
www.embedded-world.eu

Incremental Software Quality Analysis

for Embedded Systems

Benjamin Hummel, Thomas Kinnen

CQSE GmbH

Garching b. München, Germany

hummel@cqse.eu

Abstract—Analysis tools play an important role in the

development of high-quality software systems. For all aspects of

software quality, including safety, security, maintainability or

portability, there are tools that can automatically detect a large

number of quality defects. While such tools are not sufficient to

fully check a system’s quality, tool support does help to reduce

the number of defects found late in the development process and

relieves developers and reviewers from performing repetitive and

schematic checks manually. Existing analysis tools typically run

in batch mode and analyze the entire system at once. Depending

on the system’s size, this can easily take hours, even when

integrated in a continuous build process. While this is no problem

during release preparation or at quality gates, the single

developer usually needs a shorter feedback cycle to benefit from

analysis results and react to the defects found. As a solution to

this problem, we propose incremental quality analysis, which

allows updating known quality data of a system based on the

changes applied to the system’s code files. As a developer

typically changes only a couple of files at once, this allows

processing the changes within seconds and providing the

developer with immediate feedback on every change. This paper

explains the technology behind incremental quality analysis,

provides benchmarks that document the performance gain of

several orders of magnitude, and presents promising results from

the practical application of this approach.

Keywords—software quality analysis; incremental analysis;

continuous quality control

I. INTRODUCTION

Software quality is a term that is used with many different
meanings. For some, it denotes only the customer visible
quality, such as fulfillment of functional requirements or
usability, while for developers, quality often means the quality
of the source code, including aspects like readability and
portability. In practice, all of these views are connected. While
different quality aspects sometimes are described as being
independent, they affect each other. For a complex system with
low readability, it will be really hard to maintain high user-
visible quality in the long run. Low security can also cause

safety problems for some systems, if the security problems can
cause critical software failures. Thus, software quality should
be addressed as a whole, although the individual aspects as
defined in ISO/IEC 9126 resp. ISO/IEC 25010 can help to
structure an approach towards software quality improvement.

Over the previous decades, software has become more and
more important for our economy and our every day’s life. With
the advent of ever more complex embedded systems and trends
such as the Internet of Things, software quality no longer only
affects the digital world, but has an immediate impact on the
physical world as well. At the same time, the steady growth of
software systems, both in number of functions and complexity,
makes it increasingly difficult to understand a system’s quality,
as no single individual has full knowledge of all details and
side-effects of the code base.

One part of the solution, that is often proposed, is the use of
automated tools that check a system’s various quality aspects.
While these tools can never fully replace manual quality
assurance (e.g. reviews), they can release engineers from
boring and repetitive tasks, allowing them to spend their time
on more relevant quality improvement tasks. Additionally,
tools can easily provide an overview, even on large code bases,
and perform certain analyses, such as finding duplicated source
code, that are nearly impossible to perform manually.

A major problem with many quality analysis tools is the
long feedback cycle between changes to the source code and
the notification of the developers. With analysis times of many
hours for larger systems, analysis is often only performed every
night. This way, developers are informed about quality defects,
when they are often already working on a different feature.
Especially with the advent of agile practices in embedded
development, this delayed feedback counters many of the
benefits to be gained from small iterations and continuous
integration.

Our solution to this problem is to speed up the analysis
process by using incremental analysis. The goal is to build
analyses that can incorporate changes to the code base, when

they are committed by the developers. This way, not the entire
system has to be reanalyzed, but only the small part that has
been changed. This paper completes earlier publications, where
we described single analyses [1] and the overall architecture of
a system for incremental analysis [2], by describing a complete
implementation and results of its practical application.

II. INCREMENTAL ANALYSIS

A. General Approach

Studies [2] show, that the analysis of a large software
system can easily take hours, while the typical commit
(change) to a code base consist of only a couple of files.
Incremental analysis leverages this fact and continuously keeps
an up-to-date status of the code’s quality in a database. Using
the information from this database, the quality status can be
updated by only analyzing the changed files and possibly a
couple of related files. If this update can be performed
efficiently, the database reflects the quality of the code base
with only a few seconds delay.

This approach sounds simple in the first place and actually
is for many quality analyses. Every analysis that can be applied
independently to individual files can be used incrementally
nearly without adaption. This category is quite large and
includes many typical “guideline checks” (e.g. formatting,
limiting usage of programming constructs, naming
conventions) and also more advanced analyses, such as
contextual comment analysis [3] or dataflow-based intra-
method analysis. However, there are a number of analyses and
challenges, which cannot be applied incrementally in such an
obvious manner. Examples for these problems and possible
solutions are described in the following.

B. Challenges in Incremental Analysis

Clone detection attempts to find duplicated source code
fragments, typically created by copy&paste. The problem of
these duplicates is the unnecessary increase in code size, which
often increases the effort needed for inspections and testing,
and the risk of applying changes and bug fixes only to one
instance of the duplicate, leading to inconsistent or even
erroneous behavior [4]. The problem with clone detection is
that a changed file might potentially contain a copied code
fragment from every other file in the code base, whether
changed or not. Thus, the analysis cannot focus on only the
changed files. The solution is to manage an additional data
structure that allows to quickly find candidate files from which
the changed files might contain clones and limit detection to
this slightly extended file set. The details of this data structure
are given in [1].

Dependencies between files and types of the system are
required for many different analyses. One example is the long
list of dependency metrics, another a conformity analysis
between the intended architecture of a system and its actual
implementation in the source code [5]. The key to keeping
dependency information up to date is the observation that the
outgoing dependencies of a file, i.e. the list of files a file
depends on, can be determined by only looking at this single
file. Thus, updating outgoing dependencies can be performed
easily for all changed files. What makes this a bit more
involved is that for many analyses using the dependencies, we

also need information on the incoming dependencies (which
files depend on this one) and information not on the file but on
the type level. However, all of this information (including a
mapping between files and types) can be updated incrementally
based on changes of the outgoing dependencies.

Aggregation of quality metrics is an important aspect of
any analysis, as we are typically not interested only in the
quality of single files, but also on an aggregate for components
of the system or the entire code base. Obviously, every change
to a file can change its metric values and thus affect the overall
aggregates. By keeping the aggregation relation (typically a
tree following the directory or namespace hierarchy) explicit, a
change of a metric value for a single file (a leaf) can be
distributed recursively to the inner nodes leading to the root of
the tree (representing the overall aggregate).

Tracking of file renames, moves and copies might sound
like an unrelated problem at first. However, many analyses can
benefit from information about these file-level operations and
accurate information also eases interpretation of analysis
results. In theory, this information should already be recorded
in the version control system (VCS), but studies [6] show that
for up to 39% of the files in a VCS this information is
incomplete. To detect file moves and renames, it is sufficient to
inspect all files within a commit. Interestingly, this analysis
becomes easier when applied incrementally as compared to
nightly, as this way the candidate set in each commit is much
smaller than looking at the aggregated changes over a full day.
However, similar to clone detection, for a copy operation all
other files in the system are potential copy sources. The
solution we use applies similar data structures as the
incremental clone detection to circumvent this problem. The
details of the approach are described in [6].

Tracking of quality issues links issues from the previous
version to the current version. This allows to identify, which
issues have been removed or added by a commit. Also, meta
information attached to quality issues, such as the name of a
developer responsible for removing it, or manual notes about
the criticality of the issue, can be reliably kept attached to an
issue even when moving the code to a different location. To
work reliably, even in the context of complex refactorings, we
utilize information on file moves and renames and apply a
hash-based tracking algorithm (as described in [7]) on issues
that are not in the same place after applying the file-level
operations.

C. Implementation

Based on these algorithms for incremental quality analysis,
we built Teamscale

1
 [8] as an implementation of our approach.

Besides the analysis algorithms, Teamscale also deals with the
technical aspects required for reading changes and actual
content from a version control system, as well as the
configuration and scheduling of the individual analysis steps.
Using an incremental storage schema, not only the quality data
of the most recent revision of the code is available, but the data
of every single analyzed commit can be accessed. This can be
helpful to better understand the root-cause for changes in the
quality of the code, but also supports various different

1
 http://www.teamscale.com

www.embedded-world.eu

strategies for dealing with quality defects, for example to focus
mostly on issues introduced since a certain point in time (such
as a release). To allow inspection and interpretation of the
results, the data can be accessed in various ways via a web
interface. For the developers there is also integration with the
development environment (IDE) to display quality issues
directly in the edited code.

III. RESULTS

Based on the implementation in Teamscale, we performed
various experiments with the incremental approach.

A. Quantitative Results

First results have been published in [2], showing an average
analysis time between 1 and 3 seconds per commit. This
prototypical version, however, did not yet include the full set of
analyses required for practical application. With Teamscale, the
set of analyses now covers a wide range that allows its
application in quality control [9]. We report results on 5 Open
Source systems

2
 in Table 1. These systems range between 250

and 1000 files and have between 25,000 and 323,000 code
lines. The number of revisions analyzed was between 1,000
and 11,500. Interestingly, the average number of files touched
by each commit is between 9 and 66, which is way larger than
in our earlier study [2]. We assume this to be caused by all
systems being maintained in Git (compared to SVN with the
earlier study). In Git, most of the projects use many smaller
commits in feature branches, but the main line of development
only sees larger merge commits of these feature branches.
Especially, the history of Unknown Horizons contains many
large merges. Due to the larger number of files and also due to
the increased set of analyses, the average analysis time required
for each commit is between 4 and 35 seconds. This is slower
than in our previous study, but still fast enough to provide a
developer with timely feedback on a commit.

B. Qualitative Results

With the goal of improved analysis performance, the raw
analysis times are surely of interest. For the practical

2
 The systems have been selected to cover multiple different

programing languages. Their code is available at the following

URLs:

 https://github.com/softwerkskammer/Agora

 http://www.doxygen.org/

 http://eclipse.org/recommenders/

 http://jenkins-ci.org/

 http://www.unknown-horizons.org/

applicability, however, they are only a small part of the
solution. Using the implementation in Teamscale, we deployed
incremental analysis at the insurance company
Lebensversicherung von 1871 [8], the automotive OEM Audi
[9], and a couple of other partners. While batch analysis tools
that run in a nightly build often only have a one-time effect that
diminishes after some time [10], in all these projects the
incremental analysis had a lasting effect. An example of the
change in the number of quality issues in a code base after the
introduction of Teamscale is shown in Figure 1. We observed
developers to be more aware of quality issues in their code and
to often quickly remove new quality issues right after
committing changes. Interviews with the developers revealed
that the increased awareness was caused both by the rapid
feedback, so the developer was still working on the code when
the notification of new issues arrived, and the tight integration
with the IDE, which allows developers to get information about
quality issues without leaving their primary tool. In
combination, this additional and timely information was
enough motivation to remove any quality issues in “their”
code.

IV. DISCUSSION

The implementation of the approach in Teamscale and our
results clearly show the feasibility and applicability of
incremental analysis for software quality control. The
quantitative results demonstrate that near real-time results are
possible in a realistically sized development setup and the
quantitative results imply that the increased responsiveness and
integration of the analysis has an actual impact on the quality
of the code base. However, there are two questions, which
came up during our developer interviews, that point towards
further directions of improvement.

The most frequent question was about pre-commit analysis.
Given the additional transparency from the analysis of every
single commit, the developers would even prefer to get notified
of quality issues before committing their changes. This would
ensure that only clean code is checked into the version control
system. As with the per-commit analysis, we would expect a
developer to usually touch only a couple of files. So the
incremental analysis algorithms might be used against a known
baseline and the changed files. The only challenge is in
synchronizing the quality status on the server and on the
developer’s machine. One possible solution for this would be
to transfer the changed files to a central server and perform the
analysis there.

The second issue is related to the advent of distributed
version control systems that allow inexpensive setup and

This work was partially funded by the German Federal
Ministry of Education and Research (BMBF), grant "Evo-

Con, 01IS12034A". The responsibility for this article lies
with the authors.

TABLE I. QUANTITATIVE RESULTS: ANALYSIS TIME STATISTICS

System Name Programming

Language

Lines

of Code

(in Head)

Number

of Files

(in Head)

Number of

Analyzed

Revisions

Average Files

touched

per Commit

Overall

Analysis Time

(seconds)

Average Time

per Commit

(seconds)

Agora JavaScript 25,646 261 2,919 9.0 10867 3.7

Doxygen C++ 323,675 465 1,119 17.2 39214 35.0

Eclipse Code Recommenders Java 71,507 605 2,387 26.1 21648 9.1

Jenkins Java 162,659 1,024 11,691 19.4 132889 11.3

Unknown Horizons Python 78,589 467 9,591 66.6 285187 29.7

https://github.com/softwerkskammer/Agora
http://www.doxygen.org/
http://eclipse.org/recommenders/
http://jenkins-ci.org/
http://www.unknown-horizons.org/

management of development branches. As a result, many teams
develop new features on separate (feature) branches and
integrate the branch only after the feature has been completed.
The problem for an analysis tool is that the changes in the
branch are not visible until the branches are merged, which can
be a long time frame and counters the idea of real-time
feedback. The solution to manually set up an analysis for every
single branch is also not feasible, as often branches are
frequently created and destroyed. This is a problem that is
shared with traditional batch analysis tools, which also usually
only run on a single or a few fixed branches. With incremental
analysis, however, is would be feasible to analyze every single
commit in every single branch and thus provide the quality
status for every intermediate state of the system. The open
challenge for this approach is the organization of the analysis
data, which has to be stored for every single branch, and the
processing of merge commits, where the quality status of
multiple branches must be merged. An especially challenging
question in this context is how to deal with tracking of quality
issues. For example, issues created in a branch might not be
counted as new in a merge commit, but an engineer only
watching the main branch might still be interested in getting
notified of the “new” issues.

V. CONCLUSION

This paper explained the concept of incremental quality
analysis as a solution to the long feedback loops created by
conventional quality analysis tools running in batch mode. We
explained, how many of the well-known analysis algorithms
can be adjusted to the incremental paradigm and demonstrated
the feasibility by providing an implementation of these
adjusted algorithms. The results show that the analysis times

are fast enough to provide immediate feedback to the
developers after a change. Additionally, experience with
several professional development teams showed that the
availability of timely quality data motivates developers to
preserve and improve the quality of the software system.

The support for quality analysis of changes prior to their
commit to a version control system and better support of
branches during development are two directions that promise
even further improvements in the tool support for continuous
quality control. We plan to pursue both in the context of our
future work.

REFERENCES

[1] B. Hummel, E. Juergens, L. Heinemann, M. Conradt, “Index-based code
clone detection: incremental, distributed, scalable.” In Proceedings of
the 26th IEEE International Conference on Software Maintenance
(ICSM’10), 2010.

[2] V. Bauer, L. Heinemann, B. Hummel, E. Juergens, M. Conradt, “A
framework for incremental quality analysis of large software systems.”,
in Proceedings of the 28th IEEE International Conference on Software
Maintenance (ICSM’12), 2012.

[3] D. Steidl, B. Hummel, E. Juergens, “Quality analysis of source code
comments.” in Proceedings of the 21st IEEE Internation Conference on
Program Comprehension (ICPC’13), 2013.

[4] E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner, “Do Code Clones
Matter?” in Proceedings of the 31st International Conference on
Software Engineering (ICSE’09), 2009.

[5] M. Feilkas, D. Ratiu, E. Jürgens, “The loss of architectural knowledge
during system evolution: an industrial case study.” in Proceedings of the
17th IEEE International Conference on Program Comprehension
(ICPC’09), 2009.

[6] D. Steidl, B. Hummel, E. Juergens, “Incremental origin analysis of
source code files.” In Proceedings of the 11th Working Conference on
Mining Software Repositories (MSR’14), 2014.

Fig. 1. Example of the development of the number of quality defects after the introduction of incremental quality analysis to a software project. The

introduction of the tool is marked by the vertical line.

www.embedded-world.eu

[7] S. P. Reiss, “Tracking Source Locations.” in Proceedings of the 30th
International Conference on Software Engineering (ICSE’08), 2008.

[8] L. Heinemann, B. Hummel, D. Steidl, “Teamscale: software quality
control in real-time.“ in Proceedings of the 36th ACM/IEEE
International Conference on Software Engineering (ICSE’14), 2014.

[9] K. Schüler, R. Trogus, M. Feilkas, T. Kinnen, “Managing product
quality in complex software development projects.“ in Proceedings of
the Embedded World Conference, 2015. In press.

[10] D. Steidl, F. Deissenboeck, M. Poehlmann, R. Heinke, B. Uhink-
Mergenthaler, “Continuous Software Quality Control in Practice.”, in
Proceedings of the 2014 IEEE International Conference on Software
Maintenance and Evolution (ICSME’14), 2014.

