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ABSTRACT

As a measure of software quality, current static code analyses
reveal thousands of quality defects on systems in brown-field
development in practice. Currently, there exists no way
to prioritize among a large number of quality defects and
developers lack a structured approach to address the load of
refactoring. Consequently, although static analyses are often
used, they do not lead to actual quality improvement. Our
approach recommends to remove quality defects, exemplary
code clones and long methods, which are easy to refactor and,
thus, provides developers a first starting point for quality
improvement. With an empirical industrial Java case study,
we evaluate the usefulness of the recommendation based on
developers’ feedback. We further quantify which external
factors influence the process of quality defect removal in
industry software development.
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D.2.9 [Software Engineering|: Management—Software
quality assurance (SQA)
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1. INTRODUCTION

Software systems evolve over time and without effective
counter measurements, their quality gradually decays, mak-
ing the system hard to understand and maintain [8,17]. For
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easy program comprehension and effective maintenance, re-
search and practitioners have proposed many different static
code analyses. Analyzing the software quality, these analyses
reveal quality defects in the code, which we refer to as find-
ings. Static code analyses comprise structural metrics (file
size, method length, maximal nesting depth), redundancy
measurements (code cloning), test assessment (test cover-
age, build stability) or bug pattern detection. When quality
analysis tools (such as ConQAT, Sonar, or Teamscale) are
introduced to a software system that has been maintained
over years, they typically reveal thousands of findings. We
have frequently observed this in practice as software quality
consultants of the CQSE, as we audited and monitored the
quality of hundreds of systems in domains ranging from in-
surance to automotive or avionics. Also, this paper provides
a benchmark showing that only two analyses (code duplica-
tion and method structure) already reveal up to a thousand
findings each, in industry and open source systems.

Problem Statement. Ezisting quality analyses reveal thou-
sands of findings in a grown software system and developers
lack a structured prioritization mechanism to start the quality
improvement process.

Confronted with a huge number of findings, developers lack
a starting point for a long-term software improvement process.
Often, they do not fix any findings because they do not know
which findings are worth to spend the refactoring effort on.
To actually start removing quality defects, developers need
a finding prioritization mechanism to differentiate between
the findings. Whether developers prioritize the removal of
one finding over another depends on the expected return on
invest. However, precisely estimating the ratio of expected
costs for the removal and the expected gain in maintenance
and program understanding is a difficult task. Often, the
decision to remove a finding does not only depend on the
finding itself but also on additional context information:
for example, if the finding is located in critical code or, in
contrast, in code that will be deleted.

We suggest to start removing defects which are easy to
refactor, resulting in low expected costs for the removal —
assuming that a quality defect which is easy to remove indi-
cates an appropriate refactoring matching the existing code
structure. In a case study on two industrial Java systems,
we evaluate if developers agree to remove findings prioritized
by our approach. We determine which additional context
information developers consider in this decision.

Our analysis focuses on the two findings code clones and
long methods, which are both maintainability defects that



do not necessarily contain bugs. Long methods threaten
maintainability as they are hard to understand, reusable only
at very coarse granularity, and result in imprecise profiling
information. Duplicated code increases the effort and risk of
changes as changes must be propagated to all instances and
might be done inconsistently [14]. With the long method
detection being a local analysis [1] and the clone detection a
global one', we use two conceptually different analyses and
evaluate if the scope of an analysis is reflected in the type of
context information required for the removal decision.

Contribution. We provide a prioritization mechanism for
code clones and long methods based on expected low costs
for removal and quantify which external context information
influences the removal of quality defects.

2. RELATED WORK

As we use refactoring recommendations to prioritize quality
defects, our related work is grouped into the state of the art
of refactorings and prioritizing quality defects.

2.1 Refactorings

In the following, we discuss refactorings [9] to remove
code clones and long methods.

Refactoring Clones. The most common refactorings for
clone removal in object-oriented programming languages are
the pull up and extract method refactoring [7,10-12]. All
three approaches suggest, detect, or automatically perform
refactorings. In contrast, our work provides an evaluation
with developers of two industrial systems: we evaluate when
refactorings of quality defects are actually useful and what
context information developers need to decide in the removal
decision. Existing approaches lack such an evaluation.

In [7], the authors provide a model for a semi-automatic
tool support for clone removal. At a very early stage, they
outline in a position paper when clones can be refactored in
object-oriented languages. We use the same refactoring idea,
but take it to the next level by providing an evaluation.

The approach in [10-12] automatically detects possible
refactorings of code clones by the above two refactoring
patterns. This approach uses similar data flow heuristics
and static analyses to detect clones which can be refactored.
However, the evaluation only demonstrates that the tool
finds clones that can be refactored and shows the reduction
rate on the Java systems Ant and ANTLR [10,12]. In the
case study of [11], the authors classify the refactored clones
in different groups depending on how difficult the refactoring
is but did not evaluate based on developer interviews. In
contrast, we include a developer survey investigating which
clones developers would or would not refactor.

Refactoring Long Methods. In [20], the authors focus on
tool support to refactor long methods. They quantify in an
experiment the shortcomings of the current extract method
refactoring in Eclipse. Based on the observed drawbacks, they
propose new tools and derive recommendations for future
tools. In general, the paper focuses on the tool-support for
refactoring. Our approach, in contrast, focuses on which
findings developers remove first.

'A local analysis requires only information local to a
single class, file, or method. A global analysis result of a file,
however, can be potentially affected by changes in other files.

The approach in [19] automatically detects code fragments
from Self programs that can be extracted from methods or
can be pulled up in the inheritance hierarchy. The complete
inheritance structure is changed to gain smaller, more con-
sistent, and better reusable code. However, the authors only
claim that most of their refactorings improve the inheritance
structure. Concrete proof based on developers’ opinions is
missing. Our work, in contrast, examines when developers
are actually willing to restructure a method.

The approach in [23] bases on test-first refactoring: test
code is reviewed to detect quality defects which are then
refactored (e.g., with the extract method refactoring) in
source and test code. Implicitly, the approach prioritizes
findings that are found through examining the test code. In
contrast, we examine how developers prioritize long methods
in the source code without considering the test code.

2.2 Prioritizing Quality Defects

External Review Tool Results. [2,3] propose an ap-
proach to prioritize findings produced by automatic code
review tools. There, the execution likelihood of portions of
code is calculated using a static profiler and then used to
prioritize the findings. The authors focus on the applicability
of their approach to detect likelihood of execution and not
on the impact of their prioritization. In contrast, we use
a different prioritization mechanism (low costs for removal)
and evaluate whether developers from industry would accept
our recommendation in practice.

An approach to prioritize warnings produced by external
review tools (FindBugs, JLint, and PMD) is described in [15].
The authors use the warning category and a learning algo-
rithm based on the warning’s lifetime to prioritize with the
assumption that the earlier a warning is addressed the more
important it is. In contrast, we concentrate on the ease of
removal of clones and long methods instead of review tools
and we also focus on a specific instance of a quality defect
rather than prioritizing its category. Another approach of
prioritizing warnings is based on the likeliness of a warning
to contain a bug [4] with a case study evaluating how well the
bug prediction mechanism performs. In contrast, we focus
on maintainability and not on functional correctness while
providing information about which external factors influence
the prioritization of findings.

Code Clones. The work in [24] uses a model for prioritiz-
ing clones including maintenance overhead, lack of software
quality, and the suitable refactoring methods. Compared to
us, this approach has a more complex mechanisms to priori-
tize clones. However, the authors do not indicate whether
the resulting prioritization matches the developers’ opinion.
We, in contrast, evaluate with developers from two indus-
try systems. Another approach to prioritize code clones is
described in [5]: clones are summarized in work packages
by transferring the problem of making work packages into a
constrained knapsack problem, considering the time it takes
to remove the clone. The authors show that their estimations
of the clone removal time based are close to reality. As before,
the prioritization of the approach is not validated. In [21],
we focused on detecting bugs in inconsistent gapped clones,
assuming that these should receive the highest prioritization.
In this paper, we only focus on identical clones.



Table 1: Heuristics for Clones and Long Methods

Heuristic

Refactoring Sorting

Common-Base-

2 Class Pull-Up Method method-length |

<

£ Common-Interface Pull-Up Method method-length |
© Extract-Block Extract Method block-length |

E Inline-Comment Extract Method num-comments |
% Extract-Block Extract Method block-length |

= Extract-

» Commented-Block Extract Method block-length |

S Method-Split Extract Method num-parameters 1

3. APPROACH

Our approach recommends findings that are easy to refac-
tor to give developers a starting point for quality defect
removal, focusing on two category of findings, code clones
and long methods. We proceed in two steps: First, we detect
the defects using a clone and a long method detector. Second,
for both categories, we use different heuristics to determine
where refactorings can be applied which is mostly decided
based on a heuristic dataflow analysis on source code. All
heuristics are designed to match one of the two refactoring
patterns pull-up method or extract method. Table 1 gives a
high-level overview of the heuristics and their corresponding
refactorings, which will be explained later in this section.

Each heuristic provides a criterion to sort its recommended
findings: the best recommendations are the top findings in
the sorting — Table 1 shows the sorting for each heuristic. A
threshold for each criterion can be used to cut off the bottom
of the sorted list to limit the number of recommended findings.
However, this threshold depends on the amount of findings
a developer is willing to consider as his starting point as
well as on the current quality status of the system: if the
system is of low maintainability with many findings, the
threshold in practice will be higher than for systems with
few findings. For this paper, we have set the thresholds
based on preliminary experiments. Future work is required
to determine them with a thorough empirical evaluation.

3.1 Findings Detection

This approach uses a code clone and a long method detec-
tor, implemented within the quality analysis tool ConQAT [6].
Their configurations are described the following.

Clone Detection. We use the existing code clone detection
of ConQAT [13] and configured it to detect nearly type-
I clones?: We neither normalize identifiers, fully qualified
names, type keywords, nor string literals. We do normalize
integer, boolean, and character literals and visibility modi-
fiers, comments, and delimiters. With this normalization, we
detect almost identical clones — identical except of the above
mentioned literals, modifiers, etc.®

Long Method Detection. We detect long methods by
counting lines of code. We define a method to be long if it has

2For definition of type-I, II, and III clones, refer to [16].

3We restrict our analysis to identical clones as we want to
prioritize clones which are easy to refactor — assuming that
type-I-clones are easier to refactor than type-II or type-III:
Pulling up a type-II clone might, e.g., require the use of
generics if the clone contains objects of different types.

more than 40 lines of code (LoC). The threshold results from
the experience of the CQSE GmbH and recommendations
from [18]: it is based on the guideline that a method should
be short enough to fit entirely onto a screen.

3.2 Dataflow Analysis on Source Code

To detect findings that can be refactored, we use a heuristic
dataflow analysis on source code. We use a heuristic that
performs without byte code, as we do not need source code
that compiles. The heuristics provides a def-use analysis of
all variables in the source code as the definition and the uses
of variables determine whether code can be refactored.

The heuristic extracts all variables from the source code,
differentiating between local and global ones using a shallow
parser®. For each local variable, it searches for definition and
uses, identifying reads and writes. A definition is detected
when a type (e. g., int, Object) is followed by an identifier
(e.g., a or object). A write is any occurrence of a variable —
after its definition — on either the left side of an assignment
(e.g., a = 5), within an assignment chain (e. g., a=b=c;), or
in a modification (e. g., a++). Any other occurrence which is
neither its definition nor a write is a read.

The heuristic was only implemented for the Java pro-
gramming language and, hence, the evaluation in Section 4
includes only Java systems, too. A similar heuristic can be
designed for other object-oriented programming languages.

3.3 Refactoring Patterns

We consider the two common refactorings pull up method
and extract method. To refactor clones, the pull up method
refactoring can be applied if the clone covers a complete
method and if the clone instances do not have a different
base class: the cloned method can be moved to the parent
class. If the parent class already provides an implementation
of this method or other subclasses should not inherit the
method, a new base class can be introduced at intermediate
hierarchy level that inherits from the former parent class.
The extract method refactoring can also be applied to clones
by moving parts of a cloned method into a new method. To
detect extractable parts of a method — called blocks — we use
the dataflow heuristic. The new method can be in a super
class (if one exists) or a utility class.

To refactor long methods, we suggest the extract method
refactoring. A long method can be shortened by extracting
one or several blocks into a new method. A long method
can also always be split into two methods with the first
method returning the result of the second method. However,
this is only an appropriate refactoring if the second method
can operate with a feasible number of parameters. We also
consider splitting a method as an extract method refactoring.

3.4 Heuristics for Code Clones

The following describes three heuristics to recommend code
clones, which are summarized in Table 1.

3.4.1 Common-Base-Class Heuristic

This heuristic suggests to refactor clones by pulling up a
cloned method to a common base class. As the superclass
already exists, we assume that this can be done easily.

4A shallow parser only parses to the level of individual
statements, but not all details of expressions. This makes
the parser easier to develop and more robust.



Heuristic. This heuristics recommends a clone if all in-
stances have the same base class and if they cover at least
one method, detecting this by using a shallow parser.

Sorting and Threshold. To sort the results of this
heuristic, we use the length of the methods to be pulled up,
measured in number of statements, and sort in descending
order. We assume that the more duplicated code can be elim-
inated, the more useful the recommendation of this finding.
The heuristic cuts off the sorting if a clone does not contain
a minimal number of [ statements in total in the methods
that are completely covered by the clone — [ is called the
min-length-method threshold. After preliminary experiments,
we set [ = 5. For example, a clone is included in the sorting,
if it covers one method with 5 statements, or five methods
with one statement each.

3.4.2 Common-Interface Heuristic

This heuristic recommends the pull-up refactoring for
clones that implement the same interface. We impose the
constraint that no instance of the clone has an existing base
class yet (other than Java Object) as it occurs frequently
that classes with different base classes implement the same
interface. In this case, however, pulling up a cloned method
can be difficult or maybe not possible. Without an existing
base class, we assume that the cloned methods can be easily
pulled up into a new base class which should implement the
interface instead.

Heuristic. It recommends a clone if the instances all have
the same interface and no base class, and if the clone covers
at least one complete method, detected by a shallow parser.

Sorting and Threshold. We use the length of the
method to be pulled up as descending sorting criteria. The
heuristic has the min-length-method threshold as the previous
heuristic, also with [ = 5.

3.4.3 Extract-Block Heuristic

This heuristic addresses the extract method refactoring.
The extracted method ought to be placed in the super or
utility class.

Heuristic. It recommends a clone if all its instances
contain a block that can be extracted which we detect with
our dataflow heuristic: A block is extractable if it writes
only at most one local variable that is read after the block
before being rewritten. After extracting the block into a new
method, this local variable will be the return value of the
new method (or void if such a variable does not exist). Any
local variable of the method that is read within the block to
be extracted must become a parameter of the new method.

Parameters. This heuristic operates with one parameter,
called max-parameters, which limits the maximal number
of method parameters for the extractable block. We set it
to 3, 1. e., a block that would require more than 3 method
parameters is not recommended. We pose this constraint
to ensure readability of the refactored code: Extracting a
method that requires a huge amount of parameters does not
make the code more readable than before. The choice of
threshold 3 is only based on preliminary experiments. Setting
this parameter depends on the quality of the underlying
system: For systems with high quality that only reveal few
findings, one can still raise this threshold. For systems with
low quality, however, we decided to limit this number to
recommend only those blocks that are obvious to extract.

Sorting and Threshold. We chose the length of the
extractable block as sorting criteria (descending). As for the
two other clone heuristics, we assume that the more code can
be extracted, the more useful the recommendation. To cut
off the sorting, we use the min-block-length threshold which
requires a minimum number of statements in the extractable
block. After preliminary experiments, we set this to 10 as we
did not perceive shorter clones to be worth to be extracted
as a utility method.

3.5 Heuristics for Long Methods

We propose four heuristics for long methods with a sorting
mechanism each to prioritize the results (see Table 1). All
heuristics target at the extract method refactoring.

Before applying any heuristic, we use two filters to elimi-
nate certain long methods: First, a repetitive code recognizer
detects code which has the same stereotypical, repetitive
structure, i. e., a sequence of method calls to fill a data map,
a sequence of setting attributes, or a sequence of method calls
to register JSPs. Long methods containing repetitive code
will not be recommended by any heuristic as we frequently
observe in industry systems that these methods are easy to
understand due to their repetitive nature despite being long.
Second, all four heuristics can be parameterized to exclude
static initializers from their recommendations. Depending
on the context, many industry systems use static initializers
to fill static data structures. It remains debatable whether
moving the data to an external file, e. g., a plain text file
instead of keeping it within the source code improves read-
ability. However, this debate is out of the scope of this paper
and the answer might be specific to the underlying system.

3.5.1 Inline-Comment Heuristic

Heuristic. It recommends a long method, if the method
contains at least a certain amount of inline comments. This
heuristic is based on the observation in [22] that short inline
comments indicate that the following lines of code should
be extracted into a new method. [22] observes this for inline
comments with at most two words. As we have the additional
information that the method containing the inline comments
is very long, we take all inline comments into account in-
dependent from the number of words contained. However,
we excluded all inline comments with a @TODO tag or with
commented out code [22].

Sorting and Threshold. We sort in descending number
of inline comments, assuming that the more comments a
method contains the more likely a developer wants to shorten
it. To cut off the sorting, the min-comments threshold
requires the recommended method to contain at least certain
number of inline comments — which we set to 3.

3.5.2 Extract-Block Heuristic

Heuristic. It recommends a long method if it contains a
block which could be extracted into a new method based on
our heuristic dataflow analysis. This heuristic operates in the
same way and with the same parameters as the Extract-Block
heuristic for clones (Section 3.4.3).

Parameters. We set maz-parameters to 3.

Sorting and Threshold. For a descending sorting, we
use the length of the extractable block, measured in number
of statements. We assume the more code can be extracted
to shorten a method, the more useful the recommendation.
We set the min-block-length threshold to 5.



3.5.3 Extract-Commented-Block Heuristic

Heuristic. This heuristic recommends a subset of the
methods recommended by the extract-block heuristic by pos-
ing additional constraints: It only recommends methods if
the extractable block is commented and is either a for or
a while loop, or an if statement. This heuristic is based
on [22]: short inline comments often indicate that the fol-
lowing lines of code should be extracted to a new method.
We assume that the comment preceding a loop or an if-
statement strongly indicates that the block performs a single
action and, hence, should be extracted into its own method.

Parameters. The max-parameters parameter is set to 3.

Sorting and Threshold. As before, we use the length of
the extractable block as descending sorting criterion. As we
assume that the comment already indicates that the block
performs a single action on its own, we lower the min-block-
length threshold and set it to 4.

3.5.4 Method-Split Heuristic

Heuristic. This heuristic recommends a long method if it
can be split into two methods with at most a certain number
of parameters. It iterates over every top-level block of the
method and calculates based on the dataflow how many
parameters the new method would require if the original
method was split after the block.

Sorting and Threshold. We sort in ascending order
of number of parameter for the extracted method. We as-
sume that the less method parameters required, the nicer
the refactoring. The sorting operates with a range for the
maz-parameter threshold, indicating how many method pa-
rameters the new method requires. After preliminary ex-
periments, we recommend a method for splitting only if the
second method works with at least one and at most three
parameters. We choose the minimum of one parameter to
eliminate methods that only fill global variables such as data
maps or that set up Ul components. We choose a maximum
of three to guarantee easy readability of the refactored code.

4. EVALUATION DESIGN

We evaluate the usefulness of our approach and its limita-
tion. The approach aims at giving the developers a concrete
starting point for finding removals. Hence, the top recom-
mended findings by each heuristic should be accepted by
developers for removal. Consequently, the approach should
have a high precision. In contrast, we do not evaluate the
recall of the approach because we are only interested in a
useful but not complete list of recommendations. Further,
we evaluate what additional context information is necessary
to prioritize findings based on developers’ opinions.

4.1 Research Questions

RQ1: How many code clones and long methods exist
in brown-field software systems? We conduct a bench-
mark among industry and open-source system to show that
clone detection and structural metrics reveal hundreds of
findings. We show that the amount of findings is large enough
that prioritizing quality defects becomes necessary.

RQ2: Would developers remove findings recommen-
ded by our approach? We conduct a developer survey
to find out if developers accept the suggested findings for
removal. We evaluate which findings developers consider easy
to remove and whether they would actually remove them.

Table 2: Benchmark and Survey Objects

Name Domain Development Size
[LoC]
ArgoUML  UML modeling tool Open Source 389952
ConQAT gg(};@gﬁ?hty Analy- Open Source 207414
JEdit Texteditor Open Source 160010
Subclipse %VN [ntegration in Open Source 127657
clipse
Java  Servlet and
Tomcat JavaServer Pages Open Source 417319
technologies
JabRef Reference Manager Open Source 111927
A Business Information  Industry 256904
B Business Information  Industry 227739
C Business Information  Industry 290596
D Business Information  Industry 105270
E Business Information  Industry 222914
F Business Information  Industry 150348
G Business Information  Industry 55095

RQ3: What additional context information do devel-
opers consider when deciding to remove a finding?
In the survey, we also ask which context information develop-
ers consider when deciding to remove a finding. We evaluate
the limits of automatic finding recommendation and quan-
tify how much external context information is relevant. We
examine if the type of the context information is different for
a local analysis such as the long method detection compared
to the global clone detection analysis.

4.2 Study Objects

Table 2 shows the study objects used for the benchmark
and the survey, including six open source and seven indus-
try systems, all written in Java. Due to non-disclosure
agreements, we use anonymous names A-G for the industry
systems. The systems’ size range from about 55kLoC to
almost 420kLoC. As the open source and industry system
span a variety of different domains, we believe that they are
a representative sample of software development.

For the benchmark (RQ1), we used all 6 open source and 7
industry systems. For the survey (RQ2, RQ3), we interviewed
developers from system C and F. One system stems from
Stadtwerke Miinchen (SWM), the other from LV 1871: SWM
is a utility supplying the city of Munich with electricity, gas,
and water. The LV 1871 is an insurance company for life
policies. Both companies have their own I'T-department — the
LV with about 50, the SWM with about 100 developers. We
were not able to expand the survey, because other developers
were not available for interviews.

4.3 Benchmark Set Up

The benchmark compares all systems with respect to code
cloning and method structuring to show that measuring only
these two aspects already results in a huge amount of findings
in practice. We calculate the clone coverage® and the number
of (type-1I) clone classes per system. We use clone coverage
for benchmarking as this is a common metric to measure the
amount of duplicated code. Further, we show the number of
clone classes to illustrate the amount of (clone) findings a

Scoverage is the fraction of statements of a system which
are contained in at least one clone [13].



Table 3: Experience of Developers

Svstem & Program. & Project Evaluated

¥ Experience  Experience Findings
C 19.5 years 4.6 years 65
F 10.8 years 4.5 years 72

developer is confronted with. In terms of method structuring,
we show how many long methods exist — further findings
among which a developer needs to prioritize. For a better
understanding on their impact on maintainability, we also
denote how much code relative to the system’s size is located
in a short (green, < 40 LoC), long (yellow, > 40 LoC), or very
long (red, > 100 LoC) method. This distribution reveals the
probability that a source code lines is within a long method
and, hence, the probability that changing a code line invokes
understanding a lone method.

4.4 Survey Set Up

We conducted personal interviews with 4 developers from
SWM and LV 1871 each. Based on their general and project
specific programming experience (Table 3), we consider them
experienced enough for a suitable evaluation. In the in-
terview, we evaluated findings in random order that were
recommended by a heuristic and findings not recommended
by any heuristic or cut off due to the sorting threshold —
which we refer to as anti-recommendations or anti-group.

Sorting and Sampling. For each heuristic and the anti-
groups, we sampled 8 findings unless the heuristic recom-
mended fewer findings®. Table 3 shows the overall number
of evaluated findings. Within the anti-groups, we sampled
randomly. Within the findings recommended by one heuris-
tic, we sorted as depicted in Table 1 and chose the 8 top
findings of the sorting. Hence, we evaluate the top recom-
mendations of each heuristic against a random sample from
findings that were not recommended by any heuristic. This
constitutes an evaluation of the complete approach rather
than an evaluation of every single heuristic itself.

Interrater Agreement. We showed most of the samples to
only one developer except of two findings per sample group
which were evaluated by two developers each. With two
opinions on the same finding, we coarsely approximate the
interrater agreement. Conducting the survey was a trade-
off between evaluating as many findings as possible and
getting a statistical significant interrater-agreement due to
time limitations of the developers. We decided to evaluate
more samples at the expense of a less significant interrater
agreement to get more information about when developers do
or do not remove a finding. Using our heuristics to provide
recommendations to a development team, it is sufficient if one
developer decides to remove a recommended finding as long
as the heuristics recommend only a feasible set of findings.

Survey Questions. For each finding, we asked the devel-
oper two questions.

SQ1: How easy is the following finding to refactor? We
provided the answer possibilities easy, medium, and hard
and instructed to answer based on the estimated refactoring

5In Sys. C, the Common-Interface heuristic only recom-
mended 5 findings, the Extract-Comm.-Block heuristic 4.

time and the amount of required context information to
refactor correctly: easy for 10 minutes, medium for about 30
minutes and some required context information, and hard
for an hour or more and deep source code knowledge. To
estimate the refactoring time, we told the developers not to
consider additional overhead such as adapting test cases or
documenting the task in the issue tracker.

SQ2: Assuming you have one hour the next day to refactor
long methods (code clones), would you remove the following
long method (clone)? If not, please explain, why. We in-
structed to answer No, if the refactoring was too complicated
to be performed in an hour or if the developer did not want
to remove the finding for any other reason. We took free
text notes about the answer in case of a No.

Evaluation Criteria. For SQ1, we calculate the number
of answers in the categories easy, medium, and hard. For
a disagreement between two developers, we take the higher
estimated refactoring time to not favor our results. For SQ2,
we calculate the precision of each heuristic: how many find-
ings would be removed by a developer divided by the overall
number of evaluated findings. For anti-sets, we calculate an
anti-precision — the number of rejected findings divided by
the overall number of evaluated anti-recommendations. We
aim for both a high precision and a high anti-precision. In
case of a disagreement, we assume that one willing developer
is sufficient to remove the finding and count the conflict as a
Yes. This interpretation leads to better precision but also to a
worse anti-precision. Contrarily, evaluating a conflict as a No
would lead to a worse precision, but a better anti-precision.
Both interpretations favor one metric while penalizing the
other — we avoid a bias by not only showing the resulting
precisions, but also the raw answers.

S. RESULTS

5.1 How many code clones and long methods
exist in software systems? (RQ1)

Figure 1 shows the benchmark. The clone coverage ranges
from 2% to 26%, including application and test code, but
excluding generated code. The duplicated code leads to 64
findings (clone classes) for ConQAT and up to 1032 findings
for System B. In terms of long methods, the percentage of
lines of code that lies in short methods (:. e., less that 40
LoC) varies significantly and ranges from 93% in ConQAT
down to 24% for jEdit. Figure 1 shows the percentage of
short methods with green, solid filled color, long methods
with yellow, hatched color, and very long with red, double
hatched color. There are a total number of 57 long methods
in ConQAT up to 857 long methods in Tomcat. (The ordering
of systems based on the total number of methods and the
distribution of source code into short, long, and very long
methods is not necessarily the same as, e. g., 50% of the code
could be located in only three long methods.)

Conclusion. The code quality measured with clone coverage
and code distribution over short and long methods varies
between the 13 systems, revealing hundreds of findings on
all systems. As the number of findings is too large to be
inspected manually, the benchmark shows that prioritizing
quality defects is necessary even for only two metrics.
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Figure 1: Benchmark

5.2 Would developers remove the recommen-
ded findings? (RQ2)

Table 4 indicates the developers’ estimation how difficult it
is to remove a finding (SQ1) based on the number of given an-
swers easy, medium, and hard. For System F, the developers
mostly estimated the difficulty to be medium or hard for the
anti-sets. For the heuristics, they predominantly answered
easy, confirming that our heuristic reveal findings that are
easy to remove. For System C, the anti-sets do not reveal
the highest costs for removing. Due to filtering repetitive
code and static data map fillers, many of the methods in the
anti-set are technically easy to refactor. However, developers
would not have refactored these methods due to a lack of
expected maintenance gain which is reflected in the high
anti-precision shown later. Hence, the lower expected costs
are no threat to our prioritizing approach. Among all long
method heuristics in System C and F, the inline-comment
heuristic recommends findings that are the hardest to remove
(highest number of medium and hard answers) as it is the
only heuristic that does not use the data-flow analysis.

For each heuristic and anti-set, Table 5 shows the unique
Yes and No answers to SQ2 as well as the number conflicts.
Those three numbers sum up to 8 — the number of samples
per heuristic — unless less than 8 findings were recommended
in total. Summing up all Yes, No, and conflicting answers

Table 4: Estimated Refactoring Costs (SQ1)
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(counting as Yes) on findings recommended by a heuristic,
84 of 105 (80%) recommended findings were accepted for
removal. We conclude that overall, prioritizing by low refac-
toring costs matches greatly the developers’ opinions. The
table further indicates precision and anti-precision: The pre-
cision for all heuristics are with above 75% very high except
of the extract-block heuristic on clones for System C (50%)
and the extract-block heuristic on long methods for System F
(63%). The anti-precisions are between 63% and 100%. This
confirms that developers are willing to remove the findings
recommended by a heuristic and mostly confirmed to not
remove findings from our anti group. The anti-precisions
of 63% on long methods result from many conflicts in the
anti-sets: As we count a conflict as a Yes, the anti-precision
drops 0 63% although most answers were unique Nos.

Interrater Agreement. Developers gave more conflicting
answers for long methods (7 conflicts) than for clones (2
conflicts). The removal decision seemed to be more obvious
for a global than for a local finding. In System F, most
conflicts were on long methods containing anonymous inner
classes. Some developers wanted to perform the easy refac-
toring (which was not considered by our heuristics), others
argued to prioritize other long methods as they considered
the anonymous classes to be less of a threat for maintainabil-
ity. Other reasons for conflicts included different opinions
about how easy a long method is to understand and how
critical the code is in which a long method or clone is located.

Conclusion. The survey showed that the heuristics recom-
mend findings that developers consider to be easy to remove
with a very high precision. Developers stated that 80% of
the recommended findings are useful to remove. Also, they
would not have prioritized most findings from the anti-set.
Hence, our approach provides a very good recommendation.

Discussion. One could argue that with our prioritization
developers do not carry out more complex and perhaps more
critical defect resolutions. However, even if the obviously
critical findings are treated separately, the remaining number
of findings is still large enough to require prioritization: if the
maintenance gain is expected to be equal, then prioritization
based on low removal costs is a useful strategy.
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5.3 What additional context information do
developers consider? (RQ3)

As a second goal of this work, we quantify which additional
context information developers consider. Table 6 shows the
reasons why developers did not prioritize a recommended
findings. For System F, developers rejected three clones
because they are located in two different components which
were cloned from each other. The developers rather wanted
to wait for a general management decision whether to remove
the complete redundancy between the two components. They
rejected other clones because they were located in different
eclipse projects or because they were located in a manually
written instead of generated data object (DTO). Developers
rejected most long methods because they did not consider
the code to be critical to understand (code without business
logic, UI code, logging, or filling data objects) and, hence,
were not expected to threaten maintainability. Other reasons
include methods that were maybe unused and methods that
were not expected to be changed soon.

Most rejected clones from System C were due to redundant
xml schemas. As the creation of the xml sheets is not in con-
trol of the developers, they cannot remove the redundancy.
They further rejected clones that contained only minor config-
uration code and were, thus, not considered to be error-prone.

Table 6: Reasons for Rejections

System  Reason Count
2 Major Cloned Component 3
F £ Different Eclipse Projects 1
@) Manually Generated DTO 1
»  Only UI-Code (not critical, not 3
T to test with unit tests)
< No Business Logic 2
F é Only Logging 1
w0  Only filling data objects 1
5 Maybe unused code 1
= No expected changes 1
" Redundancy due to xml schema 4
c £ Only configuration code 2
% Logging, no critical code 1
. No complexity 2
C E No Business Logic (formatting 9

strings, filling data object)

Developers of system C rejected long methods which had no
complexity or critical business logic.

Conclusion. The survey shows that the considered context
information depends on the type of finding or, more general,
on the nature of the analysis: For the global analysis of
clones, the developers considered a lot more external context
information unrelated to the source code. In contrast, for
the local analysis of long methods, they rejected the findings
mostly due to the nature of the code itself: Developers did not
remove clones primarily when they either waited for a general
design decision or when the root cause for the redundancy
was out of their scope. They rejected long methods mostly
when they did not consider the method hard to understand
(e. g., Ul-code, logging, filling data object).

6. CONCLUSION AND FUTURE WORK

We proposed a heuristic approach to recommend code
clones and long methods that are easy to refactor. We
evaluated in a survey with two industry systems if developers
are willing to remove the recommended findings. The survey
showed that 80% of all evaluated, recommended findings
would have been removed by developers. When developers
would not have removed a finding, we analyzed what context
information they used for their decision. For the global
analysis of code clones, developers considered a lot more
external context information than for the local analysis of
long methods: Developers did not want to remove code clones
mostly due to external reasons unrelated to the code itself
as they were waiting for a general design decision or because
the redundancy was caused by external factors. Developers
rejected to shorten long methods mostly due to the nature
of the code when the methods were not hard to understand,
e.g., . if they contained Ul-code, logging code, or only filled
data objects. In the future, we want to conduct a larger case
study to how if our results from the clone and long method
analysis can be transferred to other global and local analyses,
too, and, hence, can be generalized.
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