
1

Learning to Rank Extract Method Refactoring
Suggestions for Long Methods

Roman Haas1 and Benjamin Hummel2

1 Technical University of Munich, Lichtenbergstr. 8, Garching, Germany
roman.haas@tum.de

2 CQSE GmbH, Lichtenbergstr. 8, Garching, Germany
hummel@cqse.eu

Summary. Extract method refactoring is a common way to shorten long methods
in software development. It improves code readability, reduces complexity, and is
one of the most frequently used refactorings. Nevertheless, sometimes developers
refrain from applying it because identifying an appropriate set of statements that
can be extracted into a new method is error-prone and time-consuming.

In a previous work, we presented a method that could be used to automat-
ically derive extract method refactoring suggestions for long Java methods, that
generated useful suggestions for developers. The approach relies on a scoring func-
tion that ranks all valid refactoring possibilities (that is, all candidates) to identify
suitable candidates for an extract method refactoring that could be suggested to
developers. Even though the evaluation has shown that the suggestions are useful
for developers, there is a lack of understanding of the scoring function. In this pa-
per, we present research on the single scoring features, and their importance for the
ranking capability. In addition, we evaluate the ranking capability of the suggested
scoring function, and derive a better and less complex one using learning to rank
techniques.

Key words: Learning to Rank, Refactoring Suggestion, Extract Method Refactor-
ing, Long Method

1.1 Introduction

A long method is a bad smell in software systems [2], and makes code harder to
read, understand and test. A straight-forward way of shortening long methods
is to extract parts of them into a new method. This procedure is called ’extract
method refactoring’, and is the most often used refactoring in practice [20].

The process of extracting a method can be partially automated by using
modern development environments, such as Eclipse IDE or IntelliJ IDEA,
that can put a set of extractable statements into a new method. However,
developers still need to find this set of statements by themselves, which takes

haas
Textfeld
The final publication is available at https://link.springer.com/chapter/10.1007/978-3-319-49421-0_4



2 Roman Haas and Benjamin Hummel

a considerable amount of time, and is error-prone. This is because even expe-
rienced developers sometimes select statements that cannot be extracted (for
example, when several output parameters are required, but are not supported
by the programming language) [12].

The refactoring process can be improved by suggesting to developers which
statements could be extracted into a new method. The literature presents
several approaches that can be used to find extract method refactorings. In
a previous work, we suggested a method that could be used to automatically
find good extract method refactoring candidates for long Java methods [3].
Our first prototype, which was derived from manual experiments on several
open source systems, implemented a scoring function to rank refactoring can-
didates. The result of our evaluation has shown that this first prototype finds
suggestions that are followed by experienced developers. The results of our
first prototype have been implemented in an industrial software quality anal-
ysis tool.

Problem statement. The scoring function is an essential part of our ap-
proach to derive extract method refactoring suggestions for long methods.
It is decisive for the quality of our suggestions, and also important for the
complexity of the implementation of the refactoring suggester. However, it is
currently unclear how good the scoring function actually performs in ranking
refactoring suggestions and how much complexity will be needed to obtain
useful suggestions. Therefore, in order to enhance our work, we need a deeper
understanding of the scoring function.

Contribution. We do further research on the scoring function of our ap-
proach to derive extract method refactoring suggestions for long Java meth-
ods. We use learning to rank techniques in order to learn which features of
the scoring function are relevant, to get meaningful refactoring suggestions,
and to keep the scoring function as simple as possible. In addition, we eval-
uate the ranking performance of our previous scoring function, and compare
it with the new scoring function that we learned. For the machine learning
setting, we use 177 training and testing data sets that we obtained from 13
well-known open source systems by manually ranking five to nine randomly
selected valid refactoring candidates.

In this paper, we show how we derived better extract method refactoring
suggestions than in our previous work using learning to rank tools.

1.2 Fundamentals

We use learning to rank techniques to obtain a scoring function that is able to
rank extract method refactoring candidates, and use normalized discounted
cumulative gain (NDCG) metrics to evaluate the ranking performance. In this
section, we explain the techniques, tools and metrics that we use in this paper.



Title Suppressed Due to Excessive Length 3

1.2.1 Learning to Rank

Learning to rank refers to machine learning techniques for training the model
in a ranking task [4].

There are several learning to rank approaches, where the pairwise and the
listwise approach usually perform better than common pointwise regression
approaches [8]. The pairwise approach learns by comparing two training ob-
jects and their given ranks (’ground truth’), whereas in our case the listwise
approach learns from the list of all given rankings of refactoring suggestions
for a long method. Liu et al. [8] pointed out that the pairwise and the listwise
approaches usually perform better than the pointwise approach. Therefore,
we do not rely on a pointwise approach but use pairwise and listwise learning
to rank tools.

Qin et al. [15] constructed a benchmark collection for research on several
learning to rank tools on the Learning To Rank (LETOR) data set. Their
results support the hypothesis that pointwise approaches perform badly com-
pared with pairwise and listwise approaches. In addition, listwise approaches
often perform better than pairwise. However, SVM-rank, a pairwise learning
to rank tool by Tsochantardis et al. [18], performs quite well and the first ex-
periments on our data set showed that SVM-rank may lead us to interesting
results. We set the parameter -c to 0.5 and the parameter -# to 5,000 as a
trade-off between time consumption and learning performance.

Beside SVM-rank, we used a listwise learning to rank tool, ListMLE by
Xia et al. [21]. In their evaluation, they showed that ListMLE performs better
than ListNet by Cao et al. [1], which was also considered to be good by Qin
et al.. Lan et al. [7] improved the learning capability of ListMLE, but did
not provide binaries or source code; so we were unable to use the improved
version.

ListMLE needs to be assigned a tolerance rate and a learning rate. In
a series of experiments we performed, we found that the optimal ranking
performance on our data set was with a tolerance rate of 0.001 and a learning
rate of 1E-15.

1.2.2 Training and Testing

The learning process consisted of two steps: training and testing. We applied
cross-validation [16] with 10 sets, that is, we split our learning data into 10
sets of (nearly) equal size. We performed 10 iterations using these sets, where
nine of the sets were considered to be training data and one set was used as
test data.

Test data is used to evaluate the ranking performance of the learned scoring
function by comparing the grade of a refactoring candidate determined by the
learned scoring function with its grade given by the learning data. We use
NDCG metric to compare different scoring functions and their performances.



4 Roman Haas and Benjamin Hummel

NDCG is the normalized form of the discounted cumulative gain (DCG),
which is described in more detail by Järvelin and Kekäläinen [5], and measures
the goodness of the ranking list (obtained by the application of the scoring
function). Mistakes in the top-most ranks have a bigger impact on the DCG
measure value. This is useful and important to us because we will not suggest
all possible refactoring candidates, but only the highest-ranked ones. Given
a long method, mi, with refactoring candidates, Ci, suppose that πi is the
ranking list on Ci and yi, the set of manually determined grades, then, the
DCG at position k is defined as DCG(k) =

∑
j:πi(j)≤k G(j)D(πi(j)), where

G(·) is an exponential gain function, D(·) is a position discount function,
and πi(j) is the position of refactoring candidate, ci,j , in πi. We set G(j) =
2yi,j − 1 and D(πi(j)) =

1
log2(1+πi(j))

. To normalize the DCG, and to make it
comparable with measures of other long methods, we divide this DCG by the
DCG that a perfect ranking would have obtained. Therefore, the NDCG for a
candidate ranking will always be in [0, 1], where the NDCG of 1 can only be
obtained by perfect rankings. In our evaluation, we consider the NDCG value
of the last position so that all ranks are taken into account. See Hang [4] for
further details.

1.3 Approach

We discuss our approach to improve the scoring function in order to find the
best suggestions for extract method refactoring.

1.3.1 Extract Method Refactoring Candidates

In our previous work [3], we presented an approach to derive extract method
refactoring suggestions automatically for long methods. The main steps are:
generating valid extract method refactoring candidates, ranking the candi-
dates, and pruning the candidate list.

In the following, a refactoring candidate is a sequence of statements that
can be extracted from a method into a new method. The remainder is the
method that contains all the statements from the original method after ap-
plying the refactoring, plus the call of the extracted method. The suggested
refactorings will help to improve the readability of the code and reduce its
complexity, because these are main reasons for developers to initiate code
refactoring [6].

We derived refactoring candidates from the control and data flow graph
of a method using the Continuous Quality Assessment Toolkit (ConQAT3)
open source software. We filtered out all invalid candidates, that is those that
violate preconditions that need to be fulfilled for extract method refactoring
(for details, see [12]). The second step of our approach was to rank the valid
3 www.conqat.org

www.conqat.org


Title Suppressed Due to Excessive Length 5

candidates using a scoring function. Finally, we pruned the list of suggestions
by filtering out very similar candidates, in order to obtain essentially different
suggestions.

In the present paper, we focus on the ranking of candidates, and especially
on the scoring function that defines that ranking.

1.3.2 Scoring Function

We aimed for an optimized scoring function that is capable of ranking extract
method refactoring candidates, so that top-most ranked candidates are most
likely to be chosen by developers for an extract method refactoring. The scor-
ing function is a linear function that calculates the dot product of a coefficient
vector, c, and a feature value vector, f , for each candidate. Candidates are
arranged in decreasing order of their score.

In this paper, we use a basis of 20 features for the scoring function. In
the following, we give a short overview about the features. There are three
categories of feature: complexity-related features, parameters, and structural
information.

We illustrate the feature values with reference to two example refactoring
candidates (C1 and C2) that were chosen from the example method given in
Figure 1.1. The gray area shows the nesting area, which is defined below. The
white numbers specify the nesting depth of the corresponding statement.

Fig. 1.1: Example Method with Nesting
Area of Statements And Example Can-
didates

# Feature Type C1 ll. C2 ll.
9 – 19 10 – 18

1 LoC Red (abs) int 8 8
2 Token Red (abs) int 33 43
3 Stmt Red (abs) int 5 6
4 LoC Red (rel) double 0.42 0.42
5 Token Red (rel) double 0.36 0.47
6 Stmt Red (rel) double 0.38 0.46
7 Nest Depth Red int 0 1
8 Nest Area Red int 1 6
9 # Read Var int 4 4

10 # Written Var int 1 1
11 # Used Var int 4 4
12 # Input Param int 2 3
13 # Output Param int 0 0
14 ∃ Introd Com bool 1 0
15 # Introd Com int 2 0
16 ∃ Concl Com bool 0 0
17 # Concl Com int 0 0
18 Same T Before bool 0 0
19 Same T After bool 0 0
20 # Branch Stmt int 3 2

Table 1.1: Features and Values
in Example

Complexity-related features

We mainly focused on reducing complexity and increasing readability. For
complexity indicators, we used length, nesting and data flow information. For



6 Roman Haas and Benjamin Hummel

length-related features, we implemented six different metrics to measure the
reduction of the method length (with respect to the longest method after the
refactoring). We considered length based on the number of lines of code (LoC),
on the number of tokens, and on the number of statements – all of them as
both absolute values and relative to the original method length.

We consider highly nested methods as more complex than moderately
nested ones, and use two features to represent the reduction of nesting: re-
duction of nesting depth and reduction of nesting area. The nesting area of a
method with statements S1 to Sn, each having a nesting depth of dSi

, is de-
fined to be

∑n
i=1 dSi

. The idea of nesting area comes from the area alongside
the single statements of pretty printed code (see the gray areas in Figure 1.1).

Dataflow information can also indicate complexity. We have features rep-
resenting the number variables that are read, written or read and written.

Parameters

We considered the number of input and output parameters as an indicator of
data coupling between the original and the extracted methods, which we want
to keep low using our suggestions. The more parameters that are needed for
a set of statements to be extracted from a method, the more the statements
will depend on the rest of the original method.

Structural information

Finally, we have some features that represent structural aspects of the code.
A design principle for code is that methods should process only one thing [9].
Methods that follow this principle are easier to understand. As developers
often put blank lines or comments between blocks of code that process some-
thing else, we use features representing the existence and the number of blank
or commented lines at their beginning, or at their end. Additionally, for first
statement of the candidate, we check to see whether the type of the preceding
is the same; and for the last statement, we check to see whether the type of
the following statement is the same. Our last feature considers a structural
complexity indicator – the number of branching statements in the candidate.

1.3.3 Training and Test Data Generation

To be able to learn a scoring function, we need training and test data. We
derived this data by manually ranking approximately 1,000 extract method
refactoring suggestions. To obtain this learning data, we selected 13 Java
open source systems from various domains, and of different sizes. We consider
a method to be ’long’ if it has more than 40 LoC. From each project we
randomly selected 15 long methods. For each method, we randomly selected
valid refactoring candidates, where the number of candidates depended on the
method length.



Title Suppressed Due to Excessive Length 7

Our approach seeks to find suggestions that do not introduce new smells
into the code. Therefore, in the pruning step of our approach, we usually filter
out candidates that need more than three input parameters, thus avoiding the
’long parameter list’ mentioned by Fowler [2]. To avoid learning that too many
input parameters are bad, we considered only candidates that had less than
four input parameters.

We ranked the selected candidates manually with respect to complexity
reduction and readability improvement. The higher the ranking we gave a
candidate, the better the suggestion was for us.

Some of the randomly selected methods were not suitable for an extract
method refactoring. That was most commonly the case when the code would
not benefit from the extract method, but from other refactorings. In addition,
for some methods, we could not derive a meaningful ranking because there
were only very weak candidates. That is why we did not use 18 of the 195
randomly selected long methods to learn our scoring function.4

1.4 Evaluation

In this section, we present and evaluate the results from the learning proce-
dure.

1.4.1 Research Questions

RQ1: What are the results of the learning tools? In order to get a
scoring function that is capable of ranking the extract method refactoring
candidates, we decided to use two learning to rank tools that implement dif-
ferent approaches, and that had performed well in previous studies.
RQ2: How stable are the learned scoring functions? To be able to
derive implications for a real-world scoring function, the coefficients of the
learned scoring function should not vary a lot during the 10-fold cross evalu-
ation procedure.
RQ3: Can the scoring function be simplified? For practical reasons,
it is useful to have a scoring function with a limited number of features.
Additionally, reducing the search space may increase the performance of the
learning to rank tools – resulting in better scoring functions.
RQ4: How does the learned scoring function compare with our man-
ually determined one? In our previous work, we derived a scoring function
by manual experiments. Now we can use our learning data set to evaluate
the ranking performance of the previously defined scoring function, and to
compare it with the learned one.
4 On http://in.tum.de/~haas/l2r_emrc_data.zip we provide our rankings and

the corresponding code bases from which we generated the refactoring candidates.

http://in.tum.de/~haas/l2r_emrc_data.zip


8 Roman Haas and Benjamin Hummel

1.4.2 Study Setup

To answer RQ1 and RQ2, we used the learning to rank tools SVM-rank and
ListMLE to perform a 10-fold cross validation on our training and test data
set of 177 long methods, and a total of 1,185 refactoring candidates. We il-
lustrate the stability of the single coefficients by using box plots that show
how the coefficients are distributed over the ten iterations of the 10-fold cross
validation.

To answer RQ3, we simplified the learned scoring function by omitting
features, where the selection criterion for the omitted features is preservation
of the ranking capability of the scoring function. Our initial feature set con-
tained six different measures of length. For the sake of simplicity, we would
like to have only one measure of length in our scoring function. To find out
which measure best fits in with our training set, we re-ran the validation pro-
cedure (again using ListMLE and SVM-rank), but this time with only one
length measurement, using each of the length measurements one at a time.
We continued with the feature set reduction until only one feature was left.

1.4.3 Results

The following paragraphs answer the research questions.

RQ1: What are the results of the learning tools?

Figures 1.2 and 1.3 show the results of the 10-fold cross validation for ListMLE
and for SVM-rank, respectively. For each single feature, i, there is a box plot
of the corresponding coefficient, ci.

0 20 40

2
4
6
8

10
12
14
16
18
20

C
om

pl
ex

ity
Pa

r
St

ru
ct

ur
e

ci

Fe
at

ur
e
i

Fig. 1.2: Learning Result From
ListMLE With All Features

−1 0

2
4
6
8

10
12
14
16
18
20

C
om

pl
ex

ity
Pa

r
St

ru
ct

ur
e

ci

Fe
at

ur
e
i

Fig. 1.3: Learning Result From
SVM-rank With All Features



Title Suppressed Due to Excessive Length 9

The average NDCG values of the learned scoring function for ListMLE is
0.873, whereas for SVM-rank it is 0.790. Therefore, the scoring function found
by ListMLE performed better than the scoring function found by SVM-rank.

Table 1.2: Coefficients of Variation for Learned Coefficients

ListMLE SVM-rank
| AVG CV | 0.0087 22.522
| Min CV | 0.0053 0.8970
| Max CV | 0.5767 451.2

RQ2: How stable are the learned scoring functions?

Table 1.2 shows the average, minimum and maximum coefficients of varia-
tion (CV) for the learned coefficients for ListMLE and for SVM-rank. Small
CVs indicate that in relative terms the results from the single runs in the
10-cross fold procedure did not vary a lot, whereas big CVs indicate big dif-
ferences between the learned coefficients. As the CVs of the single features
from ListMLE are much smaller than those of SVM-rank, the coefficients of
ListMLE are much more stable compared with SVM-rank. SVM-rank shows
coefficients with a big variance between the single iterations of the validation
process; that is, despite the heavy overlapping of the training sets, the learned
coefficients vary a lot and can hardly be generalized.

RQ3: Can the scoring function be simplified?

Figure 1.4 shows a plot of the averaged NDCG measure for all 12 runs. Re-
member that we actually had three length measures, and we considered the
absolute and the relative values for all of them. As the reduction of the num-
ber of statements led to a higher NDCG for ListMLE (which outperformed
SVM-rank with respect to NDCG), we chose to use it as our length mea-
sure. In practice, that seems sensible since, while LoC also count empty and
commented lines, the number of statements only counts real code.

LoC Token Stat.

0.85

0.86

0.87

0.88

Length Measure

Av
g

N
D

C
G ListMLE (abs)

ListMLE (rel)
SVM-rank (abs)
SVM-rank (rel)

Fig. 1.4: Averaged NDCG When Considering Only One Length Measure



10 Roman Haas and Benjamin Hummel

We iteratively identified a set of features that had no or only small influence
on the ranking performance and removed it in the next iteration. A scoring
function that only considered the number of input parameters and length and
nesting area reduction still had an average NDCG of 0.885.

RQ4: How does the learned scoring function compare with our manually
determined one?

The scoring function that we presented in [3] achieved a NDCG of 0.891,
which is better than the best scoring function learned in this evaluation.

1.4.4 Discussion

Our results show that, in the initial run of the learning to rank tools, features
indicating a reduction of complexity are much more relevant for the ranking,
and therefore have a comparatively high impact. Furthermore, the stability
of ListMLE is higher on our data set than the stability of SVM-rank. For
SVM-rank there is a big variance in the learned coefficients, which might also
be a reason for the comparatively lower performance measure values.

The results for RQ3 show that it is possible to achieve a great simplification
without big reductions in the ranking performance. The biggest influences on
the ranking performance were the reduction of the number of statements, the
reduction of nesting area (both are complexity indicators), and the number
of input parameters.

Manual improvement As already mentioned, the learned scoring functions
did not outperform the manually determined scoring function from our pre-
vious work. Obviously, the learning tools were not able to find optimal co-
efficients for the features. To improve the scoring function from our previ-
ous work, we did manual experiments that were influenced by the results of
ListMLE and SVM-rank, and evaluated the results using the whole learning
data set.

We were able to find several scoring functions that had only a handful
of features and a better ranking performance than our scoring function from
previous work (column ’Previous’ in Table 1.3). In addition to the three most
important features that we obtained in the answer to RQ3 (features #3, #7,
#10), we also took the comment features (#14-17) into consideration. The
main differences between the previous scoring function and the manually im-
proved one from this paper are the length reduction measure, the omission of
nesting depth, and the number of output parameters.

By taking the results of ListMLE and SVM-rank into consideration, we
were able to find a coefficient vector such that the scoring function achieved
a NDCG of 0.894 (see Table 1.3). That means that we were able to find a
better scoring function when we combined the findings of our previous work
with the learned coefficients from this paper.



Title Suppressed Due to Excessive Length 11

Table 1.3: Best Scoring Functions

#
XXXXXFeature

Fct Previous Learned Improved

1 LoC (abs) 0.036 - -
3 Stmt (abs) - 0.681 0.066
7 Nesting Depth 0.362 - -
8 Nesting Area 0.724 0.731 0.895

12 # Input P. -0.362 -0.024 -0.331
13 # Output P. -0.362 - -
14 ∃ Introd Com. 0.181 - 0.166
15 # Introd Com. 0.181 - 0.166
16 ∃ Concl Com. 0.090 - 0.166
17 # Concl Com. 0.090 - 0.052

AVG NDCG 0.891 0.885 0.894

1.5 Threats to Validity

Learning from data sources that are either too similar or too small means
that there is a chance that no generalization of the results is possible. To have
enough data to enable us to learn a scoring function that can rank extract
method refactoring candidates, we chose 13 Java open source projects from
various domains and from each project we randomly selected 15 long methods.
We manually reviewed the long methods, and filtered out those that were not
appropriate for the extract method. From the 177 remaining long methods,
we randomly chose five to nine valid refactoring suggestions, depending on
the method length. We ensured that our learning data did not contain any
code clones to avoid learning from redundant data.

The manual ranking was performed by a single individual, which is a threat
to validity since there is no commonly agreed way on how to shorten a long
method, and therefore no single ranking criterion exists. The ranking was
done very carefully, with the aim of reducing the complexity and increasing
the readability and understandability of the code as much as possible; so,
the scoring function should provide a ranking such that we can make further
refactoring suggestions with the same aim.

We relied on two learning to rank tools, which represents another threat
to validity. The learned scoring functions heavily depend on the tool. As the
learned scoring functions vary, it is necessary to have an independent way of
evaluating the ranking performance of the learned scoring functions. We used
the widely used measure NDCG to evaluate the scoring functions, and applied
a 10-fold cross validation procedure to obtain a meaningful evaluation of the
ranking performance of the learned scoring function.

A threat to external validity is the fact that we derived our learning data
from 13 open source Java systems. Therefore, results are not necessarily gen-
eralizable.

1.6 Related Work

In our previous work [3], we presented an automatic approach to derive ex-
tract method refactoring suggestions for long methods. We obtained valid



12 Roman Haas and Benjamin Hummel

refactoring candidates from the control and dataflow graph of a long method.
All valid refactoring candidates were ranked by a manually-determined scor-
ing function that aims to reduce code complexity and increase readability. In
the present work, we have put the scoring function on more solid ground by
learning a scoring function from many long methods, and manually ranked
refactoring suggestions.

In the literature, there are several approaches that learn to suggest the
most beneficial refactorings – usually for code clones. Wang and Godfrey [19]
propose an automated approach to recommend clones for refactoring by train-
ing a decision-tree based classifier, C4.5. They use 15 features for decision-tree
model training, where four consider the cloning relationship, four the context
of the clone, and seven relate to the code of the clone. In the present paper,
we have used a similar approach, but with a different aim: instead of clones,
we have focused on long methods.

Mondal et al. [10] rank clones for refactoring through mining association
rules. Their idea is that clones that are often changed together to maintain
a similar functionality are worthy candidates for refactoring. Their prototype
tool, MARC, identifies clones that are often changed together in a similar way,
and mines association rules among these. A major result of their evaluation
on thirteen software systems is that clones that are highly ranked by MARC
are important refactoring possibilities. We used learning to rank techniques to
find a scoring function that is capable of ranking extract method refactoring
candidates from long methods.

1.7 Conclusion and Future Work
In this paper, we have presented an approach to derive a scoring function that
is able to rank extract method refactoring suggestions by applying learning
to rank tools. The scoring function can be used to automatically rank extract
method refactoring candidates, and thus present a set of best refactoring sug-
gestions to developers. The resulting scoring function needs less parameters
than previous scoring functions but has a better ranking performance.

In the future, we would like to suggest sets of refactorings, especially those
that remove clones from the code.

We would also like to find out whether the scoring function provides good
suggestions for object-oriented programming languages other than Java and
whether other features need to be considered in that case.

Acknowledgments
Thanks to the anonymous reviewers for their helpful feedback. This work was
partially funded by the German Federal Ministry of Education and Research
(BMBF), grant ”Q-Effekt, 01IS15003A”. The responsibility for this article lies
with the authors.



Title Suppressed Due to Excessive Length 13

References

1. Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank: From
pairwise approach to listwise approach. In 24th ICML, 2007.

2. M. Fowler. Refactoring : Improving the Design of Existing Code. Addison-Wesley
object technology series. Addison-Wesley, Reading, PA, 1999.

3. R. Haas and B. Hummel. Deriving extract method refactoring suggestions for
long methods. In SWQD, 2016.

4. L. Hang. A short introduction to learning to rank. IEICE Transactions on
Information and Systems, 94(10):1854–1862, 2011.

5. K. Järvelin and J. Kekäläinen. Ir evaluation methods for retrieving highly
relevant documents. In 23rd SIGIR, 2000.

6. M. Kim, T. Zimmermann, and N. Nagappan. A field study of refactoring chal-
lenges and benefits. In 20th International Symposium on the FSE, 2012.

7. Y. Lan, Y. Zhu, J. Guo, S. Niu, and X. Cheng. Position-aware listmle: A
sequential learning process for ranking. In 30th Conference on UAI, 2014.

8. T.-Y. Liu. Learning to rank for information retrieval. Foundations and Trends
in Information Retrieval, 3(3):225–331, 2009.

9. R. C. Martin. Clean Code : A Handbook of Agile Software Craftsmanship. Robert
C. Martin series. Prentice Hall, Upper Saddle River, NJ, 2009.

10. M. Mondal, C. K. Roy, and K. Schneider. Automatic ranking of clones for
refactoring through mining association rules. In CSMR-WCRE, 2014.

11. E. Murphy-Hill and A. P. Black. Why don’t people use refactoring tools? In
1st WRT, 2007.

12. E. Murphy-Hill and A. P. Black. Breaking the barriers to successful refactoring:
Observations and tools for extract method. In 30th ICSE, 2008.

13. W. F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University
of Illinois at Urbana-Champaign, 1992.

14. A. Ouni. A Mono-and Multi-objective Approach for Recommending Software
Refactoring. PhD thesis, Université de Montréal, 2015.

15. T. Qin, T.-Y. Liu, J. Xu, and H. Li. Letor: A benchmark collection for research
on learning to rank for information retrieval. Information Retrieval, 13(4):346–
374, 2010.

16. C. Sammut, editor. Encyclopedia of machine learning. Springer, New York,
2011.

17. N. Tsantalis and A. Chatzigeorgiou. Ranking refactoring suggestions based on
historical volatility. In 15th ECSMR, 2011.

18. I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin meth-
ods for structured and interdependent output variables. Journal of Machine
Learning Research, 6:1453–1484, 2005.

19. W. Wang and M. W. Godfrey. Recommending clones for refactoring using
design, context, and history. In ICSME, 2014.

20. D. Wilking, U. F. Kahn, and S. Kowalewski. An empirical evaluation of refac-
toring. e-Informatica, 1(1):27–42, 2007.

21. F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li. Listwise approach to learning
to rank: Theory and algorithm. In 25th ICML, 2008.


	1 Learning to Rank Extract Method Refactoring Suggestions for Long Methods
	Roman Haas, Benjamin Hummel



