
Continuous Software Quality Control in Practice
Daniela Steidl∗, Florian Deissenboeck∗, Martin Poehlmann∗, Robert Heinke†, Bärbel Uhink-Mergenthaler†

∗ CQSE GmbH, Garching b. München, Germany
† Munich RE, München, Germany

Abstract—Many companies struggle with unexpectedly high
maintenance costs for their software development which are
often caused by insufficient code quality. Although companies
often use static analyses tools, they do not derive consequences
from the metric results and, hence, the code quality does not
actually improve. We provide an experience report of the quality
consulting company CQSE, and show how code quality can
be improved in practice: we revise our former expectations on
quality control from [1] and propose an enhanced continuous
quality control process which requires the combination of metrics,
manual action, and a close cooperation between quality engineers,
developers, and managers. We show the applicability of our
approach with a case study on 41 systems of Munich RE and
demonstrate its impact.

I. INTRODUCTION

Software systems evolve over time and are often maintained
for decades. Without effective counter measures, the quality
of software systems gradually decays [2], [3] and maintenance
costs increase. To avoid quality decay, continuous quality con-
trol is necessary during development and later maintenance [1]:
for us, quality control comprises all activities to monitor the
system’s current quality status and to ensure that the quality
meets the quality goal (defined by the principal who outsourced
the software development or the development team itself).

Research has proposed various metrics to assess software
quality, including structural metrics1 or code duplication, and
has led to a massive development of analysis tools [4]. Much of
current research focuses on better metrics and better tools [1],
and mature tools such as ConQAT [5], Teamscale [6], or Sonar2

have been available for several years.
In [1], we briefly illustrated how tools should be combined

with manual reviews to improve software quality continuously,
see Figure 1: We perceived quality control as a simple,
continuous feedback loop in which metric results and manual
reviews are used to assess software quality. A quality engineer –
a representative of the quality control group – provides feedback
to the developers based on the differences between the current
and the desired quality. However, we underestimated the amount
of required manual action to create an impact. Within five
years of experience as software quality consultants in different
domains (insurance companies, automotive manufacturers, or
engineering companies), we frequently experienced that tool

This work was partially funded by the German Federal Ministry of Education
and Research (BMBF), grant EvoCon, 01IS12034A. The responsibility for
this article lies with the authors.

1e. g., file size, method length, or nesting depth
2http://www.sonarqube.org/

Development System

Tools

Quality Measurement

Quality
Criteria

+

Reviewer

Quality

feedback

input

implements

Fig. 1. The former understanding of a quality control process

support alone is not sufficient for successful quality control
in practice. We have seen that most companies cannot create
an impact on their code quality although they employ tools
for quality measurements because the pressure to implement
new features does not allow time for quality assurance: often,
newly introduced tools get attention only for a short period of
time, and are then forgotten. Based on our experience, quality
control requires actions beyond tool support.

In this paper, we revise our view on quality control from [1]
and propose an enhanced quality control process. The enhanced
process combines automatic static analyses with a significantly
larger amount of manual action than previously assumed to be
necessary: Metrics constitute the basis but quality engineers
must manually interpret metric results within their context and
turn them into actionable refactoring tasks for the developers.
We demonstrate the success and practicability of our process
with a running case study with Munich RE which contains 32
.NET and 9 SAP systems.

II. TERMS AND DEFINITIONS

• A quality criterion comprises a metric and a threshold to
evaluate the metric. A criterion can be, e. g., to have a
clone coverage below 10% or to have at most 30% code
in long methods (e. g., methods with more than 40 LoC).

• (Quality) Findings result from a violation of a metric
threshold (e. g., a long method) or from the result of a
static code analysis (e. g., a code clone).

• Quality goals describe the abstract goal of the process
and provide a strategy how to deal with new and existing
findings during further development: The highest goal is to
have no findings at all, i. e., all findings must be removed
immediately. Another goal is to avoid new findings, i. e.,
existing findings are tolerated but new findings must not
be introduced. (III-B will provide more information).

III. THE ENHANCED QUALITY CONTROL PROCESS

Our quality control process is designed to be transparent
(all stakeholders involved agree on the goal and consequences



Developer System

implements

Tool 
Analysis

Quality 
Engineer

Quality Report

Task List

creates

creates

Project Manager

assigned
to

schedules

interprets

reviews

Dashboard
provides data

input

interprets

generates

Quality
Goal

interprets

1)

3)

3)

2)

2)

1)

3)

Fig. 2. The enhanced quality control process

of failures), actionable (measuring must cause actions) and
binding (quality engineers, developers, and managers follow
the rules they agreed on.). These following three main activities
reflect these conceptual ideas and are depicted in Figure 2.

1) The quality engineer defines a quality goal and specific
criteria for the underlying project in coordination with
management and in agreement with the developers.
Criteria are usually company-specific, the goal needs to
be adapted for each system. A common definition of the
quality goal and criteria makes the process transparent.

2) The quality engineer takes over responsibility to manually
interpret the results of automatic analyses. He reviews the
code in order to specify actionable and comprehensible
refactoring tasks at implementation level for the develop-
ers which will help to reach the predefined quality goal.
This makes the process actionable as metric results are
turned into refactoring tasks.

3) In certain intervals, the quality engineer documents which
quality criteria are fulfilled or violated in a quality report
and communicates it to the management. This creates
more quality awareness at management level. The project
manager reviews and schedules the tasks of the quality
engineer, making the process binding for management
(to provide the resources) and for the developers (to
implement the suggested refactorings).

In the following, we will discuss the process in detail. To
demonstrate the practicability of our approach, we combine
the description of the process with details from a running case
study of more than four years at Munich RE. When we enhance
the process description with specific information from Munich
Re, we use a ”@MunichRe” annotation as follows:

@Munich RE. The case study demonstrates how we apply the
quality control process to 32 .NET and 9 SAP software systems
mainly developed by professional software services providers
on and off the premises of Munich RE. These applications
comprise ∼11,000 kLoC (8,800 kLoC maintained manually,
2,200 kLoC generated) and are developed by roughly 150 to
200 developers distributed over multiple countries.

A. Quality Engineer

The quality engineer (QE) is in charge of interpreting the
metric results, reviewing the system, writing the report and

communicating it to developers and managers. The QE must
be a skilled and experienced developer: he must have sufficient
knowledge about the system and its architecture to specify
useful refactoring tasks. This role can be carried out by either
a member of the development team or by an external company.
Based on our experience, most teams benefit from a team-
external person providing neutral feedback and not being
occupied by daily development. We believe that the process’s
success is independent from an internal or external QE, but
dependent on the skills of the quality engineer.

@Munich RE. In all 41 projects of our case study, the CQSE
fulfills the tasks of a quality engineer who operates on site.
Due to regular interaction with the quality engineer, developers
perceive him as part of the development process.

B. Quality Goals

The right quality goal for a project constitutes the backbone
for a successful control process. Based on our experience, the
following four goals cover the range of different project needs.

QG1 (indifferent) Any quality sufficient – No quality
monitoring is conducted at all.

QG2 (preserving) No new quality findings – Existing
quality findings are tolerated but new quality findings
must not be created (or consolidated immediately).

QG3 (improving) No quality findings in modified code –
Any code (method) being modified must be without
findings, leading to continuous quality improvement
during further development, similar as the boy scouts
rule also used for extreme programming (”Always
leave the campground cleaner than you found it“ [7]).

QG4 (perfect) No quality findings at all – Quality findings
must not exist in the entire project.

@Munich RE. Among the 41 projects, 2 projects are under
QG1, 18 under QG2, 10 under QG3 and 11 under QG4.

C. Quality Criteria

The quality criteria depend on project type and technologies
used. The quality engineer is responsible for a clear com-
munication of the criteria to all involved parties, including
third-party contractors for out-sourced software development.

@Munich RE. For .NET projects, we use 10 quality criteria
based on company internal guidelines and best practices: code
redundancy, structural criteria (nesting depth, method length,
file size), compiler warnings, test case results, architecture
violations, build stability, test coverage, and coding guidelines
violations. For SAP systems, we use seven quality criteria
with similar metrics but different thresholds: clone redundancy,
structural criteria, architecture violations, critical warnings and
guideline violations.

D. Dashboard

As part of quality control, a dashboard provides a customized
view on the metric results for both developers and quality
engineers and makes the quality evaluation transparent (see



Figure 2). The dashboard should support the developer to fulfill
the quality goal of his projects and show him only findings
relevant to the quality goal: For QG2 and QG3, we define a
reference system state (baseline) and only show new findings
(QG2) or new findings and findings in modified code (QG3)
since then. Measuring quality relative to the baseline motivates
the developers as the baseline is an accepted state of the system
and only the relative system’s quality is evaluated.

@Munich RE. We use ConQAT as the analysis tool and dash-
board, which integrates external tools like FxCop, StyleCop,
or the SAP code inspector.

E. Quality Report

In regular time intervals, the quality engineer creates a quality
report for each project. The report gives an overview of the
current quality status and outlines the quality trend since the
last report: The report contains the interpretation of the current
analysis results as well as manual code reviews. To evaluate
the trend of the system’s quality, the quality engineer compares
the revised system to the baseline with respect to the quality
goal. He discusses the results with the development team. The
frequency of the quality report triggers the feedback loop
and is in accordance to the release schedule. The quality
engineer forwards the report to the project management to
promote awareness for software quality. This guarantees that
developers do not perceive quality control as an external short-
term appearance, but as an internal management goal of the
company.

@Munich RE. Quality reports are created for the majority of
applications every three or four months. Exceptions are highly
dynamic applications with five reports a year and applications
with little development activities with only one report a year.

F. Task List

Based on the differences in the current findings and the
quality goal, the quality engineer manually derives actionable
refactoring tasks3. He forwards these tasks to the developers
and the project manager who can decide to accept or reject a
task. For accepted refactorings, the project manager defines a
due date. For rejected refactorings, he discusses the reasons
for rejection with the quality engineer. Before the next report
is due, the quality engineer checks that developers completed
the scheduled tasks appropriately. The task list constitutes the
focal point in the combination of tools, quality engineers, and
management. The success of the process depends on the ability
of the quality engineer to create tasks that effectively increase
the system’s quality.

@Munich RE. The quality engineer manually inspects all
findings relevant to the project’s quality goal. He creates tasks
for findings he considers to hamper maintainability. It remains
up to him to black-list findings that are not critical for code
understanding or maintenance.

3e. g., Remove the redundancy between class A and B by creating a super
class C and pull up methods x,y,z)

TABLE I
SAMPLE OBJECTS FOR IMPACT ANALYSIS

Name QG Quality Control Size # Developers
A 3 4 years 200 kLoC 4
B 3 5 years 276 kLoC 5
C 3 3 years 341 kLoC 4
D 4 1.5 years 15 kLoC 2

IV. IMPACT @MUNICH RE

Proving the process’ success scientifically is difficult for
several reasons: First, we do not have the complete history of
all systems available. Second, we cannot make any reliable
prediction about the quality evolution of these systems in case
our process would not have been introduced. Consequently, we
provide a qualitative impact analysis on four sample systems
with an evolution history of up to five years rather than
a quantitative impact analysis of all 41 systems. For these
samples, we are able to show the quality evolution before and
after the introduction of quality control.

First, we chose the number clones, long files, long methods,
and high nesting findings as one trend indicator as these quality
findings require manual effort to be removed – in contrast to,
e. g., formatting violations that can be resolved automatically.
We refer to this trend as the overall findings trend. Second,
we provide the clone coverage trend and compare both trends
with the system size evolution, measured in SLoC. All trends
were calculated with Teamscale [6].4

We show these trends exemplary for the three systems with
the longest available history (to be able to show a long-term
impact) and with a sufficiently large development team size (to
make the impact of the process independent from the behavior
of a single developer). As these three systems are all QG3, we
choose, in addition, one QG4 system (Table I). Figures 3–6
show the evolution of the system size in black, the findings trend
in red (or gray in black-white-print), and the clone coverage
in orange (or light gray in black-white-print). The quality
controlled period is indicated with a vertical line for each
report, i. e., quality control starts with the first report date.

Figure 3 shows that our quality control has a great impact
on System A: Prior to quality control, the system size grows
as well as the number of findings. During quality control, the
system keeps growing but the number of findings declines
and the clone coverage reaches a global minimum of 5%.
This shows that the quality of the system can be measurably
improved even if the system keeps growing.

For System B, quality control begins in 2010. However,
this system has already been in a scientific cooperation
with the Technische Universitaet Muenchen since 2006, in
which a dashboard for monitoring the clone coverage had
been introduced. Consequently, the clone coverage decreases

4In contrast to ConQAT, Teamscale can incrementally analyze the history
of a system including all metric trends within feasible time. Hence, although
ConQAT is used as dashboard within Munich Re, we used Teamscale to
calculate the metric trends.



2007 2008 2009 2010 2011 2012 2013 2014 2015

100k

150k

200k
SLoC

1,200

1,400

1,600

1,800

Findings

4%

6%

8%

10%
Clone Coverage

Fig. 3. System A

2007 2008 2009 2010 2011 2012 2013 2014 2015
150k

200k

250k

SLoC

2,000

2,200

2,400

Findings

4%

6%

8%

10%

12%

Clone Coverage

Fig. 4. System B

continuously in the available history (Figure 4). The number
of findings, however, increases until mid 2012. In 2012, the
project switched from QG2 to QG3. After this change, the
number of findings decreases and the clone coverage settles
around 6%, which is a success of the quality control. The
major increase in the number of findings in 2013 is only
due to an automated code refactoring introducing braces that
led to threshold violations of few hundred methods. After this
increase, the number of findings start decreasing again, showing
the manual effort of the developers to remove findings.

For System C (Figure 5), the quality control process shows
a significant impact after two years: Since the end of 2012,
when the project also switched from QG2 to QG3, both the
clone coverage and the overall number of findings decline. In
the year before, the project transitioned between development
teams and, hence, we only wrote two reports (July 2011 and
July 2012).

System D (Figure 6) almost fulfills QG4 as after 1 year
of development, it has only 21 findings in total and a clone
coverage of 2.5%. Technically, under QG4, the system should
have zero findings. However, in practice, exactly zero findings
is not feasible as there are always some findings (e. g., a long
method to create UI objects or clones in test code) that are
not a major threat to maintainability. Only a human can judge
based on manual inspection of the findings whether a system
still fulfills QG4, if it does not have exactly zero findings. In
the case of System D, we consider 21 findings to be few and
minor enough to fulfill QG4.

To summarize, our trends show that our process leads
to actual measurable quality improvement. Those trends go
beyond anecdotal evidence but are not sufficient to scientifically
proof our method. However, Munich RE decided only recently
to extend our quality control from the .NET area to all SAP

2011 2012 2013 2014

320k

330k

340k

SLoC

4,400

4,600

4,800

Findings

14%

16%

18%

Clone Coverage

Fig. 5. System C

2013 2014
0k

5k

10k

15k

SLoC

0

20

40

Findings

0%

5%

10%

15%
Clone Coverage

Fig. 6. System D

development. As Munich RE develops mainly in the .NET and
SAP area, most application development is now supported by
quality control. The decision to extend the scope of quality
control confirms that Munich Re is convinced by the benefit
of quality control. Since the process has been established,
maintainability issues like code cloning are now an integral
part of discussions among developers and management.

V. CONCLUSION

Quality analyses must not be solely based on automated
measurements, but need to be combined with a significant
amount of human evaluation and interaction. Based on our
experience, we proposed a new quality control process for
which we provided a running case study of 41 industry projects.
With a qualitative impact analysis at Munich RE we showed
measurable, long-term quality improvements. Our process
has led to measurable quality improvement and an increased
maintenance awareness up to management level at Munich Re.

REFERENCES

[1] F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner, B. M. y Parareda,
and M. Pizka, “Tool support for continuous quality control,” in IEEE
Software, 2008.

[2] D. L. Parnas, “Software aging,” in ICSE ’94.
[3] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus, “Does

code decay? Assessing the evidence from change management data,” IEEE
Trans. Software Eng., 2001.

[4] P. Johnson, “Requirement and design trade-offs in hackystat: An in-process
software engineering mea- surement and analysis system,” in ESEM’07.

[5] F. Deissenboeck, M. Pizka, and T. Seifert, “Tool support for continuous
quality assessmenet,” in STEP’05.

[6] L. Heinemann, B. Hummel, and D. Steidl, “Teamscale: Software quality
control in real-time,” in ICSE’14.

[7] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship,
2008.


