
Incremental Origin Analysis of Source Code Files∗

Daniela Steidl
steidl@cqse.eu

Benjamin Hummel
hummel@cqse.eu

Elmar Juergens
juergens@cqse.eu

CQSE GmbH Garching b. München Germany

ABSTRACT
The history of software systems tracked by version control
systems is often incomplete because many file movements are
not recorded. However, static code analyses that mine the
file history, such as change frequency or code churn, produce
precise results only if the complete history of a source code
file is available. In this paper, we show that up to 38.9% of
the files in open source systems have an incomplete history,
and we propose an incremental, commit-based approach to
reconstruct the history based on clone information and name
similarity. With this approach, the history of a file can be
reconstructed across repository boundaries and thus pro-
vides accurate information for any source code analysis. We
evaluate the approach in terms of correctness, completeness,
performance, and relevance with a case study among seven
open source systems and a developer survey.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics

General Terms
Algorithms

Keywords
Software Evolution, Origin Analysis, Clone Detection

1. INTRODUCTION
Software development relies on version control systems

(VCS) to track modifications of the system over the time.
During development, the system history provides the oppor-
tunity to inspect changes in a file, find previous authors,
or recover deleted code. For source code analyses, such as

∗This work was partially funded by the German Federal
Ministry of Education and Research (BMBF), grant ”EvoCon,
01IS12034A”. The responsibility for this article lies with the
authors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’14, May 31 – June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05 ...$15.00.

quality or maintenance assessments, the history of a system
makes it possible to evaluate the software evolution and to
discover metric trends. Many analyses depend on the com-
plete history of source code files. For example, the clone
community evaluates the impact of clones on maintenance
by measuring the stability of cloned code in terms of age
since the last change [21] or as change frequency [8, 20]. The
defect prediction community also relies on history informa-
tion: Prominent approaches use code churn, code stability,
change frequency, or the number of authors per file to pre-
dict software bugs [15,23,24]. Other analyses such as type
change analysis, signature change analysis, instability ana-
lysis [16], or clone genealogy extractors [17] also rely on
accurate program element mapping between two versions.

Unfortunately, the source code history of a file is often
not complete because movements or copies of the file are not
recorded in the repository. We refer to those moves as implicit
moves in contrast to recorded, explicit moves. Lavoie [22]
has shown that a significant portion of file movements are
implicit. This is due to several different reasons: When
moving a file, programmers might not use the commands as
provided by VCSs such as subversion (SVN), e. g., svn move.
Sophisticated development environments such as Eclipse
offer the refactoring rename which automatically records
the rename as a move in the repository. When developers
rename the file manually, though, or copy and paste it, the
move/copy will not be recorded in the VCS. Furthermore,
when projects are migrated from one type of VCS to another,
move/copy information will be lost. For example, many open
source projects have been previously managed with CVS
(where no origin information was stored at all) and were later
migrated to SVN, where the moves and copies in the history
of CVS time periods remain missing. On top, if parts of a
repository are moved across repository boundaries, this event
is not recorded in the history and cannot be captured by any
VCS. With our approach, we will show that up to 38.9% of
the files in open source systems have an incomplete history.

Problem Statement. The history of source code files as
recorded in VCSs is often incomplete and provides inaccurate
information for history-based static code analyses.

Reconstructing a complete source code history requires an
origin analysis for each file. Reverse engineering the history
of a file is not trivial: If a file is moved or renamed, it may also
be modified at the same time. Hence, a simple comparison of
whether the file’s content remains the same is not sufficient.
Current approaches that perform any kind of origin analysis,
either on file level [7, 22] or function level [9, 10] are release-

based and are not run incrementally. All published case
studies include only few releases of a software system as
snap-shots and compare them to each other. Release-based
origin analysis can not reverse-engineer the complete history
in feasible time, and thus provides only a coarse picture.
Our approach, by contrast, works incrementally and can
analyze every commit, even in histories with ten thousands
of commits. Hence, our approach provides a fast and fine-
grained origin analysis.

For every commit in the system’s history, our approach
determines for an added file whether it was moved or copied
from a file in the previous revision. We extract repository in-
formation to detect explicit moves and use heuristics based on
cloning, naming, and location information to detect implicit
moves. We evaluate the approach in terms of correctness,
completeness, performance, and relevance with a case study
with seven open source systems and a survey among develop-
ers. Although the approach is generally independent of the
underlying version control system, we evaluated it only on
SVN-based systems.

Contribution. In this paper, we present an incremental,
commit-based approach using repository information as well
as clone, naming, and location information to reconstruct
the complete history of a file.

2. RELATED WORK
We group related work to origin analyses by file-based,

function-based, and line-based origin analyses and code pro-
venance. [16] gives an overview of other program element
matching techniques in the current state of the art.

2.1 File-based Origin Analysis
The work by Lavoie et al., [22], is most similar to ours as the

authors also focus on inferring the history of repository file
modifications. They reverse engineer moves of files between
released versions of a system using nearest-neighbor clone
detection. They evaluate their approach on three open source
systems Tomcat, JHotDraw, and Adempiere. The evaluation
compares the moves detected by their approach with commit
information extracted from the repository. Our work differs
in three major aspects from the work by Lavoie: First, we also
detect file copies, besides moves. Lavoie et al. do not consider
copied files, hence, our approach provides more information to
recover a complete history. Second, Lavoie et al. reconstruct
file movements only between released versions of a system in
feasible time. With our approach, we analyze every single
commit in the history and find moves at commit level still
with feasible runtime. Hence, we provide more details for
developers: When a developer accesses the history of a file,
e. g., to view changes, review status, or commit authors, he
needs the complete history on commit level and not just
between released versions. Third, Lavoie et al. compare their
results only against the repository oracle, although their
approach reveals a significant amount of implicit moves. As
the authors state, they were not able to thoroughly evaluate
these implicit moves except for a plausibility check of a small
sample performed by the authors themselves. From this
point of view, our work is an extension of Lavoie’s work: In
addition to an evaluation based on the repository information,
we conduct a survey amongst developers to evaluate implicit
moves. Hence, we provide reliable information about the
overall precision of our approach.

The work of [2] automatically identifies class-level refac-
torings based on vector space co- sine similarity on class
identifiers. The approach aimed to identify cases of class
replacement, split, merge, as well as factoring in and out of
features. Based on a case study with only one system, the
approach does not always identify a unique evolution path
per class. Instead, the authors manually inspected the results.
Our work, in contrast, uses clone detection as suggested by
the authors in their future work section, to obtain unique
results which we evaluated in a large case study based on
repository and developer information.

Git [1] provides an internal heuristic mechanism to track
renames and copies based on file similarity. To our best
knowledge, there exists no scientific evaluation on Git’s heu-
ristic to which we could compare our approach. In contrast,
many users report on web forums such as stackoverflow.com
that Git fails to detect renames1 or becomes very slow when
the option to also detect copies is set.

Kpodjedo [19] addresses a similar problem with a different
approach. Using snapshots of the Mozilla project, the authors
reverse engineer a class diagram for each revision and apply
the ECGM algorithm (Error Correcting Graph Matching)
to track classes through the evolution of the software. They
do not aim to find the origin for each file though, but to
discover a stable core of classes that have existed from the
very first snapshot with no or little distortion.

The work of [7] detects refactorings such as splitting a class
and moving parts of it to the super- or subclass, merging
functionality from a class and its super- or subclass, moving
functionality from a class to another class, or splitting meth-
ods. The refactorings are detected by changes in metrics of
the affected code – this relates to our origin analysis as they
also track movements of code. However, the authors admit
that their approach is vulnerable to renaming: “Measuring
changes on a piece of code requires that one is capable of
identifying the same piece of code in a different version.” As
the authors use only “names to anchor pieces of code”, they
cannot track metric changes in the same source code file if
the file name changed, leading to a large number of false
positives in their case study. Hence, our approach consti-
tutes a solution to one of the drawbacks of the work by [7]
by providing accurate renaming information.

On a very loose end, the work of [14] also relates to our
work: it proposes a new merging algorithm for source code
documents and includes a rename detector, which can detect
renames of a file - which is also part of our origin analysis.
However, the authors use their rename detector in quite a
different context: They present a new merging algorithm that
merges two different versions of the same file and can detect
when one version is basically the same as the other except
for a syntactical rename. Due to the context of merging two
files, the input to their algorithm is quite different to the
input of our algorithm.

2.2 Function-based Origin Analysis
Several papers have been published to track the origin

of functions instead of files (classes). One could argue that
aggregating the result of function tracking can solve the
problem of file tracking. However, we disagree for the several
reasons. First, there has been no scientific evaluation of how

1
http://stackoverflow.com/questions/14527257/

git-doesnt-recognize-renamed-and-modified-package-file, last
access 2013-12-03

many functions a file may differ over and still be considered
the same file. Our approach is also based on thresholding,
but we present a thorough evaluation that confirms the choice
of thresholds. Second, even if the thresholds for aggregating
function tracking were evaluated, our origin analysis would
produce more flexible results: Our origin analysis is based on
clone detection in flexible blocks of source code such that we
can detect that a file is the same even if code was extracted
into new methods, added to a method, or switched between
methods. Third, relying on function tracking would make
the analysis dependent on languages that contain functions.
Our approach, by contrast, is language-independent and can
be also applied to function-less code artefacts such as HTML,
CSS, or XML.

Godfrey et al. coined the term origin analysis in [9,10,25].
They detect merging and splitting of functions based on a call
relation analysis as well as several attributes of the function
entities themselves. Automatically detecting merging and
splitting on file level remained an area of active research for
the authors in [10] as this is currently done only manually
in their tool. As merging files is part of our move detection,
our work is an extension of their work.

In [18], the authors propose a function mapping across
revisions which is robust to renames of functions. Their
algorithm is based on function similarity based on naming
information, incoming and outgoing calls, signature, lines of
code, complexity, and cloning information from CCFinder.
The authors conclude that dominant similarity factors in-
clude the function name, the text diff and the outgoing call
set. In contrast, complexity metrics and cloning informa-
tion (CCFinder) were insignificant. Our work also relies on
naming information, however, for our work also the cloning
information provided a significant information gain.

Rysselberghe [26] presents an approach to detect method
moves during evolution using clone detection. However,
in contrast to our work, as the authors use an exact line
matching technique for clone detection, their approach cannot
handle method moves with identifier renaming.

2.3 Line-based Origin Analysis
Quite a few papers track the origin of a single code line [3,5]

with a similar goal–to provide accurate history information
for metric calculations on the software’s evolution. However,
identifying changed source code lines cannot provide infor-
mation for the more general problem of file origin analysis
for two reasons. First, it has not been evaluated yet how
many source code lines in a file can change such that the
file remains the “same” file. Second, tracking single lines of
code excludes a lot of context information. Many code lines
are similar by chance, hence, aggregating these results to file
level creates unreliable results.

2.4 Code Provenance
Code provenance and bertillonage [6,11] constitute another

form of origin analysis: It also determines where a code
artifact stems from, but either for copyright reasons (such as
illegally contained open-source code in commercial software)
or for detection of out-dated libraries. Code provenance
differs from our origin analysis as we detect the origin of
a file only within the current software containing the file
whereas code provenance considers a multiple project scope
for origin detection.

Figure 1: Metamodel of the history of a file.

3. TERMINOLOGY
We use the following terms to model the history of a source

code file: In the simplest case, the history of a file is linear
(Figure 1); a file is truly added – in the sense that the file
is really new and had no predecessor in the system – with
a specific name (e. g., A.java or A.c) at a specific location
(e. g., a path) in revision n. Then the file may be edited in
some revisions, and finally deleted (or kept until the head
revision of the repository). The other cases which are more
complex are the target of our detection (Figure 1):

• Move: A file is moved if it changes its location (its
path) in the system. We also consider a rename of the
file name as a move of the file. Repositories represent
a move typically as a file that existed in revision n at
some path, got deleted at this location in revision n+1,
and was added at a different location and/or with a
different name in revision n+ 1.
• Copy : A file is copied if the file existed in revision n

and n + 1 at some location (e. g., a path), and was
added at a second location in revision n + 1 without
being deleted at the original location. A copy may
include a name change for the new file. In that case, a
copy might also be a split of a file into two files.
• Merge: A file got merged if multiple files were unified

into one single file. The merged file got added in revi-
sion n+ 1 and multiple files from revision n are deleted
in revision n+1. As VCSs such as SVN cannot capture
merges at all, repository information about them is
missing.

A moved file still has a linear, unique history (no branch
or split, and a unique predecessor and successor for each
revision except those of the initial add and the final delete).
A copied file can have two sucessors but both the original
and the copied file have a unique predecessor. In case of a
merge, the predecessors of the merged file are not unique.

The detection of moves and copies is conceptually the same
in our approach, as they differ only insofar as the original
file is deleted during a move, whereas it is retained during
a copy. Hence, we will not differentiate between the two

Figure 2: Design of a the approach.

in the remainder of this paper and use the term move as
generalization for both copy and move.

Although we use the terms branch and merge in this
paper, they do not have the same meaning as branching and
merging in the SVN language: For SVN, a branch is used to
create multiple development lines for experimental purposes
or different customer versions of the same product. A merge
is used afterwards to unify changes on a branch and the main
trunk. In our case, however, we limit our analysis to the
trunk of the repository only. Still, merges as described above
can occur, where both the two original files are part of the
trunk and were consolidated into one file.

4. APPROACH
In this section, we present the design and implementation

details of our approach to recover the history of a source
code file. For each commit, the approach determines whether
an added file had a predecessor in the previous revision.

4.1 Underlying Framework
The approach is implemented within the code-analysis

framework Teamscale [4, 12] which performs code analyses
incrementally and distributable for large-scale software sys-
tems. It allows to configure analyses that are triggered by
each commit in the history of a system – the analyses then
process the added, changed, and deleted files per commit and
update the results incrementally. The framework provides
repository connectors to many common VCSs such as SVN,
Git, or TFS and an incremental clone detector [13].

4.2 Overview
The approach detects explicit and implicit moves, copies,

and merges of a source code file using different sources of infor-
mation - the repository information (when move information
is explicitly recorded) and information from heuristics (when
explicit information is missing). We suggest two different
heuristics, a clone heuristic and a name-based heuristic. The
clone heuristic uses clone detection as a measure of content
similarity and aims to detect renames. We do not use simpler
metrics such as longest common sequence algorithm to find
content similarity because we also want to detect files as
moves even if their code was restructured. The name-based
heuristic uses primarily information about the name and
path, but also includes the content similarity based on clone

detection to avoid false positives.The name-based heuristic
can only detect moves without rename.

The heuristics are designed to complement each other.
The heuristics and the repository information can be applied
sequentially in any order. All three sources of information
are described in more detail in Sections 4.3–4.5. For now,
we choose an exemplary sequence of using the repository
information first – as this is the most reliable one – and then,
the clone heuristic, followed by the name heuristic.

In this setup, the approach processes the set of added files
for each revision n in the history, as follows:

1. Extract information about explicit moves, i. e., moves
that were recorded by the VCS. Mark explicitly moved
files as detected and remove them from the set.

2. For the remaining set, apply the clone detection to find
files at revision n− 1 that have a very similar content.
Mark the detected files and remove them from the set.

3. For the remaining set, apply the name-based heuristic.
Mark the detected files and remove them from the set.

We do not know in advance whether it is best to use
only one heuristic, or to combine them both (either name
before clone or clone before name). Figure 2 visualizes the
exemplary sequential approach as described above. We will
evaluate the best ordering in Section 5.

4.3 Explicit Move Information
Partly, information about a file’s origin are already explic-

itly recorded in the VCS. VCSs such as SVN, for example,
provide commands for developers such as svn move, svn copy,
or svn rename. Using these commands for a move of a file f
from path p to path p′, SVN stores the information that p
is the origin for f when added at location p′. Sophisticated
development environments such as Eclipse offer rename refac-
torings or move commands that automatically record the
origin information in the repository. The recorded informa-
tion can then be extracted by our framework and stored as
a detected move or copy.

4.4 Clone Heuristic
The clone heuristic processes all added files f ∈ F of

revision n in its input set as follows: Using incremental clone
detection, it determines the file from revision n − 1 which
is the most similar to f . We use a clone index to retrieve
possible origin candidates f ′ ∈ F ′ and a clone similarity
metric to determine if f and any f ′ are similar enough to be
detected as a move. This metric is a version of the standard
clone coverage.

Incremental Clone Index. We use parts of the token-
based, incremental clone detection as described in [13]. How-
ever, any other incremental clone detector could be used as
well. The clone detector splits each file into chunks which
are sequences of l normalized tokens. The chunk length l is
a parameter of the clone detection as well as the normaliza-
tion. The chunks of all files are stored together with their
MD5 hash value as a key in a clone index which is updated
incrementally for each commit. With the MD5 hash value,
we identify chunks in file f that were cloned from other files
f ′ which are, hence, considered to be the set F ′ of possible
origin candidates. With the information about cloned chunks,

Figure 3: Examples of a detected move/copy of file
f ′ to f with thresholds θ1 = 0.7 and θ2 = 0.5.

we define the clone similarity metric. (More details about the
clone index and how to use it to retrieve clones are provided
in [13].)

Calculating Clone Similarity. The clone similarity met-
ric measures the similarity between two files: f is similar
to f ′, if the number of chunks in file f that also occur in
f ′ (based on the MD5 hash) relative to the total number of
chunks in f is higher than a certain threshold θ1. Intuitively,
this corresponds to: f is similar to f ′ if at least a certain
amount of code in f was cloned from f ′. We pose a second
constraint that also a certain amount θ2 of code in f ′ still
needs to be in f . Figure 3 shows two examples f ′ and f that
are similar based on θ1 = 0.7 and θ2 = 0.5.

If we had used only threshold θ1, then we would have, e. g.,
detected a very large file f ′ as origin for a very small file f , if
most of the content in f stems from f ′. However, there are
potentially many large files f ′ that could be the predecessor
for the small piece of code in f , hence, the origin analysis
is error-prone to false positives. Consequently, we use two
thresholds to ensure that also a certain amount of code from
f ′ is still in f .

Intuitively, one might set θ1 = θ2. This would allow to
detect only moves/copies including extensions of the origin
file – when the new file as additional code compared to its
origin (Figure 3 right example). However, we also would like
to detect extractions, i. e., a part of f ′ is extracted into a new
file f (Figure 3, left example). We observed those extractions
frequently during preliminary experiments in practice and
assume that they represent refactorings of existing code,
when a new class is extracted or code is moved to a utility
class. To also detect extractions, we set θ2 smaller than θ1.
Setting θ2 smaller than θ1 still detects file extensions.

Move Detection. For the move detection, we calculate the
similarity of each added file f and all files f ′ ∈ F ′ at revision
n − 1 that have common chunks with f . The incremental
clone index allows to retrieve these files efficiently. We mark
the file f ′ with the highest clone similarity to f as origin.

Parameters. We selected the following parameters:
Chunk length: We set the chunk length to 25 after pre-

liminary experiments showing that setting the chunk length
is a trade-off between performance and recall of the clone
heuristic: The smaller the chunk length, i. e., the less tokens
a chunk consists of, the higher the chance that there are

hashing collisions in the clone index because shorter normal-
ized token sequences appear more often in big systems. This
makes the calculation of the clone similarity more expensive
as it queries the index how many chunks from file f also
appear in other files f ′. On the other side, it holds that the
larger the chunk size, the smaller the recall: A file consisting
of few tokens, e. g., an interface with only two method dec-
larations, does not form a chunk of the required length and
will not appear in the clone index. As no clone similarity
can be calculated, it cannot be detected as move.

Normalization: We chose a conservative token-based nor-
malization, which does not normalize identifier, type key-
words, or string literals, but normalizes comments, delimiters,
boolean-,character-, number literals and visibility modifier.
We chose a conservative normalization as we are interested
in content similarity rather than type 3 clones.

Thresholds After preliminary experiments on the case stu-
dy objects (Section 5), we set θ1 = 0.7 and θ2 = 0.6. The
evaluation will show that those thresholds yield very good
results independent from the underlying system.

4.5 Name-based Heuristic
As a second heuristic, we use a name-based approach: To

detect for each added file f ∈ F , whether it was moved, the
name-based heuristic performs the following two actions:

1. It extracts all files f ′ ∈ F ′ from the system that have
the same name and sorts them according to their path
similarity with f . (We use the term name for the
file name, e. g., A.java and path for the file location
including its name, e. g., src/a/b/A.java.)

2. It chooses f ′ ∈ F ′ with the most similar path and the
most similar content using cloning information.

Sorting the paths. The heuristic extracts all files f ′ ∈ F ′

from the previous revision that have the same name and
are therefore considered as origin candidates for moves. The
origin candidates are sorted based on path similarity to f .
For example when f has the path /src/a/b/A.java and the
two candidates are f ′ =/src/a/c/A.java and f ′′ =/src/x/

y/A.java, then f ′ will be considered more similar. Similar-
ity between two paths is calculated with the help of a diff
algorithm: With f ′ and f ′′ being compared to f , all three
paths are split into their folders, using / as separator. The
diff algorithm returns in how many folders f ′ and f ′′ differ
from f . Path f ′ is more similar to f than f ′′ if it differs in
less folders from f . If f ′ and f ′′ differ in the same number
from f, the sorting is determined randomly.

Comparing the content. The heuristics iterates over all
origin candidates, sorted according to descending similarity.
Starting with f ′ with the most similar path to f , it compares
the content of f ′ and f : It calculates the clone similarity
between f ′ and f , which is the same metric as used in Section
4.4. To determine whether f ′ and f are similar enough to
be detected as move/copy we use thresholds θ1 = 0.5 and
θ2 = 0.5. We determined both thresholds with preliminary
experiments. In comparison to the clone heuristic, we use
lower thresholds as we have the additional information that
the name is the same and the paths are similar.

For this heuristic, we use a separate, in-memory clone index
in which we only insert file f and the current candidate f ′ of

the iteration. Hence, we can choose a very small chunk size
without loosing performance drastically. After preliminary
experiments, we set the chunk size to 5. As discussed in
Section 4.4, the clone heuristic cannot detect moves and
copies of very small files, e. g., interfaces or enums, as the
chunk size needs to be large to ensure performance. The
name heuristic addresses this problem by using the name
information to reduce the possible origin candidates and
applies the more precise clone detection with small chunk
size only on very few candidates. Hence, this heuristic can
detect those small files that are missed by the clone heuristic.

5. EVALUATION
The evaluation analyzes four aspects of the approach which

will be addressed by one research question each: Complete-
ness, correctness, performance, and relevance in practice.
Section 5.1 shows the research questions which are answered
with one case study each (5.4-5.7).

5.1 Research Questions
RQ1 (Completeness): What’s the recall of the heu-
ristic approach? We evaluate if the heuristics retrieve all
moves in the history of a software system. If the heuristics
succeed to reconstruct the complete history of a source code
file, they can provide accurate information for all static code
analyses mining software histories.

RQ2 (Correctness): What is the precision of the
approach? We determine how many false positives the
approach produces, i. e., how many files were determined
as move although being newly added to the system. To
provide a correct foundation for evolution mining static code
analyses, the number of false positives should be very low.

RQ3 (Relevance): How many implicit moves does
the approach detect? We evaluate how much history
information our approach reconstructs. This indicates how
many errors are made when applying static code analyses of
software repositories without our approach.

RQ4 (Performance): What is the computation time
of the algorithm? We measure how fast our approach
analyzes large repositories with thousands of commits.

Ordering of the heuristics. We also evaluate whether it
is best to use only the clone or only the name heuristic, or
both in either ordering. The ordering influences correctness
and completeness of the approach. As the heuristics are
applied sequentially, the second heuristic processes only those
files that were not detected as moves by the first heuristic.
Hence, the first heuristic should have the highest precision
because the second heuristic cannot correct an error of the
first heuristic. The recall of the first heuristic is not the
major decision criteria for the ordering as a low recall of the
first heuristic can be compensated by the second heuristic.

5.2 Setup
For evaluation, we change the design of our algorithm

(Figure 2) and remove the sequential execution of extracting
explicit move information and applying the two heuristics.
Instead, we execute all three in parallel. Figure 4 visualizes
the evaluation setup. This gives us the opportunity to eval-
uate the results of both heuristics separately and use the
information extracted from the repository as gold standard.

Figure 4: Setup for Evaluation.

5.3 Study Objects
Research questions 1-4 require different study objects. To

evaluate recall and precision, we need systems with a large
number of explicit moves, providing a solid gold standard. To
show the relevance of our approach, we need systems with a
large number of implicit moves. To select suitable case study
objects, we run our setup on the systems shown in Table
1. All study objects use SVN as repository. Amonst others,
the table shows the number of commits which is usually
smaller than the difference between end and start revision
as, in big repositories with multiple projects, not all commits
affect the specific project under evaluation. Running our
analysis first reveals how many explicit and implicit moves
each repository has. The number of implicit moves is the
result of our heuristics, which might be error-prone, but still
sufficient to select the study objects. Table 2 shows that
ConQAT, ArgoUML, Subclipse, and Autofocus have the
largest numbers of explicit moves. ArgoUML and Autofocus
also have many implicit moves.

ConQAT has a large number of explicit and a small num-
ber of implicit moves, as all developers develop in Eclipse
and all major moves within the repository were done with
the svn move command. ArgoUML has a high number of
explicit moves. However, the significant number of implicit
moves results from a CVS to SVN migration. Most implicit
moves are dated prior to revision 11199, the beginning of the
migration.2 Although Autofocus 3 is primarily developed in
Eclipse, there is still a significant number of implicit moves.
Our manual inspection reveals that some major moves of
packages (such as restructuring the mira/ui/editor package
or moves from the generator to the common package) were
not recorded. For Subclipse, only a small number of implicit
but a large number of explicit moves were found, matching
our initial expectation that Subclipse developers pay atten-
tion to maintaining their repository history as they develop
a tool with the purpose of repository integration into Eclipse.
Vuze (former Azureus) is also a system that was migrated
from CVS to SVN.3 Besides many implicit moves due to the
migration, there are not many explicit moves in the new SVN.
For all other systems, we do not have additional information
about their history.

2
An ArgoUML contributor states that this commit was done by

the cvs2svn job and he himself did a manual cleanup in rev. 11242.
3
http://wiki.vuze.com/w/Azureus CVS

Table 1: Case Study Objects

Name Language Domain History [Years] Size [LOC] Revision Range # Commits

ArgoUML Java UML modeling tool 25 370k 2-19910 11721
Autofocus 3 Java Software Development Tool 3 787k 18-7142 4487
ConQAT Java Source Code Analysis Tool 3 402k 31999-45456 9309
jabRef Java Bibliography reference manager 8 130k 10-3681 1521
jHotDraw7 Java Java graphics GUI framework 7 137k 270-783 435
Subclipse Java Eclipse Plugin for Subversion 5 147k 4-5735 2317
Vuze (azureus) Java P2P file sharing client 10 888k 43-28702 20762

Table 3: Recall

System Clone Name Clone-Name Name-Clone

ConQAT 0.84 0.96 0.92 0.98
ArgoUML 0.89 0.97 0.97 0.98
Subclipse 0.91 0.98 0.99 0.99
Autofocus 0.73 0.82 0.85 0.86

Table 2: Explicit and Implicit Repository Moves

Name Explicit Implicit

ConQAT 8635 191
ArgoUML 3571 1358
Subclipse 573 38
Autofocus 3 3526 1135
JabRef 6 34
JHotDraw 7 298 175
Vuze 73 860

5.4 Completeness (RQ1)

5.4.1 Design
To evaluate the completeness of the heuristics, we use the

recall metric. We calculate the recall based on the informa-
tion extracted from the repository which gives us only an
approximation of the true recall: Among all explicit moves,
we calculate how many are found by our heuristics. How-
ever, the heuristics’ true recall over a long history cannot be
calculated as there is no source of information about how
many files were moved. Even asking developers would not
provide a complete picture if the history comprises several
years. The experimental setup (Section 5.2) allows us to run
the heuristics in parallel to extract the repository informa-
tion. We chose those open source systems from Table 1 that
contain the largest numbers of explicit moves, i. e., ConQAT,
ArgoUML, Subclipse and Autofocus. With their explicit
move information, those systems create a solid gold standard
for evaluation.

5.4.2 Results
Table 3 shows the recall for all possible orderings of the two

heuristics (as explained in Subsection 5.1). The sequential
execution of the name heuristic before the clone heuristic
(annotated in the column header with Name-Clone) yields
the most promising results, with a recall of above 98% for
ConQAT, ArgoUML, and Subclipse. Only for the study
object Autofocus, the recall is slightly lower with 86%. This
is due to one limitation of the current approach: its failure
to detect reverts in the repository. The approach can detect

moves or copies only if the origin is present in the previous
revision. If some part of the system was deleted and later
readded (reverted), our approach cannot detect this. As
Autofocus contains some reverts, the recall is slightly lower.
The name-heuristic itself already achieves a recall of above
82% for all systems, indicating that many moves are done
without renaming.

5.5 Correctness (RQ2)

5.5.1 Design
The correctness of the approach is evaluated with the

precision metric. The precision of the approach cannot be
evaluated solely based on explicit move information as the
repository does not provide any information whether implicit
moves detected by a heuristic are true or false positives.
Hence, we evaluate the precision two-fold: First, we calculate
a lower-bound for the precision based on the explicit move in-
formation assuming that all implicit moves are false positives.
This assumption is certainly not true, but it allows us to
automatically calculate a lower bound and make a first claim.
The calculation is done on the same study objects as in the
completeness case study because it requires a large number
of explicit moves. Second, in a survey, we gather developer
ratings from ConQAT and Autofocus developers for a large
sample of implicit moves and use them to approximate the
true precision of the approach.

Challenges in Evaluating the Precision. Although the
precision is mathematically well defined as the number of
true positives divided by the sum of true and false positives,
defining the precision of our approach is not trivial: In case
of a merge as shown in Figure 1, the origin predecessor of an
added file is not unique. However, our heuristics are designed
such that they will output only one predecessor. Hence, in
case of a merge, it is not decidable which is the correct
predecessor. In the absence of explicit move information
or a disagreement between the two heuristics, there is no
automatic way to decide which result is a true or false positive.
For calculating the lower bound of the precision, we assumed
the disagreement to represent two false positives.

Developer survey. We chose the two study objects Con-
QAT and Autofocus because their developers were available
for a a survey. Table 4 shows the participation numbers as
well as the average years of programming experience and the
average years of programming for the specific project. As
the participants had many years of programming experience
and were core developers of the respective system under
evaluation, we consider them to be suitable for evaluation.

Table 4: Experience of Survey Subjects [years]

System
Devel-
opers

∅ Program.
Experience

∅ Project
Experience

ConQAT 6 13.8 5.9
Autofocus 3 17 4.3

Table 5: Lower Bound for Precision

System Clone Name Clone-Name Name-Clone

ConQAT 0.91 0.98 0.92 0.97
ArgoUML 0.73 0.76 0.71 0.72
Subclipse 0.92 0.98 0.99 0.99
Autofocus 0.75 0.74 0.72 0.72

Table 6: Precision based on Developers’ Rating

System Clone Name Clone-Name Name-Clone

ConQAT 0.975 0.925 0.95 0.95
Autofocus 1.0 0.90 0.90 0.90

Table 7: Statistical Approximation of Precision

System Clone Name Clone-Name Name-Clone

ConQAT 0.997 0.998 0.996 0.998
Autofocus 1.0 0.97 0.97 0.97

We showed the developers a statistic sample of implicit
moves and moves for which a heuristic led to a different result
than recorded in the repository. We randomly sampled the
moves such that the developers evaluated n moves detected
by the clone heuristic, n by the name heuristic and n by each
of the sequential executions. However, as those four sample
sets intersect, the developers rated less than 4n samples. For
ConQAT, we set n = 40 and for Autofocus, we set n = 20. To
evaluate a sample, developers were shown the diff of the file
and its predecessor and were allowed to use any information
from their IDE. The developers rated each move as correct
or incorrect, indicating also their level of confidence from 0
(I am guessing) to 2 (I am sure). Each move was evaluated
by at least three developers. In case of disagreement, we
chose majority vote as decision criteria. As we expected
most moves to be correct, we added m files with a randomly
chosen predecessor in the survey to validate the developer’s
attention while filling out the survey. For ConQAT we chose
m = 20, for Autofocus m = 10.

5.5.2 Results

Lower bound. Table 5 shows a lower bound for the pre-
cision. The accuracy of the lower bound depends on the
number of implicit moves as they were all assumed to be
false positives. Hence, the more implicit moves a system has,
the lower the lower bound.

The systems ConQAT and Subclipse show a very high lower
bound for the precision with above 90% for all scenarios. This
means that among all explicit moves, the heuristics performed
correctly in at least nine out of ten cases. The execution
of name before clone heuristic, which has led to the highest
recall, also leads to the highest lower bound of the precision
(97% for ConQAT, 99% for Subclipse). For ArgoUML and
Autofocus, the lower bound drops as both systems have a

large number of implicit moves which were counted as false
positives (see Table 2). However, even if all implicit moves
were false positives, the precision would still be 71% or 72%
respectively.

Developers’ Rating. Table 6 shows the precision for the
sample moves in the survey based on the developers’ rating.
For both survey objects, the clone heuristic performs better
than the name heuristic, which achieves a precision of 92,5%
for ConQAT and 90% for Autofocus 3. Developers occa-
sionally disagreed with the name heuristic for the following
reasons: In both systems, there are architectural constraints
that different parts of the system need to have one specific
file that has the same name and the almost same context.
In ConQAT, these are the Activator.java and BundleCon-

text.java which appear exactly once for each ConQAT
bundle. The developers commented that those samples were
clones but not necessarily a copy as the developers could not
decide which predecessor is the right one. For Autofocus,
developers commented on similar cases: Although the newly
added class was very similar to the suggested predecessor,
they did not consider it as a copy because it was added in a
very different part of the system and should not share the
history of the suggested predecessor.

For ConQAT, the clone heuristic achieves a precision of
97.5%, which is clearly above the precalculated lower bound
of 91% In some cases, the clone heuristic outputs a differ-
ent result than the repository due to the following reason:
In ConQAT’s history, the developers performed two major
moves by copying the system to a new location in multiple
steps. Each step was recorded in the repository and did not
change a file’s content. The clone heuristic chose a file as
predecessor, which was in fact a pre-predecessor (an ances-
tor) according to the repository. In other words, the clone
heuristic skipped one step of the copying process. However,
developers still considered these results as correct. For Auto-
focus, the developers never disagreed with the clone heuristic,
hence, it achieves a precision of 100%.

All samples with a random origin were evaluated as in-
correct, showing that the participants evaluated with care
and did not only answer correct for all cases. In terms of
inter-rater-agreement, the Autofocus developers gave the
same answers on all samples, the ConQAT developers agreed
except for two cases when the majority vote was applied. Con-
sidering the confidence on judging whether a file was moved
or copied from the suggested predecessor, the Autofocus
developers had an average confidence value (per developer)
between 1.77 and 2.0. The ConQAT developers indicated on
average a confidence between 1.86 and 2.0.

Statistical Approximation. We combine the results from
the survey on implicit moves and the repository information
on explicit moves to calculate a statistical, overall approxi-
mation of the heuristics’ precision: For all moves that were
detected by a heuristic and that were explicitly recorded in
the VCS, we use a precision of 100% as we assume the explicit
move information to be correct. For all implicit moves, we
use the precision resulting from the developer survey. We
weight both precisions by the relative frequency of explicit
and implicit moves. Table 7 shows the final results. On
both survey objects, the clone and the name-based heuristic
achieve a very high precision of above 97% in all cases with
only minor differences between a single execution of a heuris-
tic or both heuristics in either order. As the best recall was

Table 8: Relevance

Name Implicit head Head files Information
moves gain

ConQAT 114 3394 3.3%
ArgoUML 741 1904 38.9%
Subclipse 31 872 3.5%
Autofocus 3 1067 4585 23.2%
JabRef 30 628 4.7%
JHotDraw 7 145 692 20.9%
Vuze 666 3511 18.8%

Table 9: Execution times of the algorithm

Name Commits Total [h] ∅ per commit [s]

ConQAT 9309 2.1 0.83
ArgoUML 11721 9.6 2.9
Subclipse 2317 2.8 4.3
Autofocus 3 4487 6.5 5.2
JabRef 1521 2.4 5.6
JHotDraw 7 435 0.9 7.6
Vuze 20762 29.5 5.1

achieved by the execution of the name heuristic before the
clone heuristic and differences in precision are only minor,
we conclude that this is the best execution sequence.

5.6 Relevance (RQ3)

5.6.1 Design
To show the relevance of our approach in practice, we

evaluate for all systems in Table 1 how many implicit moves
exist. We calculate the number of implicit moves for a file in
the head revision divided by the total number of head files
to show the information gain of our approach. This fraction
can be interpreted in two ways–either as average number of
moves per file in the head revision that would not have been
detected without our approach or as percentage of all files in
the head that had on average one undetected move in their
history. This quantifies the error rate of current state of the
art repository analyses would have without our approach.

5.6.2 Results
Table 8 shows the approach’s information gain. The num-

ber of implicit moves found in head files is smaller than the
overall number of implicit moves: files deleted during the
history do not appear in the head but their moves still count
for the overall number of implicit moves. The table shows
that for some systems significant origin information would
be lost without our approach: For ArgoUML, e. g., the in-
formation gain is 39% which mainly results from the loss of
history information during the migration from CVS to SVN.
The same applies to Vuze, for which our approach yields
to an information gain of 19%. Without our approach, the
origin information of the CVS history would have been lost
in both cases. Also the information gain on other systems,
such as jHotDraw (21%) or Autofocus (23%), reveals that
our approach reconstructs a large amount of missing infor-
mation. However, our approach’s relevance is not limited
to CVS-to-SVN conversions but also applies to any other
VCS change. Naturally, the relevance of our approach varies
with different systems. For well-maintained histories such as

ConQAT or Subclipse, the information gain of our approach
is less significant. As we restricted the information gain to
files in the head, we ignored implicit moves for deleted files.

5.7 Performance (RQ4)

5.7.1 Design
We measure the algorithm’s performance with the total

execution time and the average execution time per commit.
The experiments were run on a virtual server with 4GB RAM
and 4 CPU cores (Intel Xeon). The approach is parallelized
only between projects but not within a project. We evaluate
the performance of the experimental setup (running heuris-
tics in parallel, Figure 4) which denotes an upper bound of
the intended execution of the algorithm (running heuristics
sequentially).

5.7.2 Results
Table 9 shows the total execution time and the average per

commit. Many systems were analyzed in about two hours.
For the longest-lived system (Vuze, 20762 commits in 10
years), the approach took a little more than a day to finish.
The average time per commit ranged from below one second
up to eight seconds per commit. We consider the execution
times of the algorithm feasible for application in practice.

Compared to the reported performance of Lavoie’s algo-
rithm, [22], our analysis runs significantly faster: To analyze
two versions of a system, Lavoie reports between 24 and
600 seconds depending on the size of the system (between
240kLoc and 1.2 MLoc). With our systems being in the same
size range, we can compare two versions on average in at
most 8 seconds (jHotDraw). Our approach benefits from the
incremental clone detection. However, we did not conduct
an explicit comparison to a non-incremental approach as this
has already been done in [13].

6. DISCUSSION AND FUTURE WORK
After presenting the results, we discuss applications and

limitations of our approach, deriving future work.

Applications. Our approach is designed to incrementally
reconstruct the history of a source code file to provide com-
plete history data. This is relevant for all static code analyses
that mine the software evolution, such as type change ana-
lysis, signature change analysis, instability analysis [16] or
clone genealogy extractors, clone stability analyses, or defect
prediction based on change frequency. Furthermore, for mon-
itoring software quality continuously in long-lived projects,
our approach enables to show a precise and complete his-
tory for all quality metrics such as structural metrics, clone
coverage, comment ratio, or test coverage.

Limitations. Our approach cannot detect reverts when a
file was readded from a prior revision. Future work might
solve this problem by keeping all data in the clone index.
However, it remains debatable whether a complete file’s
history should contain the revert or stop at the reverting add
as the developer had deleted the file on purpose.

We designed our approach for the main trunk of the repos-
itories, excluding branches and tags. Including branches and
tags into our approach requires a cross linking between the
main trunk and other branches. Otherwise, the name-based
heuristic produces wrong results when a file is added to

a second branch because it will detect the file in the first
branch to have a more similar path than the file in the trunk.
Future work is required to establish the cross linking and to
integrate this information with the heuristics.

Ongoing work comprises the comparison of our approach
to the tracking mechanism of Git. For future work, we plan
to conduct a quantitative and quality comparison.

7. THREATS TO VALIDITY
The recall is based only on the explicit move information

and, hence, provides only an approximation of the real recall.
However, to our best knowledge, there is no other way of
evaluating the recall as even developers would not be able
to tell you all moves, copies, and renames if the history of
their software comprises several years. To make the recall
approximation as accurate as possible we chose systems with
a large number of explicit moves in their history.

To get a statistical sample to approximate the overall
precision of the approach, we conducted a developer survey
for ConQAT and Autofocus. As ConQAT is our own system,
one might argue that the developers do not provide accurate
information to improve the results of this paper. However,
the first author of this paper was not a developer of ConQAT
and did not participate in the case study.

We evaluated the use of our tool only on SVN and Java.
Generally, our approach is independent from the underlying
VCS and programming language. It can be also used with
other VCS such as Git or TFS.

8. CONCLUSION
We presented an incremental, commit-based approach to

reconstruct the complete history of a source code file, detect-
ing origin changes such as renames, moves, and copies of a file
during evolution. With a precision of 97-99%, the approach
provides accurate information for any evolution-based static
code analysis such as code churn or code stability. A recall of
98% for almost all systems indicates that the heuristics can
reliably reconstruct any missing information. A case study
on many open source systems showed that our approach
succeeds to reveal a significant amount of otherwise missing
information. On systems such as ArgoUML for example,
38.9% files had an incomplete history as recorded in the
repository. Without our approach, current static code anal-
yses that rely on file mapping during evolution would have
made an error on more than every third file. In contrast to
many state of the art tools, our approach is able to analyze
every single commit even in large histories of ten thousand
revisions in feasible runtime.

9. REFERENCES
[1] Git. http://www.git-scm.com/. [Online; accessed

2013-12-03].

[2] G. Antoniol, M. D. Penta, and E. Merlo. An Automatic
Approach to Identify Class Evolution Discontinuities.
In IWPSE ’04, 2004.

[3] M. Asaduzzaman, C. Roy, K. Schneider, and M. D.
Penta. LHDiff: A Language-Independent Hybrid
Approach for Tracking Source Code Lines. In ICSM’13,
2013.

[4] V. Bauer, L. Heinemann, B. Hummel, E. Juergens, and
M. Conradt. A Framework for Incremental Quality
Analysis of Large Software Systems. In ICSM’12, 2012.

[5] G. Canfora, L. Cerulo, and M. D. Penta. Identifying
Changed Source Code Lines from Version Repositories.
In MSR’07, 2007.

[6] Davies, J. and German, D. M. and Godfrey, M. W. and
Hindle, A. Software bertillonage: finding the
provenance of an entity. In MSR’11, 2011.

[7] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding
refactorings via change metrics. In OOPSLA’00, 2000.

[8] N. Göde and J. Harder. Clone stability. In CSMR’11,
2011.

[9] M. Godfrey and Q. Tu. Tracking structural evolution
using origin analysis. In IWPSE’02, 2002.

[10] M. Godfrey and L. Z. Using origin analysis to detect
merging and splitting of source code entities. Software
Engineering, IEEE Transactions on, 31(2), 2005.

[11] Godfrey, M. W. and German, D. M. and Davies, J. and
Hindle, A. Determining the provenance of software
artifacts. In IWSC’11, 2011.

[12] L. Heinemann, B. Hummel, and D. Steidl. Teamscale:
Software Quality Control in Real-Time. In ICSE ’14,
2014.

[13] B. Hummel, E. Juergens, L. Heinemann, and
M. Conradt. Index-based code clone detection:
incremental, distributed, scalable. In ICSM’10, 2010.

[14] J. Hunt and W. Tichy. Extensible language-aware
merging. In ICSM’02, 2002.

[15] T. M. Khoshgoftaar, E. B. Allen, N. Goel, A. Nandi,
and J. McMullan. Detection of software modules with
high debug code churn in a very large legacy system. In
ISSRE’96, 1996.

[16] M. Kim and D. Notkin. Program Element Matching for
Multi-version Program Analyses. In MSR’06, 2006.

[17] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An
Empirical Study of Code Clone Genealogies. In FSE’05,
2005.

[18] S. Kim, K. Pan, and E. J. Whitehead, Jr. When
Functions Change Their Names: Automatic Detection
of Origin Relationships. In WCRE’05, 2005.

[19] S. Kpodjedo, F. Ricca, P. Galinier, and G. Antoniol.
Recovering the Evolution Stable Part Using an ECGM
Algorithm: Is There a Tunnel in Mozilla? In CSMR’09,
2009.

[20] J. Krinke. Is Cloned Code More Stable than
Non-cloned Code? In SCAM’08, 2008.

[21] J. Krinke. Is cloned code older than non-cloned code?
In IWSC’11, 2011.

[22] T. Lavoie, F. Khomh, E. Merlo, and Y. Zou. Inferring
Repository File Structure Modifications Using
Nearest-Neighbor Clone Detection. In WCRE’12, 2012.

[23] R. Moser, W. Pedrycz, and G. Succi. A comparative
analysis of the efficiency of change metrics and static
code attributes for defect prediction. In ICSE’08, 2008.

[24] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. In ICSE’05.

[25] Q. Tu and M. W. Godfrey. An Integrated Approach for
Studying Architectural Evolution. In IWPC’02, 2002.

[26] F. Van Rysselberghe and S. Demeyer. Reconstruction
of Successful Software Evolution Using Clone Detection.
In IWPSE’03, 2003.

