
How Do Java Methods Grow?
Daniela Steidl, Florian Deissenboeck

CQSE GmbH
Garching b. München, Germany
{steidl, deissenboeck}@cqse.eu

Abstract—Overly long methods hamper the maintainability of
software—they are hard to understand and to change, but also
difficult to test, reuse, and profile. While technically there are
many opportunities to refactor long methods, little is known
about their origin and their evolution. It is unclear how much
effort should be spent to refactor them and when this effort is
spent best. To obtain a maintenance strategy, we need a better
understanding of how software systems and their methods evolve.
This paper presents an empirical case study on method growth
in Java with nine open source and one industry system. We
show that most methods do not increase their length significantly;
in fact, about half of them remain unchanged after the initial
commit. Instead, software systems grow by adding new methods
rather than by modifying existing methods.

I. INTRODUCTION

Overly long methods hamper the maintainability of
software—they are hard to understand and to change, but
also to test, reuse, and profile. Eick et al. have already
determined module size to be a risk factor for software quality
and “cause for concern” [1]. To make the code modular and
easy to understand, methods should be kept small [2]. Small
methods also enable more precise profiling information and are
less error-prone as Nagappan et al. have shown that method
length correlates with post-release defects [3]. Additionally,
the method length is a key source code property to assess
maintainability in practice [4], [5].

Technically, we know how to refactor long methods—for
example with the extract method refactoring which is well
supported in many development environments. However, we
do not know when to actually perform the refactorings as we
barely have knowledge about: How are long methods created?
How do they evolve?

If methods are born long but subsequently refactored
frequently, their hampering impact on maintainability will
diminish during evolution. In contrast, if overly long methods
are subject to a broken window effect1, more long methods
might be created and they might continue to grow [7]. Both
scenarios imply different maintenance strategies: In the first
case, no additional refactoring effort has to made as developers
clean up on the fly. In the second case, refactoring effort

This work was partially funded by the German Federal Ministry of Education
and Research (BMBF), grant Q-Effekt, 01IS15003A”. The responsibility for
this article lies with the authors.

1The broken window theory is a criminological theory that can also be
applied to refactoring: a dirty code base encourages developers to try to get
away with ’quick and dirty’ code changes, while they might be less inclined
to do so in a clean code base [6], [7].

should be made to prevent the broken window effect, e. g., by
refactoring a long method immediately after the first commit.

To better know when to refactor overly long methods, we
need a deeper understanding of how methods evolve. In a case
study on the history of ten Java systems, we study how single
methods and the overall systems grow. We track the length of
methods during evolution and classify them as short, long, and
very long methods based on thresholds. The conducted case
study targets the following five research questions regarding
the evolution of a single method (RQ1, RQ2, RQ3) and the
entire system (RQ4, RQ5):

RQ1 Are long methods already born long? We investigate
whether methods are already long or very long at
their first commit to the version control system or
whether they gradually grow into long/ very long
methods.

RQ2 How often is a method modified in its history? We
examine which percentage of methods is frequently
changed and which percentage remains unchanged
since initial commit.

RQ3 How likely does a method grow and become a
long/very long method? We check if methods, that
are modified frequently, are likelier to grow over time,
or, in contrast, likely to be shortened eventually.

RQ4 How does a system grow—by adding new methods or
by modifying existing methods? We build upon RQ2
to see how many changes affect existing methods and
how many changes result in new methods.

RQ5 How does the distribution of code in short, long, and
very long methods evolve? We investigate if more
and more code accumulates in long and very long
methods over time.

The contribution of this paper is two-fold: First, we give
insights into how systems grow and, second, we provide a
theory for when to refactor. As the case study reveals that
about half the methods remain unchanged and software systems
grow by adding new methods rather through growth in existing
methods, we suggest to focus refactoring effort on newly added
methods and methods that are frequently changed.

/15/$31.00 c© 2015 IEEE SCAM 2015, Bremen, Germany

52

201

II. RELATED WORK

A. Method Evolution

Robles et al. analyze the software growth on function level
combined with human factors [8]. However, the authors do not
use any origin analysis to track methods during renames or
moves. Instead, they exclude renamed/moved functions. The
result of our RQ2 is a replication of their finding that most
functions never change and when they do, the number of
modifications is correlated to the size—but our result is based
on a thorough origin analysis. Whereas Robles et al. further
study the social impact of developers in the project, we gain
a deeper understanding about how systems and their methods
grow to better know when methods should be refactored.

More generally, in [9], Girba and Ducasse provide a meta
model for software evolution analysis. Based on their classifi-
cation, we provide a history-centered approach to understand
how methods evolve and how systems grow. However, the
authors state that most history-centered approaches lack fine-
grained semantical information. We address this limitation by
enriching our case study with concrete examples from the
source code. With the examples, we add semantic explanations
for our observed method evolution patterns.

B. System Size and File Evolution

Godfrey and Tu analyze the evolution of the Linux kernel in
terms of system and subsystem size and determine a super linear
growth [10]. This work is one of the first steps in analyzing
software evolution which we expand with an analysis at method
level. In [11], the authors discover a set of source files which
are changed unusually often (active files) and that these files
constitute only between 2-8% of the total system size, but
contribute 20-40% of system file changes. The authors similarly
mine code history and code changes. However, we gain a deeper
understanding about the evolution of long methods rather than
the impact of active files.

C. Origin Analysis

In [12], we showed that up to 38% of files in open source
systems have at least one move or rename in its history which
is not recorded in the repository. Hence, tracking code entities
(files or methods) is important for the analysis of code evolution.
We refer to this tracking as origin analysis.

In [13], [14], the authors present the tool Beagle which
performs an origin analysis to track methods during evolution.
This relates to our work, as we also conduct a detailed origin
analysis. However, instead of using their origin analysis, we
reused our file-based approach from [12] which has been
evaluated thoroughly and was easily transferable to methods.

To analyze method evolution, the authors of [15] propose
a sophisticated and thoroughly evaluated approach to detect
renamings. Our origin analysis can detect renamings as well,
however, at a different level: Whereas for us, detecting a
renaming as an origin change suffices, the work of [15] goes
further and can also classifies the renaming and with which
purpose it was performed. As we do not require these details,
our work relies on a more simplistic approach.

In [16], the authors propose a change distilling algorithm
to identify changes, including method origin changes. Their
algorithm is based on abstract syntax trees whereas our work is
based on naming and cloning information. As we do not need
specific information about changes within a method body, we
can rely on more simplistic heuristics to detect origin changes.

Van Rysselberghe and Demeyer [17] present an approach to
detect method moves during evolution using clone detection.
However, in contrast to our work, as the authors use an exact
line matching technique for clone detection, their approach
cannot handle method moves with identifier renaming.

D. Code Smell Evolution

Three groups of researchers examined the evolution of code
smells and all of them reveal that code smells are often
introduced when their enclosing method is initially added and
code smells are barely removed [18]–[20]. Our paper explains
these findings partially: As most methods remain unchanged, it
is not surprising that their code smells are not removed. For the
specific code smell of long methods, our paper confirms that
the smell is added with the first commit (many long methods
are already born long) and barely removed (many long methods
are not shortened).

III. TERMS AND DEFINITION

Commit and Revision. A commit is the developer’s action to
upload his changes to the version control system. A commit
results in a new revision within the version control system.

Initial and Head Revision. We refer to the initial revision
of a case study object as the first analyzed revision of the
history and to the head revision as the last analyzed revision
respectively. Hence, the initial revision must not necessarily be
the initial revision of the software development, and the head
revision is likely not the actual head revision of the system.

Number of Statements. To measure the length of a method, we
use the number of its statements. We normalize the formatting
of the source code by putting every statement onto a single
line. Then, we count the lines excluding empty lines and
comments. The normalization eliminates the impact of different
coding styles among different systems such as putting multiple
statements onto a single line to make a method appear shorter.

Green, yellow, and red methods. Based on two thresholds
(see Subsection IV-C), we group methods into short, long, and
very long entities, and color code these groups as green (short),
yellow (long), and red (very long) methods both in language
as in visualization. A green (yellow/red) method is a method
that is green (yellow/red) in the head revision.

Touches and Changes. We refer to the touches per method as
the creation (the initial commit) plus the edits (modification)
of a method, to the changes as the edits excluding the creation
of the method—hence: #touches = #changes + 1.

202

TABLE I: Case Study Objects

Name History
[Years]

System Size [SLoC] Revision
Range Commits Methods

Initial Head Growth Analyzed Yellow Red

ArgoUML 15 9k 177k 2-19,910 11,721 12,449 5% 1%
af3 3 11k 205k 18-7,142 4,351 13,447 5% 1%
ConQAT 3 85k 208k 31,999-45,456 9,308 14,885 2% 0%
jabRef 8 3.8k 156k 10-3,681 1,546 8,198 10% 4%
jEdit 7 98k 118k 6,524-23,106 2,481 6,429 9% 2%
jHotDraw7 7 29k 82k 270-783 435 5,983 8% 1%
jMol 7 13k 52k 2-4,789 2,587 3,095 7% 2%
Subclipse 5 1k 96k 4-5,735 2,317 6,112 9% 2%
Vuze 10 7.5k 550k 43-28,702 20,676 29,403 8% 3%
Anony. 7 118k 259k 60-37,337 5,995 14,651 5% 1%

Sum 72 375.3k 1,912k 61,417 114,652

IV. APPROACH

We analyze a method evolution by measuring its length after
any modification in history. We keep track of the lengths in
an length vector. Based on the length vector, we investigate
if the length keeps growing as the system size grows or, in
contrast, if methods are frequently refactored.

A. Framework

We implemented our approach within the incremental
analysis framework Teamscale [21]. Teamscale analyzes every
single commit in the history of a software system and, hence,
provides a fine-grained method evolution analysis. To obtain
the complete history of a method, we use the fully qualified
method name as key to keep track of a method during history:
the fully qualified method name consists of the uniform path
to the file, the method name, and all parameter types of the
method. In cases the fully qualified method name changes due
to a refactoring, we conduct an origin analysis.

B. Origin Analysis

To obtain an accurate length measurement over time, tracking
the method during refactorings and moves is important—which
we refer to as origin analysis. If the origin analysis is inaccurate,
the history of an entity will be lost after a method or file
refactoring and distort our results. Our method-based origin
analysis is adopted from the file-based origin analysis in [12]
which analyzes each commit incrementally. In principle, this
origin analysis detects origin changes by extracting possible
origin candidates from the previous revision and using a clone-
based content comparison to detect the most similar candidate
based on thresholds. We evaluated it with manual random
inspection by the authors on the case study data.

We use a total number of 4 heuristics which are executed
for each commit on the added methods—an added method is a
method with a fully qualified method name that did not exist
in the previous revision. For each added method, the heuristics
aim to determine if the method is truly new to the system or
if the method existed in the previous revision with a different

fully qualified method name. A method that is copied is not
considered to be new. Instead, it will inherit the history of its
origin. The following heuristics are executed sequentially:

Parameter-change-heuristic detects origin changes due to
a changed parameter type. It compares an added method to
all methods of the previous revision in the same file and with
the same name. The comparison is done with a type-II-clone
detection on the content of the method body as in [12]. If the
content is similar enough based on thresholds we detect this
method as origin for the added method.2

Method-name-change-heuristic detects origin changes due
to renaming. It compares an added method to all methods of
the previous revision that were in the same file and had the
same parameter types with the same content comparison.

Parameter-and-method-name-change-heuristic detects
origin changes due to renaming and changed parameter type
It compares an added method to all methods of the previous
revision that were in the same file. As there are more potential
origin candidates than for the previous two heuristics, the
content comparison of this heuristic is stricter, i. e., it requires
more similarity to avoid false positives.3

File-name-change-heuristic detects origin changes due to
method moves between files. It compares an added method
to all methods of the previous revision that have the same
method name and the same parameter types (but are located
in different files).4

To summarize, our origin tracking is able to detect the
common refactorings (as in [22]) method rename, parameter
change, method move, file rename, or file move. It is also able
to detect a method rename combined with a parameter change.
Only a method rename and/or parameter change combined
with a file rename/move is not detected. However, based on
our experience from [12], we consider this case to be unlikely

2For replication purposes, the thresholds used were θ1 = θ2 = 0.5. For
the meaning of the thresholds and how to choose them, please refer to [12]

3Similarity thresholds θ1 = 0.7 and θ2 = 0.6
4We also use the higher similarity thresholds to θ1 = 0.7 and θ2 = 0.6.

203

as we showed that file renames rarely occur: many file moves
stem from repository restructurings without content change.

C. Method Length and Threshold-based Classification

To measure method length, we use its number of statements
(see Section III). We include only changes to the method
body in its length vector: As we analyze the growth evolution
of methods during modification, we do not count a move
of a method or its entire file as a content modification.
Excluding white spaces, empty and comment lines when
counting statements, we do not count comment changes either.

Based on their length, we classify methods into three
categories: Based on previous work [23] and general coding
best practices [2], we consider methods with less than 30
statements to be short, between 30 and 75 statements to be
long, and with more than 75 statements to be very long—under
the assumption that a method should fit entirely onto a screen to
be easy to understand. We further discuss this threshold-based
approach in Section VIII.

V. CASE STUDY SET UP

The case study targets the research questions in Section I.

Study Objects. We use ten Java systems which cover different
domains, and use Subversion as version control, see Table
I. Nine of them are open source, the anonymous system is
industrial from an insurance company. We chose study objects
that had either a minimum of five years of history or revealed
a strongly growing and—in the end—large system size (e. g.,
ConQAT and af3). The systems provide long histories ranging
from 3 to 15 years and all show a growing system size trend.
The number of analyzed commits in the table is usually smaller
than the difference between head and initial revision because,
in big repositories with multiple projects, not all commits
affect the specific project under evaluation. For all systems, we
analyzed the main trunk of the subversion, excluding branches.

Excluded Methods. For each study object, we excluded
generated code because, very often, this code is only generated
once and usually neither read nor changed manually. Hence,
we assume generated entities evolve differently than manually
maintained ones (or do not evolve at all if never re-generated).

We also excluded test code because we assume test code
might not be kept up-to-date with the source code and, hence,
might not be modified in the same way. In [24], the authors
showed that test and production code evolved synchronously
only in one case study object. The other two case study
objects revealed phased testing (stepwise growth of testing
artifacts) or testing backlogs (very little testing in early stages of
development). For this paper, we did not want to risk test code
distorting the results, but future work is required to examine
the generalizat if our results on production code can or cannot
be transfered to test code.

We excluded methods that were deleted during history and
only work on methods that still exist in the head revision. In
some study systems, for example, code was only temporarily

added: In jabRef, e. g., , antlr library code was added and
removed two months later as developers decided to rather
include it as a .jar file. We believe these deleted methods should
not be analyzed. We also want to exclude debugging code,
as this code is only used temporarily and hence, likely to be
maintained differently than production code. Excluding deleted
methods potentially introduces a bias because, for example,
also experimental code that can be seen as part of regular
development, is excluded. However, we believe that including
deleted methods introduces a larger bias than excluding them.

We excluded simple getter and setter methods as we expect
that these methods are not modified during history. Table I
shows for each system the total number of remaining, analyzed
methods as well as the percentage of yellow and red methods.
Yet, the table’s growth plots show the size of the code base
before excluding deleted, getter, and setter methods. Hence,
for jabref, the plot still shows the temporary small pike when
the antlr library was added and deleted shortly after.

VI. RESEARCH QUESTION EVALUATION

For each research question, we describe the evaluation
technique, provide quantitative results, supplement them with
qualitative examples when necessary, and discuss each result.

A. Are long methods already born long? (RQ1)

We investigate whether the yellow and red methods are
already yellow or red at the first commit of the method.

1) Evaluation: For each project, we count the number of
methods that were already yellow or red upon their first commit
relative to the total number of yellow or red methods in the
head revision. Over all projects, we also calculate the average
∅ and the standard deviation σ. As the projects differ greatly
in the overall number of yellow/red methods, we calculate the
weighted average and the weighted standard deviation and use
the number of methods per project as weight.

2) Quantitative Results: Table II shows the results: between
52% and 82% of yellow methods were already born yellow—
on average about 63%. Among all red methods, between 38%
and 88% with an average of 51% were born already red.

3) Discussion: More than half of the red methods are already
born red and two third of the yellow methods are already born
yellow. This average reveals a small standard deviation among
the ten case study objects. Hence, these methods do not grow
to become long but are already long from the beginning. We
also investigated that green methods are already born green: in
all case study objects, between 98–99% of the green methods
are already born green. As our origin analysis tracks method
refactorings and also code deletions within a method, we
conclude that most short methods are initially committed as a
short method rather than emerging from a longer method.

4) Conclusion: Most yellow/red methods are already born
yellow/red rather than gradually growing into it.

B. How often is a method modified in its history? (RQ2)

We examine how many methods are frequently changed and
how many remain unchanged since their initial commit.

204

TABLE II: Percentage of yellow/red methods that were born already yellow/red with average ∅ and standard deviation σ
ArgoUML af3 ConQAT jabRef jEdit jHotDraw jMol Subclipse Vuze Anony. ∅ σ

62% 72% 72% 64% 82% 72% 60% 67% 52% 63% 63% 10%
46% 57% 88% 58% 73% 68% 38% 48% 45% 49% 51% 9%

A
ve

ra
ge

nu
m

be
r

of
to

uc
he

s

0
2
4
6
8

10
12
14
16
18

argouml af3 ConQAT jabRef jEdit jHotDraw jMol Subclipse Vuze Anony.

Fig. 1: Average number of touches overall (gray), to short
(green), long (yellow), and very long (red) methods

1) Evaluation: First, we evaluate the average number of
touches to a method over its life time. We analyze this average
for all methods and for all green, yellow, and red methods
individually. Second, we compute the percentage of methods
that remain unchanged.

2) Quantitative Results: Figures 1 shows the average number
of touches. The results are very similar for all case study
systems. On average, any method is touched 2–4 times, a
green method between 2 and 3 times. This average increases
on yellow and even more on red methods: Red methods are
changed more often than yellow methods than green methods.

Table III shows how many methods are changed or remain
unchanged after their initial commit. For each system, the table
denotes the percentage of changed and unchanged methods,
which sum up to 100%. The horizontal bar chart visualizes the
relative distribution between changed (gray) and unchanged
(black) entities. Only between 31% and 63% of the methods
are touched again after initial commit. On average, 54% of
all methods remain unchanged. This is the weighted average
over all percentages of unchanged methods, with the number
of analyzed methods from Table I as weights.

3) Examples: In ArgoUML, frequently touched red methods
comprise the main method (167 touches) and run (19 touches)
method in the classes Main.java and Designer.java,
for example. Other methods that are frequently touched
are the parsing methods for UML notations such as
parseAttribute in AttributeNotationUml.java
or parseTrigger in TransitionNotationUml.java.
Parsing seems to be core functionality that changes frequently.

4) Discussion: When estimating where changes occur, one
can make different assumptions: First, one could assume that
changes are uniformly distributed over all lines of source code.
Second, one could assume that they are uniformly distributed
over the methods. Third, changes are maybe not uniformly
distributed at all. Our results support the first assumption—
under which longer methods have a higher likelihood to get
changed because they contain more lines of code. We also
evaluated if yellow and red methods have a longer history

short long v. long
3 (30%)

1

1

3

1 (10%)
3

6 8 4

Fig. 2: Method growth (orange) and method shrinking
transitions (gray) in a Markov chain

in our case study than green methods. This would be a very
simple reason why they are changed more often. We analyzed
the history length of each method, counting the days from
its initial commit to the head revision. However, the average
analyzed history of a yellow or red method is about the same
as for a green one. Even when analyzing the average number
of changes per day, the result remains the same: red methods
are modified more often than yellow ones and yellow methods
are more often modified than green methods.

As about half of the methods remain unchanged, this raises
two questions: First, have certain components become unused
such that they could be deleted? To mitigate this threat of
analyzing out-dated code components, we additionally analyzed
where changes occur on file-level. In contrast to the methods,
we found that 91% of all files5 are touched at least twice, 83%
at least three times, still 67% at least five times. While the
file analysis does not eliminate the threat completely, we yet
believe it reduces its risk. Second, this also raises the question
where the changes to a system actually occur. If many existing
methods remain unchanged, changes either focus on only half
the methods or must result in new methods. RQ4 examines
this in more detail.

5) Conclusion: On average, a method gets touched between
two and fours times. About half the methods remain unchanged.

C. How likely do modified methods grow and become yellow
or red? (RQ3)

The results of RQ1 and RQ2 showed that many methods
are already born yellow and red and many methods are not
even changed. This research question examines if methods that
are frequently modified grow over time or, in contrast, if their
likelihood to be refactored increases when modified often.

1) Evaluation: We examine how likely a green method
becomes yellow and a yellow method becomes red—analyzing
the transitions between green, yellow, and red methods—and,
vice versa, how likely it is refactored.

5This is the average over all systems with min. 80% and max. 100%

205

TABLE III: Percentage of changed (gray) / unchanged (black) methods

ArgoUML af3 ConQAT jabRef jEdit jHotDraw jMol Subclipse Vuze Anony.

62%/38% 46%/54% 31%/69% 49%/51% 35%/65% 46%/54% 63%/37% 39%/61% 48%/52% 48%/52%

Transition likelihoods in Markov model. In particular, we
model the method evolution as a Markov diagram with states
green, yellow, and red, see Figure 2. To investigate the method
growth transitions, we examine the green→ yellow, yellow→
red, green → red transitions. We further examine the red →
yellow, yellow → green, red → green transitions and refer
to them as method shrinking transitions. However, strictly
speaking, these transitions can not only result from refactorings,
but also from code deletions within a method. Hence, the
resulting shrinking probabilities denote only an upper bound
for the real refactoring probability.

We model a transition based only on the method’s state in the
initial and head revision, e. g., a method that was born green,
grows yellow, and is refactored to green again, will lead to a
transition from green to green. To estimate the likelihood of a
transition, we calculate the relative frequency of the observed
transitions in the histories of the case study objects: if a method
was, e. g., born green and ended up yellow in the head revision,
then we count this method evolution as one transition from
state green to yellow. Figure 2 gives a fictitious example with
30 methods in total, 10 methods each being born green, yellow,
and red respectively. Among all yellow methods, 8 remained
yellow till the head, one became green, one became red. Among
all green methods, 6 remained green, three evolved into yellow,
one into red. In this example, the relative frequency for a
method to switch from green to yellow would be 30% (= 3

10),
to switch from yellow to red would be 10% (= 1

10).

Modification-dependent Markov model. We analyze the
transition likelihoods in the Markov model under four different
constraints depending on the number n of touches per method.

First, we calculate the Markov model for all methods (n ≥ 1).
Then, we compute the model on the subset of methods being
touched at least twice (n ≥ 2), at least five (n ≥ 5) and at
least ten times (n ≥ 10). We investigate whether methods that
are modified often (n ≥ 10) have a higher probability to grow
than less modified ones. In contrast, one could also assume that
a higher number of modifications increases the likelihood of a
refactoring, e. g., when developers get annoyed by the same
long method so that they decide to refactor it if they have to
touch it frequently. We choose these thresholds for n because
five is approximately the average number of touches over all
yellow methods in all study objects and ten is the smallest
upper bound for the average touches to a yellow method for
all systems, see Figure 1. A larger threshold than 10 would
reduce the size of the method subset too much for some case
study objects—making the results less representative.

Aggregation. For each observed transition combined with each
constraint on n, we aggregate the results over all case study

objects by calculating the median, the 25th and 75th percentile
as well as the minimum and maximum.

2) Quantitative Results: Figure 3 shows the results for
method growth transitions with box-and-whisker-plots. Taking
all methods into account without modification constraint
(n ≥ 1), all three growth transition probabilities are rather
small. The highest probability is for the yellow→ red transition
with a mean of 7%. Hence, we can not observe a general
increase in method length which is because many methods are
not changed. However, the mean of every growth transition
probability increases from n ≥ 1 to n ≥ 10: the more a method
is modified, the more likely it grows. For the yellow → red
transition, for example, the mean increases from 7% to 32%.
This means that every third yellow method that is touched
at least ten times will grow into a red method. For the short
methods, 21% of the methods being touched at least five times
grow into long methods. If short methods are touched at least
ten times, they grow into a long method with 27% probability.
The transition green→ red occurs less often.

Figure 4 shows the results for the method shrinking tran-
sitions (stemming from refactorings or code deletions). For
all three transitions and independent from the number of
modifications, the mean is between 10% and 25%. For the
red→ yellow transition, this probability is between 10% and
15%, for yellow→ green between 15% and 22%.

3) Examples: The method setTarget in
TabStyle.java (ArgoUML) serves as a method,
that grows from yellow to red while being frequently touched:
It only contained 34 statements in revision 146 (year 1999).
After 19 touches and four moves, it contained 82 statements in
revision 16902 (year 2009). The method gradually accumulated
more code for various reasons: The type of its parameter t got
generalized from Fig to Object, requiring several additional
instanceof Fig checks. Additionally, the method now
supports an additional targetPanel on top of the existing
stylePanel and it also now repaints after validating.

4) Discussion: This research question shows that there is
a strong growth for frequently modified methods: Every third
yellow method that is touched at least ten times grows into
a red method and every fifth green method that is touched
at least five times grows into a yellow method. However, the
overall probability (n ≥ 1) that a method grows and passes
the next length threshold is very small for all three growth
transitions (with a the largest mean of 7% for yellow→ red).
As we know that all case study systems are growing in system
size (see Table I), this raises the question where the new code
is added. In VI-B, we concluded that changes either affect
only half of the code or result mainly in new methods. As
many methods are unchanged and we do not observe a general

206

n ≥ 1 n ≥ 2 n ≥ 5 n ≥ 10
0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty

(a) green→ yellow

n ≥ 1 n ≥ 2 n ≥ 5 n ≥ 10

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty

(b) yellow → red

n ≥ 1 n ≥ 2 n ≥ 5 n ≥ 10

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty

(c) green→ red

Fig. 3: Probabilities for growth transitions in the Markov model for methods

n ≥ 1 n ≥ 2 n ≥ 5 n ≥ 10

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty

(a) red→ yellow

n ≥ 1 n ≥ 2 n ≥ 5 n ≥ 10
0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty

(b) yellow → green

n ≥ 1 n ≥ 2 n ≥ 5 n ≥ 10

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty

(c) red→ green

Fig. 4: Probabilities for refactorings transitions in the Markov model for methods

growth in method length, we suspect that most changes lead
to new methods. The next research question will address this.

In terms of refactorings, we cannot observe a strong
correlation between the number of modifications and the mean
shrinking probability. We conclude that the upper bound for the
probability of method to be refactored is independent from the
number of modifications it receives. In general, the probability
that a method shrinks is rather low—only between every tenth
and every fifth method cross the thresholds.

5) Conclusion: The more an entity is modified, the likelier
it grows. In contrast to previous research questions that found
no size increase for methods in general, we reveal a strong
method growth for methods that are modified. However, based
on our markov modeling, the number of modifications does
not have an impact on the method shrinking probability. Our
observed likelihood that a method is refactored is at most 25%.

D. How does a system grow—by adding new methods or by
modifying existing methods? (RQ4)

As RQ2 revealed that a large percentage of methods remain
unchanged after the initial commit, we aim to determine how
a system grows—by primarily adding new methods or by
modifying existing ones?

1) Evaluation: We use the following metric to calculate the
quotient of code growth that occurs in new methods:

growth_quotient =
code_growthnew

code_growthexisting + code_growthnew

With code growth, we refer to the number of added minus
the number of deleted statements. Instead of using code churn
(added plus deleted statements), we use the number of added
minus deleted statements because we are interested in where

the software grows. In case of positive code growth in new
and in existing methods (more added statements than deleted
statements), the growth quotient takes a value between 0 and 1
and, hence, denotes the percentage of code growth that occurs
in new methods. If the growth quotient is negative, more code
is deleted in existing methods than added in new methods
(hence, the system got reduced in size). If the growth quotient
is larger than 1, code was deleted in existing methods, but
more statements were added in new methods.

To differentiate between code growth in new and in existing
methods, we need to define the concept of a new method: we
need to define a time interval in which a method is considered
to be new. All methods that were added after the interval
start date are considered new methods for this interval. For
the calculation of the subsequent interval, these methods will
be counted as existing methods. Whenever our origin analysis
detects a method extraction, we consider the extracted method
still as existing code as this code was not newly added to the
system—it rather denotes a refactoring than a development of
new code contributing to the system’s grow.

We decided to use the interval lengths of one week, 6 weeks
and three months. We also could have used different time
intervals to define the concept of a new method and analyzed
the history e. g., commit-based. Hence, code growth could only
occur in a new method in the commit with which the method
was added to the system. An implementation of a new feature
that spreads out over several commits would then result in new
code growth only in the first commit. All other commits would
produce code growth in existing methods. This contradicts the
intention of the research question to investigate how the system
grows over the time span of many years because—with this
intention—the entire implementation of a new feature should
result in code churn in new methods.

207

TABLE IV: Average growth quotient ∅ and its deviation σ on 3-months, 6-weeks, and weekly basis
ArgoUML af3 ConQAT jabRef jEdit jHotDraw jMol Subclipse Vuze Anony.

3m ∅ 85% 96% 96% 70% 72% 62% 74% 71% 76% 93%
σ 56% 4% 3% 28% 24% 33% 37% 24% 12% 10%

6w ∅ 83% 92% 95% 69% 67% 53% 75% 66% 95% 92%
σ 100% 21% 4% 32% 38% 39% 37% 30% 209% 13%

1w ∅ 91% 84% 83% 43% 45% 52% 95% 50% 59% 85%
σ 750% 88% 142% 171% 62% 52% 231% 102% 41% 103%

2) Quantitative Results: Table IV shows the growth quotient
as the average ∅ over all intervals and its standard variance
σ. On a three month basis the code growth is between 62%
and 96% in new methods and on the 6-weeks basis between
53% and 95%. Hence, for both interval spans, at least half of
the code growth occurs in new methods rather than in existing
methods. For the weekly basis, the growth quotient drops to
43% up to 95%.

3) Examples: The history of jEdit provides illustrative
examples: Commit 17604 adds “the ability to choose a prefered
DataFlavor when pasting text to textArea” and increases the sys-
tem size by 98 SLoC—JEditDataFlavor.java is added
(7 SLoC), RichTextTransferable.java is modified
slightly within an existing method, and the rest of the system
growth stems from the modification of Registers.java
which grows by adding two new paste methods that both
have a new, additional DataFlavor parameter. Commit
8845 adds a new layout manager by adding few lines to
VariableGridLayout within existing methods and adding
two new files, increasing the overall system size by 872 SLoC.

4) Discussion: Unsurprisingly, for the weekly time interval,
the growth quotient drops for many systems as it depends
on the commit and development behavior (systems in which
the new feature implementations spread over weeks rather
than being aggregated in one commit reveal a lower growth
quotient for a shorter interval). However, based on the 6-weeks
and three-months basis, we observe that—in the long run
and independent from the commit behavior—software grows
through new methods. These results match the outcome of
the previous research questions: Most systems grow as new
methods are added rather than through growth in existing
methods. In particular, many methods remain unchanged after
the initial commit (RQ2). Our results further match the result
of [25] which showed that earlier releases of the system are no
longer evolved and that most change requests to the software
in their case study were perfective change requests.

5) Conclusion: Systems grow in size by adding new
methods rather than by modifying existing ones.

E. How does the distribution of code in short, long, and very
long methods evolve over time? (RQ5)

RQ1-RQ3 investigated the growth of a single method and
RQ4 investigated the system growth. This research question
examines how the overall distribution of the code over green,
yellow, and red methods (e. g., 50% code in green methods,
30% in yellow methods, 20% in red methods) evolves. This
distribution corresponds to the probability distribution that a

developer who changes a single line of code has to change a
green, yellow, or red method. If the probability to touch a line
in a yellow or red method increases over time, we consider
this an increasing risk for maintainability—and an indicator
for a required maintenance strategy to control the amount code
in yellow or red methods.

1) Evaluation: After each commit, we calculate the distribu-
tion of the code over green, yellow, and red methods: we sum up
the statements in all green, yellow, and red methods separately
and count it relative to the overall number of statements in
methods. Thus, we obtain a code distribution metric and—over
the entire history—the distribution trend.

2) Quantitative Results: Figures 5 shows the results for the
evolution of the code distribution in green, yellow, and red
methods. On the x-axis, we denote the years of analyzed history,
the y-axis denotes the code distribution. The red plot indicates
the relative amount of code in red methods, the yellow plot
indicates the relative amount of code in both red and yellow
methods. The green lines indicate the amount of code in green,
yellow, and red methods, and hence, always sums up to 100%.
An increasing red or yellow plot-area indicates as a negative
trend or an increasing risk for maintainability.

Figure 5 shows that there is no general negative trend. Only
four systems (af3, jHotdraw, Subclipse, and Vuze) reveal a
slight increase in the percentage of code in yellow and red
methods. For ConQAT, jabref, and jEdit, the trend remains
almost constant, for ArgoUML, jMol, and the industry system
it even improves (partly).

3) Discussion: For systems without negative trend, we
assume that the length distribution of the new methods is
about the same as for the existing methods. As we have shown
that there is no major length increase in existing methods, but
systems grow by adding new methods instead, it is plausible
that the overall code distribution remains the same.

We briefly investigated whether code reviews could impact
the evolution of the overall code distribution. Based on the
commit messages, ConQAT and af3 perform code reviews
regularly. ConQAT shows a positive evolution trend, af3, in
contrast, one of the stronger negative trends. Hence, we cannot
derive any hypothesis here. For the other systems, the commit
messages do not indicate a review process but future work and
developer interrogation is necessary to verify this.

4) Conclusion: With respect to the evolution of the code
distribution in green, yellow, and red methods, we were not
able to show a general negative trend, i. e., no increasing risk
for maintenance. Instead, it depends on the case study object.

208

anony.

co
de

di
st

rib
ut

io
n

’99’01’03’05’07’09’11

argouml

’07 ’08 ’09 ’10 ’11 ’12 ’13

jhotdraw

’04’05’06’07’08’09’10’11

jabref

2005 ’07 ’09 ’11

subclipse

’07’08’09’10’11’12’13

jedit

2005 ’07 ’09 ’11

vuze

’09 ’10 ’11 ’12 ’13 ‘14 ‘15

conqat

’00 ’01 ’02 ’03 ’04 ’05 ’06

jmol

2011 2012 2013
year

year

co
de

di
st

rib
ut

io
n

201320122011

af3

Fig. 5: Evolution of the code distribution over green, yellow, and red methods

VII. SUMMARY AND DISCUSSION

The findings from our empirical study on software growth
can be summarized as follows: Most yellow and red methods
are already born yellow or red rather than gradually growing
into yellow/red: Two out of three yellow methods were already
yellow at their initial commit and more than half of the red
method were born red. Furthermore, about half of the methods
are not touched after their initial commit. On average, a method
is only touched two to four times during history. This average
holds for all study objects with low variance. Hence, for
most methods the length classification within the thresholds is
determined from the initial commit on. However, if a method is
modified frequently, the length does grow: among all methods
touched at least ten times, every third methods grows from a
yellow to a red method. Nevertheless, over the entire system,
the probability of a method to grow is low even though the
system itself is growing in size. This can be explained by growth
through newly added methods rather than by growth in existing
methods. Finally, the distribution of the code in green, yellow,
and red methods evolves differently for the case study systems.
This distribution corresponds to the probability distribution
that a developer has to understand and change a yellow or
red method when performing a change on a random source
code line. In our case study objects, we could not observe that
the probability to change a yellow or red method generally
increases. Generally, our case study did not show a significant
difference between the industry and the open source system.
However, we only analyzed one industry system. Hence, this
claim cannot be generalized.

Implications. The implications of our work are based on
two main results: First, most systems grow by adding new
methods rather than through growth in existing methods.
Second, existing methods grow significantly only if touched
frequently. Hence, we derive the following recommendations—
while differentiating between the benefits of short methods for
readability, testability, reusability, and profile-ability on the one
side, and changeability on the other side.

First, to obtain short methods that are easy to read, test, reuse
and profile, developers should focus on an acceptable method
length before the initial commit as we have shown that methods
are unlikely to be shortened after. Even if these methods are
not changed again, they will most likely still be read (when
performing other changes), tested, and profiled (unless they
become unmaintained code that could be deleted, of course).
Given that the overall percentage of code in yellow and red
methods reaches up to 50% in some case study objects (see
Figure 5), the method size remains a risk factor that hampers
maintainability even in the absence of further changes.

Despite knowing that many long methods are already born
long, we yet do not know why they are born long. Do developers
require pre-commit tool support to refactor already in their
workspace, prior to commit? Or what other support do they
need? Future work is required to obtain a better understanding.

Second, when refactoring methods to obtain a changeable
code base, developers should focus on the frequently modified
hot spots as we have shown that methods grow significantly
when being touched frequently. When developers are modifying
a frequently changed method, they have to understand and
retest it anyway. Hence, refactoring it at the same time saves
overhead. Furthermore, the method’s change frequency over
the past might be a good predictor for its change frequency in
the future. However, future work is required to investigate this.

To summarize, developers should focus on frequently mod-
ified code hot spots as well as on newly added code when
performing refactorings. This paper supports our hypothesis in
[26], in which we showed that improving maintainability by
prioritizing the maintenance defects in new code and in lately
modified code is feasible in practice.

VIII. THREATS TO VALIDITY AND FUTURE WORK

Internal validity. Our work is based on a threshold-
categorization of methods into green, yellow, and red methods.
This obfuscates a growth of a method within its category, e. g.,
a method length increase from 30 to 74 statements, affecting
the results of RQ1, RQ3, RQ5. We introduced two thresholds
to measure significant growth (such as a yellow-red transition)

209

in contrast to minor length increases of few statements. Setting
the thresholds remains a trade-off between obfuscating some
growth versus including minor length increases. However, we
used these thresholds as they have gained common acceptance
in industry among hundreds of customers’ systems of the
software quality consulting company CQSE.

Construct validity. The validity of our results depends on
the accuracy of our origin analysis. Based on a thoroughly
evaluated origin analysis for files [12], the adapted origin
analysis for methods was evaluated manually by the authors
with a large random sample. By manual inspection, we were
able to validate only the precision, i. e., that the detected method
refactorings were correct. We were not able to validate the
recall on the case study objects. We did verify it on our artificial
test data set. However, for our case study, a lower recall would
mean that we do not record some method extractions but
treat the extracted methods as new methods. This does not
affect the results of RQ1 and RQ5. It would affect RQ2–RQ4
but previous work has shown that overall absolute number of
method refactorings is not very high [22] so we assume that our
results are valid. Further, we measured the method length in
number of statements. One could argue that comments should
be included. However, as the overall comment ratio and also
the amount of commented out code varies greatly (see [27]),
we believe including comments would add unnecessary noise
to our data and make the results less comparable.

External validity. We conducted our empirical case study only
on ten Java systems. To generalize our results, the case study
needs to be extended to other OO systems as well as to test
code. We have first indications that C/C++ and CSharp results
are similar but they require future work to be published.

IX. CONCLUSION

Many software systems contain overly long methods which
are hard to understand, change, test, and profile. While we
technically know, how to refactor them, we do not know when
we should refactor them as we had little knowledge about
how long methods are created and how they evolve. In this
paper, we provide empirical knowledge about how methods and
the overall system grow: We show that there is no significant
growth for existing methods; most overly long methods are
already born so. Moreover, many methods remain unchanged
during evolution: about half of them are not touched again after
initial commit. Instead of growing within existing methods,
most systems grow by adding new methods. However, if a
method is changed frequently, it is likely to grow. Hence, when
performing refactorings, developers should focus on frequently
modified code hot spots as well as on newly added code.

X. ACKNOWLEDGEMENTS

We deeply thank Andy Zaidman for his excellent reviews.

REFERENCES

[1] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus, “Does
Code Decay? Assessing the Evidence from Change Management Data,”
IEEE Transaction on Software Engineering, 2001.

[2] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship,
2008.

[3] N. Nagappan, T. Ball, and A. Zeller, “Mining Metrics to Predict
Component Failures,” in Int’l Conference on Software Engineering, 2006.

[4] R. Baggen, J. P. Correia, K. Schill, and J. Visser, “Standardized Code
Quality Benchmarking for Improving Software Maintainability,” Software
Quality Control, vol. 20, no. 2, 2012.

[5] I. Heitlager, T. Kuipers, and J. Visser, “A Practical Model for Measuring
Maintainability,” in Int’l Conference on the Quality of Information and
Communications Technology, 2007.

[6] M. Gladwell, The Tipping Point: How Little Things Can Make a Big
Difference. Back Bay Books, 2002.

[7] E. Ammerlaan, W. Veninga, and A. Zaidman, “Old Habits Die Hard: Why
Refactoring for Understandability Does Not Give Immediate Benefits,”
in Int’l Conference on Software Analysis, Evolution and Reengineering,
2015.

[8] G. Robles, I. Herraiz, D. German, and D. Izquierdo-Cortazar, “Modifica-
tion and developer metrics at the function level: Metrics for the study
of the evolution of a software project,” in Int’l Workshop on Emerging
Trends in Software Metrics, 2012.

[9] T. Gîrba and S. Ducasse, “Modeling history to analyze software evolution,”
Journal of Software Maintenance and Evolution: Research and Practice,
vol. 18, no. 3, 2006.

[10] M. W. Godfrey and Q. Tu, “Evolution in Open Source Software: A Case
Study,” in Int’l Conference on Software Maintenance, 2000.

[11] L. Schulte, H. Sajnani, and J. Czerwonka, “Active Files As a Measure of
Software Maintainability,” in Int’l Conference on Software Engineering,
2014.

[12] D. Steidl, B. Hummel, and E. Juergens, “Incremental Origin Analysis
of Source Code Files,” in Working Conference on Mining Software
Repositories, 2014.

[13] M. Godfrey and Q. Tu, “Growth, Evolution, and Structural Change in
Open Source Software,” in Int’l Workshop on Principles of Software
Evolution, 2001.

[14] ——, “Tracking Structural Evolution Using Origin Analysis,” in Int’l
Workshop on Principles of Software Evolution, 2002.

[15] V. Arnaoudova, L. Eshkevari, M. Di Penta, R. Oliveto, G. Antoniol,
and Y.-G. Gueheneuc, “REPENT: Analyzing the Nature of Identifier
Renamings,” IEEE Trans. on Software Engineering, vol. 40, no. 5, 2014.

[16] B. Fluri, M. Wursch, M. Pinzger, and H. Gall, “Change Distilling:Tree
Differencing for Fine-Grained Source Code Change Extraction,” IEEE
Transactions on Software Engineering, vol. 33, no. 11, 2007.

[17] F. Van Rysselberghe and S. Demeyer, “Reconstruction of Successful
Software Evolution Using Clone Detection,” in Int’l Workshop on
Principles of Software Evolution, 2003.

[18] R. Peters and A. Zaidman, “Evaluating the Lifespan of Code Smells
Using Software Repository Mining,” in European Conference on Software
Maintenance and Reengineering, 2012.

[19] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia,
and D. Poshyvanyk, “When and Why Your Code Starts to Smell Bad,”
in Int’l Conference on Software Engineering, 2015.

[20] A. Chatzigeorgiou and A. Manakos, “Investigating the Evolution of
Code Smells in Object-oriented Systems,” Innovations System Software
Engineering, vol. 10, no. 1, 2014.

[21] L. Heinemann, B. Hummel, and D. Steidl, “Teamscale: Software Quality
Control in Real-Time,” in Int’l Conf. on Software Engineering, 2014.

[22] Dig, Danny and Comertoglu, Can and Marinov, Darko and Johnson,
Ralph, “Automated Detection of Refactorings in Evolving Components,”
in European Conference on Object-Oriented Programming, 2006.

[23] D. Steidl and S. Eder, “Prioritizing Maintainability Defects by Refactoring
Recommendations,” in Int’l Conf. on Program Comprehension, 2014.

[24] A. Zaidman, B. V. Rompaey, A. van Deursen, and S. Demeyer, “Studying
the co-evolution of production and test code in open source and industrial
developer test processes through repository mining,” Empirical Software
Engineering, vol. 16, no. 3, 2011.

[25] P. Mohagheghi and R. Conradi, “An Empirical Study of Software Change:
Origin, Acceptance Rate, and Functionality vs. Quality Attributes,” in
Int’l Symposium on Empirical Software Engineering, 2004.

[26] D. Steidl, F. Deissenboeck, M. Poehlmann, R. Heinke, and B. Uhink-
Mergenthaler, “Continuous Software Quality Control in Practice,” in Int’l
Conference on Software Maintenance and Evolution, 2014.

[27] D. Steidl, B. Hummel, and E. Juergens, “Quality Analysis of Source
Code Comments,” in Int’l Conference on Program Comprehension, 2013.

210

