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Abstract—Comments and identifiers are the main source of
documentation of source-code and are therefore an integral part
of the development and the maintenance of a program. As English
is the world language, most comments and identifiers are written
in English. However, if they are in any other language, a developer
without knowledge of this language will almost perceive the code
to be undocumented or even obfuscated. In absence of industrial
data, academia is not aware of the extent of the problem of non-
English comments and identifiers in practice. In this paper, we
propose an approach for the language identification of source-
code comments and identifiers. With the approach, a large-scale
study has been conducted of the natural language of source-code
comments and identifiers, analyzing multiple open-source and
industry systems. The results show that a significant amount of
the industry projects contain comments and identifiers in more
than one language, whereas none of the analyzed open-source
systems has this problem.

I. INTRODUCTION

Source-code comments and identifiers are very important
in the development and maintenance of a program. Comments
are, after the code itself, the main source of documentation [1]
and several experiments showed that commented code is easier
to understand than code without comments [2], [3]. Identifiers,
too, are of paramount importance for the readability of source-
code, as approximately 70% of it consists of identifiers [4].
The lingua franca of programming is English, which is es-
pecially important given that the development and the main-
tenance of programs is often done by developers from many
different countries. If a significant amount of comments or
identifiers is not in English, it can lead to complications. For
example, a person who is not in command of the language
used, will find the code near to being obfuscated or similar to
having no comments at all or incomprehensible abbreviations
for identifiers. This impedes code comprehension and conse-
quently the programming progress.
To date, however, it is not clear how common or widespread
the problem of non-English comments and identifiers actually
is. Regarding that, it is interesting whether there are notable
differences between open-source and industry projects. For
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open-source in particular, it is important that all contributing
parties find a common ground regarding the used natural
language. Projects developed by a company may not have
as many languages barriers between programmers, but it can
quickly become a problem if the development or maintenance
is, for example, outsourced to another country.
To shed light on that matter, we conduct a study that analyzes
the comments and identifiers of multiple open-source and
industry projects. In order to identify the languages of both
the comments and the identifiers, we implement and evaluate
an approach which uses a combination of existing methods
in the field of language identification (LI). The results of the
identification process are then compared and evaluated, leading
to the conclusion that the problem of non-English comments
and identifiers is not rare, but in this study actually exclusively
occurring in the industry projects.

Research Problem Comments and identifiers in different
languages are problematic in a program, especially if the
development is international, e.g because of outsourcing. No
studies have yet been conducted to determine how often
it practically occurs that one project contains comments or
identifiers from multiple natural languages and if there are
differences between open-source and industry code.

Contribution This paper makes two main contributions.
First, we developed and evaluated an approach for identifying
the natural language of source-code comments and identifiers
— called Lisanc. Second, we conducted a study that analyzes
13 open-source projects and 10 industry projects. Our study
shows that non-English comments and identifiers do occur in
practice, but for the analyzed systems actually exclusively in
the industry projects.

Outline The paper follows a common structure. Please note,
however, that the evaluation consists of two different parts. In
IV, the language identifier we propose gets evaluated w.r.t.
precision and recall. In V, we analyze real world software for
comments and identifiers language distributions.

II. RELATED WORK

To the best of our knowledge, this is the first paper to look
at the occurrence of non-English comments and identifiers.



A. Quality of Comments and Identifiers

Other papers have investigated the quality of comments
and identifiers; for example, the work of Steidl et al. [5],
Khamis et al. [6] and Tan et al. [7], which are focusing on the
quality of comments or the work of Deissenböck and Pizka
[4] and Anquetil and Lethbridge [8], where both emphasize
the importance of well chosen names for identifiers. However,
no studies have explicitly examined the extent of non-English
comments and identifiers.

B. Language Identification for Comments and Identifiers

In order to identify the language of the comments and
identifiers, we have used several approaches from the well-
researched field of language identification. The general strat-
egy for automatic language identification is to create language
models during a training phase and compare the input text
against them. There are multiple different approaches to this
task. The most common utilize the n-gram approach proposed
by Cavnar et al. [9]. This method splits the input text into its n-
grams and uses their frequency models to find the nearest, and
therefore most probable, language by comparing it to the n-
gram models of training data. Variants of this approach include
Bayesian Decision Rules [10] or Markov Models [10].
Even though there are several proposals regarding the task
of language identification, many problems, like the general
short length of comments and identifiers, remain. Other studies
have pointed out that general LI approaches produce good
results for long texts (a couple of hundred characters), but the
accuracy quickly deteriorates with shorter lengths [11], [12].
There are approaches that can yield better results with short
text than others [13], but the issue still remains, especially
for very short text with a length below 50 characters. This is
important to note because source-code identifiers are naturally
short. The length distribution for comments tends to be more
mixed, varying between projects, but most comments generally
have fewer than 100 characters.
In the case of non-English language in code, comments or
identifiers are often multilingual. This is because there are
terms, definitions, external sources, etc., that have been defined
in English. Many LI approaches assume that the given text
is monolingual. Earlier research has tried to deal with this
problem [14], but in cases where the proportion of language A
to language B is approximately 1:1, it is impossible to decide
which language to pick.

III. APPROACH

A. Overview

This section presents our approach for the language identifi-
cation of comments and identifiers, called Lisanc. It comprises
three sequential steps. The first is the extraction of all unique
comments and identifiers from the project, followed by the
normalization where the comments and identifiers are modi-
fied, if they contain certain features that have a negative in-
fluence on the language identification. The third and final step
is the actual language identification of every single comment
and identifier. The general idea of the proposed LI approach

/**
* Licensed to the Apache Software Foundation
* (ASF) under one or more contributor license
* agreements. See the NOTICE file
* distributed with this work for additional
* information regarding copyright ownership.
* · · ·
*/

//clase que guarda el estado de cada elemento
//en el servidor
public class Elemento {

int id;
float tamaño;
Vector3f posición;
Vector3f velocidad;

/**
* el constructor para el clase Elemento
* @author garcia
*/
public Elemento(int i, float x, float y,

float z, float t) {
id = i;
tamaño = t;
posición = new Vector3f(x, y, z);
velocidad = new Vector3f();

}

//float tr(float f) {
// float a = Math.round(f * 100);
// return a / 100;
//}

//Función que forma un mensaje con todos
// los parámetros del elemento
String getUpdateAsMessage() {

String mes = (tr(posición.x) +
tr(posición.y));

return mes;
}

}

Fig. 1. Code example

and the main contribution is to aggregate and compare the
LI results of multiple different tools and subsequently choose
one.

B. Description

Below is a more detailed description with the help of the
running example in Figure 1.

1) Extraction: In this step, all comments and identifiers
of the project under study are extracted by iterating through
every file individually. ConQAT1 is used to comb through
the files and extract all comments and identifiers. Afterwards,
copyright comments and commented-out code are filtered from
the list of the extracted comments. An implementation of the
classification methods for comments described in the work of

1https://www.conqat.org/



TABLE I
EXTRACTED AND NORMALIZED COMMENTS AND IDENTIFIERS

Type Extracted Normalized (“-” if nothing changed)

clase que guarda el estado de cada elemento en
el servidor

-

Comments * el constructor para el clase Elemento
* @author garcia

el constructor para el clase Elemento garcia

Función que forma un mensaje con todos los
parámetros del elemento

-

Elemento -

Vector3f Vector f

Identifiers posición -

velocidad -

getUpdateAsMessage Update As Message

Steidl et al. [5] is used to achieve this. Copyright comments are
identified by checking whether the comment contains either of
the keywords “copyright” or “license”. Commented-out code
is detected by applying regular expressions for common code
structures, such as loops; if a comment contains more than a
certain amount of commented-out code, further described in
Steidl et al. [5], it will be excluded. Additionally, comments
and identifiers are only considered for extraction if they have
a predefined minimum number of characters. The minimum
length thresholds differ between comments and identifiers
and are called lcomment for comments and lidentifier for
identifiers. Note that, for comments, whitespace-characters
count towards the total character count.
The column “Extracted” in Table I contains the result of the
extraction of the comments and identifiers from the code of
the running example in Figure 1. The copyright header and
the commented-out code were ignored. For the identifiers
the minimum length was set to eight and therefore only the
identifiers which have more or equal than eight characters have
been extracted. The length threshold here was set to a value
where the effects are clearly visible.

2) Normalization: In the normalization process, comments
and identifiers are modified to improve the results of the
language identification. This involves removing certain char-
acters or adding whitespace characters. Many of the following
normalization follow closely parts of the works of Dit et. al.
[15].
The following modifications are applied to every single iden-
tifier, in the following order:

• Remove set or get: The naming of setters and getters
follows the pattern setVariable or getVariable. If the
variable name is, for example, in German, the prefix
set/get is still in English. In order to avoid a mixture
of fixed expression and text, which can impede the LI,
set and get are removed, if they are at the very beginning
of the identifier.

• Split CamelCase and Underscore: Underscores are
replaced with a space and words following the CamelCase

pattern are split according to the following examples:
– “CamelCase” → “Camel Case”
– “UMLexample” → “UML example”
– “Matrix123Test” → “Matrix 123 Test”

• Remove non-Letter chars: Characters that are not part
of a word in any language are removed.

The modifications for the comments are as follows:
• Remove DocTags: e.g. @param, @author etc.
• Split CamelCase and Underscore
• Remove non-Letter chars

The results of the normalization of comments and identifiers
from the running example are shown in the column “Nor-
malized” in Table I. For example, “getUpdateAsMessage” was
normalized to “Update as Message”.

3) Language Identification: The proposed language iden-
tification process is based on a majority vote of multiple LI
tools, with different or differently implemented LI methods.
The basic idea is that the LI tools identify the language
of every extracted comment or identifier of the project by
itself first; every tool has then a two lists of results. One
list containing the suggested languages for the comments and
one for the identifiers. All of the results of the tools are then
combined into two lists of suggested languages; again one for
comments and one for identifiers.
Note that this is done separately for comments and identifiers.
This means that the language results for comments will be
combined only with other comment results. The same applies
to identifiers. Also, the set of LI tools used for the comments
differs from the set of tools for the identifiers. This is because
of the differences between comments and identifiers (such
as length), different sets of LI tools yield better results for
comments than for identifiers and vice versa. More details,
such as the list of the used tools and the their evaluations are
provided in Section IV.
Taking the normalized comments and identifiers from Table I,
the proposed language identification approach works as fol-
lows:



TABLE II
LANGUAGE COUNTERS: THE NUMBER OF LI TOOLS SUGGESTING A

GIVEN LANGUAGE

Type Id es en de un pt gl

1 6 1 1

Comments 2 7 1

3 8

4 3 1 1

5 2 3

Identifiers 6 2 1 2

7 4 1

8 4 1

TABLE III
LANGUAGE IDENTIFICATION RESULT

Type Id Preliminary Language Final Language

1 es es

Comments 2 es es

3 es es

4 es es

5 de un

Identifiers 6 un un

7 es es

8 en un

The LI tools identify the language of every comment and
identifier individually and the results are combined in such
a way that every comment and identifier is tagged with a map
of all proposed languages of the LI tools and their occurrences,
called the language counter. Table II contains the resulting
language counters for the running example. For example, for
the comment with Id 2 in Table II, seven of eight tools propose
that it is in Spanish, while one says that it is in Portuguese.
Next, every comment and identifier of the language counters
is analyzed individually in order to choose one result. The
method used is a constrained majority vote in which the
language with the most votes is selected, but only if it fulfills
the following conditions. Otherwise, it is labeled as un, which
is short for unknown:

• Minimum Agreement[%](xagree): A minimum percent-
age of the used tools must agree on the language with
the most votes. For example for the comment with Id 1
in Table II, Spanish (es) is the language with the most
votes for Id 1 and in total 6

8 = 75% of all LI tools agree
on it.

• Confidence: This condition dictates that there can only
be one language with the highest number of votes. The
language counter for Id 6 contains two languages with
the most votes, Spanish and Galician, thereby violating
this condition.

TABLE IV
LANGUAGE DISTRIBUTIONS

Type Language[%]
es en de un

Comments 100

Identifiers 40 20 20 20

The column “Preliminary Language” in Table III is a possible
outcome for the filtering step with a minimum agreement
percentage and the confidence condition.
The next step applies only if the list containing all comments
or identifiers has more than one entry. A new language counter
is created that contains all previously chosen languages over
the whole project (language or unknown) and their number of
occurrences, called the language distribution; again, this is
done separately for comments and identifiers. Table IV is the
language distribution for the column “Preliminary Language”
in Table III. The lists with the comments and the identifiers are
then iterated again. Every entry that is not tagged as unknown
is tested to determine whether its identified language fulfills
the following condition; otherwise, the entry is re-labeled as
unknown.

Minimum Occurrence[%] (xoccurr): This condition de-
scribes the minimum percentage amount a language must have
in the language distribution mentioned above in order to be
considered a viable result. Taking the language distribution
from Table IV, setting xoccurr = 25% and applying it, re-
sults in the languages for the comments and identifiers in
the column “Final Language” of Table III. The English and
German entries have both been relabeled to unknown because
the occurrence percentages of both languages (20%) do not
exceed xoccurr (25%).
This constraint aims to filter out those rare entries where a
great majority or even all used LI tools agree on a wrong
language. The case, where for example 2% of all comments or
identifiers are in fact in a different language is neglected with
the described parameters, because the goal of this approach is
to identify whether a project contains substantial amounts of
non-English comments or identifiers.
This measure proved very useful in removing persistent false
entries. Note that this measure is especially important for
identifiers, as the probability of identifiers which are incom-
prehensible for developers is greater than for comments.
The parameters that differ between the language identification
for comments and identifiers are:

• Different combination of tools.
• Different minimum Length: lcomment or lidentifier.
• Different values for xagree, xoccurr.

IV. EVALUATION

In this section, we evaluate the quality of the proposed
approach. In order to achieve this, the best individual values
for the parameters are identified for both the comments and
the identifiers LI.



TABLE V
USED LI-TOOLS

Name Ref. Source

CelLang https://code.google.com/p/language-
identification/

CLD https://code.google.com/p/chromium-compact-
language-detector/

DictIdentify [16] http://mlcomp.org/programs/633

GuessLanguage https://bitbucket.org/spirit/guess language

JLad https://github.com/VivienBarousse/jlad

LangDetect https://code.google.com/p/language-detection/

LangDetect2 https://github.com/feedbackmine/
language detector

LangId [17] https://github.com/carrotsearch/langid-java

LangId2 https://code.google.com/p/lang-id/

LDig [18] https://github.com/shuyo/ldig

LingPipe [19] http://alias-i.com/lingpipe/index.html

JavaTextCat http://www.findbestopensource.com/product/
javatextcat

TikaIdentifier https://tika.apache.org/

TABLE VI
BENCHMARK PROJECTS

Source (https://github.com/) Natural languages
schakko/zabos

de,encrunkchilla/TPE
Andi17/Fallstudie

enrico200165/ev tools
it,enmrandisi/adi

filippomortari/VRMS Project
dtFraca/Javamatik

fr,enUvuros/iutvalence-java-mp-g1p5-2012-2013
AydenSekey/caesar

Kayne/JavaZadania
pl,enpiotr45/Projekt2

kryptoala/modul 3

IsraelCgutierrez/3D-Multiuser-Environment-Server
es,endennistu1994/ANGLE

frieser/formation

The case study analyzing real world software is described in
section V.
As described in Section III, the proposed LI approach utilizes
multiple LI tools. Table V contains all of the tools that have
been tested and evaluated.

A. Study Objects

In order to determine the best parameters for the approach, it
needs to be tested and evaluated against a benchmark, which
is similar to the field it will be applied to. For that reason
two benchmarks were created, one with comments and one
with identifiers, by extracting and labeling all comments and
identifiers of the projects shown in Table VI.
The projects for the benchmark were chosen because they

all contain text written in two languages. They were found
by using the GitHub code-search for terms like “variable” or
“loop” in different languages.
The extraction and normalization described in Section III-B
were used to get the comments and identifiers, with a mini-
mum length of 5. This was set because words with fewer than
five characters are prone to ambiguity; an example is the word
color, which exists in multiple languages.
The languages of the comments and the identifiers were then
identified by going through their lists and manually deciding in
which language they were written in. If in doubt the comment
or identifier was translated word by word with an online
dictionary. If we were unable to determine the language in
which an entry was written, the entry was excluded. The
end result were two benchmarks one with 10354 comments
and one with 7201 identifiers, with both containing entries in
six different natural languages — English, German, French,
Spanish, Polish and Italian.

B. Evaluation Questions

EQ 1 Is there a combination of LI tools that is better than
any single one?
The first question is whether the proposed approach is indeed
better suited for the problems stated in this paper than any of
the presented tools.
EQ 2 What are the best combinations of LI tools and param-
eters for comments and identifiers?

Having established that there are indeed combinations of
tools that are better than any single one, it is important to
determine which combinations are best. This is done separately
for comments and identifiers, as it is possible that the best
combination for one of them is not the best for the other.

1) Study Design: We answered the research questions with
the following study design. Every tool presented in Table V
is tested against the benchmarks introduced in Section IV-A.
The Fβ-measure [20] is used to compare the results. The Fβ-
measure describes a performance classification that weighs
the recall β-times more than the precision. In this work, the
precision is valued more highly than the recall. This is because
it is more important to know with a high level of certainty
whether a project contains a specific language than it is to
be able to label every comment or identifier with a language.
Because of that, β is set to 0.5, which causes the precision to
be weighed twice as many times as the recall, but does not
neglect the recall completely.
With the result over the benchmarks, the precision, recall and
the F0.5 can be calculated using the following formula:

Fβ =
(β2 + 1)PrecisionµRecallµ
β2Precisionµ +Recallµ

Fig. 2. F-Measure over multi-class classification with micro-averaging [20].

In order to determine the best parameters and consequently
the best combination of tools, a Java program was created
that automatically checked every possible composition of



• xagree, ranging from 10%−80% with a step size of 10%,
and

• xoccurr, ranging from 0%− 5% with a step size of 1%2,
and finding the best LI tool combination for this tuple (xagree,
xoccurr).
The tuple (xagree, xoccurr) is called composition, whereas a
set of LI tools is called combination.
For every single composition out of the 8 ∗ 6 = 48, every
possible tool combination is created and evaluated against the
benchmark. This means that, at first, every combination of
two LI tools — which can be described with the binomial
coefficient

(
14
2

)
, with 14 LI tools in Table V — is created

and evaluated and then every combination of three, and so on.

This sums up to
14∑
i=2

(
14
i

)
= 16, 369 combinations. Then, the

one combination of the 16, 369 with the highest F0.5-measure
is selected.
Altogether, this resulted in the evaluation of 16, 369 ∗ 48 =
785, 712 different combinations and parameters, which took
about 33 minutes for the identifier-benchmark and 47 minutes
for the comments benchmark.
Subsequently, all 48 F0.5-measures (one for every composi-
tion) were compared in order to determine the best overall
combination of tools and parameters.
The minimum length restrictions for the identifiers and the
comments were chosen with the following goal in mind. An
average of at least 90% of all comments and identifiers of a
project should be extracted and their language identified. 90%
ensures that the language of a significant amount of comments
and identifiers is identified and the errors caused by a small
amount of characters are limited.
lcomment and lidentifiers are calculated by creating the com-
ments and identifiers length distributions over all projects
(Table XI and Table XII). These distributions contain the
number of comments or identifiers with a length of one up
to 100 characters. If, for example, the minimum length for
identifiers is five, all identifiers with a length smaller than five
are excluded. The minimum lengths are then calculated by
testing which length is the smallest, such that the remaining
number of all comments or identifiers is not smaller than the
90% defined above. Here, five is the absolute minimum for
the length because the probability of identifying the language
correctly or even being able to do so with such few characters
is low.

C. Results

The results of all the single tools on both benchmarks can
be seen in Table IX and Table X. The corresponding precision
and recall are also listed to show the possible discrepancies
between them.
Using the results of the single tools to determine the best
composition of parameters and combination of tools for the
comments or the identifiers results in Table VII for the pa-
rameters and Table VIII for the tool combinations; Lisancco

2Note that every value outside of the ranges is considered impractical or
futile by testing and experience.

TABLE VII
BEST COMBINATION OF PARAMETERS FOR COMMENTS AND IDENTIFIER

Type xagree[%] xoccur[%] Minimum Length

Comments
(Lisancco)

30 3 13

Identifier
(Lisancid)

30 4 8

TABLE VIII
BEST COMBINATION OF TOOLS FOR COMMENTS AND IDENTIFIERS

Type Tool combination

Comments
(Lisancco)

CelLangBayes, CelLangAdhoc,
CLD, LangID, Jlad, LingPipe,
JLad, DictionaryIdentify

Identifier
(Lisancid)

CelLangAdhoc, CLD, LangID,
LingPipe, DictionaryIdentify

is the version of Lisanc used to identify the natural language
of comments and Lisancid for identifiers. The minimum length
restrictions were calculated using Figure 3 and Figure 4.
These figures represent the number of comments or identifiers
for each length, ranging from one to 100. In each figure, the
length with the maximum number of comments or identifiers
is marked, as is the section that is excluded by the minimum
length — the red area.
The results of Lisancco and Lisancid on their corresponding
benchmarks are shown in Table IX and Table X, where all
results are presented in descending order according to their
F0.5-measure.
EQ 1 asks whether there is a combination of language
identification tools for our proposed approach that scores a
better F0.5-measure than any single tool alone. This can be
answered directly by looking at the Table IX and X. In
both cases, the proposed approach yields significantly better
results, not only for the precision, but also for the recall.
Consequently, it has the best F0.5-measures. Of course, this
is an expected outcome, because Lisanc was specifically
trained on this data set. Mitigation for this is discussed in
section V-E. The differences between the precision and recall
of our approach in comparison with the best values of the
single tools, which are marked bold in Tables IX and X,
are very notable. For the comments, the difference between
the recall of Lisancco and the best single tool (LingPipe) is
only about 0.15 percentage points. For the precision, however,
the difference is, with 99.25% for Lisancco, more than one
percentage point better than for the best precision of a single
tool; CelLangBayes with 98.15%. This is much, considering
that the value of CelLangBayes is almost perfect. For the
language identification of the identifiers it is the other way
around. The LI tool CLD almost has the same precision as
Lisancid, with 97.15% versus 97.35%, but there is a wide
gap between the recall, of LangID, with 79.55% as the best
single tool value, and 83.1% for Lisancid. Whereas the single
tools have also good results for the language identification of



TABLE IX
RESULTS OF ALL TOOLS AND THE BEST LISANC COMBINATION ON THE

COMMENTS BENCHMARK.

LI tool Precision[%] Recall[%] F0 .5

Lisancco 99.25 96.15 0.9861

CelLangBayes 98.15 94.3 0.9736

LingPipe 96.4 96.0 0.9630

LDig 96.55 92.65 0.9574

LangID 96.15 93.95 0.9571

CelLangAdhoc 97.05 89.3 0.9539

JLad 95.75 92.0 0.9500

LangID2 95.9 89.85 0.9464

LangDetect 94.5 91.15 0.9379

CLD 95.65 80.65 0.9224

GuessLanguage 96.25 78.15 0.9198

DictionaryIdentify 89.75 89.75 0.8975

JavaTextCat 94.05 72.8 0.8886

LangDetect2 88.7 77.9 0.8630

Tika 89.45 65.05 0.8321

TABLE X
RESULTS OF ALL TOOLS AND THE BEST LISANC COMBINATION ON THE

IDENTIFIER BENCHMARK.

LI tool Precision[%] Recall[%] F0 .5

Lisancid 97.35 83.1 0.9413

CelLangAdhoc 88.65 68.35 0.8368

LangID 84.45 79.55 0.8343

CLD 97.15 53.3 0.8342

CelLangBayes 86.8 68.05 0.8226

JLad 83.8 68.15 0.8012

LingPipe 79.3 77.1 0.7886

LDig 74.5 57.2 0.7025

LangID2 74.25 52.85 0.6868

LangDetect 67.3 56.6 0.6485

DictionaryIdentify 59.55 59.55 0.5955

LangDetect2 61.5 39.45 0.5530

GuessLanguage 71.3 15.6 0.4163

JavaTextCat 49.8 19.6 0.3806

Tika 43.75 15.85 0.3237

comments, the main advantage of our approach is the language
identification of identifiers. The values for both the recall and
the precision are high enough to reliably identify the language
of a significant amount of identifiers.
EQ 2 is answered by the Tables VII and VIII. They represent
the best composition of parameters and best combination of
LI tools for the used benchmarks. Because the benchmarks
consist of comments or identifiers those parameters and tool
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Fig. 3. Comment Length Distribution over all projects

combinations are calibrated for the best identification of
source-code comments and identifiers.
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Fig. 4. Identifier Length Distribution over all projects

V. CASE STUDY

A. Research Questions

After describing and evaluating the approach for the lan-
guage identification of source-code comments and identifiers,
this section presents the application of this approach in prac-
tice.
The issues tackled are summarized with the following research
questions.



RQ 1 To which extent do non-English comments and identifiers
occur?

The primary question is whether non-English comments and
identifiers appear in projects regularly enough to matter in
practice. This does not mean whether any non-English com-
ments or identifiers can be found at all, but whether they
constitute a significant part of the project.

RQ 2 Are there differences between the comments or identi-
fiers of open-source and industry projects?

Having established the fact that non-English comments and
identifiers occur, it is interesting to compare projects developed
with different backgrounds. As mentioned in Section I, there
are differences between open-source and industry projects.
Companies have a closed team of developers from at most few
countries, whereas the the open-source development possibly
involves people from all around the world.

RQ 3 Is there a difference between the distributions of non-
English comments and identifiers?

With this RQ we investigate whether the threshold for using
non-English languages is higher for identifiers than for com-
ments. This assumption is based on the fact that the main part
of identifiers often consists of fixed expressions.

B. Study Objects

The study objects used for answering the research questions
can be divided into two groups. One consists of 13 open-
source projects and the other consists of 10 industry projects.
Table XI is a list of the analyzed open-source projects, with the
numbers of unique comments and identifiers for each project.
The industry projects are listed in Table XII.

C. Study Design

The research questions are answered with the help of the
following study design. The approach described in Section
III-B is used to create the results for every project listed in
Table XI and Table XII. From these results, the language dis-
tributions for the comments and the identifiers of open-source
or industry projects can be created. A language distribution
consists of the relative frequencies of all occurring languages
over all comments or identifiers.

D. Results and Interpretation

The language distributions of the results for the open-source
projects can be seen in Figure 6 and for the industry projects
in Figure 5.
RQ 1. Figure 5a and Figure 5b both show projects that
contain non-English comments and identifiers. There are five
industry systems which contain a percentage of non-English
comments from about 50% up to almost 90% and three
industry systems with about 28% up to 45% non-English
identifiers. Therefore RQ 1 can be positively answered:
There are comments and identifiers written in a non-English
language. In fact the percentages of non-English comments
and identifiers are significant. There are cases where non-
English comments and identifiers make sense; for example, if

TABLE XI
OPEN-SOURCE PROJECTS WITH NUMBER OF UNIQUE COMMENTS AND

IDENTIFIERS

Name Comments Identifiers LOC

Java

ConQAT 18,409 15,627 326,197

OpenJDK 118,724 83,853 2,822,281

JUnit 886 3,358 38,540

libGDX 9,746 22,855 343,923

Apache Storm 1,435 6,706 129,964

Apache Ant 14,551 11,811 265,830

C#

CoreFX 37,631 54,924 1,824,018

SignalR 1,681 5,090 68,498

C/C++

MongoDB 88,524 87,078 2,634,062

PhantomJS 148,542 241,560 4,685,330

VLC 24,915 47,131 647,328

XAMPP 22,390 24,060 352,130

FileZilla 4,726 10,429 163,469

492,160 614,482 14,301,570

TABLE XII
INDUSTRY PROJECTS WITH NUMBER OF UNIQUE COMMENTS AND

IDENTIFIERS

Name Comments Identifiers LOC

Java

System 1 6,350 22,397 404,550

System 2 18,074 21,756 596,825

System 3 6,121 7,547 107,613

System 4 8,048 27,454 425,119

System 5 10,278 12,609 441,181

System 6 4,608 8,195 353,244

System 7 9,261 12,868 256,904

C#

System 8 1,921 4,313 81,745

System 9 20,069 29,752 541,522

System 10 31,174 29,663 690,177

115,904 176,554 3,641,976

some expressions are unique to that language or that country,
such as insurance values. However, this does not apply to
all cases, which leads to the conclusion that the analysis
of natural language of comments and identifiers should be
included in the quality assessment of a software.
Regarding RQ 2, the differences between the analyzed
open-source and industry systems, non-English comments or
identifiers exclusively occur in the industry projects. In fact
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Fig. 5. Results of the industry projects

half of the industry systems contain non-English comments
or identifiers, whereas none of the analyzed open-source
systems contain any other natural language than English. Of
course, there is a possibility that some actually do contain
other natural languages, but with the used approach it is very
improbable. Such other languages would only constitute a tiny
part of the whole system (minimum occurrence percentage)
or are constrained to a very small number of characters
(minimum length). Therefore the analysis of the language of
comments and identifiers is especially important for industry
projects.

RQ 3 discusses the differences between the natural language
of source-code comments and identifiers. There are two
industry projects, which contain only non-English comments
and three which contain both non-English comments and
identifiers. However, there are no systems, which only contain
non-English identifiers. Also, if a project contains both non-
English comments and identifiers, there are significantly fewer
non-English identifiers, percentage-wise, than non-English
comments.

E. Threats to Validity

Internal Validity: The chosen parameters and LI tool
combinations have a strong influence on the LI results. The
LI tool combination delivers the biggest part for the language
identification, while the task of the parameters is to filter out
a big chunk of false positives without removing too many
true positives.
The parameters and the combination of tools were determined
by testing on manually created benchmarks that share the
same source-code context. This is important, because for
example the English used in the documentation of source-code
can differ from, say, the English in a novel, and therefore can

influence the outcome.
To reduce the bias of the training and the validation of the
approach on the same data, we also computed the results,
where the data was split into two random chunks with similar
size, where one chunk was used for the model training and
one for the validation. This splitting was done multiple times.
The results of the splitting were more or less similar to the
ones depicted in section IV, with Lisanc always yielding
better results.
External Validity: The choices for the open-source system
were made in order to achieve variety for the criteria size,
popularity, programming-language and application
The selection of the industry projects was more limited.
However, they are still from six different companies, written
in two programming languages and have considerably
different applications. Also, it is important to note that the
occurrence of non-English comments and identifiers is not
constrained to one company, but is instead distributed over
almost all of them.
As both selections can obviously not cover all possible
varieties of OS- and industry-systems, all statements in this
work about them should not be taken as facts, but rather as
indications or trends.

VI. CONCLUSION AND FUTURE WORK

This work presents an approach adapted to the needs
of the extraction and language identification of source-code
comments and identifiers. An exemplary application is the
quantification of non-English comments and identifiers. Mul-
tiple conclusion can be drawn on that basis, for example, if it
is possible to outsource the development or the maintenance
of the system in the current state. Additionally the proposed
method can be used for the localization and subsequently



ConQAT

OpenJDK

JUnit

LibGDX

Storm

Ant

CoreFX

SignalR

MongoDB

PhantomJS

VLC

XAMPP

FileZilla

0.6

1.2

0.35

0.75

0.9

0.55

1.9

0.25

1.5

2.95

2.85

2.45

1.4

99.4

98.8

99.65

99.25

99.1

99.45

98.1

99.75

98.5

97.05

97.15

97.55

98.6

en unknown

(a) Comments language distribution

ConQAT

OpenJDK

JUnit

LibGDX

Storm

Ant

CoreFX

SignalR

MongoDB

PhantomJS

VLC

XAMPP

FileZilla

16.95

19

9.4

15.4

13.9

17.8

12.7

13.1

15.25

15.1

23.45

27.65

20.35

83.05

81

90.6

84.6

86.1

82.2

87.3

86.9

84.75

84.9

76.55

72.35

79.65

en unknown

(b) Identifier language distribution

Fig. 6. Results of the open-source projects

the fixing (i.e. translating) of non-English comments and
identifiers.
The case study demonstrates that the problem of different
natural languages for comments and identifiers in a project
is not a rare case for industry projects. In fact, half of the
examined projects contain non-English comments or iden-
tifiers. Therefore we conclude that the natural language of
comments and identifiers deserves more attention in research
and practice, especially regarding industry code.
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