[

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Informatics

Obtaining Coverage per Test Case

Florian Dreier

D

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Informatics

Obtaining Coverage per Test Case

Testfallbasierte Erhebung von Coverage

Author: Florian Dreier
Supervisor: Prof. Dr. Dr. h.c. Manfred Broy
Advisor: Dr. Elmar Juergens (TUM) &

Dr. Andreas Gob (CQSE)
Submission Date: November 15, 2017

D

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, November 15, 2017 Florian Dreier

Acknowledgments

First of all, I would like to say thank you to Dr. Elmar Juergens who once again
managed to propose a really interesting and challenging topic. I also want to thank him
for his support on getting the co-operation with imbus and Tricentis started. In addition,
I would like to say a sincere thank you to Dr. Andreas Gob for his constant support and
dedication during the implementation and writing of the actual thesis. Furthermore, a
big thank you to René Rohner (from imbus AG) and Roland Zuderstorfer (from Tricentis
GmbH) for their time and support on getting started with the plugin development on
their platforms.

Finally, a big thank you to Lavinia Eifler and Verena Dreier who carried out the most
tedious work of correcting the language of this thesis and of proof-reading.

Abstract

To avoid bugs in software products a lot of effort is put into testing. Especially
regression testing is important for software maintained over a longer period of time to
make sure already existing functionality is not broken by newly introduced features
and adjustments. However, regression testing often gets unreasonably expensive as test
suite sizes are growing over time.

This thesis presents an algorithm for selecting and prioritizing test cases for Java
applications based on a set of changes that have been applied to the system and per-test
coverage collected on an older version of the system. The selection algorithm was
integrated into the software Teamscale and plugins for various build systems have been
implemented to prove that the technique can be easily integrated with existing test
systems.

The technique was evaluated on twelve software systems of various sizes. I examined
how stable coverage of individual tests is in general and how strongly changes have an
effect on those coverage. I found that especially asynchronous actions invoked by a
test case cause flickering coverage. To evaluate the effectiveness of the reduced test set
with regard to revealing faults mutation analysis techniques have been applied to the
study objects. I found that 99.2% of failures that can be detected by the whole test suite
are also found by the reduced test suite. The results also show that ordering the tests
makes more than 90% of the test fail within the first 10% of the total execution time of
the selected tests.

v

Contents

1.

2.

3.

Introduction
Terms and Definitions

Related Work

3.1. Research e e
3.1.1. Selective regression testing
3.1.2. Test case prioritization

3.2. Tools e e

3.3. Technical Fundamentals
33.1. Teamscale
332, JaCoCo o

Approach

41, OVEIVIEW o i i i i e e e e e e e e e e e e

4.2. Coverage collectionpertest
42.1. Listen fortestexecution
422 JaCoCo o o
423. Reportgeneration
424, Storage e

43. Testsuggestions
43.1. Regressiontestselection
43.2. Testordering

4.4, Limitations e e e e

Evaluation

5.1. Research questions
52. Study Objects
53. Study Design
54. Procedure e e
5.5. Results e
5.6. Discussion e e
5.7. Threats to Validity

NN N O T

O

10
10
12
12
13
14
14
17
18

Contents

6. Future Work

7. Conclusion

A. Study objects summary
List of Figures

List of Listings

List of Tables

Bibliography

33

34

35

36

37

38

39

Vi

1. Introduction

When maintaining an already functional software, priority number one is to not break
existing functionality. Therefore, regression testing is an indispensable step in the
software lifecycle. Regression test suites typically grow over the whole lifetime of a
project up to an extent where running the complete test suites for every change gets
expensive. Running only a subset of the regression tests, which can actually reveal
newly introduced bugs, is hence reasonable (selective regression testing). Additionally
ordering the tests in a way that bugs are found early during the test execution is
desirable (test case prioritization).

Selecting and ordering the relevant test cases requires knowledge of all parts of the
software that have been changed since the last regression test as well as which tests
execute those changed portions of the code. For bigger systems the required knowledge
is distributed amongst all developers of the system or has even been lost over time,
which makes it a hard problem to select the tests manually.

Tool support is therefore critical for effective regression test selection. The goal of this
thesis was to implement a tool, which assists in selecting the relevant tests for a given
set of changes. The selection and ordering of tests has been integrated into Teamscale,
a software quality analysis tool. This allows saving execution data form manual system
and integration tests, automated unit tests and automated system tests in one central
place.

The tool had to be compatible with Java and use JaCoCo for coverage collection. A
proof of concept implementation of plugins for various build and test tools was also
part of the thesis.

Selected tests are also prioritized so that tests that have a high probability of revealing
faults are executed first. So if a more risky test selection should be done, the list of tests
can be cut off at any point, which allows for a user specified budget.

The evaluation has shown that selecting only the relevant tests can massively de-
crease regression test time and makes tests fail faster by ordering them based on their
additional coverage per execution time.

In the following chapter related tools and research on the topic are presented as well
as the technical fundamentals my approach builds on.

Chapter 4 describes the approach with all its implementation details.

Chapter 5 presents a case study on 12 software systems investigating their basic

1. Introduction

coverage stability and the approach’s ability to find faults.

2. Terms and Definitions

Retest-all Rerunning all regression tests without selecting a subset is called the retest-
all approach. It retrieves the maximum amount of information that can be gained from
the existing test suite.

Safe A selective regression testing technique is called safe if it guarantees that all
information, which can be gained from retest-all, can also be gathered from the given
subset of tests [10].

Test case prioritization Test case prioritization techniques schedule test cases for ex-
ecution in an order that attempts to increase their effectiveness at meeting some
performance goal. Various goals are possible; one involves rate of fault detection, a
measure of how quickly faults are detected within the testing process. An improved
rate of fault detection during testing can provide faster feedback on the system under
test and let software engineers begin correcting faults earlier than might otherwise be
possible [11].

Error / Fault/ Bug An error is a deviation from actual and expected value as a result of
a human mistake. A fault is an incorrect step or computation performed by a machine,
which is often the result of an error. A bug is a noticeable deviation from the expected
behavior of the program, which is typically found by a tester.

Mutation testing Mutation testing is a technique to evaluate the quality of existing
software tests. By running the existing tests against mutants - slightly modified versions
of the original software - the tests” ability to detect the modified behavior can be
measured. Those mutations that the test suite rejects are called killed mutants.

3. Related Work

3.1. Research

3.1.1. Selective regression testing

Research on the topic of selective regression testing can be categorized into four different
strategies [2]:

e DejaVu based DejaVu (or DejaVOO) was first introduced by Rothermel and Har-
rold [9] and was later adapted to Java [4]. Those techniques use fine-grained
coverage information to infer which tests will execute code that has been mod-
ified. Most of them build a control flow graph for every function to select a
minimal number tests which actually execute changed parts of the code. There
are also variations of this technique that are specifically suited for database-based
applications [14]. The fine-grained coverage makes the approaches computation-
ally expensive, adds overhead to the test execution and makes it very language
dependant.

My approach also belongs to this category, but tries to reuse the widely-used
coverage profiler JaCoCo instead of implementing a new one. Furthermore,
coverage is analyzed on method level to ensure compatibility with other languages
and reduce computational overhead. Last but not least my approach integrates
with Teamscale and various coverage collection environments. Teamscale hence
provides a central coverage store and allows for wider collaboration instead
of collecting coverage on a single machine. Teamscale’s refactoring detection
on method level also allows to further reduce the set of considered method
changes [1].

e Firewall based Firewall based approaches as first introduced by Leung and White
are focused on integration tests [6]. They build a dependency graph amongst
the modules of a system. All modules, which have been modified or have a
direct dependency to the modified modules according to some defined rules are
considered inside the firewall. Afterwards all integration tests are selected for
re-execution that execute code inside the firewall. This approach is safe, but also
selects a lot of tests, which do not execute any changed code. In contrast to my

3. Related Work

approach firewall based still relies on manually selecting the integration tests for
the modules inside the firewall.

e Dependency based Dependency based systems like presented by Wu and Chen
build a static function call graph to describe the dependencies of the individual
software components [15]. All tests executing functions that have changed or are
transitively affected by any changes are selected for re-execution. This technique
is not dependant on any previously collected coverage, but are very specific for a
certain language or even a specific framework when dependency injection is used
in the system under test.

e Specification based For example Mao and Lu have proposed an XML based system
to store changed methods and preconditions per component [7]. This technique
was mainly intended to better understand what needs to be tested for third-
party components. My approach in contrast does not consider changes made to
third-party components.

3.1.2. Test case prioritization

Research on test case prioritization has been summarized by Elbaum and Rothermel in
"Prioritizing Test Cases for Regression Testing" [11]. Basically test cases are ordered
with respect to a certain performance goal with the aim to perform at least better than
executing the tests in random order. The performance goals they had a look at deviated
in the following dimensions:

e Total vs. Additional coverage The test cases are ordered based on the coverage they
cause in the system under test. The additional coverage only looks at the coverage
that can be gained in addition to the already selected tests.

e Coverage granularity The ordering was tested when considering coverage on state-
ment and function level.

e Fault-exposing potential (FEP) Tests are (not) ranked based on their ability to detect
faults. The FEP was calculated based on a mutation test executed beforehand.

e Total fault index (FI) Tests that have failed more often in the history of the system
are prioritized.

They found that statement level coverage with the combination of additional coverage
and including the FEP resulted in the best fault detection rates. In my approach I used
line based coverage, which can be considered the same as statement level coverage in

3. Related Work

combination with additional coverage weighted with the expected test execution time,
to gain as much coverage in short time as possible.

An alternative approach without usage of static or dynamic analysis required was
proposed by Saha et al.. They reduced the problem to a generic information retrieval
problem. Tests are prioritized here based on the words used in the tests and the
changed source code [12].

3.2. Tools

In the following I present three tools, which support doing selective regression testing
and are already used in production systems.

Test impact analyzer The most prominent example is Microsoft’s Test impact anal-
ysis (TIA), which is integrated into Visual Studio. It has been developed for several
years in Microsoft Research [5]. It uses a DejaVu based approach with coverage on file
level. The tool does not support test case ordering and only works for C# [3].

VectorCAST/QA Vector software has developed another tool called VectorCAST/QA,
which supports their Change-Based Testing [13]. There is no further information available
about what approach it uses and it works for C, C++ and Ada.

NCrunch Another tool for the C# world is NCrunch!, which executes tests during
the actual development and also intelligently selects tests for the currently modified
code location.

http:/ /www.ncrunch.net/

3. Related Work

3.3. Technical Fundamentals

In the following the framework, which was used to implement this thesis” approach, is
presented.

3.3.1. Teamscale

Teamscale is a software quality analysis tool that helps to monitor software quality goals
and provides real-time feedback. It directly connects with the source code repository
and analyses every commit. In addition, other external data such as code coverage can
be uploaded and analyzed.

Teamscale features a so called Test Gap analysis. The analysis is able to detect code
fragments that have been modified since the last version, but have not been tested
yet. These modified code fragments are referred to as Test Gaps. When a method is
considered as modified, refactorings have already been excluded.

My approach uses the data gathered by the Test Gap analysis. Especially information
about which methods have been added, changed and deleted. I also used a modified
version of the code coverage upload. The modified version is able to read and store
coverage on a per-test level.

3.3.2. JaCoCo

JaCoCo is an open source code coverage library for the JVM. It allows to measure
coverage on the fly and has been used for this thesis. To measure code coverage the
jacoco-agent has to be specified as javaagent when running the system under test. This
allows JaCoCo to hook into the class loading process. Whenever a new class is loaded,
JaCoCo instruments it by inserting so called probes into the bytecode. A probe is a
small portion of bytecode that has no side-effects on the system, but records that it
has been executed into a boolean array $jacocoData, which has also been statically
added to the class. To reduce runtime overhead the probes are only inserted at strategic
places, which are determined by analyzing the control flow of the bytecode.

JaCoCo supports multiple ways to access the recorded coverage. The coverage can
either be written to a file, accessed via TCP or via the Java Management Extension
protocol (JMX). The output format is binary and basically is a list of tuples. Each tuple
holds a class ID and the contents of $jacocoData. The class ID is the CRC64 checksum
of the raw bytecode of this class. Not using the class name as identifier allows to keep
the file size small and to use different versions of the same class side by side. The
coverage at a specific point in time, which is written to the output stream, is called a
dump.

3. Related Work

Additionally, the JaCoCo agent allows to set a so called session ID, which can be
used to identify a specific coverage dump. The session ID is written to the specified
output stream as well. The functionality to set the session ID is exposed via the IAgent
interface shown in Listing 3.1.

Listing 3.1: [Agent interface
public interface IAgent {

/*x Returns version of JaCoCo. */
String getVersion();

/*x Returns current a session identifier. x/
String getSessionId();

/xx Sets a session identifier. x/
void setSessionId(String id);

/*x Resets all coverage information. x/
void reset();

/*xx Returns current execution data. x/
byte[] getExecutionData(boolean reset);

/*x Triggers a dump of the current execution data through the configured output. x/
void dump(boolean reset) throws IOException;

The agent can either be accessed via RT.getAgent () from within the same JVM as
the JaCoCo agent is being executed or via JMX, which also exposes an IAgent object.

4. Approach

4.1. Overview

This approach implements a regression test selection and prioritization based on
coverage that has been collected on a per-test-base for an older version of the system
under test. The coverage collection was implemented based on JaCoCo for Java
applications, but is designed to work across a wide range of languages and tools.
The collected coverage gets stored in the tool Teamscale, which also is responsible for
selecting and prioritizing the tests afterwards.

To make it easily useable in practice plugins for the following build and test tools
have been implemented:

e Maven

e Gradle

e TestBench
e Tosca

The plugins either automatically collect coverage on per-test-basis or provide means
to set it up. Furthermore, the plugins take care of generating the coverage report and
uploading it to Teamscale. They also provide basic support for retrieving the selected
regression tests from teamscale for a given set of changes.

The system was designed to collect coverage during the regularly scheduled nightly,
weekly or monthly builds and use this information to be able to run only a relevant
subset of tests after every single commit, in order to massively reduce feedback cycles.

4. Approach

4.2. Coverage collection per test

4.2.1. Listen for test execution

To record coverage per test case I needed to know when the execution of a single test
case starts and ends. This obviously is highly dependent on the execution environment.
For this thesis I considered tests written in JUnit 4, JUnit 5> and TestNG® executed
through Maven* or Gradle®. Additionally, I implemented a proof of concept for Tosca®
and TestBench’, which are used in the industry for doing automated UI testing. In the
following I will show how this was implemented for the considered environments.

JUnit 4 JUnit 4 natively provides a way to listen for test case execution through the
RunListener interface. Maven’s surefire plugin, which is used to run tests in Maven,
supports setting this listener. In Gradle it’s not possible to set the listener, so a custom
JUnit-runner was used to detect when tests start and finish.

JUnit 5 JUnit 5 supports to listen for execution events as well by implementing
BeforeEachCallback and AfterEachCallback. Classes implementing them can auto-
matically be loaded via Java’s ServiceLoader mechanism. But those only work for tests
written for the JUnit-Jupiter platform, not for JUnit-Vintage.

TestNG TestNG supports specifying a global ITestListener - similar to JUnit 4 -
but only Maven allows to set it. Since TestNG does not have the concept of a runner
like JUnit 4, Gradle based TestNG projects would need to add @Before and @After
annotated methods to all test classes to track test execution.

Tosca At the moment Tosca does not have a mechanism to listen for test executions.
The only way to listen for test executions is to add custom test steps called special
execution tasks. Those can be added to Tosca by adding a Dynamic Link Library (dll),
which links against Tosca’s C# TBox API. To be able to control the JaCoCo agent, I
used the Java Native Interface library to bridge the calls from C# to Java as depicted in
Figure 4.1.

1http: / /junit.org/junit4/

Zhttp:/ /junit.org/junit5/

Shttp:/ /testng.org/

4https:/ /maven.apache.org/

Shttps:/ /gradle.org/

6h’c’cps: / /www.tricentis.com/de/tricentis-tosca-testsuite /
7h’c’cps: / /www.imbus.de/testbench/

10

4. Approach

2J TRICENTIS Tosca VM VM

JaCoCo agent

[N

Teamscale
plugin

System under Test

Figure 4.1.: Tosca integration overview

The implemented StartTest and FinishTest special execution tasks could then be
inserted as first and last test step respectively as shown in Figure 4.2.

4 | Insurance calculator test set
4 @ Test passenger car insurance PLANNED
4 2 StartTest
W testSetName Insurance calculator test set Input String
W testName Test passenger car insurance Input String

4 2 Vehicle selection
» & Fahrzeugauswahl PKW/Kombi oder Wohnmobil b... |nput String

Zu den Fahrzeugdaten X Input String

Vehicle data
Personal data
Product choice
Results

FinishTest

» @ Test truck insurance

Q QO Q

b
»

Q

PLANNED

» @ Test motorcycle insurance PLANNED

Figure 4.2.: Tosca integration

11

4. Approach

TestBench After specifying and planning tests in the TestBench, a "test screenplay”
can be exported via the imbus Test Execution Plugin (iTEP). A so called iTEP-Wrapper,
which implements all test steps available for the domain, needs to be used to execute
the actual test steps. To listen for start and end of tests, I have written a generic wrapper
for the iTEP library, which is normally used to load the "test screenplay” into the
iTEP-Wrapper. For tests that are executed manually a wrapper around the iTORX®
library would also allow to listen for test executions, but was not implemented in this
thesis.

4.2.2. JaCoCo

To save the coverage on a per-test-basis into JaCoCo’s binary format, I used JaCoCo’s
session IDs feature. As described in subsection 3.3.2 JaCoCo allows to set a session ID
via its IAgent interface. When coverage gets dumped the session ID is written to the
tile and used as identifier for the portion of coverage together with the timestamps at
which the session ID has been set and the timestamp at which the dump command
was executed. I used the session ID to encode the test set name and the test name as
shown in the following example: okhttp3.AddressTest#!#addressToString.

JaCoCo supports two ways of manipulating the session ID. For Maven and Gradle,
where the listener code is executed in the same JVM as the JaCoCo agent, the agent can
be directly accessed. In Tosca and TestBench JMX was used to remotely connect to the
JaCoCo agent.

4.2.3. Report generation

To generate a report from the binary coverage data, JaCoCo reads the probes from the
coverage files and reanalyses the class files to map those probes back to covered lines
of code. My first prototypes have shown that reanalysing all classes for every test case
creates an enormous performance overhead, so I implemented a probe cache to avoid
reloading all class files for every test case. This led to a speed up of 40x for the report
generation.

8imbus Test assistant for Online and Remote eXecution

12

4. Approach

To store the report I extended JaCoCo’s regular XML report format with a new
top-level node <session class="..." name="..." duration="...">.

Listing 4.1: Coverage report extract

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE report PUBLIC "-//JACOCO//DTD_Report_1.0//EN" "report.dtd">

<report>

<session class="okhttp3.AddressTest" name="addressToString" duration="21">
<package name="okhttp3/internal">
<sourcefile name="Util.java">

<line nr="372" mi="0" ci="5" mb="0" cb="0"/>
<line nr="373" mi="2" ci="3" mb="1" cb="1"/>
<line nr="376" mi="0" ci="3" mb="1" cb="1"/>
<line nr="377" mi="2" ci="0" mb="0" cb="0"/>
<line nr="380" mi="0" ci="2" mb="0" cb="0"/>

</sourcefile>
</package>
</session>

</report>

To reduce the file sizes of several GB per report in bigger projects I used gzip
compression. The resulting reports had on average 2-10% of the original size.

4.2.4. Storage

The upload service was extended to be able to read the modified JaCoCo report format

and save the coverage accordingly. Teamscale previously used a class LineCoverageInfo

to store the following sets per file: fullyCoveredLines, partiallyCoveredLines and
notCoveredLines. I extended the data structure to additionally hold a fullyCoveredLinesSessionMap
and a partiallyCoveredLinesSessionMap, which map the covered line numbers to a

set of session IDs that executed the respective lines.

13

4. Approach

4.3. Test suggestions

The process of generating test suggestions is divided in two parts. First of all tests,
which are likely to execute changed parts of the software are selected. Second, those
tests get ordered in a way that tests, which are more likely to reveal bugs in the system,
are executed first.

4.3.1. Regression test selection

Regression testing aims to find bugs introduced by changes to the system during the
maintenance phase. Typically a large amount of the system stays the same. Therefore
rerunning all existing tests (retest-all) is effective to find newly introduced bugs, but is
inefficient. To make regression testing more efficient the goal is to run only tests, which
execute changed parts of the code and therefore could reveal bugs.

To select a set of tests, I used a DejaVu based approach, which uses coverage
information from previous test executions to predict which tests will execute the latest
changes. To illustrate coverage and change information I will use the representation
in Figure 4.3. The example depicts a version 1 (baseline) at which coverage has been
recorded and a version 2, which is the current version under test. t1 represents a test,
which has executed the method m1 at version 1. The method m1 on the right depicts the
same method after some changes have been applied to it, which in turn is symbolized
by the pencil symbol.

Version 1 Version 2

Figure 4.3.: Minimal example

In Figure 4.4 an example system is depicted. The system has had three tests t1, t2
and t3 at version 1. t1 executed method m1, 12 executed m2 and m3 and t3 executed m3.
For version 2 m3 has been inlined at its call site m2 and 3 has been deleted accordingly.
Additionally, m4 and t4 have been added.

14

4. Approach

Version 1 Version 2

Figure 4.4.: Example system

My approach now selects all tests, which have executed methods that have been
modified or deleted from version 1 to 2. In the example m2 and m3 have been modified
and deleted respectively. 12 and ¢3 have executed those and therefore potentially execute
the code changes. Since t3 has been deleted in the meanwhile it must be removed from
the test suggestions. But t4 has been added and should hence get executed. Modified
tests would be suggested as well. m4 could either be executed by the already suggested
t4 or it is called from some other test or method. If the call to m4 has been added to
some test, the test is modified and suggested for re-execution. If the m4 is called from
another already existing method, tests executing this method are already suggested
due to this modification.

To summarize the above: The implemented selection strategy selects all tests that did
execute methods at the baseline, which have been modified or deleted in the meanwhile.
Additionally, all tests that have been added or modified are suggested for re-execution.
Test renamings and deletions also need to be considered.

15

4. Approach

The full algorithm is shown in Listing 4.2

Listing 4.2: Regression test selection

methodsToTest = modifiedOrDeletedMethodsBetween(baseline, end)
suggestedTests = getTestsCoveringMethods (methodsToTest)
suggestedTests += addedOrModifiedTestsBetween(baseline, end)
renameIfNameChanged(suggestedTests)

removeDeletedTestMethods (suggestedTests)

The suggestions are generated inside a Teamscale service. The service takes as
parameters a baseline and an end commit descriptor, which is a tuple of branch name
and commit timestamp. The service calculates test suggestions to test all changes that
happened between baseline (exclusive) and end (inclusive).

To detect test cases in code I used a heuristic. If the method is annotated with @Test
or the method name starts with test and the class name contains Test, the method is
considered a test.

The method tracking was already implemented in Teamscale and uses a combination
of name based and content based approach to track methods across versions. Team-
scale’s refactoring detection also filters out modifications, which are only caused by
refactorings [1].

The results of this service are returned as a JSON list after the selected tests have been
ordered. The results can either be inspected in Teamscale’s web interface (Figure 4.5) or
could be used by the respective test-tools to execute the tests.

M) -
) Tear Delta Annimon Stream,

(0]
Delta Parameters

Suggested tests
28 Changed Files (34)

Test case set Test case Additional coverage Total coverage uration (ms) Additional coverage per time
Changed Methods (249)

testFlatMap 12 12
12

com.annimon.stream.longstreamtests.FlatMapTest testFlatMap 12 Repository Changes (9)
Change

m.annimon.stream.doublestreamtests.FlatMapTest testFlatMap 12 12

[ERE VI

amtests.FlatMapTest testFlatMap 15 15
Metric Changes

5

annimon.stream.streamtests.DistinctTest testDistinctLazy 5
05 Findings Churn

1 1

Moo N uNNGD

L : 0.3333333333333333 Tests ¢

Delta Interval Date Filter

Start Date: Apr 01 2017 00:00

End Date: Today 11:05

Figure 4.5.: Test suggestions shown in Teamscale

16

4. Approach

4.3.2. Test ordering

The already selected subset of test cases should now be ordered in a way that all
changes are covered as fast as possible. This problem can be reduced to the Set Cover
Problem, which is proven to be N'P-complete. Therefore, I used a greedy algorithm
to retrieve a fast and still reasonably good ordering. My approach orders tests based
on their additional coverage. This is the number of lines, which are part of modified
methods that have not been executed by the already ordered tests. To additionally move
fast tests, which add most additional coverage, to the front, the greedy choice property

%W. The +1 in the denominator is there to avoid undefined values for
tests with Oms duration.

The code for the ordering function is shown in Listing 4.3 and Listing 4.4. The
orderTests function takes the list of already selected tests T'. At first tests is
divided into two lists: newTests with all tests that have not been executed yet and
remainingTests with tests where the coverage at baseline is known.

In the following tests are greedily selected until all lines in the changed methods
would have been covered once in the baseline version (in the following referred to
as one round). Then the already covered lines are reset and the selection process is
restarted with the remaining tests until no tests are left. After round 1 also newTests
are added to the list in undefined order, because no further information about them is
known in advance.

Listing 4.3: Ordering algorithm (part 1)

orderTests(tests): TestCaselList {
newTests = tests.filter { it.getTotalCoveredLines() == 0 }
remainingTests = tests.filter { it.getTotalCoveredLines() != 0 }

orderedTests = []

orderedTests += selectAndOrderTestsForNextRound(remainingTests)
orderedTests += newTests

while (!remainingTests.isEmpty()) {

orderedTests += selectAndOrderTestsForNextRound(remainingTests)

return orderedTests

The selectAndOrderTestsForNextRound function first resets the already covered
lines for all remaining tests. Then searches for the test, which yields the most additional

17

4. Approach

coverage in the shortest time. As long as there are tests that cover yet unvisited lines,
they are added to the ordered list. The additional coverage for the remaining tests is
updated afterwards.

Listing 4.4: Ordering algorithm (part 2)
selectAndOrderTestsForNextRound(remainingTests): TestCaselList {
orderedTests = []
remainingTests.forEach { it.resetAdditionalCoverage() }
while (!remainingTests.isEmpty()) {
testWithBiggestGain = remainingTests
.max { it.getAdditionalCoverageDurationRatio() }
if (testWithBiggestGain.getAdditionalCoverage() == 0) {
break
}
orderedTests += testWithBiggestGain
remainingTests -= testWithBiggestGain

remainingTests.forEach { it.substractCoveredLines(testWithBiggestGain) }
}

return orderedTests

4.4. Limitations
The approach has some limitations listed below:

e Assumes stable coverage The approach assumes that every test case has a stable set
of covered methods, which is not always the case (see chapter 5 RQ1).

e No parallel test execution Currently tests cannot be executed in parallel in one JVM
when recording coverage, because JaCoCo cannot distinguish which coverage is
caused by which test case.

e Parameterized tests have to be named If parameterized tests are not uniquely named
or not named at all, it is not possible to name and execute them separately after-
wards.

e Test detection heuristic The currently implemented test detection is only a heuristic
and does not always work in complex setups e.g. in the Apache Commons Math
library, which extensively uses subclassing also in test code. The solution would

18

4. Approach

be to upload a list of currently available tests and when they haven been changed
before getting the suggested tests. The available tests can be extracted from the
bytecode of the system instead of source code for JUnit tests and from the plugin
APIs for TestBench and Tosca. The names of all available tests are needed for two
reasons: First, to suggest all tests, which have been added since the last coverage
collection. And second, to re-execute tests that have been changed.

e Changes outside of methods Changes to field initializations and constants are cur-
rently not considered. Hence errors introduced here are not detected. A solution
would be to mark all constructors as modified if changes are detected.

e Changes to resources Changes to configuration files, third-party code or other ex-
ternal factors, like environment variables or similar, are not considered in this
approach, but should stay constant anyway in a testing environment to produce
reproduceable results.

e Indirect invocations Does not work if code is indirectly invoked e.g. via reflection.
Imagine a test ¢, which searches for all classes annotated with @MyDomainObject
and executes a certain method to ensure consistency amongst the implementations.
Adding a new @MyDomainObject-annotated class x would not lead to any code
changes in t. Therefore t would not be suggested for re-execution even though ¢
could potentially find bugs in x.

19

5. Evaluation

5.1. Research questions

RQ1: How stable is the set of methods that are executed by a test? The chosen
approach basically relies on the assumption that executing the same tests on the same
codebase multiple times also causes the same methods to be executed for every run.
This research question aims to investigate whether this is always the case or if our
intuition is wrong here and in what causes lead to unstable coverage.

RQ2: How reliably can we infer tests from a given code fragment? Furthermore,
the approach uses coverage data that has been recorded for a previous version of the
code. I therefore expect the set of tests, which execute a given method, to stay the same
over time. For RQ2 I wanted to investigate the impact of code changes on this mapping.

RQ3: How many bugs do we find by executing only the suggested tests? Only
covering changed code regions is often not enough to also detect faulty behavior[8].
Therefore, investigation is required to find out how many bugs can be found by the
suggested tests, compared to the retest-all approach.

RQ4: Does ordering the test cases make them fail faster? The approach aims to not
only reduce the number of executed test cases, but also should make them fail faster by
ordering them. This research question examines whether the implemented approach
makes the tests significantly fail faster.

RQ5: How rapidly does the list of suggested tests grow? A common problem of
regression test selection is that the number of suggested tests grows quickly when
numerous changes are involved, which in the worst case results in suggesting all
available tests. This would make suggesting tests in the first place superfluous. RQ5
aims to find out for change size using this technique still produces reasonably smaller
test suites.

20

5. Evaluation

5.2. Study Objects

The study was done on a selection of, for the most part, well known open source
projects. The projects were selected on GitHub based on their popularity and repository
size to include both popular and huge projects as well as medium and small sized
projects. Besides 11 open source projects, Teamscale was chosen as a closed source
project, with high number of commits. The study objects are listed with their most
important metrics in Table 5.1 followed by a short description of the projects. A more
detailed table with the study objects can be found in Appendix A.

Table 5.1.: Study objects

Study object build framework KLoC commits
total source test

Apache Commons Collections maven JUnit 4 62 31 31 3235

Apache Commons Lang maven JUnit 4 75 27 48 5486
Apache Commons Math maven JUnit 4 178 87 91 7156
Histone Template Engine 2 maven JUnit4&5 14 12 2 1133
JabRef gradle JUnit 4 122 94 27 10645
Joda-Time maven JUnit 3 83 28 55 2105
Lightweight-Stream-API gradle JUnit 4 23 8 15 529

LittleProxy maven JUnit 4 9 4 5 1037
OkHttp maven JUnit 4 52 26 26 3548
RxJava gradle TestNG 242 84 158 6000
Symja Commons Math Parser maven JUnit 4 7 6 2 44

Teamscale gradle JUnit 4 336 270 67 82164

Apache Commons Collections Utility classes for working with any type of collections
in Java.

Apache Commons Lang A package of Java utility classes for the classes that are in
java.lang’s hierarchy, or are considered to be so standard as to justify existence in
java.lang.

Apache Commons Math Provides mathematics and statistics components that are
addressing the most common practical problems and which are not directly supported
by Java.

Histone Template Engine 2 Histone allows to generate text based content e.g. HTML
based on a powerful template system.

21

5. Evaluation

JabRef JabRef is a graphical Java application for editing and organizing BibTeX and
Biblatex databases.

Joda-Time Joda-Time is the widely used replacement for the Java date and time
classes prior to Java SE 8.

Lightweight-Stream-API Is a library that back-ports the Java 8 stream API to Java 7.

LittleProxy LittleProxy is a high performance HTTP proxy, which can be used to
intercecept network connections.

OkHttp Performant HTTP client for Android and Java applications with support for
HTTP 2, caching and transparent gzip-compression.

RxJava A library allowing to write Java applications in reactive programming style.
Symja Commons Math Parser A implementation of a math expression parser.

Teamscale A software quality analysis tool, which provides analysis results in realtime
for analyses like architecture conformance, code clone detection, coding guideline
conformance, test gap analysis and a lot more for over 20 programming languages.

5.3. Study Design

RQ1: How stable is the set of methods that are executed by a test? For the first
research question I first recorded coverage for all tests at a specific baseline version
for each study object. Then I ran the coverage recording again for one more time on
the same baseline to find out whether the set of methods covered by a tests changed
amongst those executions.

RQ2: How reliably can we infer tests from a given code fragment? To determine
how code changes have an impact on the code to tests mapping I ran all the tests at
a baseline version and at two distinct versions after the baseline. Since nightly or at
least weekly builds, which execute all tests are common practice, I ran the tests again
after one day and one week of development activity. This way if integrated into the
development process, developers could always run the suggested tests for their current
changes based on the coverage of the last nightly or weekly build.

22

5. Evaluation

RQ3: How many bugs do we find by executing only the suggested tests? To answer
the question I have generated mutations of the original code to simulate a newly
introduced bug. For each mutation the suggested tests were calculated and executed
on the mutated version of the software. If none of the suggested tests did fail, all
remaining tests were executed to see if any of them were able to reveal the bug.

RQ4: Does ordering the test cases make them fail faster? Based on the setup of RQ3
for those suggestions that did find the fault, I measured the time it took until the first
test failed.

RQ5: How rapidly does the list of suggested tests grow? For each study object the
list of suggested tests was calculated for all commits after the baseline, based on the
coverage for the baseline.

5.4. Procedure

RQ1: How stable is the set of methods that are executed by a test? To record the
coverage I configured the maven and gradle plugins for each of the study objects. Some
projects contained tests that did not pass on my laptop for various reasons. They were
ignored by adding @Ignore annotations. After running the tests once and uploading
the coverage to Teamscale all temporary build data was deleted by running the clean
task for the respective build system before rerunning the tests.

RQ2: How reliably can we infer tests from a given code fragment? For every
method I compared the tests that executed this method at the baseline with the tests
that executed the method one day and one week later. The commit that was considered
as one day later was chosen to contain at least one day of development activity and
at least 2 commits. For projects with little development activity those two commits
were also considered as one day, if they were scattered across multiple days. Assuming
that the tests that executed the method at baseline plus the tests that have been added
or changed are all tests that cover the methods at later timestamps, I calculated the
methods, which broke this assumption.

RQ3: How many bugs do we find by executing only the suggested tests? To gener-
ate mutations of the original source code I used the PIT mutation testing tool (Pitest)!.
Pitest can be integrated into build systems like Maven and Gradle and provides an

Thttp:/ /pitest.org/

23

5. Evaluation

end-to-end solution for generating mutants, running tests on the mutations and gener-
ating a report afterwards. Through its plugin mechanism I used it to randomly select a
number of mutations. When executing the tests Teamscale was queried to generate test
suggestions that were afterwards executed in the provided order to test if they kill the
mutant. The information about the mutant was passed to Teamscale as a tuple of file
name and modified line number. The method containing that line was then treated as
modified.

Each project was ran against 100-1000 mutations depending on the size of the test
suite to finish the analysis in an reasonable time of under 5 hours.

I applied the following types of mutations, because they are similar to bugs that are
likely to happen in a real development scenarios as well:

e Conditionals Boundary Mutator Replaces occurrences of e.g. < to <=.

e Increments Mutator Exchanges ++ with —— operator and vice versa.

Void Method Call Mutator Removes a call to a method with void return type.

Return Vals Mutator Depending on the methods return type, returns a slightly
different result. For long e.g. +1 is added to the original return value.

Math Mutator Arithmetic operations are replaced with another operation e.g. +
with —

Negate Conditionals Mutator Replaces comparison operators with its negated ver-
sion e.g. == gets replaced with ! =.

There are multiple reasons for which a mutant can be considered as killed, all of which
were considered as fault revealing in RQ3:

e Killed The test was executed and failed.

e Memory error The test was run and caused a memory error e.g. stack overflow
caused by endless recursion.

e Timed out The mutation caused an endless loop and terminated due to a predefined
timeout.

To make the results better reflect real-life situations, a set of changes was considered
in addition to the mutation itself. The coverage used to generate the test suggestions
was recorded at a baseline and the mutation was generated and the tests executed
for the code at the version end. The end version was selected to be one or two version
numbers later, because some follow-up bugfix versions only contained up to two
commits. The versions used for each study object are shown in Table 5.2.

24

5. Evaluation

Table 5.2.: Considered changes

Study object baseline end commits days
Apache Commons Collections 41 master? 37 535
Apache Commons Lang 3.6-RC2 3.6-RC4 47 75
Apache Commons Math 3.6.0 3.6.1 14 75
Histone Template Engine 2 1.7.1 19.1 39 191
JabRef 4.0-betal >4.0-betal 51 4
Joda-Time 29.7 29.8 12 93
Lightweight-Stream-API 1.1.6 1.1.8 49 115
LittleProxy 1.1.1 1.1.2 24 69
OkHttp 3.8.0 3.8.1 43 71
RxJava 211 212 59 87
Symja Commons Math Parser 1.0.0 master 9 260
Teamscale 3.1.1 >3.1.1 9° 7

RQ4: Does ordering the test cases make them fail faster?
identical with RQ4. Except that for the timings in RQ4 only Killed mutants were
considered, because Timed out and Memory error are dependant on the chosen
timeout factor and currently available heap size and therefore don’t produce reliable

and reproducable results.

The procedure for RQ3 is

RQ5: How rapidly does the list of suggested tests grow? For projects like Teamscale
with a very high commit density only every 10th commit was analyzed, so that the

analysis completed within 3 hours.

2 At Jul 26 2017. No other version in between

30nly merges of feature branches with a lot of changes

25

5. Evaluation

5.5. Results

RQ1: How stable is the set of methods that are executed by a test? Table 5.3 shows
for each study object the number of total tests and how many of them did have
differing coverage in the second run. While half of them did have exactly the same
coverage, others had a large amount of tests with differing coverage. The causes have
been explored manually. For RxJava and Teamscale only a random sample has been
considered. The root cause of most inspected differences in coverage was asynchronism,
which in turn was often a result of a scheduler or thread pool being organized across
test case boundaries. Calls to logging frameworks, which asynchronously write the log
messages either to disk or to the user interface, also involved asynchronous calls. These
observations were made across all study objects. The Apache Commons Math coverage
differences were completely caused by calls methods based on random numbers.

Table 5.3.: Tests changing their coverage

Study object Total Changed
Apache Commons Collections 5628 2
Apache Commons Lang 3975 0
Apache Commons Math 5964 4
Histone Template Engine 2 27 0
JabRef 2510 10
Joda-Time 4201 O
Lightweight-Stream-API 1002 0O
LittleProxy 183 3
OkHttp 2084 12
RxJava 8735 926
Symja Commons Math Parser 79 0
Teamscale 3670 431

In JabRef 141 additional tests did change their names amongst the compared test
runs. The differing names were caused by named parameterized tests. Normally those
names are used to uniquely identify parameterized test instances. But in those tests the
names contained object references, which differed in consecutive runs. For example
getKeyReturnsNotEmpty[8: ...MinifyNamelListFormatter@73b91e06]

RQ2: How reliably can we infer tests from a given code fragment? Table 5.4 shows
the results of RQ2. The table lists the total number of methods the project had at the
baseline, how many of them had a changed test set covering them after 1 day and 1

26

5. Evaluation

week as well as how many tests per method were not part of the baseline coverage on
average.

Table 5.4.: Methods with changed test sets

. 1da 1 week
Study object Methods Methods yTests Methods Tests
Apache Commons Collections 4699 3 1.0 5 1.0
Apache Commons Lang 4653 0 0 0 0
Apache Commons Math 9954 25 1.4 25 1.4
Histone Template Engine 2 290 0 0 0 0
JabRef 3732 1514 476 204° 3.89
Joda-Time 7262 0 0 3 1
Lightweight-Stream-API 801 15 1.4 15 1.4
LittleProxy 511 8 1.0 8 1.0
OkHttp 3522 44 129 36 3.03
RxJava 12700 272 27.10 167 11.11
Symja Commons Math Parser 285 0 0 0 0
Teamscale 16959 815 251 926 2.86

RQ3: How many bugs do we find by executing only the suggested tests? The results
in Table 5.5 show that 99.2% of the mutations, which the whole test suite was able to
kill, were also killed by the suggested tests. The causes for missing certain tests varied.
The 10 mutations in Apache Commons Lang were missed, because the Pitest applied
mutations to methods of an enum, which Teamscale did not consider as methods and
therefore did not track this modification. The missed tests in RxJava were caused by
flickering base coverage and in Teamscale some mutations were applied to generated
code, which was excluded in the Teamscale analysis and was therefore not considered.
I was not able to find the root cause for Joda-Time and Lightweight-Stream-API though.

RQ4: Does ordering the test cases make them fail faster? The failure times have
been sorted and accumulated and are shown in blue in Figure 5.1. Compared to the red
line that shows the failure reveal times when running the suggested tests in random
order assuming that the failure revealing tests are equally distributed. The black line
in contrast shows the average failure reveal times when running all tests, not only the
suggested ones.

426 when ignoring tests, which include a string representation of the object reference
573 when ignoring tests, which include a string representation of the object reference

27

5. Evaluation

600 [-

L

800

60
40
20

T
400 |
200 | :
0L 1

0.5

1.5

600 |
400 |
200 -
0 [-

(a) Apache Commons Collec-

tions

80 F

60 |- 2
40 | N
20 N
0L ! L

0 10 20 30

(d) Histone Template Engine 2

800 |
600
400 |
200 -

0 [

N

(g) Lightweight-Stream-API

0 02 04

80
60 |
40 |
20
0,

N

o

0 50 100 150

(j) RxJava

(k) Symja

(b) Apache Commons Lang

60 |
40 -
20
O,

0 50 100 150

(h) LittleProxy

400
200 |-
0 L1

Parser

02 04 06

Commons Math

T
07\ \ 1]
0 50

100

(c) Apache Commons Math

800
600
400
200

0

4

]oda T1me

80/ :
60 | |
40 :
20 | :
0, |

0 20 40 60 80

(i) OkHttp

60 -
40 +
20 -

2

0 100 200 300

(1) Teamscale

Figure 5.1.: Test failure times (x=Time in seconds, y=Failed tests)

28

5. Evaluation

Table 5.5.: Mutations missed by suggested methods

Study object Mutations Killed Missed by suggestions
Apache Commons Collections 1000 584 0
Apache Commons Lang 996 747 10
Apache Commons Math 100 85 0
Histone Template Engine 2 839 85 0
JabRef 196 92 0
Joda-Time 986 792 3
Lightweight-Stream-API 1000 953 2
LittleProxy 96 50 0
OkHttp 199 85 0
RxJava 100 87 8
Symja Commons Math Parser 995 478 0
Teamscale 154 64 6

RQ5: How rapidly does the list of suggested tests grow? The number of suggested
tests for each project is shown in Figure 5.2 for a timespan of 100 days. The x-axis shows
the percentage of files that have been modified during this time. The y-axis depicts the
number of tests, whereby the maximum visible y position equals the total number of
tests available in the project. The blue line shows the number of all suggested tests and
the red line shows the number of tests selected during round 1 of the algorithm (see
section 5.6). Computing the lists took between 10 minutes and 2 hours depending on
the project size and number of commits.

29

5. Evaluation

‘ -10*
4,000 - s 6,000 | i 11 ‘ N
2,000 | | 4000 1
2,000 | { 05p 1
0 0.2 0.4 : ‘ ‘ 0[; ! [
) ’ 0 02 04 0 02 04
(a) Apache Commons Collec- Apache C L ' ’
tions (b) Apache Commons Lang (c) Apache Commons Math
T T T — -
30| 1 4000) I
20 - 2
2,000 | 1 2,000 .
10| 2 C
0l | [0L | [0 C |]
0 02 04 0 02 04 0 02 04
(d) Histone Template Engine 2 (e) JabRef (f) Joda-Time
T T T T T
800 |] 150k] 6,000 —
600 [B 100 [| 4,000 [~ m
400 |- 2
200 | i 50 - . 2,000 |- -
0L | ! L] 0L | ! L 0r !:—— ‘ L
0 02 04 0 02 04 0 02 04
(g) Lightweight-Stream-API (h) LittleProxy (i) OkHitp
T T T
T T
o o [[
¢ 40 |- 2 B i
4,000 0l | 20
2,000 I Lo ——
4 O [H
0 ‘ ‘ : ‘ ‘ 0] ‘ —
0 02 04 0 02 04 0 02 04
. (k) Symja Commons Math
(j) RxJava Parser (1) Teamscale

Figure 5.2.: Number of suggested tests (x=Percentage of files changed, y=Tests)

30

5. Evaluation

5.6. Discussion

RQ1: How stable is the set of methods that are executed by a test? The results of
RQ1 show that a reliable mapping from code to tests is not always possible for code,
which is called asynchronously. This also implies that a reduced test set generated
based on a single coverage report can never be guaranteed to select all failure revealing
tests. But the data gathered could be used to detect potentially flickering tests and
could also be a means to find the root cause.

RQ2: How reliably can we infer tests from a given code fragment? As expected the
study objects, which did have differing coverage when testing the same code version,
also had errors in predicting the tests executing a method after one day and one week of
development activity. On average only 2% of all methods were affected by incorrect test
predictions. The total number of missed test predictions amongst those was relatively
small with 3 tests on average per affected method. But the difference between using one
day and one week old coverage as basis to predict method executions was insignificant.
This means running all tests only once per week and executing only a subset of tests
for every commit in between — based on the last weekly coverage — would be a viable
option.

RQ3: How many bugs do we find by executing only the suggested tests? As shown
99.2% of the mutations, that the whole test suite was able to reveal, were also suggested
by the presented approach. Inspecting the causes for missed tests indicates that most
of them could also be avoided by fixing the underlying issues in Teamscale. For those
missed tests that are caused by flickering base coverage, an addition to the approach,
which also suggests tests that sometimes execute the changed methods could overcome
the problems there.

RQ4: Does ordering the test cases make them fail faster? The results indicate that
ordering the tests makes the tests fail faster. On average more than 90% of the tests have
already failed after 10% of the execution time. 80% of those tests that killed mutations
were suggested by the algorithm during round 1. So for risk-based testing, where even
executing the reduced test suite is not feasible, the ordering provides a good means to
adjust the test suite size to the available budget.

RQ5: How rapidly does the list of suggested tests grow? The results indicate that
the approach tends to quickly grow for small projects like Histone Template Engine
2 (Figure 5.2d), LittleProxy (Figure 5.2h) and Symja Commons Math Parser (Figure 5.2k).

31

5. Evaluation

Some rare commits (see Figure 5.2g, Figure 5.2h, Figure 5.2k) result in a high increase of
the total tests suggested. If core components are altered, because all tests are suggested
that execute this core component. When only considering tests of e.g. round 1, the
effect of those commits can be avoided, because by definition round 1 only produces as
much tests as necessary to cover every modified line once. In practice this means the
same as already described in the previous paragraph. The test execution can simply be
stopped if the given time budget has been exceeded.

5.7. Threats to Validity

The study objects mainly consisted of open source libraries. Even though I used
Teamscale as non-open source study object the results may not be generalizable. The
presented approach is designed to work for both unit and integration tests, but most of
the study objects mainly had unit tests, so a general applicability to integration tests
is not given. As setting up the configuration for the study on an old version of the
system was not trivial, I only considered one baseline for all the research questions.
Other baselines may have yielded different results.

32

6. Future Work

Since the Test Impact Analyzer from Microsoft uses coverage on file level, it would be
interesting to compare the number of suggested tests produced by coverage on file level
with coverage on method level. Furthermore the study should be applied to even bigger
industrial projects to measure its effectiveness there. Also the implemented plugins
for Maven, Gradle, Tosca and TestBench should be enhanced to allow automatically
executing the suggested tests.

The coverage collected in Teamscale could be used to build other analyses as well. For
example an analysis to discover redundant tests, which execute the same functionality
and could therefore be removed to speed up test executing. Another interesting follow-
up analysis would be failure clustering. Since Teamscale can also process JUnit reports,
which contain information about which tests did pass and fail, the coverage data
per-test could be used to provide hints for the cause of the multiple failing test cases, by
inspecting, which parts of the changed code are covered by multiple failing test cases.

As shown in RQ1 of the evaluation asynchronous execution of tasks is a problem for
the reliability of the test suggestions. On the one hand JaCoCo could be extended to
support tracking of which threads were started by which test case. This could make it
possible to map coverage that was recorded after the test has finished to the correct test
case. On the other hand an analysis could be built to support localizing the root cause
of flickering tests.

33

7. Conclusion

The aim of this thesis was to implement a solution for getting coverage on a per-test level
by using the already existing and widely used JaCoCo coverage profiler. Integrations
with Gradle, Maven, Tosca and TestBench have shown that the approach can be used
independently of the used testing environment. Based on this coverage data an
approach to automate selective regression testing and prioritization was implemented
in the software quality analysis software Teamscale.

The approach used a DejaVu based approach to select the tests for re-execution. The
selection strategy used the change information available in Teamscale to select tests
which execute methods that have been modified. Afterwards a greedy algorithm was
used to sort the tests by their additional coverage on method level. In contrast to other
approaches I used the additional coverage per execution time to execute fast tests first.

The evaluation on twelve study objects showed that coverage is not always stable due
to asynchronous tasks, which ran longer than the actual test (RQ1). These unstable test
to code mappings cause incomplete predictions when applied to a modified version of
the code in turn. But the study has indicated that there is no huge difference in using a
weekly full build and a nightly full build (RQ2). Using older coverage to infer, which
tests will execute changes introduced to the code, can therefore not be considered
completely safe, but has demonstrated to work well enough to catch 99.2% of the
introduced bugs (RQ3). The results have also shown that ordering the tests makes more
than 90% of the test fail within the first 10% of the total execution time of the selected
tests (RQ4). This makes the suggestions even interesting for risk based testing, because
the execution could simply be stopped if a certain time budget is exhausted. Last but
not least for larger projects the study indicated that the number of suggested tests stays
reasonably small (RQ5).

Based on the per-test coverage a lot of interesting analyses could be implemented in
the future.

34

qe

A. Study objects summary

Study object URL build framework KkLoC source test commits | methods tests | baseline end commits days
Apache Commons Collections https://commons.apache.org/collections/ maven JUnit 4 62 31 31 3235 4699 5628 41 master 37 535
Apache Commons Lang https:/ /commons.apache.org/lang/ maven JUnit 4 75 27 48 5486 4653 3975 | 3.6-RC2 3.6-RC4 47 75
Apache Commons Math https://commons.apache.org/math/ maven JUnit 4 178 87 91 7156 9954 5964 3.6.0 3.6.1 14 75
Histone Template Engine 2 https:/ /github.com/MegafonWebLab / histone-java2 maven JUnit4&5 14 12 2 1133 290 27 1.7.1 19.1 39 191
JabRef http:/ /www.jabref.org/ gradle JUnit 4 122 94 27 10645 3732 2510 | 4.0-betal >4.0-betal 51 4
Joda-Time http:/ /www.joda.org/joda-time/ maven JUnit 3 83 28 55 2105 7262 4201 29.7 298 12 93
Lightweight-Stream-API https:/ /github.com/aNNiMON/ Lightweight-Stream-API gradle JUnit 4 23 8 15 529 801 1002 1.1.6 1.1.8 49 115
LittleProxy https:/ / github.com/adamfisk/LittleProxy maven JUnit 4 9 4 5 1037 511 183 1.1.1 1.1.2 24 69
OkHttp http:/ /square.github.io/okhttp/ maven JUnit 4 52 26 26 3548 3522 2084 3.8.0 3.8.1 43 71
RxJava https:/ / github.com/ReactiveX/RxJava gradle TestNG 242 84 158 6000 12700 8735 2.1.1 212 59 87
Symja Commons Math Parser https://github.com/axkr/symja-parser maven JUnit 4 7 6 2 44 285 79 1.0.0 master 9 260
Teamscale https:/ /teamscale.io gradle JUnit 4 336 270 67 82164 16959 3670 3.1.1 >3.1.1 9 7

List of Figures

4.1. Tosca integration overview 11
4.2. Toscaintegration, 11
43. Minimalexample L Lo L oo 14
44. Examplesystem L o 15
4.5. Test suggestions shown in Teamscale, 16
51. Test failuretimes 28
5.2. Number of suggested tests 30

36

List of Listings

3.1.

4.1.
4.2.
4.3.
44.

[Agentinterface L L 8
Coverage reportextract 13
Regression test selection 16
Ordering algorithm (part1) 17
Ordering algorithm (part2) 18

37

List of Tables

5.1.
5.2.
5.3.
54.
5.5.

Studyobjects. 21
Considered changes 25
Tests changing their coverage 26
Methods with changed testsets 27
Mutations missed by suggested methods 29

38

Bibliography

F. Dreier, E. Juergens, and A. Gob. “Detection of Refactorings.”
Bachelor’s Thesis. Technical University of Munich, 2015.

E. Engstrom, P. Runeson, and M. Skoglund.

“A systematic review on regression test selection techniques.”

In: Information and Software Technology 52.1 (2010), pp. 14-30. 1ssn: 09505849.
por: 10.1016/j.infsof.2009.07.001.

P. Hammant. The Rise of Test Impact Analysis.
https:/ /martinfowler.com/articles/rise-test-impact-analysis.html. 2017.

M. J. Harrold, J. a. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha,

S. A. Spoon, and A. Gujarathi. “Regression test selection for Java software.”
In: ACM SIGPLAN Notices 36 (2001), pp. 312-326. 1ssN: 03621340.

DOI: 10.1145/504311.504305.

J. Hartmann. “30 Years of Regression Testing : Past, Present and Future.”
In: PNSQC 2012 Proceedings (2012), pp. 1-8.

H. K. N. Leung and L. White.

“A study of integration testing and software regression at the integration level.”
In: Proceedings Conference on Software Maintenance 1990 (1990), pp. 290-301.

por: 10.1109/ICSM.1990.131377.

C. Mao and Y. Lu. “Regression testing for component-based software systems by
enhancing change information.”

In: 12th Asia-Pacific Software Engineering Conference (APSEC’05). IEEE, 2005, 8 pp.
1sBN: 0-7695-2465-6. po1: 10.1109/APSEC. 2005.95.

R. Niedermayr, E. Juergens, and S. Wagner.

“Will My Tests Tell Me If I Break This Code?”

In: Proceedings of the International Workshop on Continuous Software Evolution and
Delivery - CSED 16 (2016), pp. 23-29. por: 10.1145/2896941.2896944.

arXiv: 1611.07163.

39

http://dx.doi.org/10.1016/j.infsof.2009.07.001
http://dx.doi.org/10.1145/504311.504305
http://dx.doi.org/10.1109/ICSM.1990.131377
http://dx.doi.org/10.1109/APSEC.2005.95
http://dx.doi.org/10.1145/2896941.2896944
http://arxiv.org/abs/1611.07163

Bibliography

(9]

[10]

[11]

[12]

[13]

[14]

[15]

G. Rothermel and M. J. Harrold.

“A safe, efficient regression test selection technique.” In: ACM Transactions on
Software Engineering and Methodology (TOSEM) 6.2 (1997), pp. 173-210.

1ssN: 1049-331. por: 10.1145/248233.248262.

G. Rothermel and M. J. Harrold.

“Analyzing Regression Test Selection Techniques.”

In: IEEE Transactions on Software Engineering 22.8 (1996), pp. 529-551.
1ssN: 00985589. por: 10.1109/32.536955.

G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold.

“Prioritizing Test Cases For Regression Testing.”

In: IEEE Transactions on Software Engineering 27.10 (2001), pp. 929-948.
1ssN: 0098-5589. por: 10.1145/347324.348910.

R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry. “An information retrieval
approach for regression test prioritization based on program changes.”

In: Proceedings - International Conference on Software Engineering. Vol. 1. 2015.
ISBN: 9781479919345. por: 10.1109/ICSE.2015.47.

Vectorcast. Vector Software kiindigt VectorCAST/QA™ an.
https:/ /www.vectorcast.com/de/news/vector-software-press-

releases/2016/vector-software-kiindigt-vectorcast-qa.
2017.

D. Willmor and S. M. Embury.

“A safe regression test selection technique for database — driven applications.”
In: 21st IEEE International Conference on Software Maintenance (ICSM’05).

IEEE, 2005, pp. 421-430. 1sBN: 0-7695-2368-4. por: 10.1109/ICSM.2005. 15.

Y. Wu, M.-H. Chen, and H. M. Kao.

“Regression testing on object-oriented programs.” In: Proceedings 10th
International Symposium on Software Reliability Engineering (Cat. No.PR00443).
IEEE Comput. Soc, 1999, pp. 270-279. 1sBN: 0-7695-0443-4.

por: 10.1109/ISSRE.1999.809332.

40

http://dx.doi.org/10.1145/248233.248262
http://dx.doi.org/10.1109/32.536955
http://dx.doi.org/10.1145/347324.348910
http://dx.doi.org/10.1109/ICSE.2015.47
http://dx.doi.org/10.1109/ICSM.2005.15
http://dx.doi.org/10.1109/ISSRE.1999.809332

	Introduction
	Terms and Definitions
	Related Work
	Research
	Selective regression testing
	Test case prioritization

	Tools
	Technical Fundamentals
	Teamscale
	JaCoCo

	Approach
	Overview
	Coverage collection per test
	Listen for test execution
	JaCoCo
	Report generation
	Storage

	Test suggestions
	Regression test selection
	Test ordering

	Limitations

	Evaluation
	Research questions
	Study Objects
	Study Design
	Procedure
	Results
	Discussion
	Threats to Validity

	Future Work
	Conclusion
	Study objects summary
	List of Figures
	List of Listings
	List of Tables
	Bibliography

