
Dead Code Detection On Class Level

Fabian Streitel, Daniela Steidl, Elmar Jürgens

CQSE GmbH, Garching bei München, Germany
{streitel, steidl, juergens}@cqse.eu

Abstract
Many software systems contain usused code. While
unused code is an unnecessary burden for mainte-
nance, it is often unclear which parts of a modern
software system can actually be removed. We present
a semi-automatic, iterative, language-independent ap-
proach to identify unused classes in large object-
oriented systems. It combines static and runtime in-
formation about an application and aids developers in
identifying unused code in their system with high pre-
cision. A case study on three real-life systems shows
its effectiveness and feasibility in practice.

1 Introduction
Unused code in software systems can be problematic,
as Eder et al. noted in [2], since it has to be main-
tained by the developers along with the actually used
code. Therefore, it creates an unnecessary mainte-
nance overhead that could be avoided, were it known
which parts of the system are no longer necessary.

Unfortunately, determining if code is inused is in
general undecidable statically [3], due to the way pro-
gramming languages evolved over the years. Features
such as inheritance and virtual method calls make
it impossible to know statically which exact pieces
of code will be executed at runtime when a certain
method is called. Furthermore, reflection allows not
only to construct classes at runtime which are not ref-
erenced in the source code at compile time, but also
to call arbitrary methods on objects the same way.
Static analysis alone is thus not sufficient to solve the
problem.

Using only dynamic information instead is, in our
view, also not an adequate solution. Firstly, as stated
in [2], profiling an application to obtain such infor-
mation has a performance impact. Furthermore, to
get an accurate picture of the usage of classes, a sys-
tem has to be profiled for a long time. Secondly, even
runtime traces that were collected over such extended
periods of time may not cover all used classes, due
to e.g. exception handling mechanisms that were not
triggered or important features that were by chance
not used in the considered time period, e.g. since they
are only necessary once every year.

In this paper, we propose a semi-automatic,
language-independent, iterative approach that com-

bines static and dynamic information. The needed
dynamic information can be obtained in a relatively
short amount of time and with little overhead. With
a case study we show that this analysis can with high
precision identify unused classes in large systems.

2 Approach
Our approach consists of a manual iterative procedure
that is aided by tool support. It works on the class-
level to identify classes that can be removed entirely
from the system. We use static analysis to create a
class dependency graph of the system, including the
known entry points of the source language, e.g. main
methods in Java. With this data, we can compute a
set of definitely used classes by finding all classes that
are transitively reachable in the dependency graph
from at least one entry point. All other classes are
possibly unused.

Some of these classes may, however, be loaded at
runtime via a reflection mechanism. Each time a class
is loaded this way, this corresponds to a missing link
in the dependency graph between the class that per-
forms the loading and the class that is being loaded.
To increase the precision of our analysis, we try to
identify these links in the next step and improve our
dependency model with them.

This requires knowledge about how the class load-
ing mechanisms work. A developer can often supply
this information directly. Large systems can, how-
ever, employ many different such mechanisms and it
is therefore easy to forget some. Thus, we use run-
time data to assist in this step. During the execution
of the application, we gather a list of all classes that
contain at least one method that was executed. These
classes are obviously used. Gathering this list can be
achieved easily with a profiler. Techniques such as
ephemeral profiling [4] even allow such profiling on
production systems without a major performance im-
pact. Furthermore, even running such a profiler on a
test system may be sufficient to record the necessary
information.

If we compare this list to the list of classes that are
statically not reachable from an entry point, we get
a list of classes that were loaded via reflection. For
at least one such class, the developer must manually
search the source code for the mechanism that loaded



it.
Once it is found, the information which classes may

be loaded by that mechanism can be fed back into the
static analysis. All of these classes are simply treated
as entry points and reachability is recalcluated. Start-
ing again with comparing the resulting list of unused
classes to the list of classes executed at runtime, the
iterative procedure begins anew. The list of possibly
unused classes is thus narrowed down in each step,
until no more classes remain that were executed at
runtime and are identified as unreachable statically.

Note that our approach cannot find classes that
are unused but are still referenced in the source code,
e.g. if all references to the class are enclosed within
if (false). This would require a more in-depth analy-
sis of the source code, e.g. with a data flow analysis.

We implemented our approach in Java using the
quality analysis engine ConQAT [1]. It facilitates the
analysis of quality characteristics of a software system
using a pipes and filters approach.

3 Evaluation
To evaluate our approach in practice, we performed
the analysis on three different systems: JabRef1 (81
kLOC), an Open Source Java reference manager; Con-
QAT (191 kLOC), which we had used to implement
the approach; A business information system written
in C# at Munich Re Group (360 kLOC). For these
systems, we answered the following research questions:

How many different mechanisms for reflection
do we find? In JabRef we identified 2, in ConQAT
3 different class loading mechanisms, and 7 different
ones in the business information system.

How much unused code do we find with our
approach? We found that among the three tested
systems, unused code as identified by our approach
ranged between 1.7 for JabRef and 9 percent of the
system size for the business information system. This
corresponded to between 2 and 22 percent of the
classes of those systems, since unused classes are often
shorter than used ones.

What are the precision of our approach? To
answer this question, we compiled a sample of classes
from ConQAT’s code base, which our approach had
identified as used or unused. We showed them to a
group of 6 ConQAT developers and asked them to
rate these as correct or incorrect findings. Using the
false positives (classes wrongly categorized as unused),
we calculated a precision of 72 percent.

How much of the unused code can actually be
removed from the system? There may be good
reasons for keeping unused code in a system. There-
fore, the amount of code that can be removed from a
system is not equal to the amount of unused code. We

1http://jabref.sourceforge.net/

asked the same ConQAT developers whether a class
they had previously identified as unused could also
be deleted. For about half of those classes, the study
subjects answered positively. Reasons for keeping a
class included a possible future use of the class, e.g.
for debugging, or that another system, which was not
considered in the analysis, used that code.

4 Conclusion
We presented a language-independent, iterative, semi-
automatic approach to detect unused classes in soft-
ware systems which combines static information ob-
tained from the source code and binaries of a system
with dynamic information obtained during its execu-
tion. Our analysis also deals with the problems posed
by the use of reflection in modern software systems.

Our studies showed that real-life software systems
can contain a large number of such class loading mech-
anisms, making it hard to identify unused code with-
out tool assistance. Runtime information about the
analyzed application can help with the identification
and improve analysis results.

In a case study, our approach categorised up to 9%
of the analysed systems’ code base as unused. Of these
classes, about half could actually be removed from the
affected system, saving about 16 kLOC. We therefore
estimate that for large systems, a significant amount
of code can be removed after applying our analysis.

Due to its semi-automatic nature, however, the ap-
proach cannot replace an expert as he is still needed
to accurately detect all reflection mechanisms used in
the application. In the future, more accurate runtime
information and language specific knowledge could be
used to further automate this step, giving the devel-
oper more guidance as to where the reflection occurrs
in the source code.

5 Acknowledgement
We would like to thank Sebastian Eder, Moritz Beller
and Thomas Kinnen for their helpful comments, the
ConQAT team for participating in the study, as well
as the Munich Re Group for providing one of their
systems as a study object.

References
[1] F. Deissenböck, M. Pizka, and T. Seifert. Tool support

for continuous quality assessment. In STEP ’05, 2005.
[2] S. Eder, M. Junker, E. Jürgens, B. Hauptmann,

R. Vaas, and K. Prommer. How much does unused
code matter for maintenance? In ICSE ’12, 2012.

[3] F. Tip, C. Laffra, P. F. Sweeney, and D. Streeter.
Practical Experience with an Application Extractor
for Java. In OOPSLA ’99, 1999.

[4] O. Traub, S. Schechter, and M. D. Smith. Ephemeral
Instrumentation for Lightweight Program Profiling.
Technical report, Harvard University, 2000.


