
Did We Test the Right Thing? Experiences with
Test Gap Analysis in Practice

Elmar Jürgens
CQSE GmbH

juergens@cqse.eu

Dennis Pagano
CQSE GmbH

pagano@cqse.eu

Abstract—In long-lived systems, errors typically occur in code
areas that have been frequently changed. As a consequence, test
managers put great emphasis on thoroughly testing modified
code. However, our studies show that even in well-structured
testing processes code changes often accidentally remain untested.

Test Gap analysis finds untested changes and gives testers
the chance to test them in a timely manner. As a consequence,
Test Gap analysis allows you to effectively monitor your testing
processes.

After an introduction to Test Gap analysis we describe our
experiences both with the usage of this tool at our customers
and during our own development over the last few years. We
also go into detail on how Test Gap analysis can be applied in
different phases of the testing process.

HOW WELL ARE CODE CHANGES ACTUALLY COVERED BY
TESTS IN PRACTICE?

In many systems manual test cases still make up the
majority of all tests. In a large system it is anything but
trivial to choose manual test cases that actually run through
the changes that were made since the last test phase and
presumably contain most bugs.

In order to better understand whether the tests actually
reached those changes, we conducted a scientific study[1] on
an enterprise information system. The examined system com-
prises approximately 340,000 lines of C# code. We conducted
the study over a period of 14 months of development and
analyzed two consecutive releases.

Through static analyses we determined which parts of
the source code were newly developed or changed for both
releases. For both releases about 15% of the source code was
modified. Furthermore, we analyzed all testing activities. In
order to do so, we tracked the test coverage of all automated
and manual tests over the course of several months.

When evaluating the combination of modification and test
data, it became apparent that approximately half the changes
went into production untested – despite a systematically
planned and executed testing process.

WHAT ARE THE CONSEQUENCES OF UNTESTED CHANGES?

To quantify the consequences of untested changes for users
of the system, we retrospectively analyzed all errors that
occurred in the months following the releases. This brought
to light that changed, untested code is five times more error-
prone than unchanged code (and also more error-prone than
changed and tested code).

Our study makes plain that in practice changes very fre-
quently reach production untested and that they cause the
majority of field bugs. However, we thus observe a concrete
starting point to systematically improving test quality: if we
manage to test changes more reliably.

HOW DOES CHANGED CODE ESCAPE THE TEST?

The amount of untested production code actually surprised
us when we conducted this study for the first time. In
the meantime, comparable analyses have been performed in
several systems, using several programming languages and
in different companies, and the results are often similar.
The causes of these untested changes are, however, – to the
contrary of what you may assume – not a lack of discipline or
commitment on the tester’s part but rather the fact that without
suitable analyses it is extremely hard to reliably catch changed
code when testing large systems.

When selecting cases, test managers often orient themselves
on changes that are documented in the issue tracker (Jira,
TFS, Redmine, Bugzilla, etc.). In our experience, this works
well for changes made for functional reasons. Test cases
for manual tests usually describe interaction sequences via
the user interface to test specific functionality. If the issue
tracker contains changes to a functionality the corresponding
functional test cases are selected for execution.

However, we have learned that there are two reasons for
issue trackers not being suitable sources of information in con-
sistently finding changes. Firstly, changes are often technically
motivated, for example, clean-up operations or adaptations to
new versions of libraries or interfaces to external systems.
These technical changes do not make it clear to the tester
which functional test cases need to be executed to run through
the changed code.

Secondly and more importantly, issue trackers often miss
essential changes, be it due to time pressure or policy reasons.
This leads to gaps in the issue tracker data. In order to consis-
tently find changes without gaps we need reliable information
about which changes were tested and which were not.

WHAT CAN BE DONE?

Test Gap analysis is an approach that combines static and
dynamic analysis techniques to identify changed but untested
code. It is comprised of the following steps:

GUI.Base

GUI.Dialogs
Authentication

UI Controls

Data
Validation

Figure 1. Treemap with the components of the system under test. Each
rectangle represents one component. The surface area corresponds to the size
of the component in lines of code. As an example, the primary function of
individual components is depicted.

Figure 2. Changes within the system under test since the previous release:
Each small rectangle represents one method of the source code. Unchanged
methods are depicted in gray, new methods in red and changed methods in
orange.

Static analysis. A static analysis compares the current
state of the source code of the system under test to that of
the previous release in order to determine new and changed
code areas. In doing so, the analysis is intelligent enough to
differentiate between varying kinds of changes. Refactorings,
which do not lead to a modification of the behavior of the
source code (e.g., changes to documentation, renaming of
methods, or code moves), cannot cause errors and can thus
be filtered out. This brings our attention to those changes that
lead to a change in the behavior of the system.

The changes to one of the systems we analyzed can be seen
in Figure 2. Figure 1 serves to illustrate further the parts into
which the underlying system is divided.

Figure 3. Test coverage in the system under test at the end of the test phase.
Untested methods are depicted in gray, tested methods in green.

Dynamic analysis. In addition, test coverage is determined
with the help of dynamic analyses. The crucial factor here is
that all tests are recorded, that is both automated and manually
executed test cases. The executed methods are depicted in
Figure 3.

Combination. Test Gap analysis then detects untested
changes by combining the results of the static and dynamic
analyses. Figure 4 shows a treemap containing the results of
a Test Gap analysis for this system. In this case, the small
rectangles in the different components represent the contained
methods, their surface area corresponds to the length of the
method in lines of code. The colors of the rectangles represent
the following:

• Gray methods have remained unchanged since the previ-
ous release.

• Green methods were changed (or added) and were exe-
cuted in any test.

• Orange (and red) methods were changed (or added) and
were not executed in any test.

It is plain to see that on the right side of the treemap
whole components containing new or changed code were not
executed in the testing process. No errors contained in this
area can have been found.

HOW TO USE TEST GAP ANALYSIS

Test Gap analysis is useful when executed continuously, for
example, every night, to gain insight each morning into the
changes made and tests executed up to the previous evening.
For this purpose, dashboards containing information about test
gaps are created, as illustrated in Figure 5.

These dashboards allow test managers to decide in a timely
manner, whether further test cases are necessary to run through
the remaining changes while the test phase is still ongoing.
If the effort was successful, this will become evident on the
newly calculated dashboards the next day.

Figure 4. Test gaps at the end of the test phase. Unchanged methods are depicted in gray. Changed methods that were tested are depicted in green. New
untested methods are depicted in red, changed untested methods in orange.

Test Cases

Changes Execution

Test Gap
Analysis

Untested Changes
Test

Manager

Figure 5. Usage in the testing process.

If multiple test environments are in use simultaneously, one
dashboard should be created for each individual environment
so that test coverage can be specifically assigned to the
corresponding dashboard. In addition, there is a dashboard that
encompasses all information from all environments. Figure 6
depicts an example with three different test environments:

• Test. This is the environment in which testers carry out
manual tests.

All

Test Dev UAT

Figure 6. Several dashboards are used for a detailed analysis.

• Dev. In this environment automated test cases are exe-
cuted.

• UAT. The user acceptance test environment is used for
end users carrying out exploratory tests with the system
under test.

• All. Collects the results of all three test environments.

Figure 7. Methods changed during a hotfix.

WHICH PROJECTS BENEFIT FROM THE USE OF TEST GAP
ANALYSIS?

We have used Test Gap analysis on a wide range of different
projects: from enterprise information systems to embedded
software, from C/C++ to Java, C#, Python and even ABAP.
Factors that affect the complexity of the introduction include,
among others:

• Execution environment. Virtual machines (e.g., Java,
C#, ABAP) facilitate the collection of test coverage data.

• Architecture. For server-based applications, test cover-
age data has to be collected on fewer machines than for
fat-client applications.

• Testing process. Clearly defined test phases facilitate
planning and monitoring.

WHAT ARE THE ADVANTAGES OF TEST GAP ANALYSIS
DURING HOTFIX TESTING?

Usually there is very little time to test hotfixes. The ob-
jectives of hotfix tests are to ensure that the fixed error does
not re-occur as well as making sure that no new errors have
been introduced. In the latter case, there should at least be a
guarantee that all changes made in the course of the hotfix
were tested. For this purpose, we define the last release as the
reference version for Test Gap analysis and detect all changes
made due to the hotfix (for example, on its own branch) as
shown in Figure 7.

With the help of Test Gap analysis we then determine
whether all changes were actually tested during confirmation
testing. The example in Figure 8 demonstrates that a part of
the methods is still untested. Our experience shows that Test
Gap analysis specifically helps to avoid new errors that are
introduced through changes during hotfix tests.

WHAT ARE THE ADVANTAGES OF TEST GAP ANALYSIS
DURING A RELEASE TEST?

In this article, a release test is defined as the test phase prior
to a major release, which usually involves both testing newly

Figure 8. Tested and untested methods during confirmation testing of a hotfix.

Figure 9. Fewer test gaps when Test Gap analysis is used continuously.

implemented functionality and executing regression tests. For
this, different kinds of tests are frequently used.

Our experience shows that Test Gap analysis significantly
reduces the amount of untested changes that reach production.

Figure 9 depicts a test gap treemap of the same system
that can be seen in Figure 4. While Figure 4 was determined
retrospectively, Figure 9 is a snapshot of an iteration in which
Test Gap analysis is applied continuously. In this snapshot,
both manual as well as automated tests are taken into account.
It is plain to see that it contains much fewer test gaps.

We have also observed that in many cases some test gaps are
accepted, for example, when the corresponding source code
is not yet available via the user interface. The key, however,
is that these are conscious and well-founded decisions with
predictable consequences.

WHAT ARE THE LIMITATIONS OF TEST GAP ANALYSIS?

Like any analysis method, Test Gap analysis has its limita-
tions. To know them is crucial in making the best use of the
analysis.

One of the limitations of Test Gap analysis are changes that
are made on the configuration level without changing the code
itself as these changes consequently remain hidden from the
analysis.

Another limitation of Test Gap analysis is the significance
of covered code. Test Gap analysis evaluates which code was
executed during the test. However, the analysis cannot figure
out how thoroughly the code was tested. This potentially leads
to undetected errors despite the analysis depicting the executed
code as “green”. This effect increases with the coarseness of
the measurement of code coverage.

However, the reverse is true: red and orange code was not
executed at all. Thus, no contained errors can have been found.

Our experience in practice shows that the gaps brought to
light when using Test Gap analysis are usually so large that
substantial insights into weaknesses in the testing process are
gained. Concerning these large gaps, the limitations mentioned
above are not significant.

OUTLOOK

Another exciting field for applying the described analysis
methods is the production environment. In this case, the
recorded executions are no longer executed test cases but
system interactions carried out by the end user. This helps
to determine which of the features that were added to the
previous release are actually used by the end user. In our
experience, the results can frequently be surprising.

Figure 10 illustrates the use of an enterprise information
system in the style of a Gantt chart [2]. Each line represents
one of the application’s features. The x-axis shows the mea-
surement period. On weekends as well as during the Christmas
season the system is, as we expected, used less than on other
days. However, the figure only depicts those features that
were actually used. Yet the analysis showed that 28% of the
application’s features were not used at all, which came as a
surprise to all stakeholders involved. In this case, the analysis
led to the deletion of a quarter of the application’s source
code so that in the following releases less testing efforts were
necessary or were applied in a more effective way1.

FURTHER INFORMATION

At www.testgap.io we compiled further materials on Test
Gap analysis, such as research projects, blog posts and tool
support. Furthermore, as the authors of this article, we are
always happy to receive e-mails with questions and feedback
(also negative) on this text or on Test Gap analysis in general.

1For usage analysis on feature level, several methods are necessary that go
beyond the ones described in this article. They are described in the referenced
paper.

Figure 10. Using the features of an enterprise information system in
production.

REFERENCES

[1] Sebastian Eder, Benedikt Hauptmann, Maximilian Junker, Elmar Juer-
gens, Rudolf Vaas, and Karl-Heinz Prommer. Did we test our changes?
assessing alignment between tests and development in practice. In
Proceedings of the Eighth International Workshop on Automation of
Software Test (AST’13), 2013.

[2] Elmar Juergens, Martin Feilkas, Markus Herrmannsdoerfer, Florian Deis-
senboeck, Rudolf Vaas, and Karl-Heinz Prommer. Feature profiling for
evolving systems. In Program Comprehension (ICPC), 2011 IEEE 19th
International Conference on, pages 171–180. IEEE, 2011.

