
Deriving Extract Method Refactoring
Suggestions for Long Methods?

Roman Haas1 and Benjamin Hummel2

1 Technical University of Munich, Germany
2 CQSE GmbH, Garching near Munich, Germany

haas@in.tum.de, hummel@cqse.eu

Abstract. The extract method is a common way to shorten long meth-
ods in software development. Before developers can use tools that sup-
port the extract method, they need to invest time in identifying a suitable
refactoring candidate. This paper addresses the problem of finding the
most appropriate refactoring candidate for long methods written in Java.
The approach determines valid refactoring candidates and ranks them us-
ing a scoring function that aims to improve readability and reduce code
complexity. We use length and nesting reduction as complexity indica-
tors. The number of parameters needed by the candidate influences the
score. To suggest candidates that are consistent with the structure of the
code, information such as comments and blank lines are also considered
by the scoring function. We evaluate our approach to three open source
systems using a user study with ten experienced developers. Our results
show that they would actually apply 86% of suggestions for an extract
method refactoring.

Key words: Refactoring suggestion · Long method · Extract method

1 Introduction

Long methods are a bad smell in software systems [1]. This means that they do
not influence the behavior of the code directly, but make it harder to understand
and therefore harder to maintain [11].

A common way to treat long methods is to apply extract method refactorings,
where parts of the long method are extracted and put into a new method. In
practice, this is one of the most often applied refactorings [14].

The refactoring process using a modern IDE like Eclipse, NetBeans or
IntelliJ IDEA [3] consists of the following steps. First, developers need to
identify a sequence of statements that should be extracted. Second, they need
to select the statements. Third, they call a tool that will, if possible, execute
the refactoring. Fourth, before the refactoring can be applied by the tool, the

? This work was partially funded by the German Federal Ministry of Education and
Research (BMBF), grant ”Q-Effekt, 01IS15003A”. The responsibility for this article
lies with the authors.



2 R. Haas, B. Hummel

developer needs to specify a name for the new method. Finally, the refactoring
is executed.

Tool support makes refactorings much easier, but a developer still needs to
select some source code within the method that they would like to extract. This
can be complicated, time-intensive, tedious, and error-prone [8].

Problem Statement. Developers need to invest a considerable amount of time in
finding the sequence of statements best suited for an extract method refactoring.

The majority of development tools only provide support to execute refac-
torings that are specified by the developer. In the context of long methods this
means that the most time consuming step in shortening a method still needs to
be done by developers themselves, which is a reason refactoring tools are not
used as much as they could be [6].

Sometimes, even experienced developers select invalid refactoring candidates
because they have overlooked a violation of preconditions that must hold for the
extract method. In such cases, current tools give poor information on why no
refactoring is possible [7].

Extract method refactoring suggestions are helpful for developers because
they save time and make fewer mistakes during the candidate selection.

Contribution. We present an approach to automatically finding extract method
refactoring suggestions for long methods in Java projects. The approach gener-
ates a list of possible refactorings and ranks those using a scoring function. The
ranking focuses on readability improvement and reduction of code complexity.
The scoring function uses structural information given by the developer to re-
ward bonus points. Additionally, it takes into account the number of parameters
needed by the new method. We evaluate our approach on three open source
systems using a user study with ten experienced developers.

2 Related Work

There are several ways to suggest extract method refactorings which can be
divided into four categories. Some use program slicing techniques to find rec-
ommendations for extract method, while others try to find suitable suggestions
from graph representations of the code. Some rely on scoring functions to find
the most appropriate refactoring candidate. Refactoring prioritization tries to
identify methods that are actually worth for refactoring.

Program Slicing Based Approaches. Maruyama [5] presents a semi-automated
mechanism for refactoring suggestions. It decomposes the control flow graph
using block-based program slicing. The approach is adapted and implemented
by the tool JDeodorant by Tsantalis and Chatzigeorgiou [13] that improves
behavior preservation. According to Sharma [9], approaches that use program
slicing techniques cannot be fully automated as the user has to select a slicing
criterion for every method that should be refactored. In addition, the suggestions



Deriving Extract Method Refactoring Suggestions for Long Methods 3

depend heavily on the user’s input. As we wanted to have an approach that is
able to find extract method refactorings automatically, we did not rely on a
program slicer.

Graph Based Approaches. Sharma [9] provides a mechanism to propose extract
method candidates based on a data and structure dependency graph. Their sug-
gestions are obtained by deleting the longest dependency edge in the graph. The
resulting two disconnected subgraphs represent the statements that stay within
the original method or which will be extracted to a new method, respectively.
They are able to suggest non-continuous statements for extract method. We use
a control and data flow graph to represent methods. We do not obtain sug-
gestions from operations on the graph but determine valid candidates that are
ranked using a scoring function.

Kanemitsu et al. [2] use a program dependency graph and recommend that
users extract all nodes that are connected via edges not longer than a user-
defined maximal length. Their approach was led by the design principle that one
method should process only one thing. We consider the same design principle
by rewarding bonus points to candidates that have comments or blank lines at
the beginning or the end because they are often indicators that something new
has been processed by the preceding or following lines. Our scoring function also
considers code complexity reduction and the number of needed parameters.

Score Based Approaches. Silva et al. [10] suggest an approach to automatically
generate candidates for method extraction. Their scoring function ranks candi-
dates with respect to static dependencies between variables, types, and packages.
Our approach was inspired by Silva et al. as the general procedure of candidate
generation is similar and we were also not able to suggest candidates with non-
continuous statements. The scoring function of our approach does not consider
dependencies but mainly the reduction of length and nesting with the aim of
reducing code complexity and increasing maintainability.

Yang et al. [15] consider long methods and suggest an approach to recom-
mending refactorings that lead to as small a coupling as possible, automatically.
Their scoring function is the benefit-cost ratio of the length of the extracted
method and the numbers of needed input and output parameters. In contrast
to Yang et al. we do not move variable declarations as far back as possible. Our
scoring function also considers the number of parameters needed and we reward
bonus points for comments or blank lines (which are a splitting criterion for Yang
et al. to obtain their candidates). Additionally, reduction of code complexity has
a high impact on the ranking.

Prioritization. Steidl and Eder [11] focus on the question of which findings should
actually be resolved first. The question how to solve a given finding, i.e. a specific
suggestion, is not addressed by their approach. They suggest a prioritization of
quality defects that were found during a software quality analysis to maximize
the developer’s expected return of invest.

Steidl and Eder’s approach is not appropriate for automated refactorings as
it only gives a hint of where a developer should start refactoring.



4 R. Haas, B. Hummel

3 Approach

We present an approach to finding extract method refactorings for long methods
automatically. There are two fundamental steps: first, the generation of all possi-
ble refactoring candidates (i.e. all sequences of statements that can be extracted).
Second, ranking all of them by applying a scoring function that considers reduc-
tion of complexity and structural information of the candidates. The candidates
with the highest ranking will be suggested for an extract method refactoring.

3.1 Candidate Generation

The procedure of generating all possible candidates is quite similar to the one
that Silva et al. [10] presented. They introduced a minimal number of statements,
K, that ensures suggestions do actually have some benefit. In their evaluation
they found that K = 3 is optimal and therefore, our approach also sets a minimal
number of statements K = 3, which must hold for the number of statements of
a candidate and the corresponding remainder of the long method.

To obtain valid refactoring candidates we use the software quality analysis
tool ConQAT2 and Streitel’s implementation of control and data flow graphs [12]
to check that several preconditions hold. Most importantly, an extract method
candidate may not need more than one return parameter (see [7] for details).

3.2 Scoring Function

All valid extract method refactoring candidates obtained in the first step are
ranked using a scoring function that focuses on code complexity reduction. We
rely on length and nesting metrics as complexity indicators. The scoring function
also takes structural information, like blank lines or lines with comments, and
the number of parameters into account. For each scoring element (see figure 1) a
score value is determined and all score values summed up lead to the total score
of a candidate. The candidate with the highest score will be our first suggestion.

Length We aim at suggestions that reduce complexity and consider length as an
complexity indicator. Therefore, the length of a refactoring candidate influences
its ranking. To avoid the effect of recommending nearly the whole method, the
length score Slength depends on the length of the candidate Lc and the remainder
Lr. For each line a constant number of points cl is awarded, up to the upper
bound MAXscoreLength. This upper bound ensures that very long candidates
are not ranked higher just because they are extraordinarily long. We set

Slength = min (cl ·min (Lc, Lr) ,MAXscoreLength) ,

where in our prototype cl = 0.1 and MAXscoreLength is set to 3, i.e. the maximal
length score is achieved by a length reduction of 30 or more lines of code.

2 www.conqat.org



Deriving Extract Method Refactoring Suggestions for Long Methods 5

Input Return

 depends on 

Depth Area

ParametersNestingLength

EndBegin

CommentOr-
BlankLines

Score

Fig. 1. Score Elements

Nesting Depth We use nesting depth as another indicator of code complexity.
Let Dm be the nesting depth of the original method, Dr the nesting depth of
the remainder, and Dc the nesting depth of the refactoring candidate. The score
of a candidate obtained for reducing the nesting depth is set to

SnestDepth = min (Dm −Dr, Dm −Dc) ,

which means that (theoretically) there is no upper bound for SnestDepth. But
note that given a method with a nesting depth Dm the maximal reduction of
nesting depth is

⌊
Dm

2

⌋
and so, SnestDepth ≤

⌊
Dm

2

⌋
always holds.

Unfortunately, nesting depth often cannot be reduced by extract method if
one considers both the remaining method and the candidate. It is often the case
that there are several deeply nested statements that cannot be extracted at once
without extracting the whole nesting structure: either one suggests a candidate
that includes only some of these statements (which will not reduce nesting depth
of the original method) or one chooses a candidate that extracts the whole deeply
nested structure, leading to a new candidate which is as deeply nested as the
original method was.

Nesting Area To have a measure for nesting reduction that is more often
applicable we consider the reduction of nesting area.

In formal terms, the nesting area of a sequence of statements S1 to Sn, each
having a nesting depth of dSi , is defined as

∑n
i=1 dSi . Intuitively spoken, it is

the area under the single statements of pretty printed code.
As shown in the previous section, nesting depth is not always a suitable

criterion to determine reduction of complexity as it might be complicated or even
impossible to extract all deeply nested statements at once to reduce the maximal
nesting depth of the remainder and the candidate. But even if nesting depth
is not reduced, reduction of code complexity is possible by extracting nested
statements. That is why we consider the reduction of nesting area. If nesting
structure is simplified by extracting parts of it, we claim that complexity is
reduced. The deeper the extracted statements are nested, the bigger the benefit is



6 R. Haas, B. Hummel

in terms of complexity reduction. We aim for maximizing nesting area reduction
(Areduction). That is the maximal nesting area of the remainder (Ar) and the
candidate (Ac) is minimized: Areduction = min (Am −Ac, Am −Ar), where Am

is the nesting area of the original method. For a given method with nesting area
Am an optimal candidate can achieve a reduction of at most

⌊
Am

2

⌋
, similar to

the maximal nesting depth reduction.
We assume that reducing the nesting area becomes more important as the

nesting depth of the original method Dm becomes higher. Therefore, the upper
bound of the score achievable for reducing the nesting area depends on Dm:

SnestArea = 2 ·Dm ·
Areduction

Am

The factor 2 is taken into account to obtain a score for the nesting area that is at
most as high as Dm. As reduction of nesting area is nearly always possible, the
achievable score for nesting area reduction is higher than the achievable score for
reducing nesting depth. Remark that if nesting depth (i.e. complexity) is high,
the other criteria have less relevance for the scoring of the candidates as nesting
scores are not bounded while the other scoring criteria are bounded.

Parameters To obtain the most independent candidates with respect to cou-
pling, we consider the number of parameters that are needed for each candi-
date. The more parameters are needed to extract the candidate from the orig-
inal method, the higher is the data dependency between the original and the
extracted method. For the parameter score Sparam there is an upper bound
MAXscoreParam. The number of needed parameters (nin and nout, where
nout ≤ 1) will reduce the score, and each parameter decreases the score by
one:

Sparam = MAXscoreParam − nin − nout

Fowler [1] claims that having a long parameter list is a bad smell. He proposes
to not have more than three input parameters. As we have in Java at most one
return parameter, we set MAXscoreParam = 4.

Comments and Blank Lines To capture additional developer’s knowledge,
we award bonus points for comments and blank lines. Developers often have
comments that give information about the next source code line(s), especially if
these perform something different than the previous ones. In other cases, blank
lines separate such different tasks. But this is a violation of the design principle
that one method should process only one thing (see [4]) and therefore, the fol-
lowing lines might be a good candidate for an extract method refactoring. The
bonus we award for candidates that have such lines with comments or blank lines
at the beginning or the end is as follows: for each such line (and the fact that
these lines exist) cp many points are obtained. In our experiments we saw that
blank lines and comments at the beginning of a candidate are more relevant to
identify the most suitable extract method refactoring candidate than the ones at
the end because they give more information about itself. In the score formula the



Deriving Extract Method Refactoring Suggestions for Long Methods 7

higher relevance is represented by the factor fb > 1. In addition, several lines of
comments before a sequence of statements indicate a more complex explanation
which is more likely to describe a new functionality and therefore, more lines
with comments or blank lines get more points.

The score depends on four variables: the existence of blank lines or comments
1) at the beginning (eb) and 2) at the end (ee) of a refactoring candidate. 3) the
number of blank lines or comments at the beginning (nb) and 4) at the end of
a candidate (ne), where ex ∈ {0, 1}, nx ∈ {0, 1, 2, 3} and x ∈ {b, e}. If there are
more than three blank lines or comments the same amount of points is awarded
as if there were only three blank lines or comments. We set

ScommentsBlankLines = fb · cp · (eb + nb) + cp · (ee + ne)

For our prototype fb = 2 holds, i.e. preceding comments result in twice as
many points as comments at the end. cp was set to 0.25 such that a candidate
may get up to 2 points for having at least three comment or blank lines at the
beginning, and up to 1 point for having at least three of such lines at the end.

Scoring Elements Intervals The previous subsections gave detailed informa-
tion about the single criteria for the score of a refactoring candidate. Table 1
shows the intervals of the single scoring elements. Dm stands for the nesting
depth of the original method.

Table 1. Scoring Elements and their Intervals

Score Element Max Score

Slength 3
SnestDepth

⌊
Dm
2

⌋
SnestArea Dm

Sparam 4
ScommentsBlankLines 3

Total Score The candidates will be compared using the total score S. For each
candidate the total score is the sum of all single scoring elements:

S = Slength + SnestDepth + SnestArea + Sparam + ScommentsBlankLines

3.3 Pruning

At the end of our suggestion algorithm, the list of candidates is optimized. As all
possible candidates are generated, there are several ones that differ only in one
or two statements at the beginning or the end. Those often have similar scores
because they refer to nearly the same piece of code and the differing statements
do not change the score that much. To obtain a wide range of suggestions,
candidates are removed from the list if there is another candidate containing all
of their statements, having the same input and return parameters, and having
a better score.



8 R. Haas, B. Hummel

4 Evaluation

This section evaluates our approach using a prototype that is implemented as
a ConQAT analysis for Java projects. We constructed an online survey that
presented ten long methods from open source Java projects with extract method
refactoring suggestions.

RQ1: Are suggestions better than a random (valid) refactoring candi-
date? This question considers a first criterion to have a useful scoring function.
If random candidates are not significantly less preferred by developers than the
suggestions of this approach, the approach with its scoring function would be
useless.

RQ2: Do developers follow the suggestions of this approach? This ques-
tion considers a much stronger criterion of usefulness than RQ1. The evaluation
of this paper tries to find out, whether (and how often) this approach is able to
suggest candidates that are taken as refactoring candidate from developers. The
more often developers follow the suggestions of the prototype, the closer is the
scoring function on their intuition.

RQ3: Should several suggestions be made? This question addresses a result
of Silva et al. [10]. They claimed that an implementation of their approach should
preferably suggest only the best candidate. As the approach of this paper is
structurally similar to their approach, we try to find out whether their result
also holds for our prototype.

4.1 Design

For the survey, all participants received an HTML file that contained ten meth-
ods (survey object) that were considered during the survey. All these methods
had between 48 and 73 lines. For each survey object there were three high-
lighted candidates. One of the candidates was always the first suggestion of the
prototype, called TOP1. Another one was the second or third suggestion of the
prototype (which one was determined randomly during the analysis but then
was the same for each participant), called TOP2/3. The third candidate was a
randomly selected valid candidate that was not one of the TOP3 candidates de-
termined by the scoring function, called Random. All suggested candidates were
highlighted in the same way such that the participants could not differentiate
them.

Table 2 shows the study objects from which ten long methods were presented
in the survey. We consider a method as long if it counts more than 40 lines. All
study objects are Java open source projects. They all have long methods but
some have – in relative terms – more long methods than others. All projects
were selected for the evaluation because they are well-known Java open source
systems and have a five star ranking (based on voluntary feedback from the
users) on the open source distribution platform sourceforge3.

3 http://sourceforge.net/



Deriving Extract Method Refactoring Suggestions for Long Methods 9

Table 2. Study Objects

Name Domain Size # # Long LoC of
(LoC) Methods Methods Longest

Method

Agilefant Backlog Tool 36,116 2,841 31 (1.09%) 143
JabRef Reference Manager 128,145 5,665 428 (7.56%) 1,305
JChart2D Charting Library 50,728 1,849 72 (3.89%) 641

Our online survey asked for each survey object the following questions:

1. Which candidate would you use more likely for an extract method refactor-
ing? The participants could select exactly one suggestion.

2. Would you use the selected candidate for an extract method refactoring? In
addition to ”Yes” and ”No”, the participants could select ”Yes, with slight
modification (of 1-2 lines)”.

3. Would you have applied an extract method refactoring on this method?
Answering options were ”Yes” and ”No”.

4.2 Results

Ten experienced developers participated in the survey that is used to answer
RQ1-RQ3. All of them have between 6 and 24 (on average 12) years of develop-
ment experience.

Are suggestions better than a random (valid) refactoring candidate? (RQ1) 74%
of the selected candidates in the first survey question were the one that was
ranked top most by the scoring function. The other 26% were the TOP2/3
candidate. The random candidate was never selected by any of the participants
and therefore one can assume that for the ten survey objects the suggestions
generated by the prototype are much better than the selection of a valid random
candidate.

Do developers follow the suggestions of this approach? (RQ2) 74% of the selected
candidates would have been applied without modifications (according to the
answers to the second survey question). For other 12% a quite similar refactoring
would be applied (by only shifting the selected candidate about one or two lines).
For the remaining 14% the developers claimed that they would not have applied
the selected refactoring. For 93% of the survey objects developers would apply
an extract method refactoring on the presented method. Five of the seven ”No”
answers concerned the last survey object, which was a method that contained a
test case.

Should several suggestions be made? (RQ3) 74% of the selected candidates were
the best one with respect to the order determined by the scoring function of this
approach. The other 26% were the TOP2/3 candidate. These values of course



10 R. Haas, B. Hummel

do only represent the average distribution. For none of the survey objects a
similar distribution appeared: for half of them nearly all participants (nine out
of ten) selected the TOP1 candidate and for the other half of survey objects the
distribution was quite mixed, i.e. five participants selected TOP1 and the other
five selected TOP2/3 or six selected TOP1 and four TOP2/3 (or vice versa).

4.3 Discussion

This section discusses the results of the analysis of the survey objects and the
survey itself. Many participants gave additional and individual feedback and
reasons for their answers which will also be included in the discussions.

Do developers follow the suggestions of this approach? (RQ2) For the survey ob-
jects, 86% of the selected candidates (maybe slightly shifted) would have been
chosen for an extract method refactoring. All of them were suggestions of the
prototype. Nevertheless, several participants claimed (in their individual feed-
back) that for some survey objects there were redundancies in the code such that
they would first try to eliminate those and then refactor the resulting method.
But as they would not start with an extract method refactoring, they answered
in such cases the third survey question with ”No”. As already mentioned, half
of participants would not have refactored the last survey object because that
method covered a test case. Thus, the participants claimed that it was better to
keep the whole test case in the same method to have a better overview about
the functionality that is tested by the given test case.

This means that not all methods that are considered lengthy by our prototype
are candidates for developers for extract method refactorings. In general, the
suggestions are helpful: if developers want to refactor a given method using an
extract method refactoring, they often follow the suggestions of the prototype.

Should several suggestions be made? (RQ3) Many participants mentioned in
their feedback that there were some methods where they were quite sure which
of the suggested candidates is the best one and that they would apply only this
one extract method refactoring on the given method. For other survey objects,
they would have applied both suggestions, the TOP1 and the TOP2/3 candidate
for extract method refactorings. So, to answer the question in the survey, where
they could select only one option, they had to select their answer more or less
randomly between those two candidates. That might be an explanation for the
mixed answers.

In practice, of course, several refactorings can be applied and often it is the
best solution to refactor a long method by extracting several pieces of code
into new methods. Hence, in some cases it really makes sense to suggest several
candidates, at least the TOP3 candidates with respect to the ordering of the
scoring function.



Deriving Extract Method Refactoring Suggestions for Long Methods 11

4.4 Threats to Validity

There are some threats to validity of the evaluation, which are summarized in
the following.

Resolution of long methods is subjective (see [15]). First, there is no consensus
in science when a method is actually long. This means that some may treat
a given method as long where others do not. Second, there is no commonly
accepted algorithm that splits a long method into suitable smaller ones. That
actually is a threat to validity of this evaluation as several participants were
asked which candidate according to their opinion is best for an extract method
refactoring. Other participants might have selected other candidates. To handle
this risk, ten experienced developers took part in the survey.

A threat of external validity is, as usual in software engineering topics, that
the results of the evaluation need not necessarily hold for other software systems.

Ten survey objects do not represent the whole spectrum of methods that
should be refactored using an extract method refactoring. They all covered (for
long methods) only a few lines of code and did not represent all possible ways
of designing a method. To have a fair overview the survey objects were selected
from several open source systems and there from different packages. They have
quite different code structures such that a wide range of ways how methods can
be structured are covered by the evaluation.

5 Conclusion and Future Work

We proposed an approach to derive extract method refactoring suggestions for
long methods in Java to improve maintainability and reduce code complexity.
The approach determines extractable candidates from the control and data flow
graph of a method. A refactoring candidate needs to fulfill syntactical precon-
ditions, have an equivalent data flow and a minimal length. Each candidate is
ranked using a scoring function that considers the following criteria: length, nest-
ing depth and area reduction, and the number of input and return parameters.
Bonus points are awarded for candidates having comments or blank lines at their
beginning or end.

We used a prototype to evaluate our work in a survey. It showed that the
suggestions of the approach for the survey objects are always better than a
random candidate (RQ1). For 86% of the suggestions for the study objects, the
developers follow the suggestions made by the prototype (RQ2). This means
that, at least for the study objects, the suggestions of the prototype are usually
useful. We also addressed the question whether several candidates should be
recommended (RQ3). For one half of the survey objects, nearly all participants
selected the same candidate and claimed that they would use it for an extract
method refactoring – in these cases one suggestion might be sufficient. But for
the other half of survey objects, the participants would apply several extract
method refactorings that were suggested by the prototype. So, for 50% of the
survey objects, at least the three best candidates should be suggested.



12 R. Haas, B. Hummel

We think that our approach also works for methods with a high nesting depth
(which is another code smell). In the future, we want to conduct another case
study to test the validity of this hypothesis. We plan to do further research on
the choice and weights of our scoring parameter.

Instead of suggesting several candidates from which developers can choose at
least one, one could suggest a set of disjoint extract method refactorings. The
scoring function then could consider the benefit of applying all these refactorings
instead of ranking single suggestions.

References

1. Fowler, M.: Refactoring: Improving the design of existing code. Addison-Wesley,
Reading (1999)

2. Kanemitsu, T., Higo, Y., Kusumoto, S.: A Visualization Method of Program De-
pendency Graph for Identifying Extract Method Opportunity. In: Proceedings of
the 4th Workshop on Refactoring Tools, pp. 8–14. ACM (2011)

3. Marticorena, R., Lpez, C., Crespo, Y., Prez, F. J.: Refactoring Generics in JAVA: A
Case Study on Extract Method. In: 14th European Conference on Software Main-
tenance and Reengineering (CSMR), pp. 212–221. IEEE (2010)

4. Martin, R.C.: Clean code: A handbook of agile software craftsmanship. Prentice
Hall, Upper Saddle River (2009)

5. Maruyama, K.: Automated Method-extraction Refactoring by Using Block-based
Slicing. In: ACM SIGSOFT Software Engineering Notes, vol. 26, pp. 31–40. ACM
(2001)

6. Murphy-Hill, E., Black, A.P.: Why don’t people use refactoring tools?. In: Proceed-
ings of the 1st Workshop on Refactoring Tools, pp. 60–61 (2007)

7. Murphy-Hill, E., Black, A.P.: Breaking the Barriers to Successful Refactoring: Ob-
servations and Tools for Extract Method. In: Proceedings of the 30th International
Conference on Software Engineering, pp. 421–430. IEEE (2008)

8. Opdyke, W.F.: Refactoring object-oriented frameworks. PhD thesis. University of
Illinois at Urbana-Champaign (1992)

9. Sharma, T.: Identifying Extract-method Refactoring Candidates Automatically. In:
Proceedings of the 5th Workshop on Refactoring Tools, pp. 50–53. ACM (2012)

10. Silva, D., Terra, R., Valente, M.T.: Recommending Automated Extract Method
Refactorings. In: Proceedings of the 22nd International Conference on Program
Comprehension, pp. 146–156. ACM (2014)

11. Steidl, D., Eder, S.: Prioritizing Maintainability Defects Based on Refactoring Rec-
ommendations. In: Proceedings of the 22nd International Conference on Program
Comprehension, pp. 168–176. ACM (2014)

12. Streitel, F.: Incremental Language Independent Static Data Flow Analysis. Mas-
ter’s thesis. Technical University of Munich (2014)

13. Tsantalis, N. Chatzigeorgiou, A.: Identification of Extract Method Refactoring Op-
portunities. In: 13th European Conference on Software Maintenance and Reengi-
neering, pp. 119–128. IEEE (2009)

14. Wilking, D., Kahn, U.F., Kowalewski, S.: An Empirical Evaluation of Refactoring.
e-Informatica 1(1), pp. 27–42 (2007)

15. Yang, L., Liu, H., Niu, Z.: Identifying Fragments to be Extracted from Long Meth-
ods. In: Asia-Pacific Software Engineering Conference, pp. 43–49. IEEE (2009)


