

Managing Product Quality in Complex Software
Development Projects

 Experiences Gained at Audi

Kai Schüler, Ralf Trogus
AUDI AG

IT Elektrik/Elektronik
Ingolstadt, Germany

kai.schueler@audi.de, ralf.trogus@audi.de

Martin Feilkas, Thomas Kinnen
CQSE GmbH

Garching b. München, Germany
feilkas@cqse.eu, kinnen@cqse.eu

Abstract—Software systems are often maintained by different
development teams during their lifetime. Knowledge transfer is a
very critical point when a system is passed from one team to
another. The source code’s quality is a key to successful sourcing
of software development activities. However, if no measures are
enforced, the code’s quality continuously decays over time. In
order to avoid this decay and to even improve the quality of
grown software systems, an additional quality control process has
been established for a complex software engineering project at
Audi. This paper describes the new quality process and presents
the gained experiences.

Keywords—software quality management; software quality
analysis; quality control; software development outsourcing

I. INTRODUCTION
Software decays over time: It becomes more and more

incomprehensible, its architecture erodes and accidental
complexity rises. These facts on long term maintainability have
been reported by many studies in the last 30 years of software
engineering research [1][2]. The situation becomes even worse
if there is turnover in the development team maintaining the
code. Nevertheless, in today’s software engineering projects,
developer fluctuation is inevitable during the life-cycle of any
larger system. Companies buying software development
services need a certain degree of independence from specific
suppliers or even individual developers without losing the
capability to further evolve the code base with new personnel.

A sufficient level of comprehensibility and maintainability
(internal software quality), which is preserved over the
software’s evolution, is the key to manage hand-overs from one
supplier to another. However, internal software quality is often
an undisclosed property in software engineering projects. To
shed light onto the status of internal quality, different quality
aspects need to be measured and actively controlled, such as

high maintainability/comprehensibility, architecture
preservation, and test quality.

This paper presents experiences gained from introducing
the new quality control process and corresponding analysis
tools in a complex software development project at Audi, in
which five different software suppliers are actively involved.
Carefully selected metrics were used as key performance
indicators (KPIs) to assess the software quality on a regular
basis. This information was used for making the internal
software quality transparent for management. Additionally,
explicit tasks for quality improvement have been filed to
address and schedule software quality issues within the
development process. In this paper the technical and social
challenges will be discussed. Furthermore, quantitative
measures and trends of the selected KPIs will be presented that
demonstrate the positive effect of this process on the system’s
quality.

II. STARTING POINT AND REQUIREMENTS
The project that was chosen for the evaluation of the quality

control process has been in development for about 10 years and
contains about 570,000 LoC of Java and 210,000 LoC of
Python. Currently, about five suppliers are involved in the
project, with some fluctuation in the past. The system is in
broad practical use at Audi and at many subsidiary companies
of the Volkswagen AG such as Porsche, Lamborghini, Seat and
Skoda.

There were many requirements that had to be fulfilled due
to the general set-up of the project. The most important ones
were the following:

R1: Audi has a positive and cooperative relationship to its
suppliers. The introduction of the quality control
process should not be regarded as paternalism, but as
a service for the development team.

www.embedded-world.eu

R2: Keep quality improvement cost-effective: Quality is
no end-in-itself. Quality must be made transparent;
however, the spending on quality improvement must
match with the system’s lifecycle.

R3: Low risk of new bugs due to improvements of internal
quality: Every change performed in a codebase comes
with a risk of introducing new bugs, which must be
avoided.

R4: In many development projects, the amount of external
developers outnumbers internal staff by far, thus the
control process must be efficient. This must be
achieved using a high degree of automation.

III. MEASURING SOFTWARE QUALITY
Many metrics have been proposed claiming to measure certain
aspects of software quality but did not prove to be effective in
practice (e.g. [4][8]). In practice a quality control process will
only be successful if the quality metrics are accepted by all
roles in the process. This is an important precondition for R1.
To avoid typical pitfalls of software quality measurement,
every metric used must fulfill the following criteria:

• Objective: The way the metric is calculated on the code
must be clear to every developer. Also the way of
aggregation, e.g. from a set of measurements on
method-level to one number for the complete codebase,
must be transparent. A counterexample for this criterion
would be the maintainability index [8], which is based
on a very complex formula that is not easily
comprehensible.

• Implications of code changes to the metric must be
clear: It must be predictable how the metric is affected
by changes to the code. It is very important that an
optimization of the metric cannot be achieved by
making the code quality worse (e.g. a metric counting
method length is improved by removing comments).

• Actionable: If a metric results in a non-optimal value,
the actions to improve the situation must be clearly
deducible.

• Clear impact on development/maintenance activities: In
order to gain acceptance for the metric, its impact on
development activities, like code reading, testing etc.
must be clear – it must be clear that a bad metric value
really indicates more time consuming or error-prone
development.

The first step to define the quality metrics was to inspect
existing guidelines and have a critical look at them. We found
several metrics that were already proposed in the documents.
However, in some cases we decided not to use them as they did
not meet the above mentioned criteria. For example,
cyclomatic complexity, although frequently used in practice,
does not reflect the complexity as perceived by developers very
well [4][5].

To fulfill R4, all rules in available coding guidelines, which
were automatically checkable, have been implemented in the
tool Teamscale [3] using its custom check framework. Thus,

the efforts for manually checking certain quality aspects can be
reduced (R4).

The following metrics have been chosen as KPIs in the
control process:

KPI Measurement Thresholds

File Size

Files up to 300 SLOC 1 are rated as
green. Files between 300 and 750 SLOC
are considered as long and thus rated as
yellow. Files longer than 750 SLOC are
considered as very long and thus rated as
red.

Less than 5% of the
code rated as red
and less than 25%
rated as yellow or
red.

Method
Length

Methods up to 30 SLOC are rated as
green. Methods above 30 SLOC and up
to 75 SLOC are rated as yellow. Methods
longer than 75 SLOC are rated as red.

Less than 5% of the
code in methods
rated as red and less
than 25% rated as
yellow or red.

Nesting Depth

The nesting depth of the source code is
measured. Code regions with a maximum
nesting depth up to 4 are rated as green.
Regions with a maximum nesting of 5
are rated as yellow. Regions with a
nesting of 6 or above are rated as red.

Less than 5% of the
code in methods
rated as red and less
than 25% rated as
yellow or red.

Code
Duplication

To quantify the extent of code
duplication, the “clone coverage” metric
is used. This number can be interpreted
as the probability that a randomly
selected statement of the system has been
copied at least once and thus a change
has to be propagated to other parts of the
system.

Clone coverage
lower than 10%.

Code
Anomalies

A multitude of checks are performed,
e.g. adherence to coding guidelines or
usage of error-prone constructs.

Not more than 10
anomalies per 1000
LOC.

Code
Comments

All public types, classes and methods
must be commented. Trivial
Getters/Setters and overridden methods
are excluded.

No missing
comments.

Test Coverage Statement coverage is measured for all
automated unit tests.

Component-specific
thresholds for test
coverage.

Architecture
Conformance

Dependencies from the code are
extracted and checked against a machine-
readable model of the intended
architecture.

No architecture
violations.

IV. THE QUALITY CONTROL PROCESS
The following section explains the roles and responsibilities

in the quality control process. After that, the application of the
quality process on a grown codebase is introduced.

A. Roles and Responsibilities
One of the most critical factors in successful quality control

is the point in time the quality checks are performed. If quality
is only measured when releases are shipped, there is usually no
time left to actually improve quality. Therefore, a continuous
quality control process, which is performed as a flanking
activity to software development, was applied.

Fig. 1 presents the established process containing two
control-loops. The first one is achieved by directly giving every
developer feedback to the changes he performed. Every
commit is analyzed by the tool Teamscale. Due to the unique
incremental analysis approach of Teamscale, developers
receive an immediate reaction after every commit, informing
them about quality deficits that they added or removed with
their changes. Also deficits that are not new but reside in the
context of modified code (e.g. in the same method) are reported

1 SLOC (Source Lines Of Code): lines of code without comments and empty lines

as missed improvement chances. This control loop is very
efficient because the developers are still familiar with the task
they were working on, thus no additional familiarization and
program comprehension efforts need to be invested.

The second control loop is driven in a lower frequency, e.g.
every 3-5 weeks, by a role called the quality engineer. The
quality engineer is responsible for writing quality reports to
inform the project management about the quality status using
metrics and trends as well as writing lists of tasks for
improvement of the software quality. The tasks and quality
metrics are usually contained in a single document.

The overall quality status in the quality report is presented
as an assessment based on traffic light ratings. The trends
reflect the changes of the individual metrics since the last
report. For creating the task list, the quality engineer examines
all deficits that represent violations of the quality goal since the
last report. In some cases, a prioritization is needed according
to the severity of the deficits. The tasks must be written to
contain a concrete proposal of how the deficit should be
removed. Thus, tasks must not be written in a way “remove
clone X” but always provide a feasible solution “remove clone
X, by introducing a method Y and moving it into base class Z”.
On the one hand, this forces the quality engineer to carefully
think about the findings produced by the analysis tools and on
the other hand, it has an educational effect on the developers.
Besides writing new tasks, the quality engineer also inspects
the tasks that have been closed since the last report and checks
if the chosen solution is sufficient. This activity prevents an
optimization against metrics without actually improving the
system’s quality.

In software engineering projects, there is usually
competition between the implementation of features versus
quality improvement tasks. However, project managers are
most aware of the lists of features to be implemented whereas
quality aspects usually remain hidden. By making quality
transparent by reporting continuously on the quality status and

trend, project managers can deal with the feature vs. quality
competition in a more informed way.

B. Grown Software
Introducing quality metrics and software quality analyses

right at the beginning of a (green field) software engineering
project is easy because a strict zero findings policy can be
followed from the first line of code. However, the goal was
applying the process to systems that have been in practical use
for years. Additionally, quality control was introduced in a
running project while many critical functional changes were
performed on the system by the developers.

Although the software quality of the examined system was
quite good, the source code’s first analysis revealed many
deviations from the existing coding guidelines on the one hand
and (of course) the additionally introduced quality analyses on
the other. Cleaning up the complete codebase was not an
option, due to unrealistic efforts that would have been needed
with high risks of introducing new bugs. This would contradict
our requirements R2 and R3. Thus, we had to accept the
situation as it was and define a method to gradually improve
the situation.

Fig. 2 shows a hierarchy of so-called quality goals. The
quality goal “perfect” was not achievable under realistic
conditions and “indifferent” did not match the requirement that
the system should be further maintained and extended for
decades. Thus, a middle course was needed. The quality goal
“preserving” would mean to accept all deficits in the code but
not allowing any new defects to be introduced, while
“improving” would even force developers to clean-up old code
when they modify it. Consequently, the quality goal
“improving” seemed to be the right choice for this system,
because it matched the system’s lifecycle and Audi‘s future
plans best.

This decision was appreciated by the developers as it meant
not to proactively modify the very old and stable parts of the
code. This lowered the risk of introducing additional bugs
(R3). Furthermore, developers only had to clean-up code they
were changing and testing anyway. Thus, no additional efforts
for program comprehension and testing are needed (R2).

In order to check the quality goals “preserving” and
“improving”, analysis tools must be capable for performing a
baseline-delta analysis. Therefore, they have to be aware of the
birth of every finding to filter the old ones. As the analyses in
Teamscale are driven by individual commits, Teamscale is able
to use the information from the version control system to make

Fig. 1. The Quality Control Process

Fig. 2. A Hierarchy of Quality Goals

www.embedded-world.eu

Fig. 3. Lines of Code and Findings Trends

Fig. 4. Management Summary of the second Quality Report

a clear distinction between old and new findings. Even if files
are renamed or code is moved between files, Teamscale is still
capable of tracking the findings as they move with the code [6].
This precision is very important to not end up with having all
findings regarded as new after small refactorings.

V. RESULTS
The most important result of the project was the broad

appreciation from the developers for the introduction of the
quality control process. Although there were critical voices at
first, the selection of the KPIs, based on the criteria described
above, and the application of the quality goal “improving”, not
forcing the developers to proactively clean-up old and stable
code, lead to a broad consensus in the team. The fact that also
the project managers were aware of the quality-evolution also
had a very positive effect for the developers because it was
now easier for them to argue when more time was needed to
achieve the quality they desired.

Another social aspect was crucial for achieving R1: The
role of the quality engineer was handled in a way that the
developers regarded his work as a service for them and the
project. The role must not have the appeal of a “quality police”
hunting for “quality felons”. This enabled a very constructive
dialog on how to achieve the best solutions between the
developers and architects with the quality engineer.

The success of the quality control process could be observed
very early in the project. Fig. 3 shows the trend of the overall
deficits that Teamscale detects on the code (red line) and the
continued growth of the system in lines of code (blue line).
After the first quality report the number of deficits already
drops although the system is still growing (a similar effect was

already reported in the studies performed in [7]). This positive
trend was another motivating factor for the whole development
team.

According to statements of the developers, the Teamscale IDE
integration, providing markers for deficits without having to
execute the analyses on their local computers as well as the
early (within seconds) and personal feedback after every
commit, was a crucial success factor. This positive trend
continued in the second quality report. As Fig. 4 shows all
quality indicators were improved during the reporting interval.
The second quality report displays the code quality’s trend
during the last iteration as it will take several months if not
years to significantly change the overall assessments due to the
codebase’s size.

VI. CONCLUSIONS AND FUTURE WORK
The key success factors for introducing the quality control

process in the project at Audi were:

• A carefully selected set of quality KPIs with a broad
acceptance in the development team.

• Usage of the quality goal “improving” where
developers clean-up code only when they modify it (or
create new code), not forcing proactive clean-up in old
and stable components.

• High degree of automatic checking aligned with
immediate and personal feedback to developers after
every commit and directly in the IDE using Teamscale.

Due to the success and the positive reputation of the project at
Audi, several other project coordinators already reported
interest in introducing a similar process. Thus, the plan is to
expand the usage of this method to other software development
activities at Audi in order to establish it as a broadly used
practice.

REFERENCES
[1] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M.

Turski. Metrics and laws of software evolution – the nineties view. In
Proc. of the International Symposium on Software Metrics. IEEE CS
Press, 1997

[2] D. L. Parnas. Software aging. In Proc. of the International Conference
on Software Engineering (ICSE), pages 279–287. IEEE CS Press, 1994.

[3] L. Heinemann, B. Hummel, D. Steidl. Teamscale: Software Quality
Control in Real-Time. Proc. of the 36th ACM/IEEE International
Conference on Software Engineering (ICSE’14), 2014.

[4] B. Curtis et al. Measuring the Psychological Complexity of Software
Maintenance Tasks with the Halstead and McCabe Metrics, IEEE
Transactions on Software Engineering, Volume 5, Issue 2, 1979.

[5] B. Katzmarski, R. Koschke: Program complexity metrics and
programmer opinions, IEEE 20th International Conference on Program
Comprehension (ICPC), ISSN 1092-8138, 2012.

[6] D. Steidl, B. Hummel, E. Juergens. Incremental Origin Analysis of
Source Code Files. Proc. of the 11th Working Conference on Mining
Software Repositories (MSR’14), 2014.

[7] D. Steidl et al. Continuous Software Quality Control in Practice. 2014
IEEE International Conference on Software Maintenance and Evolution
(ICSME’14), 2014.

[8] D. Ash, J. Alderete, P. W. Oman, and B. Lowther. Using software
maintainability models to track code health. In Proc. of the International
Conference on Software Maintenance (ICSM), pages 154–160. IEEE CS
Press, 1994.

	I. Introduction
	II. Starting Point and Requirements
	III. Measuring Software Quality
	IV. The Quality Control Process
	A. Roles and Responsibilities
	B. Grown Software

	V. Results
	VI. Conclusions and Future Work
	References

