of our implementation in Chapter 5, before summarizing the details and results of the
evaluation in Chapter 6. The last Chapter 7 concludes this work and gives an outlook
for future research.
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2 Related Work

It is difficult and time-consuming to fix bugs in software. The maintainer has to realize
that there is a bug, identify its cause and understand the steps necessary to fix it.
Especially for larger software systems automatically detecting low-quality code and
improving it can contribute significantly to the maintainability of the code and prevent
bugs in the future. Because of this, there has been a lot of interest in approaches for
automatically detecting bugs, or even just smells in code.

In this chapter, we present a number of different approaches for smell and bug detection.
We start with some “conventional” methods which mostly rely on hard-coded rules and
patterns. Since we are applying the method studied in this thesis to some Android
applications in Chapter 6, we then give a quick overview of smell detection related
explicitly to Android applications. Finally, we look into techniques which attempt to
learn rules and properties from the code they are analyzing instead of relying on rules
which their developers defined a priori. These automated techniques need fewer changes
when the system under analysis evolves, but they might not be as accurate.

2.1 Finding Code Smells with hard-coded Rules

Findbugs1 is a static analysis tool that finds bugs and smells in Java code. It reports
around 400 bug patterns and can be extended using a plugin architecture. Each bug
pattern has a specific detector, which uses some unique, sometimes quite elaborate
detection mechanism. These detectors are mostly built starting from a real bug, first
attempting to find the bug in question and then all similar ones automatically as well.

Ayewah et al. [1] apply Findbugs to several large open source applications (Sun’s JRE2

and Glassfish J2EE server3) and portions of Google’s Java codebase. Their premise is
that static analysis often finds true but trivial bugs, in the sense that these bugs do
not actually cause a defect in the software. This can be because they are deliberate
errors, occur at locations which are unreachable or in situations from which recovery is

1http://findbugs.sourceforge.net/, successor: https://spotbugs.github.io/
2Version 1.6.0 (different builds) http://www.oracle.com/technetwork/java/javase/downloads/

java-archive-downloads-javase6-419409.html
3v2 http://www.oracle.com/technetwork/java/javaee/downloads/java-archive-downloads%

2Dglassfish-419424.html
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not possible. In their analysis Findbugs detects 379 medium and high priority warnings
which they classify as follows:

• 5 are due to erroneous analysis by Findbugs

• 160 are impossible or have little to no functional impact

• 176 can potentially have some impact

• 38 are true defects which have substantial impact, i.e., the real behavior is clearly
not as intended

Their main takeaway is that this kind of static analysis can find a lot of true bugs, but
there will also be a lot of false positives among them, and it can be difficult to distinguish
them.
To alleviate the problem of a high false positive rate among the findings reported

by Findbugs, Shen et al. [23] propose a ranking method which attempts to rank true
bugs before less critical warnings. It is based on a principle they call “defect likelihood”,
which is essentially the probability that a finding is a true defect. They calculate this
probability using the findings of a large project (in this case the JDK), each of which
they manually flag as either a true or a false positive. The defect likelihood can not
only be calculated for one specific bug pattern but also across categories and types with
variance as a tiebreaker. The resulting ranking can be refined with user feedback when
it is applied to a specific project. In their evaluation on three open source applications
(Tomcat4, AspectJ5 and Axis6) they compare their ranking against the default severity
ranking of Findbugs, which uses a hard-coded value for each bug type. With cutoffs at
10%, 20%, 30%, . . . of the total findings they achieve precision and recall systematically
better than the default ranking. This especially holds true for cutoff values around 50%.
Other tools for detecting code smells are Decor [13] and iPlasma [12].

2.2 Android-specific Smell Detection

Verloop [24] uses Java refactoring tools (e.g. PMD7 and JDeodorant8) to detect basic
code smells like large classes or long methods in mobile applications. A noticeable finding
is that smells can appear at different frequencies in classes inheriting from the Android

4Version 6.0.18 http://tomcat.apache.org/
5Version 1.6.4 http://eclipse.org/aspectj/
6Version 1.4 http://jlint.sourceforge.net/
7https://pmd.github.io/
8http://www.jdeodorant.org
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framework than in other classes, for example they detect the “long method” smell nearly
twice as often in classes that inherit from the framework than in those that do not.

Hecht et al. [10] present an approach they call PAPRIKA which operates on compiled
Android applications but tries to infer smells on the source code level. From the byte-code
analysis, it builds a graph model of the application and stores it in a graph database.
The nodes of the graph are entities such as the app itself, individual classes, methods
and even attributes and variables. These nodes are then further annotated with specific
metrics relevant to the current abstraction level, e.g. “Number of Classes” for the app,
“Depth of Inheritance” for a class or “Number of Parameters” for a method. Finally, they
extract smells using hand-crafted rules written in the Cypher query language9. This
enables them to recognize four Android specific smells and four general, OOP related
smells.
To evaluate this approach, the authors use a witness application, which contains 62

known smells. Using the right kind of metrics, they achieve precision and recall of 1
on this application. Further, they apply their tool to some free Android applications
and make some assertions about the occurrence of antipatterns in publicly available
applications. One finding to emphasize is that some antipatterns, especially those related
to memory leaks, appear in up to 39% of applications, even well known and widely used
ones like Facebook or Skype.
Another paper worth mentioning is the work by Murali et al. [16]. They leverage a

Bayesian approach for learning specifications in conjunction with neural networks, to
discover API usage errors. They evaluate their method on a large corpus of Android
applications and are able to detect multiple subtle bugs.
After Reimann et al. [20] presented a catalog of 30 Android specific code smells,

Palomba et al. [18] developed a tool to detect 15 of them. It operates on the abstract
syntax tree of the source code and uses specifically constructed rules to detect each of
the smells. The authors analyze 18 Android applications and compare the results of
their tool against a manually built oracle, an oracle that was created by having two
Masters students study the code of the applications in depth and manually flag offending
locations. While they reach an average precision and recall of 98%, there are some cases
in which their tool fails or yields false positives.
One especially interesting failure is the smell of ‘missing compression’. It advises

compressing the data when making external requests in order to save bandwidth. To
detect places in the code where a request is made, but compression is missing, their
hard-coded rule checks if the developer used one of two popular compression libraries.
However, recently a competing compression library has been gaining in popularity. Their
rule does not include it and, thus, falsely flags the usage of this library as the “missing

9https://neo4j.com/developer/cypher-query-language/
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compression” smell. This is an excellent example of a case where hard-coded rules fail
because they are not kept up to date (new library becomes popular, interface changes,
. . . ), do not consider a special case or conditions change in some other way.

2.3 Learning from the analyzed Code

As the results of the previous paper showed, it can be difficult and costly to keep hard-
coded detection rules up to date and relevant. Because of this, there has been interest in
approaches which adapt automatically to changing requirements by learning rules from
the source code and looking for violations of those rules.

Engler et al. [4] were probably the first to propose the general idea behind the majority
rule. In their paper, they rely on contradiction and common behavior to “find what
is incorrect without knowing what is correct”. To do this, they use static analysis to
infer what a programmer believes about the system state and then check these beliefs
for contradictions. They provide several “templates” for beliefs the programmer must or
may hold. Each template is catered for a specific type of belief and can concern a wide
range of things (a pointer being null or not being null, a lock being locked or unlocked,
etc.). Among the beliefs they extract in this manner they look for common behavior or
outright contradictions and use this to flag potential anomalies. In their evaluation on
Linux and OpenBSD, they find hundreds of bugs related to the different bug types that
their templates can discover. Their approach is more general, whereas we are focused on
detecting one specific error type. Conversely, our approach is more automated and does
not need templates.
Pradel et al. [19] noticed that in statically typed languages the compiler helps the

programmer with passing method arguments in the correct order. However, the compiler
cannot ensure the correct order of equally typed arguments (such as setEndPoints(int
low, int high)). Confusing the order of these arguments can cause unforeseen and
hard to detect errors. Their idea is to detect mixed up method arguments using only
semantic information in the source code, namely variable and parameter names. They
extract these and compare the names found at the call sites to the names from the
implementation body using string similarity metrics. If reordering the names yields a
significantly better similarity score, they report an anomaly. In their evaluation on 12
Java programs from the DaCapo Benchmark suite [3] (more than 1.5 Million lines of
code), they reach a precision of 72% and recall of 38% on seeded (i.e. “faked”) anomalies.
In real code, they found 29 anomalies of which 22 revealed true problems (76%).

In a related work, Rice et al. [21] also use identifier names to detect argument selection
defects, in which the programmer has chosen the wrong argument to a method call. Using
a high sensitivity threshold, their method reaches a precision of 85%. Lower thresholds

8
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improve the recall but also lower the true positive rates. The last two works are different
from our approach as they are looking at a different type of error.

In a more general attempt Fontana et al. [6][5] compare 16 different machine learning
techniques for code smell detection. As their training data, they manually evaluate a
large body of code and tagged four basic smells (data class, large class, feature envy
and long method). All of the different approaches show good performance, but J48 and
random forest have the best results, while support vector machines fare the worst. These
works differ from ours in that they are looking for very general smells and are using
supervised machine-learning techniques to detect them.
As already mentioned, incorrect API documentation can be a big problem. It often

occurs when an API developer changes the code but forgets to adapt the documentation
accordingly. If a user of the API then relies on the documentation, she can run into
unforeseen bugs, and what is worse, the documentation might even hinder her. To alleviate
this problem, Zhou et al. [28] propose an automated approach for detecting “defects”
in the API documentation. They consider two situations: either the documentation is
incomplete in describing the constraints at hand, or the description exists, but it does not
match the realities of the code. They make one crucial assumption: the code is correct
because, contrary to the documentation, it has been tested extensively.
Their approach analyzes the code statically and uses pattern-based natural language

processing to build a first-order logic formula of the constraints which are present. For
the API documentation, they use heuristics and a part-of-speech tagger to find the
restrictions and constraints which are mentioned, before synthesizing them into another
first-order logic formula. The resulting formulas are fed into an SMT (satisfiability
modulo theories) solver [2] to detect inconsistencies between them. They apply their
prototype implementation to the java.awt and java.swing packages and find 1419
defects, of which 81.6% are true positives. Using the heuristics extracted from these
packages, they also apply the prototype to other packages and find 1188 defects of which
659 are true positives (a precision of 55.5%). Overall it is worrying (if not surprising),
that there are so many inconsistencies in the JDK documentation, which even has a
reputation for being of rather high quality. Less well-known APIs will probably have
inferior documentation and thus, even further increase the risk of API usage related bugs.
Wang et al. [25] propose a method that leverages n-gram language models to detect

bugs. Other approaches do not learn from the code at all, for example, Hanam et al. [9]
use unsupervised machine learning over bug fixes to extract bug patterns. For more
research in the direction of learning API properties, we recommend the survey paper by
Robillard et al. [22].

9
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2.4 Detecting Method Call Anomalies

Bad documentation and high complexity often make it difficult to invoke API methods
correctly. To circumvent this problem, developers often search for examples of how to
use a particular API. To aid with this search, Zhong et al. [27] built a search tool for
example code snippets. It extracts API usages which describe how in certain scenarios
some API methods are frequently called together and if the usage follows any sequential
order. Using clustering and frequent subsequences mining it then groups the extracted
usages into usage patterns over which the search operates. While the tool does not look
for any anomalies or code smells, it extracts precisely the type of information that is
interesting if one wants to detect anomalies.

There have been some works concerned with finding patterns in the way specific types
are used and utilizing those patterns to find potential bugs. Most relevant for this work
and its primary inspiration are two papers by Monperrus et al. [14][15] that propose a
technique for detecting missing method calls. It is based on the intuition that an instance
is probably an anomaly if it is alone in a large number of instances that do something
similar, but not exactly the same. They call this the “majority rule” and we explain it in
detail in Chapter 3.

The evaluation they present is split into two parts. The first is based on a simulation
which creates defects by degrading real software. It removes singular method calls from
the code and checks if the majority rule can detect these known missing calls. They
perform this simulation on several software packages, among them the Eclipse user
interface, Apache Derby10 and Apache Tomcat11. Their system can answer between
54% and 76% of the simulated queries (depending on the package), and of the queries
it can answer, 73% to 89% contain the missing call, albeit not necessarily as the first
recommendation. All in all, it reaches precision between 59% and 83% and recall of 41%
to 68%. However, it is questionable how relevant these numbers are because it is not
clear in how far real bugs will share characteristics with these artificially created cases.
Therefore, Monperrus et al. also perform an additional, qualitative evaluation. They

apply their tool to Eclipse, Derby, and Tomcat and manually analyze 30 very anomalous
cases reported by it. They find that there are different reasons for an instance to be
anomalous, not all of them indicate a missing call. Some are just a code smell, i.e., a
situation which could be rewritten or refactored for more clarity, or related to software
aging, like code using an old version of the API. They reported 17 issues and got 9
patches accepted, but there are also some negative results, where the anomaly is just
that: an outlier, which is completely valid, even if a majority of other instances behave
differently.
10https://db.apache.org/derby/
11https://tomcat.apache.org/
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2 Related Work

Before this, Wasylkowski et al. [26] introduced a method to locate anomalies in the
order of method calls. First, they extract usage models from Java code by building a
finite state automaton for each method. The automata can be imagined similarly to the
control flow graph of the method with instructions as transitions in the graph. From
these, they mine temporal properties, which describe if a method A can appear before
another method B. This process determines if there exists a path through the automata
on which A appears before B, which in turn implies that a call to A can happen before
one to B. Finally, they are using frequent itemset mining [8] to combine the temporal
properties into patterns.
In their work, an anomaly also occurs when many methods respect a pattern, and

only a few (a single one) break it. In their experiments, they find 790 violations when
analyzing several open source programs. Manual evaluation classifies these into 2 real
defects, 5 smells and 84 “hints” (readability or maintainability could be improved). This
adds up to a false positive rate of 87.8%, but with the help of a ranking method, they
can obtain the 2 defects and 3 out of 5 smells within the top 10 results.
Gruska et al. [7] extend the work of Wasylkowsky et al. and use a lightweight parser

to extract temporal properties from more than 6,000 open-source Linux projects. They
manually evaluate the findings of 20 randomly selected projects and find that around
25% of the high-ranked anomalies uncover actual code smells or defects.

In a related work, Nguyen et al. [17] use a graph-based representation of object usages
to detect temporal dependencies. This method stands out because it enables detecting
dependencies between multiple objects and not just one. Here, the object usages are
represented as a labeled directed graph in which the nodes are field accesses, constructor
or method calls and branching occurs because of control structures. Thus, the edges of
the graph represent the temporal usage order of methods and the dependencies between
them. They mine patterns using a frequent induced subgraph detection algorithm which
builds larger patterns from small patterns from the ground up, similar to the way merge
sort operates. Here an anomaly is also classified as a “rare” violation of a pattern, i.e., in
relation to its size it does not appear frequently in the dataset. In an evaluation case
study the authors find 64 defects in 9 open source software systems which they classify
as 5 true defects, 8 smells and 11 hints, equalling a false positive rate of 62.5%. Using a
ranking method the top 10 results contain 3 defects, 2 smells and 1 hint.
The last three works differ from our approach in that they are concerned with the

order of method calls rather than their presence.
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3 Detecting Missing Method Calls

In the introduction, we explored errors related to missing method calls. These occur
frequently, particularly when developers are working with unfamiliar or new code. We
would like to automatically detect instances of missed method calls to make maintenance
easier and cheaper. In this chapter, we explain in detail the method proposed by
Monperrus et al. [14][15] which is based on the majority rule.

3.1 Foundation: The Majority Rule

The intuition behind the majority rule is that the way something is done most often
is probably the correct way. It follows that if everyone or almost everyone is doing
something differently than you, you are probably doing it wrong. This gives rise to the
definition of an anomaly by the majority rule: instances with few or no “equal” but many
“slightly different” neighbors. Such anomalies should probably adapt to behave like their
very similar neighbors. What exactly “equal” and “slightly different” mean has to be
defined for each application of the majority rule.
To illustrate how this idea might work in the context of object-oriented software and

method calls, consider the following example. We are analyzing an Android app which
uses a total of 100 instances of the Button class. On all 100 the method setText()
is invoked to describe the functionality of the button, but only 99 of them also call
setFont(). There is one button that is missing this call and, thus, uses the default font.
It seems highly likely that this one button is an exception to the rule “each button which
invokes setText() should also call setFont()” and therefore a mistake. To correct this,
it should also make a call to setFont(). Imagine all buttons in the application using a
unique and beautiful font, but this one button displaying Comic Sans!

3.2 Type Usages

Generally speaking, type usages are an abstraction over the code. They ignore the
order of method calls and are only concerned with the list of method calls invoked on a
particular object. The critical pieces of information associated with a type usage are the
type of the object, the list of methods invoked on it and the context in which the object

12



3 Detecting Missing Method Calls

is used. We define the context as the name of the method in whose body the type usage
appears together with the type of its parameters.

It is useful here to define formal terms. For each variable x, note its type T (x) and the
context C(x) in which it occurs. The set of methods which are invoked on x within C(x)
is denoted as M(x) = {m1,m2, . . . ,mn}. If there are two variables of the same type, this
results in two type usages being extracted – unless they refer to the same object; more
on this in Section 5.2.

class A extends Page {
Button b;

Button createButton() {
b = new Button();
b.setText("hello");
b.setColor(GREEN);
... (other code)
Text t = new Text();
return b;

}
}

T(b) = ’Button’
C(b) = ’Page.createButton()’
M(b) = {<init>, setText, setColor}

T(t) = ’Text’
C(t) = ’Page.createButton()’
M(t) = {<init>}

Figure 3.1: Example illustrating the Extraction of Type Usages (taken from [15])

As an example, consider the code in Figure 3.1. It contains two type usages, one of
type Button and another of type Text. The context for both is createButton(). The
methods invoked on the Button object are initialization (new), setText, and setColor.
The Text object, on the other hand, is only initialized. Given the two variables b and t
as input, the corresponding values of T (x), C(x) and M(x) are shown on the right-hand
side.

3.3 Exact and Almost Similarity

To detect type usages that are anomalous by the majority rule, we need a notion of what
it means for two type usages to be exactly similar or only almost similar. Informally, we
say that two type usages are exactly similar if they have the same type, if the type usage
appears in a similar method (i.e., the context is identical), and if their list of method
calls is identical. Recall that the context is the name of the method in which the type
usage occurs, together with the type of its parameters. We call these type usages “similar”
instead of “equal” because several things are not the same: variable names, surrounding
or interspersed code, method order or parameters, and the actual location (class).

13



3 Detecting Missing Method Calls

The notion of almost similarity is analogous. We say that a type usage y is almost
similar to a given type usage x if they share the same type and if context and the list of
method calls of y is the same as the method calls of x plus one additional call.

class A extends Page {
Button createButton() {

Button b = new Button();
... (interlaced code)
b.setText("hello");
... (interlaced code)
b.setColor(BLUE);
return b;

}
}

class B extends Page {
Button createButton() {

... (code before)
Button aBut = new Button();
... (interlaced code)
aBut.setColor(RED);
aBut.setText("goodbye");
return b;

}
}

class C extends Page {
Button myBut;
Button createButton() {

Button myBut = new Button();
myBut.setColor(ORANGE);
myBut.setText("Great Company!");
myBut.setLink("https://www.cqse.eu");
... (code after)
return b;

}
}

class D extends Page {
Button createButton() {

Button tmp = new Button();
tmp.setLink("https://slashdot.org/");
... (interlaced code)
tmp.setText("All the news");
tmp.setColor(GREEN);
tmp.setTooltipText("Click me!");
return b;

}
}

Figure 3.2: Examples of similar and almost similar Type Usages (also inspired by [15])

Consider the example code snippets in Figure 3.2. The type usages of Button in classes
A (top left) and B (top right) are exactly similar, because they not only appear in the
similar method createButton, but also invoke the same methods setText and setColor.
Notice that variable names and method parameter have no impact on this. Additionally,
the comparison is not influenced by the order of methods or any interspersed code that
does not call a method on the Button objects. The type usage in class C (bottom left) is
almost similar to those in A and B, because apart from setText and setColor it also
invokes one additional method – setLink. Finally, the type usage in class D (bottom
right) invokes two additional methods compared with the ones in A or B, meaning that
it is not almost similar to them. However, it is almost similar to the type usage in class
C, since it only invokes one additional method – setTooltipText.
To formalize these notions, we define two binary relationships over type usages. The

relationship for exact similarity is called E′ and we say that two type usages x and y are
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3 Detecting Missing Method Calls

exactly similar if and only if:

xE′y ⇐⇒ T (x) = T (y) ∧
C(x) = C(y) ∧
M(x) = M(y)

Given this, the set of exactly similar type usages in relation to x is defined as:

E(x) = {y | xE′y}

Observe that this relation holds true for the identity, i.e., xE′x is always true and
∀x : x ∈ E(x) (and thus |E(x)| ≥ 1).
For almost similarity, we define the relation A′ which holds if two type usages are

almost similar. A type usage y is almost similar to a type usage x iff:

xA′y ⇐⇒ T (x) = T (y) ∧
C(x) = C(y) ∧
M(x) ⊂M(y) ∧
|M(y)| = |M(x)|+ 1

Similarly to E(x), we define A(x) as the set of type usages which are almost similar to
x:

A(x) = {y | xA′y}

In contrast to E(x), A(x) can be empty and |A(x)| ≥ 0. Consider also that A′ is not
symmetrical, i.e., xA′y 6⇐⇒ yA′x since one of the two type usages must have fewer
methods. This also means that y ∈ A(x) =⇒ x /∈ A(y).
We can further refine the definition of almost similarity. Instead of including type

usages which have the same method calls plus one additional one, it is also possible to
consider those type usages which have the same method calls plus k additional ones.
Then, in the definition of A the last line changes to: |M(y)| = |M(x)|+ k, k ≥ 1. The
purpose of this change would be to detect type usages which are missing k calls instead
of just one.

Given a codebase with n type usages, the sets E(x) and A(x) for one given type usage
x can be computed in linear time O(n) by iterating once through all type usages and
checking for similarity or almost similarity.

3.4 The Strangeness Score

Recall the assumption behind the majority rule: A type usage is abnormal if a small
number of type usages is exactly similar, but a significant number are almost similar.

15



3 Detecting Missing Method Calls

Informally, this means a few places use this type in exactly the same way, but a significant
majority use it in a way which is slightly different (by one method call). Assuming the
majority is correct, the type usage under scrutiny is deviant and potentially erroneous,
because it is missing a method call.

To capture concretely how anomalous an object is, we need a measure of strangeness.
This will be the strangeness score. We can use it to order type usages by how much of an
outlier they are and to identify the “strangest” type usages, which are most interesting
for evaluation by a human expert.
Formally, we define the S(trangeness)-Score as:

S-score(x) = 1− |E(x)|
|E(x)|+ |A(x)|

To see that this definition makes sense, consider the following extreme cases: Given
one type usage a without any additional exactly similar or almost similar type usages,
it will have |E(a)| = 1 and |A(a)| = 0. Then, we can calculate the strangeness score:
S-score(a) = 1− 1

1 = 0. So a unique type usage without any “neighbors” to consider is
entirely normal and not strange. On the other hand, given a type usage b with 99 almost
similar and no other exactly similar type usages, we have |E(b)| = 1 and |A(b)| = 99.
This results in a strangeness score of S-score(b) = 1 − 1

1+99 = 0.99. Intuitively such a
type usage is very strange, and indeed, the S-score supports the intuition.

3.5 Which Calls are missing?

It is not enough to detect the type usages that are outliers. We would also like to present
the developer with some candidate suggestions, which method call might be missing. The
intuition for this is to look at all the almost similar type usages and collect the additional
method calls that each of them invokes. Recall, that an almost similar type usage will
make exactly one additional call in comparison to the anomalous one. We then take
the frequency of unique calls among the set of additional method calls and use it as the
suggestion likelihood.

Formally, the calls we can recommend for a type usage x are the calls that are present
in the type usages contained in A(x) but are not in M(x). The set of these possibly
missing methods shall be called R(x) and is defined as follows:

R(x) =
⋃

z∈A(x)
M(z) \M(x)

Now, for each of these methods m in R(x), we can calculate their likelihood as follows:

φ(m,x) = |{z | z ∈ A(x) ∧m ∈M(z)}|
|A(x)|
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3 Detecting Missing Method Calls

This is identical to the share of type usages which use this method among all the type
usages which are almost similar to x. Observe that this definition also works when M(x)
is empty or x is this.

T (x) = Button

M(x) = {<init>}
A(x) = {a, b, c, d, e}
M(a) = {<init>, setText}
M(b) = {<init>, setText}
M(c) = {<init>, setText}
M(d) = {<init>, setText}
M(e) = {<init>, setFont}

R(x) = {setText, setFont}

φ(setText, x) = 4
5 = 0.8

φ(setFont, x) = 1
5 = 0.2

Figure 3.3: Example for computing the Likelihood of missing Calls ([15])

To illustrate these definitions, consider the example in Figure 3.3. The type usage
under analysis is denoted with x, operates on a Button object and the only method that
it invokes is the initialization. There are five almost similar usages denoted as a, b, c, d
and e. Four of them, a through d, have a call to setText after the initialization. The last
one, e, has a call to setFont instead. Thus, we can recommend the methods setText
and setFont with a likelihood of 4/5 = 80% and 1/5 = 20% respectively.

3.6 Ignoring the Context

We integrate the context into the definition of similarity and almost similarity because
a type might be used in different ways depending on the situation it is used in. An
example would be the class FileInputStream which is rarely opened and closed in the
same method. In their evaluation, Monperrus et al. [15] find that not considering the
context adds a lot of noise (not relevant items in E(x) and A(x)) and using it improves
the precision of their experiments. However, one can question the general assumption
behind using the context. The idea that types are used in different ways seems reasonable,
but is the name of the function that they are used in a good separator between those
use cases? Furthermore, using the context might work well for some types and some
systems, but does it make sense everywhere? One problem with using the context is that
it drastically reduces the number of type usages which are even considered for (almost)
similarity. In smaller datasets, this makes it much more likely that patterns appear,
which in truth are only artifacts of randomness.
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3 Detecting Missing Method Calls

All in all, it is not clear that using the context necessarily improves the performance of
the system. Thus, next to the standard variant DMMC (Detecting Missing Method Calls)
that we outlined in the previous sections, we also define a variant called DMMCnoContext,
which does not take the context into account. It uses adapted measures for similarity
and almost similarity, E′

noContext and A′
noContext which are defined in the same manner as

E′ and A′, except that they do not require the context of the type usages to be identical.
The definitions of E, A, S-score and φ stay the same, besides that they now make use of
the newly defined relations.
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4 Extensions

In the previous Chapter, we summarized the work of Monperrus et al. [14][15], in this
one we propose some possible modifications to their method. For instance, it might be
possible to leverage the majority rule not only for detecting missing method calls, but
also to identify superfluous or flat-out wrong method invocations. Additionally, there are
different ways of organizing the type usage data, which could yield better results. Here,
we give the motivation and theoretical background for these modifications, in Chapter 6
we will explore further how they perform in comparison with the original.

4.1 Class-based Merge

The DMMCnoContext variant seeks to answer the question if it makes sense to group the
type usages based on the method they appear in. Following this line of thought, one
might also ask if it is optimal to collect the type usages with method granularity. Even
when ignoring the context, the type usages will still be extracted on a per-method basis,
that is only the methods invoked in one method body will belong to one type usage.
Maybe grouping method calls with class granularity yields much better results. Often
the methods invoked on one object within a specific class include many, if not all, of the
methods invoked on it in its whole lifetime. Thus, a class-based type usage offers a bigger
window into the objects utilization and, potentially, this makes it easier to detect if some
method is missing.

We will denote this variant as DMMCclass. To obtain the class-based type usages, we
extract the type usages at the method level, exactly as before. However, before calculating
the strangeness score, we merge all those type usages which have the same type and
originate from the same class. We merge them even if the original type usages originate
from different objects because tracing each objects life through the whole class would be
too expensive. With these newly produced type usages, we can then calculate the set of
similar and almost similar type usages using E′

noContext and A′
noContext, respectively.

To formalize DMMCclass, we need the new operator Cls(x) that denotes the class from
which a type usage was extracted. We can then partition the set of all type usages into
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subsets TCi which have the same type and class:

x, y ∈ TCi ⇐⇒ T (x) = T (y) ∧ Cls(x) = Cls(y)
∀i 6= j . TCi ∩ TCj = ∅⋃
TCi = {all type usages}

Then we iterate through the partitions and calculate the set of new type usages as
follows:

{x′ | T (x′) = T (x0),

C(x′) =
⋃
C(xi),

M(x′) =
⋃
M(xi),

with xi ∈ TCj}

In this process, we are merging all type usages that belong to the same partition into
one new type usage. Recall that for exact and almost similarity we will use the version
which ignores the context, so the context C(x′) of the new type usage is not that relevant.

4.2 Investigating different Anomalies

While a missing method call might be the first error type that comes to mind and also
potentially the most frequent one, the general technique of the majority rule can be
adapted to detect two different anomalies related to method calls. First off, it is possible
to flip around the notion of almost similarity and investigate if there exist any superfluous
method calls. Additionally, one can envision a developer invoking the wrong method,
rather than forgetting a call or adding one too many. The primary difference of these
variants lies with the definition of almost similarity between type usages.

4.2.1 Superfluous Method

The idea behind DMMCsuperfluous is the inverse of the method proposed by Monperrus
et al. Instead of checking if a lot of other type usages are calling an additional method
and the current one is thus missing a call, here we check if a lot of other type usages are
making fewer calls, and the current one is doing something extra which it should not. It
is not intuitively clear what kind of errors this procedure will discover or indeed if there
will be any. Furthermore, it is possible that it will only find outliers which are intentional
outliers, whether it is to handle a special case, to work around a bug or for any other
reason. Nonetheless, it seems reasonable to investigate this idea and only dismiss it if it
does not yield any interesting results.
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Adapting the normal system to detect this type of outlier is rather simple. We only
need to adapt the definition of A(x) to:

Asuperfluous(x) = {y | yA′x}

Recall that the almost similar relation A′ is not symmetric and observe that in
comparison to A(x), here x and y are flipped in the application of A′. Thus, this
definition of almost similarity considers type usages to be almost similar, when they
call one method less than the input type usage. With the definition of S-score and φ
as before, the scores will now indicate which type usage is calling anomalously many
methods and which method might be the one that is too much.

4.2.2 Wrong Method

Further extending the idea of the previous section and thinking consequently, developers
might miss a method call, they might add a useless one but, of course, they could also
simply choose the wrong one. Especially if the developer is not all too familiar with a
given framework or there is some ambiguity in the method names or documentation, it
seems feasible that he chooses the wrong method for a given task. It is possible that this
type of error results in noticeable bugs much faster than a missing call, but again we do
not know this before investigating.
To formalize this new variant DMMCwrong looking for erroneous method invocations,

we again only need to change the definition of almost similarity. This time we define a
new relation A′

wrong as follows:

xA′
wrongy ⇐⇒ T (x) = T (y) ∧

C(x) = C(y) ∧
M(x) 6= M(y) ∧
|M(x)| = |M(y)| ∧
∃S . S ⊂M(x) ∧ S ⊂M(y) ∧ |S| = |M(x)| − 1

For this relation to hold, again the type and the context of both type usages have to
be the same. Furthermore, it requires that all but one method of M(x) and M(y) be
identical, that is, that their sets of method calls differ by exactly one method. With this
definition of almost similarity, the majority rule flags those type usages that make an
unusual method call as an anomaly.
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5 Implementation

This chapter focusses on the practical side and on the internal workings of the system we
developed. It explains the steps from receiving the input program to outputting a list of
anomalies which hint at potentially missing method calls. We give details about design
decisions taken and the reasoning behind them, pitfalls that had to be overcome and the
trade-offs that had to be accepted. Additionally, we explore some of the mistakes made
and dead ends that we encountered.

5.1 Overview

Our system is (primarily) a system that detects missing method calls. It works by
statically analyzing a given software application, extracting the type usages it contains
and finally determining if any of them are anomalous by the majority rule as described
in Chapter 3. The result is a list of locations which are potentially missing a method call.
Given a software system which shall be tested for anomalies, the following steps have to
be realized:

1. Extract all type usages from the software;

2. For each type usage x, among them:
a) Search for type usages which are exactly similar to x (i.e. calculate E(x));
b) Search for type usages which are almost similar to x (that is determine A(x));
c) Calculate the strangeness score of x;
d) Extract the list of potentially missing calls and their likelihood φ;

3. Output a list of anomalous type usages, sorted by their S-scores, together with the
calls they are potentially missing.

However, this simple outline does not represent the actual realities of the system.
Instead of a singular process with sequential flow, it is split into three different parts,
which are laid out in Figure 5.1. First, a Java application reads the bytecode of the
program under analysis and iterates through all methods to extract the type usages
which are present. The extracted type usages are then persisted in a database to ensure
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Figure 5.1: System overview

flexibility and high performance in the following analysis phase. For the actual anomaly
detection, we use a small Python program. It iterates through all partitions of type
usages (more on the partitions in Section 5.6), requests the type usages in the current
set and calculates their strangeness scores. After iterating through all the sets of the
application, it finally outputs the results.
The following sections give a more in-depth explanation of the separate steps.

5.2 Bytecode Analysis

We use Soot1 for the bytecode analysis. Soot was originally a Java optimization framework
but has since evolved to support a wide range of use cases. It can analyze, instrument,
optimize and visualize Java and Android applications. For this purpose, it provides call
graph construction, points-to analysis, def or use chains, inter- and intra-procedural
data-flow analysis and taint analysis. We do not need most of its functions, and merely
use it to statically extract type usages from the input application.
In theory, it would be possible to extract type usages from the source code, but

extracting them from compiled code has some advantages. Both the JVM bytecode
and the Dalvik bytecode found in Android applications are very standardized, which
facilitates the analysis. While Soot supports source code analysis on paper, it only works
up to Java 7 and, furthermore, bytecode analysis is the approach recommended by its
authors. Besides that, using compiled applications simplifies our experimental setup, and
as a marginally useful side-effect, it also helps with analyzing obfuscated applications.
Finally, there are no real disadvantages to this approach; if the program is only available
as source code, we can compile it before analyzing it.

1https://sable.github.io/soot/
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Option Parameter Explanation

-app – Run in application mode
-keep-line-number – Keep line number tables

-output-format none Set output format for Soot
-allow-phantom-refs – Allow unresolved classes

-src-prec apk-class-jimple Sets source precedence to format files
-process-multiple-dex – Process all DEX files found in APK

-android-jars [path] The path for finding the android.jar file

Table 5.1: The Parameters passed to Soot

Soot operates by transforming the given program into intermediate representations,
which can then be optimized or analyzed. It provides four intermediate representations
with different use cases; of these, we use Jimple, Soot’s primary representation. Jimple
is a typed 3-address representation which is especially suited for optimization but also
suffices for our purpose.

Soot is a very powerful framework, and one can customize it to cater for quite specialized
requirements. We analyze mostly Android applications, and the settings we apply to
configure it (listed in Table 5.1) reflect this. More detailed explanation is available in the
Soot documentation2.

5.3 Extracting Type Usages

The Soot execution is divided into ‘phases,’ each of which has a specific task, for example,
the aggregation of local variables. Phases consist of transformations, which can modify
the input they receive but are not required to do so. The phases are grouped into ‘packs,’
and the registered packs are applied successively during the execution. To extract type
usages, we register a custom transformation in the Jimple transformation pack, which is
applied to every method in the analyzed program.

The transformation receives as input a Jimple representation of the method body it is
currently analyzing. It iterates through all the statements in the body and marks those
that invoke a method. It then iterates through this list of method calls and groups them
into type usages based on the objects that the calls are made on. For each call, it first
checks whether a type usage corresponding to the object the call is invoked on already
exists. If such a type usage exists, the transformation adds the current call to it and

2https://soot-build.cs.uni-paderborn.de/public/origin/develop/soot/soot-develop/
options/soot_options.htm
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advances to the next method call in the list. If, on the other hand, there is no type usage
for the object, it creates a new one. After completing this process for all method calls in
the method body, the extraction finishes and returns the list of type usages.

One noteworthy step of this analysis is the LocalMustAliasAnalysis, which attempts
to determine if two local variables (at potentially different program points) must point
to the same object. This is necessary to decide whether the calls made on these locals
should be grouped into one type usage or not. The underlying abstraction is based
on global variable numbering and follows the ideas presented by Lapowsky et al. [11],
with some minor adaptations. The analysis is a Soot feature, and in test runs on big
applications, we noticed that it requires a lot of memory and time. Thus, we made it
optional; however, we were able to use it for our benchmarks and evaluation.
For performance reasons, we exclude some classes from the extraction. We do not

store type usages that occur inside those classes; we do, however, still record usages
of them. The packages we exclude in this manner are java.*, android.*, soot.* and
javax.*. These are all framework classes, and we are primarily interested in the type
usages occurring in the application itself, not in the framework.

5.4 Storing Type Usages

After the transformer has analyzed the current method body and extracted a list of type
usages, we store them in a database. For this, we use HSQLDB3, an SQL relational
database written in Java, which provides a multithreaded and transactional database
engine with memory- or disk-based tables. We chose HSQLDB because it is small and
offers excellent performance as well as an easy setup. Additional arguments were its
permissive license and the large number of features it supports.
In their work, Monperrus et al. save all data in a text-based format. Consequently,

they need to parse everything again for the analysis, which can be slow and require a lot
of memory for large inputs. Additionally, the data takes up a lot of storage space when
persisted to disk. In contrast, using a database has many positive ramifications. First,
retrieving data from a database is fast, and we can access the data selectively based
on changing criteria. Additionally, we gain a lot of flexibility, and it becomes easier to
extend both the stored data and the analysis itself.
We can already expect useful results when analyzing one application in isolation,

especially if it is a large application. However, our real interest lies in the framework
and library classes that are used in more than one application. By analyzing many
applications that use the same framework, we can build a large dataset of type usages on
the framework classes and thus, make a more informed decision whether a type usage is

3http://hsqldb.org/
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Figure 5.2: Overview of Database Tables

an anomaly or not. Having a database backend facilitates building such a large dataset
because it can store large amounts of data and we can later query it selectively.

Figure 5.2 depicts the layout of our database. The central piece is the TYPEUSAGE table
whose rows store the information related to one particular type usage. This includes the
class (complete with fully qualified package name) and the context in which the type
usage occurred and, if possible, the line of code in which the object was first encountered.
Additionally, it references two other tables, PROJECT and TYPE. In our setup, the PROJECT
table describes the Android application from which the type usage was extracted together
with the time it took to analyze this application.

The TYPE reference specifies to which type the type usage belongs. Each type holds a
reference to its parent type (if one exists), to enable rebuilding the inheritance hierarchy
if so desired. The methods that can be invoked on a type are stored in the METHOD table.
Finally, the CALLLIST table connects type usages and method calls and specifies which
of the methods that could be invoked are actually called on the type usage in question.

5.5 Improvements and Dead Ends

Monperrus et al. released their code and data on GitHub4. We started with their
implementation and refactored it extensively5 to understand it better and to facilitate
slight improvements like the database backend connection. During the refactoring process,
we discovered small discrepancies between what they describe in the paper and how their
code behaves. In the calculation of almost similarity between two type usages x and y,
the code only checks that the size of M(y) \M(x) is equal to one; however, it fails to

4https://github.com/stg-tud/typeusage
5https://github.com/ke-kx/typeusage
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verify that M(x) does not include any other methods. As such, in the situation that
M(x) = {A,B,C} and M(y) = {A,B,Z}, the code considers y to be almost similar to
x, because y calls the additional method Z. Recall that almost similarity expects one
type usage to have one method call more than the other, and this is clearly not the case
here with both type usages calling three methods. However, we reran their experiments
after correcting this small inaccuracy, and the results did not change significantly.
After we refactored the code and added the database backend, the database stores

all of the type usage data. Therefore, we thought it would be convenient to calculate
the strangeness scores in the database as well and only query it for the finished results.
In hindsight, this was not the best idea. The first query we designed to calculate the
strangeness score was quite complicated, with many joins over views containing many
more joins. Even on a small test dataset, it was pretty slow. We attempted many
improvements to the query, including better indices and smart cached subtables, but the
query remained slow and memory intensive. We even invested some time into exploring
the possibility of using PostgreSQL6, but the results were equally disappointing.
Careful analysis revealed that the biggest problem was the one-by-one comparison of

each type usage with all other type usages to determine their [almost / exact] similarity,
resulting in runtime in O(n2) for n type usages. It seemed that the database was not
able to unravel these numerous comparisons with our insufficient instruction. However, if
one thinks carefully about the process of determining the exact and almost similar type
usages, something stands out: it is not necessary to compare all of the type usages one by
one. The only type usages that are potential candidates for exact or almost similarity are
those that have the same type and context as the type usage under investigation. This
gives rise to natural partitions of the dataset: the sets of type usages which share the same
type and context (or just the same type for the variant DMMCnoContext). Within these
partitions, we need to compare each type usage with all of the others, but each partition
will only be a fraction of the size of the whole dataset. Fortunately, the database is
already ideally suited for obtaining these subsets. With this realization, we can continue
to the final step of the analysis: detecting anomalies.

5.6 Anomaly Detection

Several simple Python scripts handle the anomaly detection. The first step is to partition
the type usages by type for DMMCnoContext or a combination of type and context for
DMMC. The script obtains these partitions with a simple query to the database. In its
outer loop, it iterates through all partitions and retrieves the type usages belonging to
the current partition. Again, querying the database for these type usages is simple and

6https://www.postgresql.org/
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also fast because of indices on the relevant columns.
In the inner loop, the script iterates through all type usages in the current partition

and compares the methods that they invoke. We compare each type usage with each
other type usage only once, similar to filling an upper triangle matrix, thus saving nearly
half of the comparisons. After determining the number of exactly and almost similar
neighbors for each type usage in this manner, it is easy to calculate the strangeness score
for all of them. Finally, the script saves the results for further analysis and evaluation by
an expert.
The anomaly detection is the only part of the implementation that is affected by the

different variants presented in Chapter 4. We already mentioned the differences between
including or excluding the context. For the class merge variant, we perform some simple
preprocessing before starting the analysis. We load the data with type partitioning
and merge those type usages which originated in the same class. For the detection of
superfluous or wrong method calls, we can use the same setup and only need to adapt
the almost equal check to the new definitions.
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Our evaluation of the method proposed by Monperrus et al. is aimed at understanding
how well the majority rule is suited to detect missing method calls in object-oriented
software. We apply our implementation to a large dataset of Android applications and
evaluate the results qualitatively and quantitatively. In the following, we first present
the research questions and why they are relevant to our understanding of this method.
We examine the dataset, present some general data on it and analyze the properties of
type usages in Android applications. After giving details on the study design, we present
the results of our evaluation in response to our research questions. Finally, we consider
the meaning of these results and what might threaten their validity.

6.1 Research Questions

Over the course of this evaluation, we would like to improve our understanding of the
nature and quality of findings produced by our implementation of the DMMC system
for detecting missing method calls. We answer the following more detailed research
questions.

RQ 1: How many true versus false positives are among the anomalous
type usages flagged by the majority rule?

It is among the primary goals of our evaluation to understand if the technique we
implemented is something that a developer would use to improve the quality of the
software he is developing. It seems that the deciding factor for this would be the ability
of the majority rule to detect bugs and to detect them with clarity. If the developer needs
to sift through thousands of anomalies to detect a single true mistake, the technique is
not very useful. If, on the other hand, most of the high ranked anomalies are indeed
hints for potential bugs, it would be of tremendous worth.

RQ 1.1: Is there a noticeable difference between the different variants?

In Chapter 4, we suggest DMMCclass and Monperrus et al. already propose DMMCnoContext.
We would like to understand how these variations behave in comparison to the original
DMMC system. Are the results they produce of comparable, better or worse quality?
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RQ 2: Do the benchmark results align with the results of the manual
evaluation?

Monperrus et al. base a significant part of their evaluation on an automated bench-
mark with the aim of understanding how the majority rules behaves under different
circumstances. Because they do not have a large dataset of known missing method calls
available that they could use to assess the quality of their method, they create instances
of missing calls by sampling a type usage from the dataset and removing one of its calls.
They then calculate the strangeness score of this degraded type usage and determine
if their implementation can detect the known missing call. Using this procedure, they
can test the system on many cases for that they know the correct answer. Knowing the
expected answer, they can calculate relevant metrics that capture the system’s success
and compare the different variants on an objective basis.

While such a benchmark makes sense on the face of it, one can question how meaningful
are its results. Monperrus et al. are essentially simulating the situation that a developer
forgets the method call they remove and verify if their implementation would be helpful
in that case. Here, the critical assumption is that the artificially created missing calls are
in some way comparable to real missing method call bugs in software. If they are not, the
benchmark only measures how well the implementation performs on the exact problem
of detecting randomly removed method calls, which is not very meaningful at all.

RQ 3: How many type usages are necessary to detect anomalies?

Apart from investigating the quality of results, it is also important to understand what
prerequisites this technique has. Here, we examine how much data the majority rule
needs to produce sensible results. Ideally, we would like to understand how big a codebase
needs to be before patterns and their violations emerge. Can we apply this method
to an in-house, closed-source library or does it only work on a well known open-source
framework like Android where it is easy to gather additional data?

RQ 4: How robust is the majority rule in the face of erroneous input
data?

It is not only important to understand how much data the majority rule requires, but
also how sensitive it is to perturbed inputs. The type usages we extract originate from
any input code, and it is entirely feasible that there will be some erroneous code among
it. In fact, we expect some errors to be present, otherwise, we could not hope to detect
any. However, the question is, how much correct input is needed to detect the incorrect
usages? Imagine, for example, a new library that is not very well designed causing many
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developers to use it in incorrect ways. Can we expect the majority rule to be of any help
in such a scenario or will it just fail completely?

RQ 5: Can the majority rule also detect superfluous or wrong method
calls?

In Chapter 4, we propose to use the method for detecting missing method calls that
Monperrus et al. introduced to detect two other anomalies: superfluous and wrong method
calls. We would like to understand if the variations DMMCsuperfluous and DMMCwrong
can successfully detect bugs in software.

6.2 Study Objects

F-droid1 is a repository for Free and Open-Source Software (FOSS) on the Android
platform. We used a scraper to download the latest version of all available applications
on the 6th of March 2018. From the 625 Android applications obtained in this manner,
we extract all type usages that are present and apply our implementation of the DMMC
system to identify any anomalies.
The Android ecosystem is particularly well suited for this evaluation and enables us

to evaluate how type usages and the majority rule behave on real software. The Java
code is easy to analyze, and there is a rich open-source community, placing many sample
applications at our disposal. Each of these applications uses the Android API so that we
can generate a large dataset on the classes in the API, and detect any common patterns
that emerge when using it.
Our dataset consists of a total of 3,880,556 type usages that the Java part of our

implementation extracted from the 625 Android applications downloaded from F-droid.
On average there are 6209 type usages per application, and the median is 1157. In
Figure 6.1a, we have plotted the number of type usages per application. Most applications
are small with a few outliers responsible for most of the type usages. Of all the type
usages in the dataset, 7.66% operate on types from the Android framework (i.e., their
fully qualified package name starts with android.*). In Figure 6.1b, we have plotted
how many method calls there are per type usage to give a feeling for the amount of
information they provide. Observe the logarithmic scale on the y-Axis, indicating that a
significant majority of type usages only call few (<10) methods.
In the variation DMMC, a partition is a valid combination of type and context, and

there are 1,410,709 combinations like that in the dataset. In the variant DMMCnoContext,
the number of partitions is equal to the number of types, and the whole dataset includes

1https://f-droid.org/en/
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(a) Number of Type Usages per Application (b) Length of Method Lists

Figure 6.1: Dataset Overview I

a total of 202,988 different types. Since DMMCclass relies on A′
noContext, the partitions

for it are the same as for DMMCnoContext. However, because we merge the type usages
before analyzing them, the total number of type usages for this variant decreases to
958,306. In Figure 6.2a, we have plotted the distribution of type usages per partition for
the different variants. Observe that especially for the variation that takes the context
into account most type usages lie in a small partition.
We have plotted the distribution of strangeness scores across all type usages in Fig-

ure 6.2b. Most type usages are normal and have a low strangeness score. According to
DMMC, our dataset contains a total of 1650 anomalies with a score bigger than 0.9, that
is an average of 2.64 anomalies per application. We perform all our experiments on a
MacBook Pro with an Intel R©CoreTM i7–3720QM CPU @ 2.60GHz and 16GB of RAM.
Extracting the type usages from all applications took a total of 3 hours and 27 minutes,
which is an average of around 20 seconds per application.

6.3 Study Design

For RQ 1: True vs False Positives To determine if an anomaly that was flagged
by our implementation is a real finding, we need to manually review it. Unfortunately,
our implementation uncovered too many anomalous type usages to review all of them,
prompting us to select 10 applications for detailed analysis at random. We examine each
anomalous type usages of these applications in detail and classify them as either true or
false positive. This mimics the experience a developer would have when applying our
tool to his software. To answer the research question, we consider the total number of
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(a) Distribution of Partition Sizes (b) Strangeness Scores using DMMC

Figure 6.2: Dataset Overview II

findings per application and the ratio of true to false positive findings.
For RQ 1.2, whether the variations DMMCnoContext and DMMCclass produce different

results, we apply them to the same 10 applications that we sampled for RQ 1. Once
more, we review all findings and classify them as true or false positives.

For RQ 2: Benchmark Results To decide if the benchmark results coincide with the
results of the manual analysis, we first perform the benchmark itself. That is, we sample
type usages from the dataset, degrade them by removing one of their calls and check if
our implementation can detect these known anomalies. Because we know the correct
answer for all degraded type usages, we can use the results to calculate the classical
information retrieval metrics:

Precision describes how good our implementation is at suggesting the correct missing
call. It is calculated as the weighted confidence the system places on its suggestion.

Recall is the percentage of degraded type usages that are detected as anomalous. It
tracks if our system correctly detects outliers.

F1 score is the harmonic average of precision and recall.

These metrics are already mildly interesting by themselves if we compare them across
the three variants DMMC, DMMCnoContext and DMMCclass. However, as we are not sure
about their significance, we also want to evaluate the benchmark itself. To do so, we
compare the benchmark results of each variant to the results of the manual evaluation
we performed for RQ 1. We would expect them to align, that is if one variant produces
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bad results in the manual evaluation it should also yield bad results in the benchmark.
If there is a serious mismatch between the manual and the benchmark results, this
would question the validity of the benchmark. However, if they agree, it would at least
strengthen the idea that the benchmark has some relation to the real world performance
of these techniques.

For RQ 3: Input Size Even if we just questioned the validity of the benchmark,
we still think that it can offer some insight into the working of our implementation.
Thus, to understand how the quality of findings depends on the amount of input data
that is available, we perform a similar kind of benchmark as for RQ 2. That is, we
sample type usages, degrade them by removing a method call and then check if our
implementation recognizes them as anomalies. We calculate the same metrics as in the
previous experiment, but this time we consider one additional factor: the size of the
partition. We aim to understand if the partition size has any influence on the quality
of results and if so, what partition sizes are advantageous. In the discussion, we also
present some mathematical considerations to support the results.

For RQ 4: Robustness It is difficult to give an accurate answer to the question how
sensitive the majority rule is to low-quality input data. To narrow it down, we perform
another simulation experiment, similar to the one we do for the previous question. During
the experiment, we again sample a type usage from the dataset and degrade it to create
a known missing method call. However, this time, degrading only one type usage is not
enough. Instead, we pick a second random type usage from the same partition as the first
one and also remove one of its methods calls, before checking if our implementation can
detect the known missing call. Thus, we simulate the situation that the type in question
is in some way difficult to use and it has been used wrongly in multiple places. We can
then calculate precision and recall as before and investigate how this lower quality input
data affects the performance of our implementation. To get the full picture, we observe
how the metrics change when we degrade more and more type usages at once.

For RQ 5: Other Anomalies To understand if the majority rule can also be
used to detect superfluous or wrong method calls, we apply our implementation of
DMMCsuperfluous and DMMCwrong to the 10 random applications we sampled for RQ 1.
We manually review their findings in the same manner as we review those of the original
variant and label them as true or false positives.
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6.4 Study Procedure

The only parameter that our implementation requires is the limit that defines when a
type usage is an anomaly. For this evaluation, we consider type usages with an S-score
bigger than 0.9 to be anomalies. This is the value that Monperrus et al. suggest, and since
it implies that 90% of similar type usages are almost similar it seems like a reasonable
cutoff.

6.4.1 Manual Review

We used a random number generator2 to sample the 10 applications that should be
examined in detail. The names of the selected applications can be found in Figure 6.1. We
analyze all of their type usages with the three different variants DMMC, DMMCnoContext
and DMMCclass and determine their respective S-scores. We then manually review all
anomalous type usages and carefully consider the source code and the Android API
documentation before classifying them as one of the following:

real bug (B) a real defect, change definitely necessary

real smell (S) another way of doing things would be better, but probably not a defect
in the given instance

hint (H) the code is fine, but the pattern is also legitimate; some connection between
the methods

false positive (FP) the usage is totally fine; no causal relation implying the “missing”
method must be called

We consider bugs and smells to be true positives. We classify type usages as hints
when it makes sense that the pattern exists because many people will use the methods
together and there is some causal connection, but, strictly speaking, there is nothing
wrong with the code in question. As an example, consider the situation in which a
developer calls next on an iterator that he just obtained from a list of size one. Here, he
knows that the iterator contains one element, so he does not need to check for it with
hasNext; nonetheless, it is useful to detect locations where next is invoked without a
preceding hasNext.

6.4.2 Automated Benchmark

We perform the benchmark using a custom benchmarking infrastructure written in
Python. It randomly chooses type usages from the dataset and applies a degradation

2Google frontpage on: https://www.google.com/search?q=random+number
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Nr Name Type Usages Findings B S H FP

1 ar.rulosoft.mimanganu_78.apk 11241 12 1 1 4 6
2 com.zeapo.pwdstore_94.apk 12659 1 1
3 net.bitplane.android.microphone_7.apk 80
4 com.quaap.dodatheexploda_2.apk 87
5 com.health.openscale_23.apk 3645 3 1 2
6 se.tube42.kidsmem.android_16.apk 13547 1 1
7 org.billthefarmer.diary_125.apk 880
8 org.ligi.blexplorer_12.apk 8350
9 org.kaqui_27.apk 1675
10 com.afollestad.nocknock_13.apk 9547

Table 6.1: The results of the manual evaluation

mechanisms to it. The normal degradation mechanism removes each method call of the
selected type usage once and checks for each new version if our implementation of the
DMMC system detects the known anomaly. To retain a reasonable performance and
execution time, we only apply this procedure to a portion of the entire dataset (around
10%) and then calculate precision and recall as described above.

For the evaluation of RQ 4, we also support a different process of degradation. Instead
of just removing one method call from one type usage, we randomly sample additional
type usages from the same partition as the first one and remove one of their calls as well.

6.5 Results & Interpretation

In the following, we present our results relating to each of the research questions.

For RQ 1: Manual Review In Table 6.1, we summarize the results of manually
reviewing the findings of the DMMC variation. In the entire dataset, on average there
are 2.64 anomalous type usages per application, in our sample, there are 1.7 findings per
application. Of the total 17 findings, 3 are true positives (bug or smell) meaning that
17.65% of findings are true findings.

Most of the applications do not exhibit any anomalous type usages and those that do
only have a few. There does not seem to be a relationship between the number of type
usages and the number of findings per application. One of the applications is responsible
for the majority of findings and also for the majority of false positives. However, it is
also the only one in which a finding indicates a true bug. In fact, we reported this bug
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DMMCnoContext DMMCclass
App Type Usages Findings B S H FP Type Usages Findings B S H FP

1 11241 41 (24) 1 (1) 1 (1) 20 (15) 19 (7) 4602 28 (14) 1 (1) 8 (5) 19 (8)
2 12659 16 (3) 16 (3) 1560 10 (8) 1 (1) 9 (7)
3 80 0 (0) 57 0 (0)
4 87 0 (0) 74 0 (0)
5 3645 8 (6) 3 (1) 5 (5) 1918 7 (2) 7 (2)
6 13547 23 (0) 7 (0) 16 (0) 299 0 (0)
7 880 21 (2) 21 (2) 427 21 (2) 21 (2)
8 8350 4 (4) 4 (4) 730 2 (2) 1 (1) 1 (1)
9 1675 2 (1) 2 (1) 863 1 (1) 1 (1)

10 9547 15 (9) 15 (9) 3876 4 (3) 4 (3)

Table 6.2: Comparison of DMMCnoContext and DMMCclass. The numbers in brackets
indicate findings on the project itself.

and the maintainer of the application already confirmed and fixed it3.
In Table 6.2, we present the results of applying DMMCnoContext and DMMCclass to the

same applications. When ignoring the context, the total number of findings grows to 130
of which only 2 are true positive (1.54%). To reduce the number of findings, we apply a
filter to the results that removes any anomaly that does not originate from a class that
belongs to the application itself. As a developer, these are the most interesting anomalies
because they can be fixed immediately. Other anomalies that originate in libraries or
other external code will be much harder to fix as they are usually maintained by different
people. The number of findings that remain after applying this filter are displayed in
brackets. The filter reduces the total number of findings to 49 of which 2 (4.08%) are
true positives.
The class merge variation detects a total of 73 anomalies with 1 true positive among

them (1.37%). By excluding the type usages that do not originate from the application
itself, we reduce the total number of anomalies to 32 of which one is a true positive.
Finally, to clarify, the bug that all of the variations uncover is always the same.

For RQ 2 and 3: Benchmark First, we present the benchmark results of the different
variants DMMC, DMMCnoContext and DMMCclass in Table 6.3. The original variation
has the best precision, but its recall is a little bit worse than that of DMMCnoContext.
Nonetheless, it narrowly reaches a better F1 score. The class merge variation produces
by far the worst results.
We have plotted the development of precision and recall dependent on the partition

size in Figure 6.3a. Especially small partitions with fewer than 10 type usages have
terrible recall, we explain the reason for this in the discussion. Because of this, we have

3https://github.com/raulhaag/MiMangaNu/issues/535
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All Partitions Partitions > 9
Precision Recall F1 Precision Recall F1

DMMC 88.96% 43.52% 58.45% 90.12% 80.5% 85.04%
DMMCnoContext 59.22% 57.55% 58.37% 60.06% 64.03% 61.98%
DMMCclass 38.89% 24.18% 29.82% 47.27% 40.05% 43.36%

Table 6.3: Benchmark Results

(a) Metrics depending on Partition Size (b) Impact of degrading more Type Usages

Figure 6.3: Benchmark Results regarding RQ 2 and 3

also calculated the performance of our implementation for partitions that contain at least
10 type usage, they are indicated on the right side of Table 6.3. For these partitions, the
superiority of DMMC over the two other variations is even more evident.

For RQ 4: Robustness In Figure 6.3b, we have plotted the evolution of precision
and recall as we degrade more and more type usages. Note that these are the results
of the DMMC variant on partitions that contain at least 10 type usages. While the
precision stays relatively constant, the recall is decreasing rapidly as we introduce more
errors into the input data.

For RQ 5: Other Anomalies The results of applying the two variations DMMCwrong
and DMMCsuperfluous to the randomly selected applications are depicted in Table 6.4.
Both methods detect many anomalies. During the manual review we did not find a single
true positive among them or even a smell or hint, that is, all of these anomalies are false
positives. We again filtered the findings to only include those type usages that originate
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DMMCsuperfluous DMMCwrong
Nr Type Usages Findings On Project Findings >1 Call On Project

1 11241 51 43 95 18 16
2 12659 22 19 46 5 5
3 80 1 1 1
4 87 6 6 8 2 2
5 3645 22 20 33 9 9
6 13547 8 1 1
7 880 4 4 2
8 8350 5 2 2
9 1675 4 4 5 1 1
10 9547 26 11 39 9 9

Table 6.4: Anomalies flagged by DMMCsuperfluous and DMMCwrong

from the application and not from libraries, however, this only reduces the number of
findings a little bit. Before filtering, DMMCsuperfluous flags a total of 149 type usages as
outliers and after, 111 remain.

The high number of findings of DMMCwrong is due to a general flaw with the definition
of A′

wrong, which we only realized during the evaluation. The problem is that all type
usages that have the same type and make just one call are considered almost equal to each
other. Since the majority rule considers type usages with many almost equal instances
to be outliers, this causes the strangeness score of type usages with only one call to be
extremely high. All in all, there is a lot of noise in the data (even if we take the context
into account) and the results are nearly meaningless. Thus, we filter all type usages with
only one call from the anomaly list, which reduces them considerably. However, even the
filtered anomalies contain only false positives.

6.6 Discussion

For RQ 1: True vs. False Positives The results of the manual review show that
some of the anomalous type usages indeed indicate true bugs or smells. The number of
anomalies per app is relatively small, such that a developer could easily evaluate them
himself. While the manual review was time-consuming, this is partially because we do
not know the applications, a developer that is familiar with them would be much faster.
The actual ratio of true positives to false positives is not outstanding with 3 out of 17,
even more so since there was only one real bug among them.
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Besides manually reviewing the anomalies in 10 random applications, we also performed
a side study on the top 50 anomalies of all applications. Over its course, we did not
uncover any additional bugs, but instead a lot of false positives. Most of these false
positives arise out of a small number of failure modes such as:

• suggesting a missing call to <init> (basically never valid, usually the object is a
parameter of the method or created by a static function)

• not following static functions (in which the suggested missing method is called)

• detecting not existing patterns with StringBuilder

• problems with method chaining (does not consider the returned object to be the
same as before)

Some of these could be fixed rather easily, e.g., we could filter all type usages related to
StringBuilder or anomalies that suggest a call to <init> is missing. Such filters would
reduce the number of false positives, but they are also antithetical to the initial idea
of avoiding hand-crafted rules. Other problems are more difficult to remedy. Correctly
detecting method chaining seems hard or will at least have some trade-offs. It seems
possible to consider static function evaluations, but we expect it to be expensive in terms
of performance.
As for RQ 1.1, regarding the comparison between the different variations, it seems

clear that the variants DMMCnoContext and DMMCclass are inferior to the normal DMMC
system. Not only do they flag more anomalies, the anomalies that they discover are also
less relevant. They find many anomalies in libraries and external code, but even after
filtering these out, DMMC is still superior.

For RQ 2: Benchmark Results For this question, we compare the results of the
benchmark with those of the manual evaluation. In the manual review, DMMC is the
superior method by far. From the benchmark results, this is not as clear, it has the
best precision but the recall is worse than that of DMMCnoContext. If we consider the
benchmark results for partitions that have at least 10 type usages, DMMC becomes the
sole leader. This is due to the fact that DMMCnoContext does not have many partitions
that are smaller than 10 and, as we will explain in the next paragraph, 10 is the crucial
minimal size for this method to detect anything. Thus, it seems fair to conclude that the
results of the manual evaluation align with the benchmark results. This is not enough to
conclude that the benchmark itself is a good or realistic measure for the performance of
different missing method call detectors. However, our results at least do not indicate the
opposite.
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For RQ 3: Input Size The graph in Figure 6.3a shows that the systems accuracy
increases with the size of the partition. Especially for partitions smaller than 10, the
recall is terrible. To explain this, consider the strangeness score of an actual bug b. If
there are no instances equal to b, then |E(b)| = 1 and S-score(b) = 1 − 1

1+|A(b)| . We
consider type usages with a strangeness score of more than 0.9 to be anomalies, so b can
only be flagged as anomalous as soon as there are at least 9 instances that are almost
similar to it. It follows that there must be at least 10 type usages within the same
partition to have even a theoretical chance of detecting any outliers among them.
Now, consider the distribution of partitions presented in Figure 6.2a. Even in our

large dataset of 625 applications, most partitions are still rather small, especially for the
DMMC variant which has shown the best performance. In fact, a majority of type usages
belong to partitions that are smaller than the necessary minimum of 10, meaning that
our system can not detect any bugs or other outliers among them. All in all, it seems
that it is difficult to obtain the necessary rich dataset, even when taking a lot of code
into consideration. Or, from the other side: the majority rule is not able to detect any
errors in large portions of the code, even with our large dataset at its disposal.

For RQ 4: Robustness The graph in Figure 6.3b makes it plain that the accuracy of
our implementation decreases tremendously when we introduce additional degraded type
usages into the data. Since we are not confident in the applicability of the benchmark, we
also make a mathematical consideration with regards to the behavior of the S-score. In
the previous paragraph, we already considered the true bug b with no equal instances. We
need at least 9 almost similar instances to detect it. Now, consider another true bug b′ that
has one exactly similar neighbor, that is |E(b′)| = 2 and thus S-score(b′) = 1− 2

2+|A(b)| .
This means we can only detect these anomalous type usages if there are at least 18
instances that are almost equal to them, double as many as before.

The more errors there are in our dataset, the more data we need to detect them. The
impact of this becomes especially clear if one consults the graph in Figure 6.2a displaying
the distribution of partition sizes in our dataset. Most of them are small and thus having
an additional mistake in the dataset can easily prevent our implementation from flagging
both as an anomaly. All in all, we tentatively conclude that the majority rule is relatively
sensible to erroneous input data.

For RQ 5: Other Anomalies Our implementations of DMMCsuperfluous and DMMCwrong
both detect a relatively high number of findings without any actual success. More damn-
ingly, upon manual review of the findings, it becomes clear that the patterns which they
extract do not make any sense. None of the suggested changes, be it removing a method
call or exchanging one, does have any causal justification and it seems clear that they
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are only artifacts of randomness in the data. All in all, we do not consider our naive
application of the majority rule useful for detecting superfluous or wrong method calls.

6.7 Threats to Validity

There are several internal and external threats to the validity of this study.
As for the internal threats, the strongest one seems to be that our manual evaluation

is biased and subjective. Unfortunately, we do not have the resources to let multiple
developers review the anomalies. To prevent judging the results too harshly, we introduce
the hint category which contains many findings that are not bugs or even smells, but
somewhat subtle pointers for something that could cause problems. If we acknowledge
them as true positives, we get a favorable picture of the capabilities of our implementation.
On the other hand, we can also exclude the hints and thus, obtain a lower bound. The
truth probably lies somewhere between the two.

The only parameter that our implementation uses is the strangeness value above that
a type usages is considered an anomaly. We could set it lower to improve the recall or
higher in an attempt to improve the precision. We cannot present any hard data on
this, but during the manual review, we often observed that even type usages with a
strangeness value much higher than 0.9 were not really true positives. Because of this,
we deem it unlikely that reducing the cutoff to a lower value would improve the results.
As for increasing the cutoff, we think that the average number of findings is acceptable
and does not need to be lowered.
We already mention the problems of the automatic benchmark in Section 6.1. It is

simply not clear how similar degraded type usages are to missing method calls in the wild.
Thus, to prevent relying too much on the benchmark, we also take some mathematical
considerations into account before answering RQ 3 and 4.
Regarding the external threats, we have to review our study objects. We use a large

dataset and choose the applications for manual review at random, to avoid getting results
that rely on outliers. To hedge against underrating our implementation, we performed a
side study on the top 50 anomalies among all applications. However, of course, all study
objects are Android applications and open-source. It is feasible that this method works
much better on another OOP language or simply on another Java framework. Finally, it
is not clear if open-source applications are comparable to commercial software in terms
of size or quality.
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In this thesis, we investigate a method for detecting missing method calls that was
proposed by Monperrus et al. Detecting missing method calls would be useful over the
entire lifetime of a software, be it when developing a new program or when maintaining
old and mature code. The method we implement does not require any input besides the
source code itself as it extracts patterns from the data it receives. This makes it superior
to other bug detection systems because it is not necessary to keep any hand-crafted
detection rules up to date.
We improve upon the implementation of Monperrus et al. in that we add a database

backend and enhance the extensibility. Furthermore, we propose several variations to
their method with the goal of better detection of missing calls on the one hand and
detecting different kinds of errors on the other. To get an all-round impression of the
results that their method produces and how our variations behave in comparison, we
evaluate them on a large dataset of Android applications.
As for detecting missing method calls, the results of benchmark and manual review

agree that the original version proposed by Monperrus et al. is better than the variations
that we suggest. Neither ignoring the context nor merging the type usages on class basis
improve the results. Our implementation finds one real bug in the random applications
that we reviewed, but most of the anomalies were, in fact, false positives. Apart from
the mediocre quality of the suggested findings, our results also hint at the method being
quite sensible to erroneous input data. Additionally, it seems difficult to gather enough
data for the system even when applying the system to a large software ecosystem like
Android.

All in all, we conclude that the majority rule can detect missing method calls under
the right circumstances. However, the necessary prerequisites are not easy to achieve,
and the false positive rate is high. As for using the majority rule to detect superfluous
or wrong method calls, at least our simple ideas do not work well. Our implementation
finds a lot of anomalies, and the manual review shows all of them to be false positives.

7.1 Future Work

There are two dimensions along which we envision future research. The first dimension
concerns itself with improving the detection of missing method calls in some way. The
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second dimension is about applying the majority rule to other types of anomalies.
With regards to improving the missing method call detection, we would first like to

reference our analysis of common failures in Section 6.6. There, we already address a
number of potential improvements as well as their drawbacks. Especially filters seem like
an easy way to decrease the number of false positives and thus increase the precision,
albeit they are a bit antithetical to the original idea of staying away from hand-crafted
rule sets. Another way to improve the precision could be to use a completely different
anomaly detection algorithm. We did actually invest quite some time into research in this
direction, but the preliminary results were disappointing, presumably because the type
usage abstraction does not contain a lot of data from which to learn from. However, we
still see potential there, especially when also considering additional features, for example,
the interfaces a class implements or the methods it overrides.
We question how valid it is to partition the type usages by the context they appear

in and suggest two other options for it (DMMCnoContext and DMMCclass). While our
evaluation shows that grouping them by context produces the best results, there might
be even better ways of organizing them. We would be especially interested to see if the
results can be improved by factoring in the inheritance hierarchy of the classes that the
type usages appear in.
Since the majority rule is essentially looking for deviations from the norm, having

more data on what the norm is, could undoubtedly improve the finding quality. We
already consider a sizeable dataset in our evaluation, however, the ecosystem of existing
Android applications is by far more extensive than that. One could envision analyzing a
significant portion of the Google playstore and extracting all of the type usages to obtain
more accurate results. We do not expect the performance of our implementation to be a
problem any time soon, however, as soon as any problems in that area emerge, it would
be easy to optimize it by using a dedicated database server and Cython or any compiled
language for the analysis phase.
Besides these measures to improve the detection of missing method calls, one could

also envision using the majority rules to detect other types of anomalies. Monperrus et al.
suggest applying the concept of almost similarity to execution traces to detect runtime
defects or to conditional statements to improve the resilience of software to incorrect
input.
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