
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Detection of Refactorings

Florian Dreier

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Detection of Refactorings

Erkennung von Refactorings

Author: Florian Dreier
Supervisor: Prof. Dr. Dr. h.c. Manfred Broy
Advisor: Dr. Elmar Juergens (TUM) &

Dr. Andreas Göb (CQSE)
Submission Date: July 15, 2015

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Munich, July 15, 2015 Florian Dreier

Acknowledgments

First of all, I would like to say thank you to Dr. Elmar Juergens who helped me to
find a topic that really sparked my interest from the moment I first read about it. I also
want to thank him for his support both on getting started with the topic and also for his
feedback while writing this thesis. In addition, I would like to say a sincere thank you
to Dr. Andreas Göb for his constant support and dedication during the implementation
and writing of the actual thesis. Furthermore, a big thank you to Prof. Broy for making
such an amazing company collaboration with CQSE possible.

Finally, a big thank you to Markus Christians, Cara Christians, Kordian Bruck,
Maximilian Fuß, Lavinia Eifler, Xenia Eifler and Verena Dreier who carried out the
most tedious work of correcting the language of this thesis and of proof-reading.

Abstract

To avoid bugs in software products a lot of effort is put into testing. Especially code
which has been modified since the last release, is likely to induce new bugs and hence
should be tested carefully. But the set of methods that have changed grows rapidly if
structural refactorings are involved because they produce a lot of non-essential changes.
That means that the changes do not have an effect on the program’s behavior. To filter
these out from the set of modified methods, a refactoring detection can be used to
identify methods that only contain non-essential changes. If the refactoring detection
classifies a method as unchanged by mistake, even if it has been modified, the method
would be filtered out. That leads to the problem that this method would not be tested,
which in turn can lead to bugs in the software.

This thesis describes a refactoring detection technique which is able to classify
methods as changed or unchanged, whereby methods classified as unchanged are
guaranteed to contain only non-essential changes. The thesis also describes approaches
presented in other papers which did not meet the special requirements for the described
use case, but influenced the approach of this thesis.

The presented approach is signature-based. At first two version of the project are
loaded, which should be compared. Each method from the predecessor version gets
matched to one method of the successor version, which is very similar and therefore
likely to have emerged from the predecessor version. Renaming of methods and classes
is inferred by this matching. The classification is done by applying the renaming to
each predecessor method body and comparing the result with the successor method
body. If they are equal, the method is classified as unchanged otherwise as changed.

An evaluation of the technique was done in three case studies. The first one uses a
mutation-based benchmark to test the correctness of the implementation for a set of
refactoring types. The second case study analyzes how many refactorings are done
in real world projects. The third one makes a comparison to another bytecode-based
refactoring detection tool and attests the presented approach to have a precision of
100% and a recall of 99%.

iv

Contents

1 Introduction 1

2 Related Work 3
2.1 Research . 3

2.1.1 Identifying Refactorings from Source Code Changes 3
2.1.2 Non-essential Changes in Version Histories 4
2.1.3 Discovering and Representing Systematic Code Changes 5

2.2 Technical Fundamentals . 6
2.2.1 ConQAT . 6
2.2.2 Test Gap Analysis . 7
2.2.3 Teamscale . 7

3 Approach 8
3.1 Overview . 8
3.2 Model Construction . 10
3.3 Method Matching . 12
3.4 Post-Processing . 15
3.5 Change Detection . 16
3.6 Implementation Details . 18

3.6.1 Wildcard Resolution . 18
3.6.2 Resolution of Non-unique Matchings 19

4 Evaluation 22
4.1 Mutation-based Benchmark . 22
4.2 Refactorings in Real World Projects . 25
4.3 Comparison to Bytecode-based Analysis 27

5 Conclusion 32

6 Future Work 33

List of Figures 34

List of Listings 35

v

Contents

List of Tables 36

Bibliography 37

vi

1 Introduction

When inspecting a new software version, developers need to take a look at the methods
that have been changed since the last version. A diff of the relevant program versions
is often used to accomplish this task. Especially if structural refactorings are involved,
the set of changes can be very large. For example renaming the root package of a Java
project causes changes in nearly all files contained in the project. Since these so called
non-essential changes do not change the program’s functionality, a developer is often not
interested in those, but in code parts implementing new features.

The following example shows two versions of a method exhibiting a number of
textual differences which are different kinds of non-essential changes:

Listing 1.1: Version N

1 import java.util.List;
2 ...
3 List list = ...;
4 void init(int pos, String item) {
5 this.list.add(pos, item);
6 }

Listing 1.2: Version N+1

1 java.util.List mList = ...;
2 void add(String name, int pos) {
3 mList.add(pos, name);
4 return;
5 }

In the third line of version N, the local variable list is renamed to mList and its
simple type replaced with its equivalent fully-qualified type. The method itself is
renamed from init to add. The method’s parameter item is renamed to name. The
parameters switched their positions. In the fifth line, a trivial instance of the this
keyword is removed. The fifth line is also textually altered by the effects of the list
attribute’s rename refactoring. Finally, in the sixth line, a redundant return keyword
is inserted. These snippets of code have the same behavior, but textually they do not
have much in common.

A refactoring detection analysis can be used to detect source code that was changed
as a result of refactoring. Hence, non-essential changes can be filtered out and help
the developer focus on the essential changes. This is especially helpful when doing
reviews.

1

1 Introduction

Another application for refactoring detection is a code ownership analysis which
tries to find out which developers have made changes to a special piece of source code.
In this use case it is nevertheless a good idea to leave out developers, who only changed
the code during automated refactorings and therefore cannot be considered as owner
of the code.

Since in long living software projects a huge amount of code does not change very
frequently [8], most of the bugs are induced by changes that have been made recently
to the code. That is why test engineers put a lot of effort into testing these changes. A
study [1] has shown that still a large amount of modified code ends up untested in
production and causes a majority of field errors. Because testing can be very expensive,
it is worthwhile to test only those code fragments that contain essential changes and
therefore may induce new bugs.

Requirements This thesis presents a refactoring detection technique which especially
adapts to these needs. The special requirements which the refactoring detection has to
fulfill, are listed below:

R1: The approach has to operate on source code to provide a common basis for other
languages and to make up the drawbacks of bytecode-based analysis as discussed
in subsection 2.2.2.

R2: It must be possible to transfer the implementation to other languages.

R3: It has to be capable of recognizing the most frequently used refactorings, especially
those that introduce a lot of non-essential changes in source code and thus
produce a lot of non-essential textual differences.

R4: It may only make a one-sided error meaning that methods containing essential
changes must not be classified as unchanged, but changes that are non-essential
may be classified as modified. Otherwise, the analysis could filter out essential
changes by mistake.

R5: Since it is planned to include the analysis in the software Teamscale (see subsec-
tion 2.2.3), a software tool that allows to track software quality goals in real time,
reasonable running time is an essential requirement as well.

The remainder of this thesis is structured as follows: Chapter 2 describes some
common approaches in research and presents the existing ConQAT framework used
for the implementation of the approach. In chapter 3 the refactoring detection itself is
presented. Chapter 4 investigates three case studies which evaluate the implementation.
In chapter 5 this thesis and its evaluation results are summarized and chapter 6 proposes
some ideas for future work.

2

2 Related Work

2.1 Research

First researches on refactoring detection started more than a decade ago [6]. Subse-
quently some papers are presented which emerged from this research. The papers
use quite different techniques in carrying out refactoring detection. Unfortunately, the
following techniques do not provide a solution that can be used in the presented use
case for various reasons clarified below. Nevertheless, it was possible to reuse some of
the presented ideas.

2.1.1 Identifying Refactorings from Source Code Changes

Peter Weißgerber and Stephan Diehl [9] use a signature-based analysis meaning that
program elements are represented as tuples like 〈classname, methodname, parameters,
returntype, visiblity〉 for a method (also called method signature). To detect refactorings,
the signatures of two possibly matching methods are compared and renamings are
inferred. For example a method rename is inferred if the following rule holds for the
given tuples, where M is the set of methods in the first version and M′ contains all
methods of the second version:

〈c′, m′, p′, r′, ∗〉 ∈ M′ ⇒ @〈c′, m′, p′, r′, ∗〉 ∈ M ∧ ∃〈c′, m, p′, r′, ∗〉 ∈ M ∧ m 6= m′

Their approach preprocesses the given versions of a project to identify classes,
methods and fields. Then it generates the according class, field and method signatures.
Applying the above and similar rules, the approach is able to find possible renamings
of classes and methods, as well as addition and deletion of parameters, changes
to method’s visibility and movements of classes between packages. These possible
refactorings are referred to as refactoring candidates. The clone detection tool CCFinder1

is then utilized to compare the method bodies that belong together. CCFinder already
takes into account that consistently renamed variables, changed method’s visibility and
some other refactorings, are non-essential changes. These refactoring candidates having
been detected as clones by the clone detector, are rated as very likely to contain only
non-essential changes.

1http://www.ccfinder.net/

3

http://www.ccfinder.net/

2 Related Work

What makes the approach valuable for the thesis’ problem statement is that it is able
to operate on method header level and hence is able to classify the changes made to
a specific method. Therefore, the signature-based idea was reused. But on the other
side rating refactoring candidates does not guarantee the found results to really being
refactorings. This violates one of our requirements, namely R4.

2.1.2 Non-essential Changes in Version Histories

David Kawrykow and Martin P. Robillard [4] developed a technique based on ab-
stract syntax trees (AST). Since their implementation is based on the tool SemDiff2,
a change analysis tool for studying framework evolution, the infrastructure already
provides ASTs for two corresponding files in the version history. The first step is to
run a partial program analysis (PPA) on the given ASTs to resolve type bindings. Then
ChangeDistiller3, a tool that identifies changes on statement-level, is used to detect
renamings based on the AST pairs. After that, the renamings are applied to the ASTs
and ChangeDistiller is executed again utilizing the modified AST pairs. Based on this
output the program decides, whether the identified structural changes are non-essential.

The approach presented in this thesis also tries to collect all renamings and applies
them to the predecessor methods’ bodies, as suggested in the paper of Kawrykow and
Robillard. But for this thesis’ problem statement, their approach has a few downsides.
First of all, the technique works on file level and not on method level required to
detect methods that need to be tested. This also implicates that this approach is
not able to detect method movements between classes or inner class to outer class
refactorings. Finally, the tool ChangeDistiller, on which the technique heavily depends,
is only available for Java meaning that it is not trivial to port this solution to other
programming languages. That violates requirement R2.

2http://cs.mcgill.ca/~swevo/semdiff/
3http://www.ifi.uzh.ch/seal/research/tools/changeDistiller.html

4

http://cs.mcgill.ca/~swevo/semdiff/
http://www.ifi.uzh.ch/seal/research/tools/changeDistiller.html

2 Related Work

2.1.3 Discovering and Representing Systematic Code Changes

Miryung Kim and David Notkin [5] have built a tool named LSDiff4. This tool works
with a fact database on statement level and focuses on representing the found refactor-
ings in a human readable form. They generate a fact base for each version of the source
code by using the tool JQuery5. For further investigations, the difference between two
consecutive versions’ fact bases is computed. This allows to infer some rules, which
describe the changes that have been made at a higher level. For example, this tool is
able to find out coherences such as that a call to Log.trace() is added to all methods
that call Log.on().

The paper of Prete et al. [7] uses exactly the same concept and can be considered
an extension to the above paper, since it incorporates more fact types allowing to
reconstruct more complex refactorings.

This approach achieves good results and also does find complex refactoring patterns,
but it does not fit very well to this thesis’ problem statement, because it provides
no direct information on what methods changed their behavior. It also produces a
lot of information not needed for the testing use case and therefore causes a huge
computational overhead (R5). In addition, the tool JQuery is again limited to Java.

4http://www.cs.ucla.edu/~miryung/lsdiff-web/index.html
5http://jquery.cs.ubc.ca/index.htm

5

http://www.cs.ucla.edu/~miryung/lsdiff-web/index.html
http://jquery.cs.ubc.ca/index.htm

2 Related Work

2.2 Technical Fundamentals

In the following the framework, which was used to implement this thesis’ approach, is
presented.

2.2.1 ConQAT

The Continuous Quality Assessment Toolkit6 (ConQAT) is a highly configurable soft-
ware quality analysis engine. ConQAT is based on a pipes and filters architecture,
which allows the user to set up complex software analysis configurations. The system
is made up of modules which implement processors. Every processor is specifically
written to do one special task. Processors can be combined with other processors to
build a block. A block can accomplish more complex tasks and may contain other
blocks as well. The analysis can be composed with a graphical user interface.

The thesis’ implementation builds upon ConQAT. This implicates that some of the
blocks and processors could be reused. The actual refactoring detection is a new
ConQAT processor, which allows to combine it with other ConQAT elements.

Clone detection ConQAT contains a module that is able to do clone detection analysis
on a given project. Code clones are pieces of code that are equal if renamings are not
considered. To make the code pieces comparable and robust against renamings, the
variable names appearing in the code are normalized as illustrated in the following
example [3]:

Listing 2.1: Original

int a = 0;
int b = a * a;

Listing 2.2: Normalized identifiers

int var0 = 0;
int var1 = var0 * var0;

The approach described in this paper uses a similar technique to detect local variable
renames.

Shallow parser ConQAT is open source, but the company CQSE has developed
extensions which are closed source. The most commonly used extension in the im-
plementation is called shallow parser, which is able to parse a source code file into an
abstract model. The shallow parser interface is already implemented for a set of pro-
gramming languages, namely ABAP, ADA, C++, C#, Delphi, Fortran, Java, JavaScript,
Magik, MATLAB, PL/SQL, Python and Ruby. The implementation of refactoring
detection currently only works for Java, but building on the shallow parser makes it
easier to implement the refactoring detection for other supported languages as well.

6https://www.conqat.org/

6

https://www.conqat.org/

2 Related Work

2.2.2 Test Gap Analysis

The company CQSE also developed a technique called Test Gap analysis. The analysis is
able to detect code fragments that have indeed been modified since the last version,
but not been tested yet. Those modified methods are also referred to as Test Gaps.

The Test Gap analysis is based on the ConQAT framework. It includes a refactoring
detection which works based on Java’s bytecode. Bytecode is the translation of source
code to lower level statements generated by the compiler, and later executed by the
Java virtual machine. Bytecode has the advantage that all cosmetic changes to the
source code have already been removed by the compiler. This includes changes in
source code formatting and inserted or modified comments. Also classes, methods and
attributes have already been resolved to their fully-qualified names. Fully-qualified name
means that a class "sample" contained in the package "com.container" is referred to as
"com.container.sample". The type resolution is an essential requirement to be able to
rollback and hence detect renamings.

Downsides Taking bytecode as basis for refactoring detection has a few disadvantages
as well. When using more advanced syntactic java constructs, like anonymous inner
classes, the compiler generates bytecode that has no direct counterpart in source code.
This makes it harder to translate analysis results back to source code level, which is
required to tell the developer where the Test Gaps have been found. In other cases, the
compiler generates code that is not even visible in source code. For example, the field
serialVersionUID is added to each class that implements Serializable. In addition,
if not manually specified, this field is initialized with a random number that differs
from version to version without any changes made to the source code which could
have been tested. Another problem is that the detection operates on bytecode, a format
that does not exist for scripting languages like JavaScript and Python or languages like
C, which directly compiles to executable machine code. Since machine code is very low
level, it is nearly impossible to do Test Gap analysis on it.

2.2.3 Teamscale

Teamscale is a software quality analysis tool that helps to monitor software quality
goals and provides real-time feedback. This system is built upon ConQAT, but makes
it easier to use. Another main difference is the real-time feedback whereas ConQAT
only runs in batch mode. In the long run, it is planned to integrate Test Gap analysis
into Teamscale. That is why reasonable running time (R5) is a requirement for the
refactoring detection to be able to use it in a real-time environment.

7

3 Approach

3.1 Overview

A short summary of the problem statement: The refactoring detection technique should
work on source code basis (R1). It should be possible to extend the approach to other
programming languages (R2). Furthermore structural refactorings causing a lot of
non-essential changes should be detected (R3). It should not occur that methods are
classified as unchanged by mistake even though they contain essential changes (R4). The
approach should run in reasonable time (R5), but speed optimization is not addressed
in the design of the approach.
The approach can logically be separated into four steps:

1. Model Construction: In the first step, all versions of the source code, which should
be analyzed, are read into the memory. With that information a hierarchical structure is
created providing information about all packages, classes, methods and fields contained
in the respective version.

2. Method Matching: In the second step for each pair of consecutive versions, a
matching algorithm is executed to determine which methods belong together. Belonging
together means that the successor version of the method emerged from its predecessor
version. This is achieved by comparing several method characteristics, like the method’s
class, its parameters or its body. All rename refactorings that have been found by this
matching are stored.

3. Post-Processing: Third post-processing is done to detect renamed attributes and
method signature changes. This is done in a separate step, because class renames that
have happened are by now already known and thus can be taken into account. These
renamings are applied to the attribute and parameter types. That allows to detect
renamed attributes and parameters which have possibly changed their position in the
method signature.

8

3 Approach

4. Change Detection: The last step is to apply all found rename refactorings from step
2 as well as signature changes of step 3 to the method bodies. Some other normalization
is also done in this step to eliminate local variable renamings. The normalized versions
of the method bodies are compared to the methods that they have been matched to. If
the normalized bodies are equal, the method is classified as unchanged, otherwise it is
classified as modified. If a method in the successor version has not been matched to
any method in the predecessor version, the method is classified as added.

Example The following source code snippets show an example that is used to illustrate
the steps that are described in the following sections. Listings on the left hand side
belong to the predecessor version, listings on the right hand side belong to the successor
version. The applied refactorings are the following: ClassB has been renamed to
Printer. Its print method has been renamed to draw and the parameters of the
method have changed their order. In ClassA the attribute b was renamed to printer
and the parameter was renamed from x to in. The comments were also altered or
removed.

Listing 3.1: ClassB.java
package org.sample;
public class ClassB {

private String text;
public ClassB(String text) {

this.text = text;
}

/** Some comment */
public void print(int color,

float x, float y) {
// [...]

}
}

Listing 3.2: Printer.java
package org.utils;
public class Printer {

private String text;
public Printer(String text) {

this.text = text;
}

/** Some documentation for draw */
public void draw(float x, float y,

int color) {
// [...]

}
}

Listing 3.3: ClassA.java (Predecessor)
import org.sample.ClassB;

public class ClassA {
private ClassB b;
public ClassA(String x) {

// No plan what’s going on here
// TODO use speaking names

b = new ClassB(x);
b.print(0xFF000000, 50, 100);

}
}

Listing 3.4: ClassA.java (Successor)
import org.utils.Printer;

public class ClassA {
private Printer printer;
public ClassA(String in) {

printer = new Printer(in);
printer.draw(50, 100, 0xFF000000);

}
}

9

3 Approach

3.2 Model Construction

Since the implementation uses the existing Test Gap environment (cf. subsection 2.2.2),
there was already a convenient implementation which takes the projects root folder
and a file name pattern e.g. ∗.java to query all relevant files. The different versions are
expected to be in separate folders inside the root folder. Per version a list of all files is
created that matches the specified file pattern.

At first package name, imported classes and declared classes are extracted from
each file. This information is aggregated in an availableClasses list containing all
fully-qualified class names available within the program, including both framework
classes and classes contained in the given source code.

Utilizing the shallow parser a so called genealogy model is created as shown in
Figure 3.1.

ProgramVersion

1

Package

1

n

Class
Name

Generics

Superclass

n

1 1

Method
Modifiers
Generics

Return type
Name

Parameters

Method body

n

Attribute
Modifiers

Type

Name

n

Figure 3.1: Genealogy model used to store program versions

10

3 Approach

For each program version an object is created storing references to all package names
that are part of the source code. Each package object in turn contains references to each
class being part of that package. A class stores, besides the references to its contained
methods and attributes, information about generics used in the class’ declaration and
possibly its superclass name. The method stores information about used generics, its
return type, parameter names and types, modifiers like static, final or public and a
copy of the methods body. The attributes contain similar information. All classes have
a common base class which is able to store a reference to their respective predecessor
and successor object. The base class also takes care of storing the child elements, but is
not shown in Figure 3.1.

Type resolution Since all classes, which are available within a specific file are known,
types appearing in method and attribute declarations can be directly resolved to their
fully-qualified class names. Besides resolving method and attribute types, all local
variables are collected and get their types resolved. The declaration scope is also known
to the respective local variable.

The genealogy model for the example introduced above is shown in Figure 3.2.

Predecessor version

org.sample

Class
ClassB

Attribute
String text

Method
print(int, float, float)

Method
<constructor>(String)

Class
ClassA

Attribute
org.sample.ClassB b

Method
<constructor>(String)

Successor version

org.utils

Class
Printer

Attribute
String text

Method
draw(float, float, int)

Method
<constructor>(String)

org.sample

Class
ClassA

Attribute
org.utils.Printer printer

Method
<constructor>(String)

Figure 3.2: Genealogy model of the example

11

3 Approach

3.3 Method Matching

The next step is about finding a mapping which connects methods from the predecessor
version to methods from the successor version. An example matching is shown in
Figure 3.3.

Predecessor Successor

init() doCalc(float)

doCalc(float) someUtilFunc()

someUtilFunc() initialize()

doCalc(int) ×

Figure 3.3: Method matching example

The matching is done with a fix-point iteration algorithm. In the first place, methods
are matched by very strict criteria. All methods that have not found a matching partner
are then matched by a less restrictive matching. Each matching that has been found is
saved. If a renaming can be derived from the matching, the renaming is saved to a so
called RenameOracle. Since found renamings influence the result of next matchings
this is repeated until no new matchings are found. Since the number of unmatched
methods decreases with every loop, infinite loops cannot occur.

The criteria which are used for the matching are the following:

1. Methods are matched together where none of package, class, method name and
parameter types have been changed. This matching normally finds most of the
matched methods because the majority of methods do neither change their name,
signature nor parent within a version step.

2. Methods, whose bodies have been completely untouched, are matched. This step
is executed because it is likely that methods, which have exactly equal bodies,
belong together, even if their name or parent class has changed. If more than
one matching partner is found with the same method body, a rating system as
described in subsection 3.6.2 is used to decide which methods are matched. If
multiple matching candidates are found in the following steps, the rating system
is used as well.

12

3 Approach

3. This matching is very similar to step 1 except that known renamings and methods
return types are considered as well as package name, class name, method name
and parameter types. So if there is a class MyClass, which has been renamed
to NewClass, and a method doSomething(MyClass obj), step 1 would not be
able to match the method with doSomething(NewClass obj) of the successor
version. But after the program found out about the renamed class, it is capable of
renaming all parameter types and hence can match the methods.

4. The next matching does not consider the parent class, but only return type, method
name and parameter types.

5. Here the same matching is performed as in the step before, but types are compared
only by their simple class name, not fully-qualified names.

6. The matching normalizes the method body in a way that all class names which
appear in it, are replaced by a placeholder "Class". All other variable identifiers
like attributes or local variables are replaced by a placeholder "Identifier". Finally,
all method names are replaced by the placeholder "Method". All other irrelevant
tokens like comments and whitespaces are removed. The normalized method
body of the example ClassA constructor (Listing 3.5) is shown in Listing 3.6.

Listing 3.5: ClassA.<constructor>(String) body

// No plan what’s going on here
// TODO use speaking names
b = new ClassB(x);
b.print(0xFF000000, 50, 100);

For reasons of better readability the all normalized source codes have been
formatted. The actual normalized code neither contains line-breaks nor spaces
between statements.

Listing 3.6: Normalized method body

Identifier = new Class(Identifier);
Identifier.Method(0xFF000000, 50, 100);

The normalized version only mirrors the method’s structure. Methods are then
matched based on this structure.

13

3 Approach

7. Lastly, a class renaming rule is added to the RenameOracle if all methods of
one class in the predecessor version have been matched to one single class in
the successor version. This means that the class has been renamed. Package
renamings do not have to be handled separately because the class names are
fully-qualified, which means their package name is a prefix of the class’ fully-
qualified name. Renaming a package therefore results in renaming all classes of
the package.

Every time a class rename is recorded, all fields of that class are mapped to the
corresponding successor class as well. The algorithm works analogously to the
parameter mapping described in section 3.4.

Running the algorithm on our example leads to the matching shown in Figure 3.4.

Predecessor Successor

org.sample.ClassA.<constructor>(String) org.sample.ClassA.<constructor>(String)

org.sample.ClassB.<constructor>(String) org.utils.Printer.<constructor>(String)

org.sample.ClassB.print(int,float,float) org.utils.Printer.draw(float,float,int)

Figure 3.4: Method matching for the example

Figure 3.5 shows the corresponding type and method renames which can be inferred
from the matching, and the attribute renames found by the attribute mappings in step 7.

RenameOracle =



typeRenames = {org.sample.ClassB→
org.utils.Printer}

methodRenames = {org.sample.ClassB.
print(int, float, float)→

org.utils.Printer.
draw(float, float, int)

fieldRenames = {org.sample.ClassA.b→
org.sample.ClassA.printer}



Figure 3.5: RenameOracle for the example

14

3 Approach

3.4 Post-Processing

For all matched methods a parameter mapping is generated for the predecessor method
parameters versus the successor method parameters, as shown in Figure 3.6. With this
mapping, signature changes can be detected by the refactoring detection like reordering
or renaming the parameters.

someMethod(String text , int x , int y , int size)

someMethod(int x , int y , String text)

×

Figure 3.6: Parameter mapping

This is done in several stages:

1. Types of the predecessor version are renamed if possible to their successor type
names with RenameOracle.

2. Parameters get matched which have equal position, type and name.

3. Parameters get matched which have not been mapped, but have an unmapped
counterpart with the same type and name.

4. Unmatched parameters of the same type are matched. If there are multiple
possibilities, the one with the smallest textual disparity is chosen. This step can
possibly produce incorrect results, e.g. if int size is removed and int index
is added, but if the parameters are semantically different, the method body has
changed anyway. So the method gets classified as changed. If the mapping is
right, the algorithm produces better results.

15

3 Approach

3.5 Change Detection

For all matched method body pairs a normalization is performed in order to make
the methods comparable. To make the following steps of normalization more concrete,
every step is applied to our example ClassA constructor of the predecessor version
shown in Listing 3.7 as a reminder.

Listing 3.7: Original ClassA constructor

public ClassA(String x) {
// No plan what’s going on here
// TODO use speaking names

b = new ClassB(x);
b.print(0xFF000000, 50, 100);

}

At first, unnecessary whitespace and comments are removed, because these have no
influence on the method’s behavior.

b=new ClassB(x);
b.print(0xFF000000,50,100);

Going further all type names are resolved to their fully-qualified names, so that we
can be sure the class is really the same for the predecessor and the successor version.

b=new org.sample.ClassB(x);
b.print(0xFF000000,50,100);

For the types as well as methods and fields, all known renamings which have been
saved to RenameOracle are applied to the predecessor method. To achieve this, the
normalization has to keep track of variable types and method return types.

printer=new org.utils.Printer(x);
printer.draw(0xFF000000,50,100);

Detected signature changes have to be applied as well by reordering the arguments
and possibly removing them. If parameters have been inserted the argument is left
empty. That leads to a textual difference in the normalized predecessor and successor
method body correctly resulting in a changed classification.

printer=new org.utils.Printer(x);
printer.draw(50,100,0xFF000000);

For local variable names and method parameters a technique is utilized that is also
used in code clone detection tools (cf. subsection 2.2.1). All variable names are replaced
by distinct identifiers numbered by their declaration order. This allows to normalize

16

3 Approach

both methods to the same format if only renamings happened to the variables. For the
method parameters, signature changes have to be considered as well. This means that
if the order of parameters has changed, the declaration order is used from the successor
version for both.

printer=new org.utils.Printer(param0);
printer.draw(50,100,0xFF000000);

The same procedure is applied to the successor method body. After performing the
normalization, both method bodies are equal in the presented example because only
refactorings have been performed within the two compared versions.

This normalized format allows the algorithm to classify a method as unchanged, if the
normalized method bodies are equal, because it is safe to assume that only the detected
non-essential changes have been applied. All other essential changes would cause the
normalized bodies to be textually different and hence lead to a changed classification.
Methods of the successor which have not found a matching partner are classified
as added.

17

3 Approach

3.6 Implementation Details

3.6.1 Wildcard Resolution

As described in section 3.5 the approach tries to resolve every type name to its fully-
qualified name. This is necessary to create a unique identifier for each class. If the
approach fails to resolve the type in one of both versions, this leads to classifying the
method as changed. This can especially happen if one of the compared versions uses
wildcard imports and the other one makes use of fully-qualified imports. The resolution
works as expected if the wildcard imported package is part of the analyzed source
code, because all classes that live within the package are known. For packages that are
not available as source code within the analysis like external libraries, the approach is
not able to resolve types that are imported via wildcards. In this special case only the
types of the fully-qualified version can be resolved. Since switching from wildcards to
fully-qualified imports is mostly done tool supported, this applies to all methods of the
analyzed system and thus nearly all methods would be marked as changes.

A possibility to overcome this problem would be to include the library’s source code
in the analysis. But this is only viable if the source code is available, which is not the
case for some third-party dependencies. So the problem is solved by creating a pool
of availableClasses, which helps guessing what classes are imported by wildcard
imports. This pool is filled with all fully-qualified class names that are imported in any
file and any version of the system. The following example demonstrates this approach.

Listing 3.8: Wildcard imports

import javax.swing.*;
import java.awt.*;
import eu.mine.util.*;

Listing 3.9: Fully-qualified imports

import javax.swing.Icon;
import java.awt.Color;
import java.awt.Paint;
import eu.mine.util.FileUtils;
import eu.mine.util.StringUtils;

︸ ︷︷ ︸

availableClasses =


javax.swing.Icon
java.awt.Color
java.awt.Paint

eu.mine.util.FileUtils
eu.mine.util.StringUtils



18

3 Approach

Now the program is able to guess what classes were contained in which wildcard
imported package. For example:

import java.awt.*⇒
import java.awt.Color
import java.awt.Paint

This works because if both versions use wildcards, none of the classes can be resolved
and both types are compared by their unresolved name. If both use fully-qualified
references there is no problem at all and if only one of them uses wildcards the above
procedure is able to recover almost all type bindings. Only if the wildcard version
uses classes which are no longer used in the fully-qualified version, it is not possible
to get the fully-qualified name. But in this case the affected methods have clearly
changed their behavior, which means the whole normalization, and as a consequence
the fully-qualified name, is irrelevant.

3.6.2 Resolution of Non-unique Matchings

As stated in section 3.3 if a matching is non-unique and a method in the predecessor
version has between two and four possible matching partners in the successor version,
a rating system is used to decide which of the possible matching candidates is chosen.

For more than four possible matching partners the likelihood for wrong matchings
would increase. But since a fix-point algorithm is used, it is likely that some of the
candidates get matched in some of the other steps which are more restrictive and hence
have less matching partners. In the next round the number of matching partners could
have decreased so that the rating can be applied.

The rating is achieved by calculating a score value respectively for each possible
method pair. The scoring points are based on the textual similarity of the method’s
package name, class name and method name and other method characteristics listed in
Table 3.1. Every respective method characteristic yields a score in a given range and
the sum of all rated characteristics results in the final score.

Table 3.1: Maximum scoring points per characteristic
Characteristic Maximum score
Package name 20
Class name 30
Method name 30
Return type 30
Parameter list 40
Method body 60

19

3 Approach

Name rating The package name and class name rating scores are calculated with a
Levenshtein edit-distance (=distance = lev(s1, s2)), where s1 and s2 are pairs of package
or class names. The corresponding score function is defined as follows:

score(s1, s2, maxScore) :=

{
maxScore if distance = 0(

1− distance
max(s1.length, s2.length)

)
· maxScore

2 otherwise

This ensures that only equal texts get the maximum score and each modification re-
sults in deduction of points. Edited texts get only half of the maximum score, since it is
unlikely that package name and class name both only changed in some characters. The
example in Figure 3.7 illustrates the effects of that decision. Method m1 is part of the
predecessor version and m1′ and m2′ are possible matching candidates. We assume that
the methods have equal normalized method bodies and are hence considered as match-
ing candidates. A method is defined as method = 〈package, class, name, parameters〉.

m1 = 〈com.my.prog.utils, BmpUtils, getBmpFile, 〈File〉〉

⇓{
m1′ = 〈com.my.prog.utils, BmpUtils, getBitmapResourceFile, 〈File〉〉

m2′ = 〈com.my.prog.utils, BinUtils, getBinFile, 〈File〉〉

}

Figure 3.7: Multiple matching candidates

Method m1′ could be the successor if the method’s name has been changed from
getBmpFile to getBitmapResourceFile. Method m2′ would require a class renaming
to BinUtils and a method renaming to getBinFile, which is even in sum a lower edit
distance. But since it is more common that only the method name has changed, m1
should be associated with m1′.

Table 3.2: Name rating with factor 0.5 and 1
Method pair Score with 0.5 Score with 1
〈m1, m1′〉 20 + 30 + 7 = 57 20 + 30 + 14 = 64
〈m1, m2′〉 20 + 11 + 12 = 43 20 + 22 + 24 = 66

It is evident in Table 3.2 that the approach decides that m1′ is the successor of m1,
because 57 > 43. If the function would not deduce points for multiple renamings m2′

would be selected as successor which would be the wrong choice. This approach is not
guaranteed to work in all cases, but it seemed to be a good choice.

20

3 Approach

Return types are rated the same way, with the only difference that all known renames
are applied before comparing the two texts.

Parameter rating For parameters a parameter mapping is generated as described in
section 3.4.

The score is calculated based on how many parameters have got a successor with the
exact same name and type and how many have been renamed. maxScore is always set
to 40 as shown on Table 3.1.

params = max(m1.params.size, m2.params.size)

scoreParam(params, maxScore, exact, renamed) :=
maxScore · exact + maxScore

3 · renamed
params

Method body rating The method bodies are normalized as described in section 3.5
using the parameter mapping generated before. The normalized bodies are then rated
the same way as names, with the only difference that the highest possible score is 60.

Total score The total score is calculated as the sum of each characteristic rating. Then
the method pair with the highest score is matched, but the score has to be at least
150 from a total possible score of 210 points. If the highest score is lower than 150,
no method gets matched. The value has been selected by trial and error to sort out
methods that are somehow equal, but are not meant to be mapped.

21

4 Evaluation

The following chapters present three case studies. The first one uses a mutation-based
benchmark to analyze which basic types of refactorings the presented approach is able
to detect. The second case study investigates the relevance of refactoring detection
in real world projects. The third case study tests how well the presented approach
performs compared to the bytecode-based approach (cf. subsection 2.2.2)

4.1 Mutation-based Benchmark

Research question Which refactorings can be correctly detected by the presented approach?

Study objects To test which refactorings can be detected, two projects have been used.
A tiny toy project has been used to see if the approach is generally able to detect this
type of refactoring. To verify if the approach is also capable of detecting the refactoring
in a more complicated environment, the project ConQAT (~417k LOC) has been used
as second instance.

All tested mutations are listed in Table 4.1.

Table 4.1: Tested refactorings
Null-refactoring Local variable extraction
Add comment to method body Rename method
Rename package Rename abstract method
Rename class Rename method parameter
Move class Reorder method parameters
Reorder attributes Extract method
Rename attribute Pull up method
Rename public attribute in base class Move static method to other class
Rename local variable Automated code cleanup1

1Format source code, Remove unused imports, Remove ’this’ qualifier for non static field accesses,
Change non static accesses to static members using declaring type, Change indirect accesses to static
members to direct accesses (accesses through subtypes)

22

4 Evaluation

Study design To actually see which refactorings can be detected, a mutation-based
benchmark has been created. A mutation-based benchmark evaluates the correctness of a
system by applying the system to a set of test cases which have been manually created.
Thus, the expected outcome can be specified and compared with the actual result of
the system.

Each refactoring from the table above has been applied to the toy project and to
ConQAT. Respectively for each project, an unmodified version has been taken as
predecessor version. The project with the applied refactoring has been taken as the
successor version. The packages, classes etc., which have been changed, have been
chosen randomly, trying to pick instances that are widely used in the whole project.

Since all the above changes are pure refactorings the expected outcome is always the
same - all changes are non-essential.

Procedure For each test case a zip file has been prepared containing the predecessor
and the successor version. The refactoring detection creates a csv file as output. The file
lists all methods contained in the project with their corresponding change classification.
For all methods which already existed in the previous version, the method bodies have
been compared to detect methods that have been changed textually (Affected methods).
Methods that did not exist before were classified as added methods, and method bodies
that have changed have been classified accordingly. This was implemented by using
the framework of the implementation, but with disabled refactoring detection logic.

Results As shown in Table 4.2 most of the refactorings that passed the toy project
have also been detected in the big project.

Discussion The study shows that rename refactorings or automated code cleanups
are likely to induce a huge amount of non-essential changes and that the presented
approach is able to detect most of them. The reason why some refactorings remain
undetected in ConQAT is that the approach failed to resolve some of the e.g. method
calls, which have been renamed.

All refactoring types, which the approach is generically not able to find, are only
local refactorings. Thus they have only a minor influence on the intended use case,
namely finding methods that have changed and thus need to be tested, which the
approach has been designed for.

23

4 Evaluation

Table 4.2: Tested refactorings
Toy︷ ︸︸ ︷ ConQAT︷ ︸︸ ︷

Description Detected Affected
methods

Undetected
methods

Null-refactoring 3 0 -
Add comment to method body 3 1 -
Rename package 3 64 -
Rename class 3 38 -
Move class 3 187 -
Reorder attributes 3 1 -
Rename attribute 3 3 -
Rename public attribute in base class 3 9 9
Rename local variable 3 1 -
Local variable extraction 7 1 1
Rename method 3 3 -
Rename abstract method 3 270 4
Rename method parameter 3 1 -
Reorder method parameters 3 270 9
Extract method 7 2 2
Pull up method 3 1 -
Move static method to other class 3 4 -
Automated code cleanu1 on page 22 3 1275 -

Threats to validity This study only takes into account a few common refactorings,
but leaves out a lot of other refactorings. That means there could be refactorings which
additionally induce a lot of non-essential changes that the approach may not detect.
The refactorings are only applied to two projects and the instances that are refactored
have been chosen randomly, which leaves the possibility that the approach not always
yields similar results. The benchmark also only tests for refactorings which do not
contain essential changes, and thus false-positives cannot occur.

24

4 Evaluation

4.2 Refactorings in Real World Projects

Research question It is commonly known that refactorings are applied to make code
better. It has also been discussed in chapter 1 that refactorings induce non-essential
changes in the source code, which blows up the textual differences between two
versions. This fact is a problem in use cases like reviews, code ownership analysis or
testing. But the question that remains unanswered is: How many changes are induced by
refactorings in real world projects? And thus is it worth to use a refactoring detection tool?

Study objects To answer this question some open source projects have been picked
to analyze how many refactorings happened. The projects had to be written in Java
because the analysis only works for Java projects. The compared versions have been
chosen randomly, except that the newer version was always the latest stable release.
Table 4.3 shows a brief overview over the projects that have been analyzed.

Table 4.3: Study objects
Study object Language Size Old version New version Commits
Apache Ant Java 267k LOC 1.9.3 1.9.5 254
Apache Tomcat Java 363k LOC 7.0.42 8.0.0 5064
ConQAT Java 417k LOC Rev. 51447 Rev. 52948 1501
jabRef Java 148k LOC 2.8 2.10 746
jHotDraw Java 135k LOC 7.4.1 7.6 110

Study design Firstly, a list of textually changed methods has been created for each
respective version pair. These results have been compared to the set of methods that
the presented refactoring detection classified as non-essential changes.

Procedure To detect methods that contained only non-essential changes the normal
implementation has been used. To detect raw changes the refactoring detection logic
has been disabled as described in the previous case study. Based on these two method
classifications the following results have been obtained.

25

4 Evaluation

Results The results are shown in Table 4.4. The table lists the total number of methods
per project. The column Changed shows the number of methods that have been textually
changed or renamed. Finally, the column ∆Changed contains the amount of methods
that has been filtered out by the refactoring detection, because the changes were
non-essential.

Table 4.4: Study objects
Study object Total Changed ∆Changed
Apache Ant 11,487 974 88
Apache Tomcat 19,156 6,974 1,630
ConQAT 19,559 3,628 602
jabRef 6,286 1,208 103
jHotDraw 7,670 1,741 358

Discussion The results clearly show that refactorings have been done in every in-
spected project. The number of affected methods varies due to the types of refactorings
that have been applied. Nevertheless the fact that refactorings have been made in every
project reinforces that it is worth using a refactoring detection tool whenever changed
methods are considered like in the use cases described in chapter 1.

Threats to Validity At first, the case study only considered open source software as
study objects, which may not necessarily have the same characteristics as proprietary
software. The study used only two snapshots of the selected projects allowing no
generalization of the results. Furthermore, the study just inspected source code written
in Java, which may behave differently compared to other languages.

26

4 Evaluation

4.3 Comparison to Bytecode-based Analysis

Research question How does the presented approach perform compared to the bytecode-based
approach currently used in Test Gap analysis?

Study objects To get a meaningful number of methods that only contain non-essential
changes two successive versions of ConQAT, namely revision 52650 and revision 52663,
where it was known that a big refactoring had been done. Within these revisions
the main scanner functionality of ConQAT had been moved and merged into another
existing package. This resulted in a lot of rename refactorings producing non-essential
changes all over the project. Since detecting those was one of the requirements R3 (cf.
chapter 1), using this pair of versions seemed to be a good choice.

Study design To compare the results of both refactoring detection techniques the
version pair has been analyzed with the presented source code-based detection and with
the bytecode-based technique implemented in Test Gap analysis (cf. subsection 2.2.2).

To decide which approach worked better, a list of refactorings that are truly refac-
torings has been made. It was assumed that methods which have been classified as
non-essential changes by both bytecode and source code-based approach are really
refactorings. For those 341 methods that had different classifications it was decided by
manual inspection whether the change was a real refactoring.

Procedure To get a first picture of how many methods have been changed by the
refactoring, a simple mapping of the methods has been done primarily based on their
exact package, class and method-signatures. If those methods which have been matched
have not changed on a textual level, the methods are classified as unchanged. Otherwise
as changed or added if it did not exist in the previous version. This is referred to as
without refactoring detection in the following. The results of this analysis are shown in
Figure 4.1.

To make the outputs of both analyses comparable, the outputs of the bytecode-based
analysis first had to be manually converted to match the format of the source code-based
output. Also, some methods had to be excluded from the comparison like interface
methods because they do not appear in bytecode. Nevertheless, they are matched and
used within the source code-based detection. Switch tables, which are helper methods
generated by the compiler to make switch statements faster, have been excluded as well
because they have no corresponding methods in source code.

Results The changes between two versions are visualized in a tree map. In a tree map
each rectangle corresponds to a method in the successor version. Methods that are

27

4 Evaluation

in the same class are next to each other in the tree map. The color of the rectangle
visualizes the methods classification. Gray means that the method does not contain an
essential change (unchanged), orange means that the method has been changed since
the predecessor version and red means that the method has been recently added to the
source code and was not included in the previous version.

The complete project contained 14,882 methods. Figure 4.1 displays 1,844 methods
that have been added and 34 methods that have been modified. This is the result of
moving the scanner classes to another package, due to the fact that the methods which
are displayed red are in the new package. In the previous version, these methods did
not exist, at least not in this package. The modified methods have just been updated
to use the new package name. Methods that only use the fully-qualified name of the
moved classes in the import statements are not even marked as modified because the
refactoring did not change their method bodies.

Figure 4.1: Without refactoring detection

28

4 Evaluation

Using refactoring detection, more methods which have previously been classified as
added, are classified as changed or unchanged afterwards. Figure 4.2a demonstrates
the results of the bytecode-based approach and Figure 4.2b shows the results of the
approach presented in this thesis.

Figure 4.2: Comparison between bytecode and source code-based refactoring detection

(a) Bytecode-based

(b) Source code-based

29

4 Evaluation

It is obvious that large amounts of red rectangles have been detected as moved
methods by both approaches resulting in areas drawn as gray or orange instead of red.
Nevertheless Figure 4.2b detected more refactorings.

Comparing the results in more detail, both approaches made some one-sided mis-
takes. The results are shown in Table 4.5.

Table 4.5: Detected Refactorings
Correct
classifications

False-negative
classification

False-positive
classification

Bytecode-based 1623 methods 336 methods 0 methods
Source code-based 1932 methods 27 methods 0 methods

Time and memory consumption The running time for both approaches has been
measured by running the analysis on the project 5 times in a row on a Laptop (Intel
i7 2620M 2.7GHz, 4GB RAM, SSD). The average over all running times were used for
the following comparison. For bytecode analysis the time it took to build the project
was not included because for the Test Gap use case it can be assumed that the project
has already been built by the build server when the analysis starts. For the sake of
completeness the build process took 134s in total. The detailed results are presented in
Table 4.6.

Table 4.6: Time and memory requirements
Avg. running time Avg. max. memory usage

Bytecode-based 386s 1048MB
Source code-based 140s 1676MB

With a speedup of 2.8 times compared to the bytecode analysis, the source code-based
implementation improves the overall performance of the analysis, even if its maximal
allocated memory was 628MB higher.

Discussion The first thing to note is that both approaches fulfilled requirement
R4 because they did not classify any method as a refactoring, even though it con-
tained essential changes. So both had a precision of 100%. Using the values from
above, bytecode-based refactoring detection yields a recall (% of refactorings found) of

1623
1623+336 = 83% and the source code-based approach scores a recall of 1932

1932+27 = 99%.

30

4 Evaluation

Undetected methods The 27 methods the approach could not detect have been over-
seen due to incomplete statement resolution. For example the implementation did not
recognize that for calls to the method token(ETokenType type), where ETokenType
is an enum, the statements token(EOF) and token(ETokenType.EOF) are semantically
equal.

Threats to validity The results presented above cannot be generalized to other refac-
torings because only one project has been tested. The evaluation also just used one
implementation for Java. So in general it is not guaranteed that the approach yields
similar results for other programming languages as well. For refactorings that are
done on the interface of some third-party libraries, where the source code is either not
available or not included in the analysis, the results may differ as well, because the
approaches may fail to resolve those dependencies. Another problem could be that
the probability of false-positives is very low in the tested project because most of the
methods only contained non-essential changes, which makes false-positives unlikely.
So projects containing more essential method changes would be more likely to produce
false-positives.

Since the only part of the refactoring detection that guesses is the matching, it is the
likeliest point where false-positives could be produced. But false matchings of methods
lead the approach to rename all calls to this method to the name of the matched method.
This always leads to classifying all methods which contain calls to this method, as
changes. This classification is false, but produces a false-negative, which is not good,
but allowed (R4).

31

5 Conclusion

The task was to design, implement and evaluate a refactoring detection technique
which could replace the already existing bytecode-based refactoring detection used in
Test Gap analysis.

The presented approach was to build a tree model of the input system, which had
all methods of the system as its leafs. Then the methods of the predecessor version
have been matched to the methods of the successor version of the system. Renamings
that could be derived from the matchings were saved. After doing some additional
post-processing, each method pair which was matched, was normalized using the
detected renamings. By comparing the normalized methods a classification was made
whether the method contains essential changes or only non-essential changes.

The requirements which had to be met by the approach were (see chapter 1):

R1 Source code-based

R2 Transferability to other languages

R3 Recognition of most frequently used refactorings, especially those that introduce
a lot of non-essential changes in source code

R4 Precision of 100%

R5 Reasonable running time

Looking at the requirements, the implementation meets requirement R1, because it
works on source code basis, which in turn led to a speedup of the refactoring detection
(R5), without even optimizing it. R2 is fulfilled as well, since the presented technique
is partly language independent as long as it does not work on statement level. For
languages similar to Java the normalization function can be easily adapted and for
other programming languages it can be implemented as well with reasonable effort.
R3 can also be considered as met, as the case study presented in section 4.3 mainly
contained rename refactorings, which the presented approach detected with a rate of
99%. R4, as already mentioned in the previous chapter, is fulfilled as well, because no
methods that were classified as refactorings contained essential changes. In conclusion,
the approach met all requirements and led to a good result.

32

6 Future Work

For future work the following aspects must be considered. The case study presented
in section 4.3 has to be performed with more projects, which include all kinds of
refactorings, project sizes and more essential changes, to see if the precision is always
100% and thus can be generalized.

Furthermore, if has to be evaluated whether the approach really works with other
languages as well. Therefore, porting to other languages, consecutive testing and
evaluation has to be performed too.

Finally, the current implementation only works with rename and some move refac-
torings. But as stated in Fowler’s book [2], there are 72 possible refactorings which
cannot all be detected with this implementation by design. Possibly the approach of
Prete et al. [7] could be merged with the solution presented in this thesis to detect
more different kinds of refactorings, with the guarantee not to produce false-positive
classifications. But since most of those refactorings are only locally applied, and thus
do not induce changes all over the project, it is not that important to detect them for
the intended use case.

33

List of Figures

3.1 Genealogy model used to store program versions 10
3.2 Genealogy model of the example . 11
3.3 Method matching example . 12
3.4 Method matching for the example . 14
3.5 RenameOracle for the example . 14
3.6 Parameter mapping . 15
3.7 Multiple matching candidates . 20

4.1 Without refactoring detection . 28
4.2 Comparison between bytecode and source code-based refactoring detection 29

34

List of Listings

1.1 Version N . 1
1.2 Version N+1 . 1

2.1 Original . 6
2.2 Normalized identifiers . 6

3.1 ClassB.java . 9
3.2 Printer.java . 9
3.3 ClassA.java (Predecessor) . 9
3.4 ClassA.java (Successor) . 9
3.5 ClassA.<constructor>(String) body 13
3.6 Normalized method body . 13
3.7 Original ClassA constructor . 16
3.8 Wildcard imports . 18
3.9 Fully-qualified imports . 18

35

List of Tables

3.1 Maximum scoring points per characteristic 19
3.2 Name rating with factor 0.5 and 1 . 20

4.1 Tested refactorings . 22
4.2 Tested refactorings . 24
4.3 Study objects . 25
4.4 Study objects . 26
4.5 Detected Refactorings . 30
4.6 Time and memory requirements . 30

36

Bibliography

[1] S. Eder, B. Hauptmann, M. Junker, E. Juergens, R. Vaas, and K. H. Prommer.
“Did we test our changes? Assessing alignment between tests and development
in practice.” In: 2013 8th International Workshop on Automation of Software Test, AST
2013 - Proceedings (2013), pp. 107–110. doi: 10.1109/IWAST.2013.6595800.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. “Refactoring: Improving
the Design of Existing Code.” In: Xtemp01 (1999), pp. 1–337. issn: 14359456. doi:
10.1007/s10071-009-0219-y.

[3] B. Hummel, L. Heinemann, E. Juergens, L. Heinemann, and M. Conradt. “Index-
based code clone detection: incremental, distributed, scalable.” English. In: 2010
IEEE International Conference on Software Maintenance. IEEE, Sept. 2010, pp. 1–9.
isbn: 978-1-4244-8630-4. doi: 10.1109/ICSM.2010.5609665.

[4] D. Kawrykow and M. P. Robillard. “Non-essential changes in version histories.” In:
2011 33rd International Conference on Software Engineering (ICSE) (2011), pp. 351–360.
issn: 0270-5257. doi: 10.1145/1985793.1985842.

[5] M. Kim and D. Notkin. “Discovering and representing systematic code changes.”
In: Proceedings - International Conference on Software Engineering (2009), pp. 309–319.
issn: 02705257. doi: 10.1109/ICSE.2009.5070531.

[6] S. Kim, K. Pan, and E. J. Whitehead. “When functions change their names:
Automatic detection of origin relationships.” In: Proceedings - Working Confer-
ence on Reverse Engineering, WCRE 2005 (2005), pp. 143–154. issn: 10951350. doi:
10.1109/WCRE.2005.33.

[7] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim. “Template-based reconstruction
of complex refactorings.” English. In: 2010 IEEE International Conference on Software
Maintenance. IEEE, Sept. 2010, pp. 1–10. isbn: 978-1-4244-8630-4. doi: 10.1109/
ICSM.2010.5609577.

[8] D. Steidl and F. Deissenboeck. “How do Java Methods Grow?” In: submitted for
SCAM 2015. 2015.

37

http://dx.doi.org/10.1109/IWAST.2013.6595800
http://dx.doi.org/10.1007/s10071-009-0219-y
http://dx.doi.org/10.1109/ICSM.2010.5609665
http://dx.doi.org/10.1145/1985793.1985842
http://dx.doi.org/10.1109/ICSE.2009.5070531
http://dx.doi.org/10.1109/WCRE.2005.33
http://dx.doi.org/10.1109/ICSM.2010.5609577
http://dx.doi.org/10.1109/ICSM.2010.5609577

Bibliography

[9] P. Weißgerber and S. Diehl. “Identifying refactorings from source-code changes.”
In: Proceedings - 21st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2006 (2006), pp. 231–240. issn: 1527-1366. doi: 10.1109/ASE.
2006.41.

38

http://dx.doi.org/10.1109/ASE.2006.41
http://dx.doi.org/10.1109/ASE.2006.41

	Introduction
	Related Work
	Research
	Identifying Refactorings from Source Code Changes
	Non-essential Changes in Version Histories
	Discovering and Representing Systematic Code Changes

	Technical Fundamentals
	ConQAT
	Test Gap Analysis
	Teamscale

	Approach
	Overview
	Model Construction
	Method Matching
	Post-Processing
	Change Detection
	Implementation Details
	Wildcard Resolution
	Resolution of Non-unique Matchings

	Evaluation
	Mutation-based Benchmark
	Refactorings in Real World Projects
	Comparison to Bytecode-based Analysis

	Conclusion
	Future Work
	List of Figures
	List of Listings
	List of Tables
	Bibliography

