
FAKULTÄT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

A Qualitative Study of Indistinguishability
Obfuscation

Nils Kunze

FAKULTÄT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

A Qualitative Study of Indistinguishability
Obfuscation

Eine qualitative Studie zu
"indistinguishability obfuscation"

Author: Nils Kunze
Supervisor: Prof. Dr. Alexander Pretschner
Advisor: Dr. Martin Ochoa, Sebastian Banescu
Submission Date: September 15, 2014

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Munich, September 15, 2014 Nils Kunze

Acknowledgments

I want to thank my advisors Martin Ochoa and Sebastian Banescu for allowing me to
approach this highly interesting topic. They gave me great guidance and pushed me
when I did not work as much as I should have.

I also want to thank my friends for bearing with my complaints when I again piled
up too much work and my flatmates for always cheering me up. You are the best! A
special thanks goes out to Sophie for reviewing a very ugly first draft.

Abstract

Code obfuscation is a powerful tool to prevent reverse engineering which is beneficial for
software authors and software users alike. Despite their importance, most obfuscation
methods used in practice today do not have any formal security guarantees, making it
difficult to trust in their resilience. These formally secure constructions would not only
bring security benefits, but also have highly interesting applications. Examples of such
applications include multi-party computation or devising new encryption schemes
with desirable properties such as deniable or functional encryption.

Recently Garg et al. [1] proposed the first candidate construction for an obfuscator
which accomplishes the notion of indistinguishability obfuscation. This thesis focuses
on examining the memory and time overheads that are implied by the suggested
construction, with the goal to understand its practical applicability. We implemented
the described construction as closely as possible in Python, using the libraries of Sage [2]
to deal with the more advanced algebraic objects. We then determined the runtime and
memory costs of generating different steps in the construction for circuits of different
sizes as well as their implied overhead during evaluation.

We find that we are not able to actually generate a complete obfuscation for any
but the smallest circuits, because the growth in memory is too big and the generation
too slow. We project that even for circuits with less than 10 gates the obfuscation
process could take longer than 107 years. Since interesting circuits are usually orders of
magnitudes bigger than that, we conclude that the overhead of this candidate is too
high to have any meaningful practical applications just yet.

iv

Zusammenfassung

Obfuskatoren schützen sowohl Software Autoren als auch Nutzer, indem sie Reverse
Engineering verhindern oder erschweren. Trotz ihrer Wichtigkeit gibt es bis heute keine
Obfuskatoren, deren Sicherheit formell abgesichert ist. Wenn es Obfuskatoren gäbe,
deren Sicherheit formell bewiesen ist, hätten diese zahlreiche interessante Anwendun-
gen, zum Beispiel im Bereich von Multi-Party Computation oder zum Entwickeln von
neuen Verschlüsselungsmethoden.

Im letzten Jahr haben Garg et al. [1] eine Konstruktion vorgestellt, die den formellen
Anforderungen von Indistinguishability Obfuscation entspricht. In dieser Arbeit un-
tersuchen wir den Speicherverbrauch und den zeitlichen Mehraufwand dieser Kon-
struktion mit dem Ziel die praktische Anwendbarkeit zu ermitteln. Wir haben die
beschriebene Konstruktion so nahe wie möglich in Python implementiert und dabei
Sage [2] benutzt um kompliziertere algebraische Objekte zu behandeln. Im Anschluss
haben wir die Laufzeit und den Speicherbedarf zum Generieren verschiedener Zwis-
chenschritte der Konstruktion untersucht und analysiert wie sich die Laufzeit verhält.

Aufgrund des extrem hohen Speicherbedarfs und der sehr langsamen Generation,
konnten wir die Konstruktion nur auf sehr kleine Schaltkreise anwenden. Unsere
Hochrechnungen ergeben, dass das Verschleiern von Schaltkreisen mit weniger als 10
Gattern bereits länger als 107 Jahre dauern würde. Da praktisch relevante Schaltkreise
aus wesentlich mehr Gatter bestehen, ist unsere Schlussfolgerung, dass diese Konstruk-
tion in ihrer jetzigen Form nicht praktisch anwendbar ist.

v

Contents

Acknowledgments iv

Abstract v

Zusammenfassung vi

1 Introduction 1
1.1 What is Obfuscation? . 1
1.2 State of the Art . 2
1.3 Formally Secure Obfuscation . 3

1.3.1 Black Box Obfuscation . 4
1.3.2 Indistinguishability Obfuscation 5

1.4 Thesis Intention . 6

2 Preliminaries 7
2.1 Circuits . 7

2.1.1 Nick’s Class (NC) . 8
2.2 Notions of Obfuscation . 8
2.3 Branching Programs . 10

2.3.1 Barrington’s Theorem . 12
2.4 Kilian’s Protocol . 14
2.5 Universal Circuits . 15
2.6 Multilinear Jigsaw Puzzles . 15

2.6.1 Formalized . 16

3 Candidate Construction for NC1 Circuits 17
3.1 Underlying Idea . 17
3.2 Problems and Solutions . 18

3.2.1 Attacks Not Respecting the Algebraic Structure 18
3.2.2 Partial Evaluation Attack . 19
3.2.3 Mixed Input Attacks . 21

3.3 Complete candidate . 22

vi

Contents

3.4 Limitations . 24

4 Implementation 26
4.1 Circuits . 26
4.2 Universal Circuits . 27

4.2.1 Construction Based on Building Blocks 27
4.2.2 Generating the Binary Description of a Circuit 30

4.3 Circuit to Branching Program . 32
4.4 Randomized Branching Programs . 34
4.5 Multilinear Jigsaw Puzzles . 34

4.5.1 In Practice . 36
4.6 Fixing Programs . 36

5 Experiments 38
5.1 Generation . 38

5.1.1 Universal Circuit Generation . 39
5.1.2 Applying Barrington’s Theorem 39
5.1.3 Randomizing the Branching Programs 40
5.1.4 Encoding with Multilinear Jigsaw Puzzles 42
5.1.5 Generation Analysis . 43

5.2 Evaluation . 44
5.3 Fixing Universal Programs . 46

6 Conclusion 47
6.1 Potential Improvements . 47
6.2 Practicality of The Candidate . 48

Bibliography 50

vii

1 Introduction

Whenever a software author would like to distribute his program, he has to make it
available to his users in some form or another. Depending on the form he chooses,
it can become susceptible to a variety of attacks. The most secure form would be to
only make the software available for querying on a server. While it would in theory be
possible, this is normally prevented by the performance impact, availability problems or
other real world issues. Whenever a server-based solution is not possible, a distribution
in binary form is the next secure one, because it is difficult for a human to extract
any information from a computer-executable binary. Nonetheless, it is possible that
a malicious attacker might try to analyze the binary in order to gain some additional
power or knowledge, a process which is known as reverse engineering.

There are numerous reasons as to why an attacker would have an interest in reverse
engineering a given program. As an example imagine a shareware program that is
limited in functionality or can only be used for a limited amount of time. In order
to be able to use the program without paying, a user might use reverse engineering
in an attempt to remove or trick the mechanism that is enforcing these restrictions.
Another scenario is that the program contains some kind of new technology (e.g. a
new algorithm or data structure) so that a competitor of the releasing party might try
to gain a competitive advantage by understanding the code and extracting the new
technology. While there are legal defenses that can prevent the theft of intellectual
property, they are sometimes not enough, because infringement can be exceedingly
difficult to detect and pursue (legal costs). Finally, criminals trying to attack other users
of the same program often use reverse engineering to find bugs in the code and to
understand how to best exploit them.

1.1 What is Obfuscation?

The process of trying to impede reverse engineering is called obfuscation. Code
obfuscation tries to maintain the functionality of the code, while at the same time
making it harder to understand the program. As an example, in Figure 1.1 you can see
a heavily obfuscated piece of C code, which stems from the IOCCC (The International
Obfuscated C Code Contest). Understanding the behavior of this code snippet is vastly
more difficult than understanding ’normal’ C code, because it removed nearly all

1

1 Introduction

whitespace, reduced variable names and generally uses a lot of clever tricks aimed at
making the understanding harder. Even so, the code is still doing what it was originally
developed to do, in this case it is an ASCII/Morse code translator. While this kind
of obfuscation very likely has no impact on the difficulty of reverse engineering the
compiled binary, it is quite useful to illustrate the general idea of obfuscation: It tries to
make it hard to understand the functionality without interfering with it.

#include<stdio.h> #include<string.h> main(){char*O,l[999]=

"'`acgo\177~|xp .-\0R^8)NJ6%K4O+A2M(*0ID57$3G1FBL";while(O=

fgets(l+45,954,stdin)){*l=O[strlen(O)[O-1]=0,strspn(O,l+11)];

while(*O)switch((*l&&isalnum(*O))-!*l){case-1:{char*I=(O+=

strspn(O,l+12)+1)-2,O=34;while(*I&3&&(O=(O-16<<1)+*I---'-')<80);

putchar(O&93?*I&8||!(I=memchr(l , O , 44)) ?'?':I-l+47:32);

break;case 1: ;}*l=(*O&31)[l-15+(*O>61)*32];while(putchar(45+*l%2),

(*l=*l+32>>1)>35);case 0:putchar((++O,32));}putchar(10);}}

Figure 1.1: ASCII/Morse code translator by Frans van Dorsselaer, winner of the 1998
IOCCC, taken from [3]

Code obfuscation is used to prevent the exploitation of programs by making it harder
to find and exploit bugs. Nowadays using it is often a practical necessity, because
languages like Java can be easily decompile if it not used. This can cause big problems,
not only for the users of the software, but also for the authors, when their non-free
programs are cracked and freely distributed over the Internet.

1.2 State of the Art

In order to obfuscate a program, one needs to transform the code in a way that does not
change its functionality, but makes reverse engineering of the program harder. There
are a number of techniques which are frequently used nowadays and they can generally
be classified into one of the following classes[4]:

Control flow obfuscation The general idea is to modify the programs control flow in
a way that thwarts analysis. One technique that falls into this category is control flow
graph flattening [5], which effectively raises the number of possible paths in a program,
thus making static analysis much harder.

Another option is the insertion of opaque predicates [6] at arbitrary positions in the
code. Opaque predicates always evaluate to the same value, but it is hard to calculate

2

1 Introduction

that value statically. Thus it is possible to add a lot of conditional jumps to the program,
whose behavior is difficult to understand statically, while always taking the same path
during runtime.

Data obfuscation In order to make it more difficult for an attacker to understand
where in the program a specific value is used in what way, it is possible to apply a
number of data transformations. For example it is possible to change the encoding, to
shuffle data that was ordered originally, or to merge data that doesn’t belong together.
Finally, it is possible to encrypt the data that is stored in memory and to only decrypt it,
when it is accessed. Of course the key for decryption has to be available to the program
in some way, which means that it is possible for an attacker to recover it, but static
analysis will be much harder and one can try to hide the key in clever ways.

Code encryption Corresponding to encrypting data, it is also possible to encrypt the
code of the program [7]. Just as with data encryption, there is a decryption routine
with an embedded key in the clear which will then decrypt the rest of the program on
the fly as needed. Again, this does help against static analysis, but during execution
the actual code will be available in the clear, thus it is not too difficult to break.

There are a lot of different solutions [8][9][10][11] which make use of techniques
which fall into one ore more of these categories, but all of them can be broken with
dynamic, sometimes even with static attacks. This is not catastrophic, in the sense that
these techniques fail to accomplish what they set out to do, namely making the progress
of reverse engineering more difficult. It does point to the underlying problem though,
which is, that these methods cannot offer meaningful formal security guarantees, so
that we cannot have any confidence in their resilience. We can hope that they do slow
down an attacker a bit, but it is difficult to quantify by how much if at all.

1.3 Formally Secure Obfuscation

In order to have reasonable confidence in the security of an obfuscator, we would like
it to have a rigorous definition of security, which offers us a relation to mathematical
hardness assumptions. The goal is to have a constructions for which we know, that if it
can be broken, then we found an algorithm for a problem that is (currently) known to
be difficult (e.g. efficiently factoring hard integers [12][13]). In order to reach such a
construction, first we need a clear mathematical definition about what it even means
for an obfuscator to be secure.

3

1 Introduction

1.3.1 Black Box Obfuscation

The notion of black box obfuscation captures the most natural definition of obfuscation.
It requires that an obfuscator makes a program ’unintelligible’, while at the same time
preserving its functionality. Here ’unintelligible’ means, that everything that can be
computed given the obfuscated program, should also be efficiently computable only
given oracle access - that is only input-output pairs. This is the so called "virtual black
box" property and it essentially requires that the obfuscation is so good, that having an
obfuscated version of the program is no better to an attacker than if there was a server
that he can query on inputs on his choice. Additionally the obfuscator should only add
a polynomial slowdown factor to the execution of the program.

Quite intuitively this kind of obfuscation is only interesting for non-learnable pro-
grams. A learnable program is a program whose complete source code (or behavior)
can be determined by looking at a finite set of input-output pairs. A simple example
of a learnable program would be a program that prints out its own source code (also
known as ’quine’[14]). Even an obfuscator that does not change the program he gets as
an input at all would achieve the virtual black box property for all learnable programs,
because just having oracle access would be enough for any attacker to recover the
source code, making it unnecessary to hide it at all.

If we could construct an obfuscator with the capabilities described above, there
would be a lot of interesting applications. Obviously it would yield strong software
protection against reverse engineering as discussed above, but there are several other
highly interesting applications in cryptography as well. For example would it be
possible to turn any public-key cryptosystem into a homomorphic encryption scheme.
To do so, one would simply need to construct a program that first decrypts the inputs
it receives with an embedded key, then applies the required operations and finally
encrypts the result again with the same key. Then just take this program and obfuscate
it. Since the obfuscation makes it impossible to recover the embedded key, this would
create a secure homomorphic encryption scheme. The same trick can be used to turn
a private-key encryption scheme into a public-key one. Simply create a program that
uses an embedded key to encrypt its inputs using the private-key encryption scheme
and obfuscate it. Everybody will be able to encrypt messages using the obfuscated
program, but only the owner of the private key will be able to decrypt messages, since
it is not possible to recover the key.

Unfortunately Barak, et al. showed [3] that black box obfuscation is not possible
in the general sense. In fact, they show by construction, that there exists a family
of functions that is inherently unobfuscatable. For any function from this family,
there exists some property which can always be computed if you have access to a
program that computes the function, but it cannot be determined by just looking at the

4

1 Introduction

input-output pairs. The result is strong, because every obfuscator fails completely on
these programs. It is not even possible to hide a single bit of information about these
programs, which effectively means that one could recover the complete source code.
Additionally these programs are strongly non-learnable, which in a way makes them
close to the programs one would like to obfuscate in practice. On the other hand, the
result is weak, because obfuscation only fails on some programs. In fact there might be
a large class of programs that are indeed black box obfuscatable.

1.3.2 Indistinguishability Obfuscation

All in all the impossibility result presented in the previous sections shows that in
order to gain a meaningful definition of secure obfuscation, it is necessary to change
something. Basically there are two options: either restrict the class of functions that need
to be obfuscated, so that the restricted class excludes the functions that were shown to
be unobfuscatable, or relax the security requirements of the obfuscator. It is not exactly
clear what other functions might be unobfuscatable in the black box sense, thus it makes
more sense to strive for a definition of obfuscation that can be achieved for general
programs. This is where the notion of indistinguishability obfuscation comes into play,
which only requires that given two similar sized circuits which implement the same
function, their obfuscations should be computationally indistinguishable. To clarify,
given two programs P0 and P1 which are functionally equivalent, i.e. P0(x) = P1(x) for
all x, if one applies an indistinguishability obfuscator to both of them, it should not be
possible to determine which obfuscated program stems from which original one.

It is unclear, what kind of security this definition can actually offer in practice. On
the other hand it has been shown[15] that indistinguishability obfuscation achieves the
notion of best-possible obfuscation, offering at least ’a strong philosophical justifica-
tion’[1]. Best possible obfuscation requires that the obfuscated program leaks as little
information as any other program that implements the same functionality and is of
similar size. This means that it is indeed the best possible obfuscation for any program
that implements this functionality.

One practical use of indistinguishability obfuscation is the removal of software
watermarks. When handing out software to different people, it is possible to mark each
copy uniquely without interfering with the functionality of the software, for example
by changing the order of independent operations. This kind of watermark can then for
example be used to understand who uploaded the program to a file-sharing site. Since
watermarks are usually in the code, but do not have any impact on the functionality of
the program, simply applying an indistinguishability obfuscator to it, will remove the
software watermarks.

Apart from this, the practical uses of indistinguishability obfuscation are somewhat

5

1 Introduction

unclear, but there are a lot of theoretical cryptographic constructions that can be
built from them, so many in fact that some go as far as envisioning it as a ’central
hub for cryptography’ [16]. In fact it is at least possible to construct the following:
Functional encryption [1], deniable encryption, public key encryption, non-interactive
zero knowledge proofs and oblivious transfer (all presented in [16]).

1.4 Thesis Intention

Quite recently there was a breakthrough in the study of obfuscation, when Sanjam Garg,
Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai and Brent Waters presented a
candidate construction for indistinguishability obfuscation for all circuits. Until then it
was actually not know, how to construct such an obfuscator. Especially interesting is
that this construction might even be a black box obfuscator for a large class of circuits -
namely all that are not excluded by the impossibility result. While it is encouraging
to see such a big step forward in the area of obfuscation, we were interested in the
question of practicality of this construction. Even the authors themselves say:

"While our current obfuscation construction runs in polynomial-time, it is
likely too inefficient for most practical problems."

The goal of this thesis is to understand what performance overhead one would have to
expect when working with this construction. Even if it is indeed too slow to obfuscate
a whole program, there might be applications where the tradeoff between performance
and security is indeed worth it, especially when one only obfuscates small parts of the
whole program.

6

2 Preliminaries

There are a number of mathematical constructions and principles that will be used in
the construction of the candidate obfuscator for NC1 circuits. They will be presented in
this chapter.

When x ∈ {0, 1}n is a bitstring of length n, xi will mean the value of the bit at position
i. PPT is a shorthand for probabilistic polynomial-time Turing machine. A function
a(n) is called negligible, if it grows slower than any inverse polynomial. That is for
every positive polynomial p(n), there exists some n0 so that for all n > n0 it holds that
f (n) < 1

p(n) . When M is a Turing machine and f a function, we write M f (·) to mean
the execution of M with oracle access to f .

2.1 Circuits

Circuits are a model of computation that is commonly used in cryptographic construc-
tions, because they are reasonably powerful while still being relatively simple. Their
power stems from their universality which means that it is possible to express any
function using circuits. On the other hand, their simplicity enables us to focus on the
core of the problem while leaving aside inessential details.

Definition 1 (Circuit). A circuit is a labeled directed acyclic graph. The vertices of the
graph with in-degree > 0 are called gates and are labeled with {¬,∧,∨}, while those
vertices with in-degree 0 are called inputs to the circuit and labeled with x1, ..., xl . Gates
labeled as ¬ must have an in-degree of 1 and all others must have an in-degree of 2.
We call those gates with out-degree 0 the outputs of the circuit. The size of a circuit is
the total number of gates, while the depth of a circuit is the length of the longest path
from any input to any output gate, that exists in the circuit.

To evaluate a circuit C one assigns values from {0, 1} to all of the inputs of the circuit
and then recursively evaluates each of its gates, that is each gates computes the function
that it is labeled with over its inputs. The value of the complete circuit is then defined
as the value of its output gates.

For ease of notation we write C(a) with a ∈ {0, 1}l to mean that input xi will be
assigned value ai, before the circuit will be evaluated. It is possible to understand

7

2 Preliminaries

a circuit with l inputs and k outputs as computing a function from {0, 1}l to {0, 1}k.
Usually the input size for a function is not fixed in advanced, thus in order to describe
a general function from {0, 1}∗, it is customary to consider circuit families. A circuit
family is a set of circuits {Ci} with i ∈N, where each circuit Ci computes the function
for i inputs.

2.1.1 Nick’s Class (NC)

NC is a circuit complexity class named after Nick Pippenger (’Nick’s Class’), who first
defined the class and did a considerable amount of research on it [17]. NC contains
the circuits with l inputs and depth in O(logc l) where c ∈N. An equivalent definition
of NC describes it as the set of decision problems which are efficiently solvable by
a parallel computer. This requires that a computer with a polynomial number of
processors must be able to solve the problems in polylogarithmic time. It is known
that NC ⊆ P, because it is possible to simulate parallel computers with sequential ones.
On the other hand it is unknown whether NC = P, but it is thought to be improbable
because there are probably problems in P that cannot be sped up by using parallelism.

It is useful to further categorize NC into subsets NCi, where each NCi corresponds
to the set of decision problems solvable by circuits with l inputs, a polynomial number
of gates (where each gate has a maximum of two inputs) and of depth O(logi l). It does
then hold that NC =

⋃
i∈N NCi.

2.2 Notions of Obfuscation

This section contains formalizations of the notions of obfuscation that were mentioned
in the introduction.

Definition 2 (Black box obfuscator). A PPT O is a black box obfuscator for a circuit
family Cλ if it satisfies the following conditions:

• (Functionality preserving) For all security parameters λ ∈N, all circuits C ∈ Cλ

and all inputs x it holds that

Pr[C′(x) = C(x) : C′ ← O(λ, C)] = 1

• (Polynomial slowdown) For all security parameters λ ∈N and all circuits C ∈ Cλ,
|O(λ, C)| ≤ p(|C|) where p is some polynomial.

• ("virtual black box") For every PPT A there exists another PPT S and a negligible
function a, so that:

|Pr[A(O(λ, C)) = 1]− Pr[SC(1C) = 1]| ≤ a(|C|)

8

2 Preliminaries

The virtual black box property requires that for every predicate that the adversary A
can compute from the obfuscation of the circuit, there exists a simulator S which can
compute the same predicate only using oracle access. While the adversary A could
actually compute a variety of things, e.g. an output distribution, a relation or a function
over the obfuscated program, it is easiest to compute a predicate, i.e. a function with
image {0, 1}, which is the same as an arbitrary property of the program.

While this definition of Black Box Obfuscation is already too weak for a lot of the
practical applications discussed in section 1.3.1, even this weak definition is impossible
in the general sense. There is a proof presented in [3] which shows by construction that
there exists a family of functions Fk that is inherently unobfuscatable in the black box
sense. This means that there exists a predicate π : F → {0, 1} such that for any program
that computes a function f ∈ Fk, π(f) can be computed efficiently. On the other hand,
no efficient algorithm can compute π(f) with probability much better than guessing if
it only has oracle access. Formally for any PPT S, Pr[S f (1k) = π(f)] ≤ 1

2 + a(k) where
a is some negligible function and f ∈ Fk. On the other hand there exists another PPT
A so that for any f ∈ Fk and any circuit C f which computes f it holds: A(C f) = π(f).
The construction of the family Fk relies on the existence of one-way function, but if
black box obfuscators exist, one-way function also exist, which causes a contradiction.
For the full construction we refer to [3].

The impossibility of Black Box Obfuscation brings us to the notion of Indistinguisha-
bility Obfuscation, which is the one that is actually relevant for this thesis.

Definition 3 (Indistinguishability Obfuscator). A PPT iO is called an indistinguishabil-
ity obfuscator for a family of circuits Cλ, if it meets the functionality preserving and
polynomial slowdown properties described above and additionally has the following
property:

• (indistinguishability obfuscation) For every PPT distinguisher D, all security
parameters λ ∈ N and all circuits C0, C1 ∈ Cλ where C0(x) = C1(x) for all x,
there exists a negligible function α so that

|Pr[D(iO(λ, C0)) = 1]− Pr[D(iO(λ, C1)) = 1]| ≤ α(λ)

For the understanding of this requirement it can be helpful to recall the distinguisher
game which is often used to describe properties of cryptographic constructs. Here
the adversary tries to distinguish the obfuscations of two programs. He hands two
programs C0, C1 which both compute the same function to the obfuscator, who then
applies the indistinguishability obfuscation to them and returns only one. The adversary
then needs to decide if he received an obfuscation of C0 or C1. Essentially the last
property requires that the adversary cannot tell which program he got in return with
probability much better than guessing.

9

2 Preliminaries

As mentioned in chapter 1.3.2, any indistinguishability obfuscator also attains another
notion of obfuscation, namely best possible obfuscation.

Definition 4 (Best-possible obfuscator). A PPT bO is called best-possible obfuscator for
a family of circuits Cλ, if it preserves the functionality and only implies a polynomial
slowdown as described above and also has the following property:

• (best-possible obfuscation) For every PPT learner L there exists a PPT simulator
S, so that for any two circuits C0, C1 ∈ Cλ where C0(x) = C1(x) for all inputs x
and |C0| = |C1| it holds that the two output distributions L(bO(λ, C0)) and S(C1)

are indistinguishable.

To paraphrase the last property: Whatever information one can extract efficiently
from the obfuscation of C0, one can also learn (simulated) from every other circuit
that has the same size and functionality. Thus whatever information the best-possible
obfuscator cannot hide, can be extracted from any circuit that implements the same
functionality, making it in fact the best obfuscation that is possible.

To show that every efficient indistinguishability obfuscator is also an efficient best-
possible obfuscator consider the following: Let iO be an efficient indistinguishability
obfuscator. Then for every learner L, let S be the simulator that receives C1 as an input,
generates iO(C1) and then starts L(iO(C1)). Since C0(x) = C1(x) for all inputs x, it
follows that the output of L(iO(C0)) and S(C1) = L(iO(C1)) must be indistinguishable,
because iO(C0) is indistinguishable form iO(C1). If the learner was able to extract some
more information from one of them, it would be possible to distinguish them using that
information and iO would not be an indistinguishability obfuscator - a contradiction.
For a more in depth treatment of this property of indistinguishability obfuscators, we
refer to [15].

2.3 Branching Programs

Branching Programs are yet another model of computation that will be used in this
paper. In order to understand their powers and limitations, it is useful to start with the
notion of binary decision diagrams, which can be seen as a compressed way to express
boolean functions.

Definition 5 (Binary Decision Diagram). A binary decision diagram is a rooted, di-
rected, acyclic graph, with all but two nodes being labeled with one of the input
variables. The last two nodes are called terminal nodes and have an out-degree of 0.
The first one is labeled as ’true’ and the other one as ’false’. Every node besides the
terminal nodes have an out-degree of 2 and these two outputs are labeled true or false
respectively.

10

2 Preliminaries

In order to evaluate a binary decision diagram on a particular assignment of the
input variables, we follow the path from the root according to the values of the input
bits. More exactly, for each node that we come across, we look at the value of the input
variable corresponding to the label of the node. If it is true, we take the edge labeled as
true, otherwise the one labeled as false. The label of the terminal node that is reached
when following this procedure, determines the result of the evaluation of the binary
decision diagram on that particular input.

We define one layer of a binary decision diagram by those nodes with the same
distance from the root node. The width of a binary decision diagram is the maximum
number of nodes in any layer.

To present the transformation of Binary Decision Diagrams to Branching Programs,
it is useful to only look at binary decision diagrams that conform with the following
restrictions:

• all layers have the same number of nodes

• all nodes of one layer are labeled with the same variable

• between two adjacent layers the edges labeled as true form a permutation, as do
the ones labeled as false

This brings us to the definition of branching programs:

Definition 6 (Branching Program). A Branching Program is a sequence of instructions
of the form < inp(i), σ, τ >, where inp(i) ∈ [l] tells us which bit to look at in step
i and σ and τ are permutations. Additionally the Branching Program contains two
permutations A0 and A1. To evaluate a branching program on a binary input X =

x1x2...xl with each xi ∈ {0, 1}, we first evaluate each instruction by looking at input bit
xinp(i) and choosing σ if it is 0 and τ otherwise. This yields a sequence of permutations,
that can be reduced by chaining them all together. If the resulting permutation is equal
to A0 the Branching Program evaluates to 0, if it is equal to A1 it evaluates to 1.

We call the number of instructions in a Branching Programs its length n. The length
of each of the permutations is the width of the Branching Program.

It is obvious that the definition of Branching Programs is identical to the restricted
Binary Decision Diagram as described above. The permutation that is formed by the
edges labeled as false are the first permutation in an instruction, while permutation
formed by the true edges is the second one. The variable that the nodes in that layer
look at is the value of inp(i).

11

2 Preliminaries

Figure 2.1: A Binary Decision Diagram ordered by layers and an example for permuta-
tions between layers (source: [18])

2.3.1 Barrington’s Theorem

Barrington’s Theorem proves that branching programs of bounded width and poly-
nomial size are exactly NC1. This result was surprising, when it was first published,
because it showed that computation in constant space is more powerful than expected.
Especially when looking at the majority function, it is intuitive why Barrington’s result
was surprising: One would expect that to compute the majority we need an accumulator
with O(log l) bits, but instead passing O(1) bits is enough.

The following proof closely follows the one presented in [19]

Theorem 1 (Barrington’s Theorem). For any fan-in-2 Boolean circuit C with depth d, there
exists a branching program of constant width and length smaller than 4d that computes the
same function.

Definition 7 (5-cycle recognition). A program P in this proof is a slightly simplified
version of branching program of width 5 which do not output 0 or 1, but instead
the product of all their evaluated instructions P(x) = ∏n

i=1 Ai,xinp(i)
. We say that P σ

recognizes a language L ⊆ {0, 1}n, if there exists a 5-cycle σ so that

12

2 Preliminaries

• for all x ∈ L : P(x) = σ

• for all x /∈ L : P(x) = e (e is the identity permutation).

Lemma 1. There exist 5-cycles σ, τ so that στσ−1τ−1 is also a 5-cycle.

Proof. σ = (1 2 3 4 5), τ = (1 3 5 4 2)
στσ−1τ−1 = (1 2 3 4 5)(1 3 5 4 2)(5 4 3 2 1)(2 4 5 3 1) = (1 3 2 5 4)

Lemma 2. For any two 5-cycles σ, τ, if there exists a program P that σ-recognizes a language
L, there exists a program P′ that τ-recognizes L.

Proof. Because σ and τ are both 5-cycles, there exists a permutation ϕ so that τ = ϕσϕ−1.
The permutations of P′ can be constructed like so A′i,b = ϕAi,b ϕ−1. When evaluat-
ing P′(x) = ∏n

i=1 A′i,xinp(i)
= ∏n

i=1 ϕAi,xinp(i)
ϕ−1 = ϕP(x)ϕ−1, so that when P(x) = σ,

P′(x) = ϕσϕ−1 = τ and when P(x) = e, P′(x) = ϕeϕ−1 = e.

Proof for Barrington’s theorem. Given a circuit C of depth d that consists only of AND
and NOT Gates, one can generate a program that recognizes the same language as the
circuit with the following recursive procedure:

• Base case, d=0: C is either a variable or a constant. If C(x) = xi return the
following program: < i, e, σ >, if C(x) = 0 return < 1, e, e >, if C(x) = 1 return
< 0, σ, σ >.

• C = ¬C′.
By induction there exists a P′ that σ-recognizes C′. Generate P by copying all
instructions of P′, i.e. Ai,b = A′i,b with i ∈ [n], b ∈ {0, 1}. Subsequently modify
both permutations in the last instruction of P like so: An,b = A′n,bσ−1 for b ∈ {0, 1}.
Now P σ−1-recognizes C.

• C = C0 ∧ C1.
Once more by induction there exist programs P0, P1 so that P0 σ-recognizes C0

and P1 τ-recognizes C1. Additionally by Lemma 2 there exist programs P′0, P′1 so
that P′0 σ−1-recognizes C0 and P′1 τ−1-recognizes C1. When σ and τ are chosen
according to Lemma 1, the concatenation of these programs P = P0P1P′0P′1 5-cycle
recognizes C as demonstrated by this truth table:

C0(x) C1(x) P0 P1 P′0 P′1 P
0 0 e e e e e
1 0 σ e σ−1 e e
0 1 e τ e τ−1 e
1 1 σ τ σ−1 τ−1 (1 3 2 5 4)

13

2 Preliminaries

Observe that it is trivial to create a branching program from a program P which
σ-recognizes some language, by simply copying the instructions and setting A0 =

e, A1 = σ.

2.4 Kilian’s Protocol

Kilian [20] presented a protocol, which allows two parties to jointly evaluate an NC1

circuit, without either party learning the others input. Furthermore only one party gets
the result of the evaluation.

The protocol works as follows: Alice and Bob would like to evaluate the NC1 circuit
C on inputs x and y, where x is Alice’s part of the input and y Bob’s. Neither party
should learn anything about the others input and only Bob should learn the output
of the circuit C(x, y). Alice initiates the protocol by transforming C into a branching
program of length n using Barrington’s Theorem 1. She performs the transformation in
a way such that A1 is equal to the identity matrix. The permutations in each instruction
shall be represented by 5× 5 permutation matrices Ai,b with b ∈ {0, 1}, so that each
instruction has the form < k, Ai,0, Ai,1 > for i ∈ [n]. Next Alice chooses n random
invertible matrices Ri over Zp and uses them to create a randomized branching program
by setting Ãi,b = Ri−1 · Ai,b · R−1

i for all i ∈ [n] and R0 = Rn. She then proceeds to send
the Ãi,b to Bob.

Let χ = (x|y) be the concatenation of the inputs from Alice and Bob. Alice can
then already choose the correct matrices for all instructions that look at her part of the
input {Ai,χinp(i)

: i ∈ [n], inp(i) ≤ |x|} and send them to Bob. In the next step they use
oblivious transfer in order to let Bob learn the matrices {Ai,χinp(i)

: i ∈ [n], inp(i) > |x|}
that correspond to his input. Oblivious transfer enables Bob to learn exactly one of the
possible matrices Ai,0 and Ai,1 for each i, without Alice learning which one he chose.

Now Bob has all matrices that he needs and he can put them in order to compute
the product P = ∏i∈[n] Ãi,χinp(i)

. Observe that all of the Ri besides R0 and Rn are going
to cancel out, so that P will be equal to Rn · Ar · R−1

n for r = C(x, y). Since A0 is the
identity matrix P will be the identity, iff C(x, y) = 1. The oblivious transfer protocol
prevents Alice from learning anything about Bobs input and Killian showed that Bob
cannot learn anything about Alice input (besides what he can deduce from knowing y
and C(x, y)), because of the randomization. While this construction only enables Alice
and Bob to compute a one bit output, it is easily possible to repeat the protocol to get
longer outputs.

14

2 Preliminaries

2.5 Universal Circuits

The general idea of universal circuits is to have circuits which can take an input that
consists of two parts. The first part corresponds to a binary description C′ of another
circuit C, while the second part is the input x on which we would like to evaluate that
other circuit. The universal circuit U should then always calculate the output of C on
the input, that is U(C′, x) = C(x) for all x.

This is of course a slight simplification. We have already established that circuits
always have predefined input sizes, thus it is not possible to have one universal circuit
for all input circuits. Instead we define the circuit family of universal circuits, which
consists of all possible universal circuits Us,l . For each Us,l it holds that for every circuit
C of size s and with input size l, Us,l(C′, x) for C′ some binary representation of C and
all x.

2.6 Multilinear Jigsaw Puzzles

As introduction to Multilinear Jigsaw Puzzles, first an explanation of how they can be
understood when viewed in group terms. One central part of the puzzle is a multilinear
map [21] over groups of prime order p:

e : G1 × G2 × · · · × Gk → GT

This kind of map takes k elements from their respective groups and maps them
into the target group GT. For each of the k elements it holds that the mapping is
linear, when all but one of them is fixed. A valid Multilinear Form is anything that
can be computed using group operations and the multilinear map. For example for
k = 3 and xi ∈ G1, yi ∈ G2, zi ∈ G3, wi ∈ GT a valid form would be something like
w1 · e(x2

3, y2y4, z7
1) · w4

2 · e(x1x3
2, y4

1y3, z2). When one understands a given set of group
elements as puzzle pieces, a Multilinear Form is a try to solve that puzzle. A puzzle is
solved, if the Multilinear Form on these elements results in the unit of the target group
g0

T ∈ GT. Here the parallel to a normal puzzle is that there are only few ways in which
the pieces fit together in order to solve the puzzle. A hardness assumption resembling
the decisional Diffie-Hellman assumption [22] for k = 3 could be formulated like
so: It is infeasible to distinguish between ({g1, ga

1}, {g2, gb
2, gc

2}, {g3, gd
3, ge

3}, {gT, gabcde
T })

and ({g1, ga
1}, {g2, gb

2, gc
2}, {g3, gd

3, ge
3}, {gT, gz

T}) where gi are generators of Gi, gT is a
generator of GT and it holds that e(g1, g2, g3) = gT.

15

2 Preliminaries

2.6.1 Formalized

There are two recent proposals for implementing approximations of multilinear maps.
This thesis uses one that is based on lattices [23], but it could in theory also be
implemented using another one [24], which works over the integers. The construction
is a graded encoding scheme which offers slightly different functionality than just a
multilinear map. First off, the encoding of elements is randomized, which means that
for one element there exist many valid encodings. Additionally it is possible to only
partially evaluate a multilinear map to get elements in some intermediate group. When
talking in group terms this would mean that when one multiplies elements from G1

with elements in G2 the result would be in some intermediate group G{1,2}.
More formally, one can encode plaintext elements at different levels which are subsets

of the index set [k]. Then the only operations that are possible are addition of elements
that are encoded at the same level or multiplication of elements whose levels are
disjunct. Say a, b are both encoded at some level S ⊆ [k], then it is possible to add them
to obtain an encoding of a + b. On the other hand given c encoded at level Sc and d
encoded at level Sd with Sc, Sd ⊆ [k] and Sc ∩ Sd = ∅ one can multiply them and the
result will be encoded at level Sc ∪ Sd. Since the encoding process is randomized it is
difficult to check if two strings encode the same plaintext element, in fact in the setting
that we use it is only possible to check if an element represents an encoding of 0 at the
highest level [k].

Essentially a Multilinear Jigsaw Puzzle consists of two algorithms, a Jigsaw Generator
and a Jigsaw Verifier. the Jigsaw Generator takes as input a security parameter λ and
the multilinearity parameter k and the plaintext elements and outputs the puzzle pieces
which are the encoded plaintext elements. These encoded elements can be understood
as puzzle pieces, because it is only possible to combine them using group operations
and the multilinear map. The Jigsaw Verifier takes those encoded elements and a
Multilinear Form for combining them and tests if the Form solves the puzzle, that is if
it evaluates to the appropriate encoding of 0. For the complete formalized description
of Multilinear Jigsaw Puzzles we refer to Section 2.2 in [1].

16

3 Candidate Construction for NC1 Circuits

The construction presented by Garg et al. essentially consists of two parts. The first
part is an indistinguishability obfuscator only for NC1 circuits, which is then used in
the second part in an amplification effort to create an obfuscator for polynomial sized
circuits.

This chapter presents the entirety of the NC1 candidate, a construction which starts
with the modification of the oblivious evaluation of NC1 circuits that Killian presented.
Unfortunately the simple construction has some flaws which can lead to attacks on the
obfuscation. These problems will subsequently be explained and their solutions will be
presented, before the entire candidate shall be illustrated. The last section deals with
some of the limitations of this construction and gives a quick overview of the candidate
for polynomial sized circuits alongside with the problems that prevent it from being
useful in a practical setting right now.

3.1 Underlying Idea

Let us assume a scenario in which Alice has an NC1 circuit C that she would like to
obfuscate and then send to Bob. The general idea of this candidate is to use Kilian’s
protocol, as described in 2.4, using a universal circuit U as the circuit that Alice and
Bob would like to evaluate on their joint input. + relate C’ to smth in the uc part of
the text (how to get input...) + Alice’s part of the input will be a binary description C′

of the circuit C that she would like to obfuscate, while Bob’s part of the input is any
input x that he would like to evaluate C on, making their joint input χ = (C′|x). In the
original protocol Alice uses oblivious transfer, in order to make sure that Bob can only
evaluate the circuit for exactly his input and not additional ones. In the case at hand
this lets Bob learn U(χ) = U(C′, x) = C(x) for one input x of his choice, but nothing
else.

Giving Bob the ability to evaluate only one input of his choice cannot be understood
as a valid obfuscation of a program. Essentially this is just a special form of oracle access,
which has the additional quality that Alice will not learn Bob’s input. Nonetheless Bob
still needs Alice assistance whenever he wants to evaluate the program on a new input.
In order to lift this restriction and enable Bob to evaluate the obfuscated program as
many times as he would like on any input of his choice, it is necessary to make some

17

3 Candidate Construction for NC1 Circuits

changes. Specifically, instead of using oblivious transfer which lets Bob choose exactly
the set of matrices {Ãi,χinp(i)

: i ∈ [n], inp(i) > |C′|} that correspond to one specific
input x which he chooses, he gets all of the matrices that correspond to his part of
the input without having to fix any input. The obfuscated program then consists of
the set of fixed matrices {Ãi,χinp(i)

: i ∈ [n], inp(i) ≤ |C′|} belonging to Alice’s part of
the input as well as the complete set of matrices corresponding to Bob’s part of the
input {Ãi,b : i ∈ [n], b ∈ [0, 1], inp(i) > |C′|}. This will allow Bob to choose the correct
matrices for his part of the input whenever he would like to evaluate the program.

3.2 Problems and Solutions

While the plain version of Killian’s protocol is secure, that is Bob is not able to gain
any information about the evaluated circuit or Alice’s parts of the input, the alterations
described above give Bob substantially more information which he can use to mount
attacks. In particular there are three categories of attacks which should capture all
potential attacks: attacks that ignore the algebraic structure, partial evaluation attacks
and mixed input attacks. The following sections describe the three types of attacks as
well as the techniques that can be used to mitigate them.

3.2.1 Attacks Not Respecting the Algebraic Structure

If an attacker ignores the given matrix structure or computes non-multilinear algebraic
functions over the matrices, he might be able to mount some kind of non-trivial attack
on the described scheme. In the original paper [1] the authors mention that computing
matrix inverses which have an algebraic degree of −1 can potentially lead to such kind
of attack, without further discussing how such an attack would look like. In order to
prevent these attacks, it is possible to use Multilinear Jigsaw Puzzles 2.6 in order to
encode each matrix, thus making non-multilinear attacks infeasible. This forces any
possible attack into one of the other two categories.

Essentially the product of matrices P = ∏i∈[n] Ãi,χinp(i)
that will occur when Bob wants

to evaluate the program on one input of his choosing, can already be understood as a
valid multilinear form for the Multilinear Jigsaw Puzzle. By encoding the elements of
each matrix Ãi,b at level {i} ⊆ [n] it is already guaranteed that only elements which are
encoded at different levels are multiplied, while only elements which are encoded at
the same level will be summed. To demonstrate let us assume we have the product of
two 2x2 matrices: (

a b
c d

)
·
(

e f
g h

)
=

(
a · e + b · g a · f + b · h
c · e + d · g c · f + d · h

)

18

3 Candidate Construction for NC1 Circuits

Now we encode each element of the first matrix at level {0} and each element of the
second matrix at level {1}. Using Es(x) as a shorthand for an encoding of element x at
level s, we get:
(

E{0}(a) E{0}(b)
E{0}(c) E{0}(d)

)
·
(

E{1}(e) E{1}(f)
E{1}(g) E{1}(h)

)
=

(
E{0}(a) · E{1}(e) + E{0}(b) · E{1}(g) E{0}(a) · E{1}(f) + E{0}(b) · E{1}(h)
E{0}(c) · E{1}(e) + E{0}(d) · E{1}(g) E{0}(c) · E{1}(f) + E{0}(d) · E{1}(h)

)

As one can see, every element that is encoded at level {0} is multiplied with an
element at level {1}. Following the rules for the evaluation of Multilinear Jigsaw
Puzzles, multiplying two elements of different level sets together will create a new
element that is encoded at the union of the two levels. During the addition that follows
the multiplication at both sides, both summands will then be encoded at the level
{0, 1}. This is again a valid operation, because the requirement for addition is that all
summands are encoded at the same level. In the end we will be left with a matrix each
of which elements are encoded at level {0, 1}.

When encoding a branching program of length n, one should use a Multilinear Jigsaw
Puzzle with multilinearity also equal to n. This ensures that the product that arises
from the evaluation of the branching program will be encoded at the highest level [n],
which is convenient as this is required by the zero testing procedure. Of course, it is
not useful to be able to test if the product is zero, but this problem will be dealt with
below. This encoding prevents non-multilinear attacks.

3.2.2 Partial Evaluation Attack

In the process of giving Bob the capability of evaluating the obfuscated program for
multiple outputs of his choosing, he inadvertently also gained the power to compare
some of the intermediate stages of the evaluation process. To do this Bob chooses
j, k ≤ n and two different inputs x, x′ for his part of the input leading to χ, χ

′
for the

joint input and computes ∏k
i=j Ãi,χind(i)

and ∏k
i=j Ãi,χ′ind(i)

. Notice that the outer random

matrices Rj−1 and R−1
k will be the same for both products, which means that if they

are equal for two different inputs, the probability is extremely high that the partial
evaluation of the not-randomized branching program indeed yields the same result for
the inputs χ and χ′. This can be used to extract information about the program that
the obfuscator needs to hide.

Imagine for example that Bob is able to choose j and k in such manner that he knows
that the instructions between them correspond exactly to the evaluation of one gate
of the original circuit that should be obfuscated. This is certainly possible since the
structure of the Universal Circuit used in the construction is not kept secret and Bob
could generate the Branching Program for that circuit himself. By cleverly crafting his
inputs he could control the inputs to the gate in question and subsequently compare

19

3 Candidate Construction for NC1 Circuits

the outputs, which would allow him to determine the type of that gate. To establish if
the gate is an AND- or an OR-gate, he could for example choose an input which causes
the two inputs 01 and 11 to the gate that he is interested in. If they yield the same
result it is an OR-gate, if the result is different it is an AND-gate. Using this technique
he would in the end be able to recover the whole circuit, which obviously breaks the
definition of security for an indistinguishability obfuscator.

"Bookends" and Higher Dimensional Matrices To counter this kind of attack, it is
necessary to prevent Bob from comparing partial computations or to be more precise to
prevent him from gaining information by comparing them. To do so special ’bookend’
components will be added to the branching program, without which it is impossible to
evaluate any computation. The first step is to embed all of the Ai,b into bigger matrices
like so:

Di,b ∼

$

. . .
$

Ai,b

 , D̃i,b ∼ Ri−1 ·

$

. . .
$

Ai,b

 · R−1
i

In these matrices all unspecified entries are 0 and the $ are random elements from Zp.
The size of the diagonal of random elements shall be 2m (m will be specified below).
Just as in the original protocol by Killian the Ri are random invertible matrices over Zp

and we obtain the D̃i,b by applying them as seen above.
Now when evaluating the program for a particular input χ, one can calculate

∏i∈[n] D̃i,χinp(i)
= R0 · P · R−1

n , where P is some high dimensional matrix which has the
result of the branching program in its lower right 5x5 quadrant. In order to obtain the
actual result, the two ’bookend’ vectors s and t with dimensions 2m + 5 equal to that of
the matrices are generated:

s ∼ (0...0 $...$− s∗−), t ∼ ($...$ 0...0− t∗−)

The first two blocks shall have a size of m and s∗ and t∗ are both of size 5. Accordingly
s̃ = s · R−1

0 and t̃ = Rn · t. Additionally the scalar p∗ = 〈s∗, t∗〉 will be saved with the
obfuscation.

In order to also be able to encode the ’bookend’ vectors, the obfuscator increases
the multilinearity of the Multilinear Jigsaw Puzzle to n + 2 and encodes s̃ and t̃ at the
levels {1} and {n + 2} respectively. Accordingly the matrices D̃i,b shall be encoded at
level {i + 1} instead of {i} and the scalar p∗ at the highest level [n + 2]. Now one can

20

3 Candidate Construction for NC1 Circuits

add these vectors at the start and the end of the computation:

p = s̃ ·
(

∏
i∈[n]

D̃i,χinp(i)

)
· t̃T = s̃ · (R0 · P · R−1

n) · t̃T = s∗ · A · t∗T

Here A is the result of the branching program. Since all these calculations are actually
performed in the encoding and all n + 2 elements are multiplied together, p will be
encoded at the highest level [n + 2]. This means one can calculate p′ = p − p∗ as
p and p∗ are encoded at the same level. If A is the identity matrix it holds that
p = s∗ · A · t∗T = 〈s∗, t∗〉 = p∗ and therefore p′ = 0, which is convenient since this is
exactly what can be tested with the Jigsaw Verifier. Recall that the original Branching
Program is crafted such that the resulting permutation is exactly the identity iff the
corresponding circuit evaluates to 1, that is A1 = I. The obfuscated program will return
1 exactly when the Zero-Test on p′ returns True, which is correct because the probability
is very small that p′ = 0 if A is any other permutation matrix.

3.2.3 Mixed Input Attacks

In all but the most simple of branching programs, there will be several instructions that
inspect the same input bit. Say instruction i and j both look at the same input bit k, that
is inp(i) = inp(j) = k. During a correct evaluation one should either use Ai,0 and Aj,0
if χk = 0 or otherwise Ai,1 and Aj,1. In a mixed input attack the attacker does not stick
to these rules and uses Ai,0 together with Aj,1 or vice versa, which can again lead to
him learning some information that he should not be able to learn.

Multiplicative Bundling To ensure that any evaluation that mixes instructions as
described above only produces useless output, one can add multiplicative factors to
all of the Ai,b. Namely Alice chooses scalars {αi,b : i ∈ [n], b ∈ {0, 1}} randomly and
applies them like so:

Di,b ∼

$

. . .
$

αi,b · Ai,b

 , D̃i,b ∼ Ri−1 ·

$

. . .
$

αi,b · Ai,b

 · R−1
i

The first consequence of this is, that it is not enough any more to know p∗ to be able
to decode the final result of the computation. As a remedy Alice creates a ’dummy
program’ which has basically the same structure as the original program, but which
computes the constant 1 function and thus has only the identity permutation for
every Ai,b of the original program. She generates a second set of matrices R′i, two

21

3 Candidate Construction for NC1 Circuits

vectors s′, t′ of the same shape as s and t where 〈s′, t′〉 = 〈s, t〉 and consequently
computes s̃′ = s′ · R′−1

0 and t̃′ = R′n · t′. Additionally she chooses a second set of alphas
{αi,b : i ∈ [n], b ∈ {0, 1}} with the constraint that

∏
inp(i)=j

αi,b = ∏
inp(i)=j

α′i,b : ∀j ∈ [l], b ∈ {0, 1}

Now she can generate all the instructions of the ’dummy program’:

D′i,b ∼

$

. . .
$

α′i,b · I

 , D̃′i,b ∼ R′i−1 ·

$

. . .
$

α′i,b · I

 · R′−1
i

With all the elements of the ’dummy program’ in place, they can be encoded with
the Multilinear Jigsaw Puzzle in the same way as the ’primary’ program. To evaluate
the result of the whole obfuscated program the idea is to evaluate both original and
dummy program and test if they yield the same result. Specifically one computes the
following formula:

δ = ŝ ·
(

∏
i∈[n]

D̂i,χinp(i)

)
· t̂T − ŝ′ ·

(
∏

i∈[n]
D̂′i,χinp(i)

)
· t̂′T

Here x̂ stands for the encoding of x relative to the corresponding index set as described
before. The Jigsaw Verifier can then be used to test if δ = 0, in which case the result of
the evaluation is 1.

This multiplicative bundling does indeed prevent mixed input attacks. The constraint
on the αi,b, αi,bi′ causes them to evaluate to the same product for an honest evaluation.
During an attempt to mix and match the matrices, there is only a probability of 1/p
that the product of αj,0 · αk,1 = α′j,0 · α′k,1.

3.3 Complete candidate

In the preceding sections it was established how to harden the basic version of Killian’s
protocol against the attacks that open up when giving Bob the complete set of matrices
belonging to his part of the input. In this section the whole construction is presented in
condensed form:

Definition 8 (Constructing Randomized Branching Programs). Initially choose the ring
Zp over which the input Branching Program shall be randomized. The value of m is
2n + 5 where n is the length of the Branching Program.

22

3 Candidate Construction for NC1 Circuits

1. Generate random and independent {αi,b, α′i,b : i ∈ [n], b ∈ {0, 1}} with the con-
straint that

∏
inp(i)=j

αi,b = ∏
inp(i)=j

α′i,b : ∀j ∈ [l], b ∈ {0, 1}

2. Generate matrices {Di,b, D′i,b : i ∈ [n], b ∈ {0, 1}} of size 2m + 5 with their
diagonals from 1 to 2m populated randomly from Zp. Set the bottom right 5x5
quadrant of the Di,b to αi,b Ȧi,b and of the D′i,b to α′ İ:

Di,b ∼

$

. . .
$

αi,b · Ai,b

 , D′i,b ∼

$

. . .
$

α′i,b · I

3. Randomly draw four vectors of length 5 {s∗, t∗, t′∗, s′∗} so that 〈s∗, t∗〉 = 〈s′∗, t′∗〉

and assemble vectors of length 2m + 5 {s, t, s′, t′} where $ are random elements
from Zp:

s ∼ (0...0 $...$− s∗−), t ∼ ($...$ 0...0− t∗−)T

s′ ∼ (0...0 $...$− s′∗−), t′ ∼ ($...$ 0...0− t′∗−)T

4. Sample random full rank invertible matrices {Ri, R′i : i ∈ [n]} of size (2m + 5)×
(2m + 5)

5. The complete Randomized Branching Program is:

RBP p(BP) ={
s̃ = sR−1

0 , t̃ = Rnt, s̃′ = s′(R′0)
−1, t̃′ = R′nt′,

{D̃i,b = Ri−1Di,bR−1
i : i ∈ [n], b ∈ {0, 1}}, {D̃′i,b = R′i−1 I(R′i)

−1 : i ∈ [n], b ∈ {0, 1}}

}

As already mentioned in the derivation, this are essentially two programs, the dummy
and the original one. During evaluation one evaluates both of them and outputs 1
when they have the same result.

Definition 9 (Candidate Indistinguishability Obfuscator for NC1 Circuits). Given a
circuit C with l inputs and s gates, one proceeds as follows:

1. Generate the Universal Circuit UCs,l

2. Generate the corresponding Universal Branching Program UBPs,l using Barring-
ton’s Theorem

23

3 Candidate Construction for NC1 Circuits

3. Use the Jigsaw Specifier with some security parameter λ and the length of UBPs,l
as multilinearity parameter and get as output the prime p

4. Generate the Randomized Branching Program RBP p(UBP)

5. Encode the Randomized Branching program like so:

R̂BP p(UBP) ={
ŝ = Encode{1}(s̃), t̂ = Encode{n+2}(t̃), ŝ′ = Encode{1}(s̃′), t̂′ = Encode{n+2}(t̃′),
{D̂i,b = Encode{i+1}(D̃i,b) : i ∈ [n], b ∈ {0, 1}}, {D̂′i,b = Encode{i+1}(D̃′i,b) : i ∈ [n], b ∈ {0, 1}}

}

6. For every input χ ∈ {0, 1}l the corresponding multilinear form will be:

Fχ(RNDp(UBP)) = ŝ(∏
i

D̂i,χinp(i)
)t̂− ŝ′(∏

i
D̂′i,χinp(i)

)t̂′ mod p

7. Finally generate a binary description C′ of C and fix all the matrices that belong
to that part of the input:

Fix(R̂BP , C′)p(UBP) =
ŝ, t̂, ŝ′, t̂′,
{D̂i,C′inp(i)

: i ∈ [n], inp(i) ≤ |C′|}, {D̂′i,C′inp(i)
: i ∈ [n], inp(i) ≤ |C′|},

{D̂i,b : i ∈ [n], b ∈ {0, 1}, inp(i) > |C′|}, {D̂′i,b : i ∈ [n], b ∈ {0, 1}, inp(i) > |C′|}

The underlying idea for the hardness assumption of this construction is that it is

not feasible to distinguish two different partial assignments of matrices of the encoded
Universal Randomized Branching Program, if these assignments cause it to compute
the same function. This is exactly the requirement for an indistinguishability obfuscator.
For a formal proof of the hardness assumption we refer to [1] Appendix C.

3.4 Limitations

The construction above is only a valid indistinguishability obfuscator for circuits in NC1,
because of the polynomial slowdown requirement for obfuscators. The obfuscation
would still work for deeper circuits, but the overhead would not be polynomial anymore.
While the described candidate can only handle circuits with one outputs, it would be
no problem to repeat the process for every additional output bit.

Garg et al. [1] also provide an amplification method to build an indistinguishability
obfuscator for polynomial sized circuits. Besides the obfuscator for NC1 circuits, it also

24

3 Candidate Construction for NC1 Circuits

makes use of Perfectly Binding Commitments [25], Perfectly Sound Non-Interactive
Witness Indistinguishability Proofs and Fully Homomorphic Encryption [26]. All of
them are not trivial cryptographic schemes and especially Homomorphic Encryption
is by no means ready for practical use. Especially considering that most of these
constructs are needed in circuit form, because the NC1 candidate is applied on top
of them, we decided that the construction of the indistinguishability obfuscator for
polynomial sized circuits is out of the scope for this thesis. For more details on the
construction we refer to the original paper.

25

4 Implementation

This chapter discusses how we implemented the mathematical constructs which are
needed for the construction of the indistinguishability obfuscator candidate. All of the
code is written in Python, using the libraries of the mathematical software Sage [2]
for the more advanced algebraic concepts, most notably the quotient rings over Zp

used by the Multilinear Jigsaw Puzzles. Sage and the libraries that it uses are partially
implemented in C, but it offers easy integration into Python programs. Apart from
that the implementation only uses some modules from the python standard library as
needed and two small modules from the Python Package Index [27], one implementing
topological sorting and another one for timing the duration of commands. We are
using Sage version 6.4 and the embedded Python version 2.7.8.

4.1 Circuits

In the implementation, circuits are essentially a recursive data structure, similar to a
binary tree only that not all nodes have two inputs. Instead of nodes it consists of
gates, which can be of type AndGate (∧),NotGate (¬) or Input. Input gates are similar
to the leaves of a binary tree in that they do not have any further references to other
gates. Each Input has a variable pos, which stores the position of its assigned input
bit in the input string. AndGates are the equivalent of normal nodes in a binary tree
and each references two other gates of any type. These references can be accessed via
the variables inp1 and inp2. NotGates are the new addition that make these circuits
slightly different from binary trees, because they only reference exactly one other gate,
which can be accessed via the variable inp. The references that each gate holds are
exactly the inputs over which they compute their function.

The circuit object itself only maintains a reference to its output gate and a list with
all the gates of type Input which are located in itself. To evaluate a circuit, the list
with Input gates is used to assign a value to each of them, then the evaluation begins
recursively with the output gate of the circuit. When a gate is evaluated, its behavior
depends on its type. An Input gate simply returns the value that it was assigned, while
a NotGate first evaluates its input and then returns the opposite of that value. AndGates
evaluate both of their inputs, before computing the logical AND of both values and
returning the result.

26

4 Implementation

4.2 Universal Circuits

There exist several different methods of constructing Universal Circuits, with an asymp-
totically optimal given already by Valiant [28]. His construction is based on graphs
and graph embedding and with all optimizations achieves a size in O((s + l) log s) for
UCs,l , but this is far from trivial to implement.

Additionally there exists another construction due to Schneider [29] which achieves
a size in O(s log s2 + (s + l) log l) but offering much smaller constant factors, making
it the better choice for small circuits. There even exists an implementation of this
construction [30], but it was not possible to integrate it, because the notion of gates
used in that implementation is a bit more powerful than what we have available here.
Schneider also presents an simple way of constructing Universal Circuits based on
building blocks, which is the method that we choose to use, since the Universal Circuit
is not the focus of this thesis. This particular method has a size in O(s2 + sl).

4.2.1 Construction Based on Building Blocks

This explanation closely follows [29], but contains several adaptations in particular
the addition of control inputs and the instantiations of Simulation and One-Output
Switching Blocks. The basic idea of this construction is the natural method behind any
Universal Circuit construction and also employed in the other two methods. It uses
some kind of simulation block for each gate Gi in the original circuit (with i ∈ [s]) and
than proceeds to hide the original wiring, by making sure that every possible wiring
could actually be enabled in the Universal Circuit.

Notation A block Bu
v is a circuit with u inputs x1, ..., xu and v outputs y1, ..., yv. Bu

v
computes a function fB : {0, 1}u → {0, 1}v which maps some inputs to some outputs.
A programmable block Bc,u

v has u inputs and v outputs, but also comes with c control
inputs which determine what kind of function the block computes. While the u inputs
can be the outputs of another block, the control inputs will be native inputs to the
resulting Universal Circuit constructed out of the programmable blocks that are defined
below. All blocks in this section will only be created out of AND and NOT gates, in
order to facilitate the application of Barrington’s Theorem 1 during the transformation
of Universal Circuit to Branching Program.

Simulation Block A simulation block GSim can simulate one gate of the original
circuit and has two inputs x1, x2, one control input c and one output y. Depending on
the value of the control input it outputs simply ¬x1 for c = 0 or x1 ∧ x2 for c = 1. This

27

4 Implementation

is implemented as ¬(x1 ∧ ¬x2) ∧ ¬(x1 ∧ ¬c) ∧ ¬(¬x1 ∧ c) which, if we check the truth
table, indeed has the desired behavior.

One-Output Switching Block A one-output switching block Y is a programmable
block with two inputs x1, x2, one control input c and one output y. It outputs either x1

or x2 depending on the value of the control input. It is implemented as ¬(¬c ∧ ¬x1) ∧
¬(c ∧ ¬x2). Again the truth table verifies the correctness of this.

x1 x2 c ¬(¬c ∧ ¬x1) ¬(c ∧ ¬x2) y
0 0 0 0 1 0
1 0 0 1 1 1
0 1 0 0 1 0
1 1 0 1 1 1
0 0 1 1 0 0
1 0 1 1 0 0
0 1 1 1 1 1
1 1 1 1 1 1

Table 4.1: Truth table of one-output switching block

Selection Blocks A selection block Su
v selects one of its u inputs for each of the v

outputs without any restrictions, making it possible to select the same value several
times or to change the order. It is quite straightforward to construct Su

1 blocks by using
(u− 1) Y blocks either arranging them in a tree or chaining them together. In fact
note that a single Y block is already a S2

1 block. Considering that each Y block has one
control input, it follows immediately that an Su

1 block has (u− 1) control inputs. When
the Y blocks are arranged as in Figure 4.1, one can also easily see that if one wants to
select input i, it is sufficient to set control input i− 1 to 1 and leave all other control
inputs at 0 to do so. By doing so one causes the corresponding Y block to select its
right input, while leaving the others at 0 causes them to pass the selected values up
to the output. To select the first input simply leave all control inputs at 0. A simple
method of constructing a general Su

v block uses one Su
1 block for each of the v inputs.

This is not very efficient and there are better constructions presented in [29], but we
will use this construction.

Universal Block A universal block Uk is a special type of Universal Circuit for k gates,
which has some specific requirements on the inputs and outputs of circuits that it can
simulate (so it is not actually universal). Particularly Uk has 2k inputs and k outputs,

28

4 Implementation

Figure 4.1: Su
1 selection block construction using chaining

which is the maximum that a circuit with k gates can have (it would consist exclusively
of k AND gates). The requirements on the inputs are that the inputs x2i−1, x2i are
exactly and only going to the gate Gi. This does not mean that Gi has to use these
inputs, it can also pick any other Gj with j < i as input, just not another natural input
to the circuit. The requirement on the outputs is that each output i can only come from
gate Gi, but because we only have to consider circuits with exactly 1 output, we will
drop all but the last output in our construction.

Figure 4.2 shows the structure of a Uk block. Essentially there exists a simulation
block GSim

i for each gate Gi of the original circuit and for each of the GSim
i there are two

selection blocks Si
1, one for each of the simulation blocks inputs. These selection blocks

can either choose the input x2i−1 (x2i if it is the second one) or the output of any of the
(i− 1) simulation blocks that came before this one. Which gate of the original circuit
shall be simulated by which simulation block is determined by doing a topological
sorting, which ensures that the inputs to every Gi are either native inputs to the circuit
or a Gj with j < i. More detail on that can be found in Section 4.2.2.

Universal Circuit Given methods to build a universal block and general Su
v selection

blocks, it is simple to construct true Universal Circuits Us,l by chaining them as showed
in Figure 4.3. The upper Sl

2s makes it possible to heed the input restriction of the Us

block, since one can direct each input to wherever it is needed. Usually one would also
use an output selection block, but the candidate construction only works for circuits
with exactly one output, hence it is sufficient to use the output of the last simulation

29

4 Implementation

Figure 4.2: Universal Block construction (source: [29])

gate GSim
s as the output of the whole Universal Circuit.

4.2.2 Generating the Binary Description of a Circuit

In order to generate the control input C′ of a circuit C, it is first necessary to make a
topologically sorted list of all the gates in C. In such a sorting, the first gates will be the
ones without any dependencies, i.e. the ones which directly use the native inputs to the
circuit. Following after them will be the gates that take these first gates as inputs and
so on, until the output gate of the circuit, which will come last, since every other gate
needs to be evaluated before it. Since the circuits are acyclic, such a topological sorting
can be obtained easily. In order to prevent ambivalence, we use the internal unique
ID of each gate as a tiebreaker, meaning that earlier created gates will come first. The
position of each gate in the topological order defines by which simulation block that
gate shall be simulated.

For each simulation block we need to determine which kind of gate it needs to
simulate and what values the two selection blocks shall feed to its inputs. To determine
this, we enumerate all gates in the order defined by the topological sorting and do the
following:

1. Check the gate type to get the control input to the simulation block (0 for noGates,
1 for andGates)

30

4 Implementation

Figure 4.3: Universal Circuit construction (source: [29])

2. Look at the first input to that gate:

• if it is an Input: let the selection block select the first value (control inputs
all 0) and wire the input with the 2l

2s selection block to input 2i− 1 of the Us

block

• if it is another gate: check where in the topological sorting that gate is (it
must have come before) and select that simulation block (if gate is at position
x in topological order set control input x of the selection block to 1)

3. If the gate is an andGate, repeat step 2 for the second input, otherwise leave the
second selection block at default (control inputs all 0)

This gives us the correct values to all of the control inputs. To make sure that each
control input receives the correct value as intended, the order of the control inputs
of each Universal Circuit is defined like so: First the 2s(l − 1) control inputs of the
first Sl

2s block that distributes the native inputs correctly to the Us block. Afterwards
for each GSim

i there follow the control inputs to the upper Si
1 selection block, then

the control inputs to the lower one and finally the control input to the GSim
i itself.

Using this method we can use the control inputs to change the wiring of the Universal
Circuit, so that it can compute the same function as the original circuit. The length
of a binary description of a circuit with s gates and l inputs is lengthDescription(s, l) =
2s(l − 1) + 2 ∑s

i=1(i− 1) + s = s2 + 2ls− 2s.

31

4 Implementation

4.3 Circuit to Branching Program

Recall Definition 1 about Branching Programs, who are essentially a sequence of
instructions with each instruction having three parts, namely the value of inp(i) telling
us which input bit to look at and two permutations. During the implementation
it turned out to be more efficient to maintain three separate lists for the different
instruction parts, instead of maintaining one list with all three of them. Thus we
have one indexList which stores the values of inp(i) for i ∈ [n] and two lists for
permutations, the first one called ins0 stores all Ai,0 and the second one ins1 all Ai,1.
In Section 2.4 we already established that these permutations can also be understood
as 5× 5 permutation matrices Ai,b, which is in fact how they are internally represented,
but for ease of notation we will continue to refer to them as permutations for most
of this section. The permutation matrices are implemented using NumPy [31] arrays,
which are slightly more efficient than the matrices provided by Sage. For the evaluation
each Branching Program additionally stores two permutations according to the A0

and A1 of the mathematical definition. If the result of multiplying all permutations
corresponding to one specific input is equal to A0 the output is 0, if it is equal to A1 it
is 1.

At the heart of the circuit to branching program transformation lies a recursive
function which implements the inductive proof of Barrington’s theorem. This function
operates on the gates of the circuit that shall be transformed and calculates the contents
of the three lists needed for a Branching Program. In order to make this process as
straight forward as possible, it always returns a ’normalized’ Branching Program, that
is a Branching Program with A0 = e and A1 = (1 2 3 4 5), which is possible due
to Lemma 2. This accomplishes that the permutations that need to be applied for
each gate type are always the same and no expensive computations have to be made.
While the general process of this procedure was already explained in Section 2.3.1, the
concrete values used for Lemma 2 where omitted. Recall that for any two 5-cycles σ, τ

it is possible to find a ϕ so that τ = ϕσϕ−1. These are the values for ϕ that we use
during the construction:

• Changing the inverse of the normal permutation (5 4 3 2 1) to the normal
permutation (1 2 3 4 5) as needed for a notGate: (2 5)(3 4) This permutation
is also used for the inverse of this switch which is needed to compute P′0 for an
andGate.

• Changing the normal permutation to the second permutation (1 3 5 4 2) as
required to compute P1 for an andGate: (2 5 3)

• Changing the second permutation to its inverse, required for P′1: (2 3)(4 5) This
permutation is also used to normalize the result of an andGate (1 3 2 5 4).

32

4 Implementation

After the recursive function has finished, we multiply the inverse of the normal
permutation to both rightmost instruction. This causes the Branching Program to have
A1 = e as required by the rest of the construction.

During testing we discovered that the straightforward adaption of Barrington was
quite slow and extremely memory consuming, mostly because of the recursive creation
of large lists containing NumPy arrays and the many multiplications that are needed
for changing and normalizing the Branching Programs in each step. To speed this up,
we decided not to represent the permutations as matrices during the generation but
to assign each permutation a unique integer id which could be mapped to matrices
after the generation. Since there are only 120 different 5× 5 permutation matrices
(permutations over S5), having such a mapping is no problem.

On these integer IDs, a pass of Lemma 2 can be understood as a mapping from one ID

to another, which depends on the value of ϕ. We first combined the permutations, where
more than one pass of Lemma 2 was applied to the same sequence of instructions, which
happened every time a Branching Program was first changed and then normalized. This
brings down the number of required mappings to six, namely two for notGates (change
the last instruction and normalize the rest of the program) and four for andGates (one
each for generating P0, P1, P′0 and P′1). To be able to perform these mappings quickly we
calculated them in advance and have them saved in a hard coded and quickly accessible
lookup structure. Using this technique we were able to cut down the time needed to
generate Branching Programs by a factor of 13 and memory usage during generation
by even more.

Reuse Problem One big problem with Branching Programs is that they do not handle
reused gates very well. In a circuit it is no problem to take the output of one gate g
and wire it to several other gates, to evaluate the circuit it is still sufficient to evaluate
g just once, as all of the other gates can reuse the output. However, when building
a Branching Program, the part that calculates g needs to be duplicated whenever the
output of g is used by another gate, because there is no way to share the result. The
impact of this is especially high for the Universal Circuits that we construct, because
they reuse the output of previous gates a lot. For example in the implementation of
simulation blocks the input x1 is reused three times, which means that the whole circuit
that feeds into x1 will be included three times in the corresponding Branching Program.
The same goes for each Si

1 block, with each of them using the outputs of all of the
preceding GSim

j blocks with j < i. Since this effect stacks up and parts that reuse other
parts get reused as well, the size of the Branching Programs for Universal Circuits
grows extremely fast.

33

4 Implementation

4.4 Randomized Branching Programs

Similarly to Branching Programs, Randomized Branching Programs 8 also have an
indexList and two lists, one for the matrices D̃i,0 and one for D̃i,1 respectively. Since
they essentially contain two programs, the original one and a dummy one, there also
need to be two additional lists that contain the matrices D̃′i,0 and D̃′i,1. Recall that these
matrices do not contain regular integers but elements of Zp. This is where we use Sage
for the first time, because it offers a solid implementation not only of Zp but also of
matrices over Zp. To make use of this functionality the NumPy arrays of the branching
programs are replaced by the matrices offered by Sage and all matrix elements are
coerced into Zp. Sage also offers methods for generating random elements and even
matrices from a ring, which are used for filling the diagonal of the Di,b and for choosing
the Ri.

4.5 Multilinear Jigsaw Puzzles

This section only gives an overview over the general process of implementing Multilin-
ear Jigsaw Puzzles and the necessary algebraic structures. A more in depth treatment
can be found in [1], Appendix A.

When generating a Multilinear Jigsaw Puzzle instance, the input consists of the
multilinearity parameter k and the security parameter λ and the procedure is as
follows:

1. Initially choose a large random prime q and a dimension parameter t which should
be a large enough power of 2. Large is meant as q being of size approximately
2O(tε) and t of size k1/δ where δ, ε are some constants 0 < δ < ε < 1. The
following computations will be done in the rings R = Z[x]/(xt + 1) and Rq =

Zq[x]/(xt + 1).

2. Choose a small polynomial g ∈ R so that |R/(g)| is a prime p > 2λ. Here small
means that all coefficients should be smaller than 2O(tδ). g also has to fulfill some
additional technical conditions, but all of these conditions can be heeded with
high enough probability when choosing small polynomials randomly.

3. Sample k random polynomials z1, ..., zk ∈ Rq.

The plaintext space for this Multilinear Jigsaw Puzzle will be Zp. To encode an
element a at level S ⊆ [k] perform the following computation:

EncodeS(a) =
â + e · g
∏i∈S zi

34

4 Implementation

Here â is obtained by computing a mod g and should be a small polynomial in R. The
polynomial e is an error term which also needs to be small like g. Because it is chosen
at random, it causes the whole encoding to be randomized. It is critical for the security
of the construction.

Finally to allow the Jigsaw Verifier to test if a puzzle was solved (meaning that a
multilinear form evaluated to an encoding of 0 at the highest level [k]), the last step of
the setup is to generate a zero test element:

pzt =
h ·∏k

i=1 zi

g

Here h should be a random medium sized polynomial with coefficients of size proxi-
mately q2/3. To perform a zero test for a given element u the Jigsaw Verifier multiplies
u with pzt. If u is indeed an encoding of 0 at the highest level, the following holds:

u · pzt =
e · g

∏k
i=1 zi

· h ·∏k
i=1 zi

g
= e · h

Because of the way that h and g where generated, e · h has an euclidean norm smaller
than q7/8, which does not hold when u encodes anything else. Thus if this is the case
for u · pzt, the Jigsaw Verifier outputs 1.

These encodings are already sufficient to enable additions and multiplications like
they are required for a Multilinear Jigsaw Puzzle, just observe the following:

Addition Given a, b ∈ Zp and their encodings α = EncodeS(a), β = EncodeS(b) at the
same level S ⊆ [k] their sum is the following:

α + β =
(â + b̂ + e′ · g)

∏i∈S zi

Of course the error term grows, but with a right choice of parameters it is possible to
enable a polynomial number of additions without it getting out of hand.

Multiplication Given a, b ∈ Zp and their encodings α = EncodeA(a), β = EncodeB(b)
at two disjoint level sets A, B ⊆ [k] their product is the following:

α · β =
(â · b̂ + e′ · g)

∏i∈A∪B zi

Again, with the right choice of parameters it is possible to prevent the error term e′

from growing too large. Observe how this also already prevents addition at different
levels or multiplications with overlapping level sets to produce anything useful. Of
course the computation would be possible, but the output would just look random and
it would not be possible to perform a zero test in the end.

35

4 Implementation

4.5.1 In Practice

Even though Sage does support polynomial quotient rings, the implementation of the
procedure described above was far from straightforward. The biggest uncertainty was
the computation of â. We were not able to find an algorithm which takes as an input a
integer a ∈ Zp and a polynomial g ∈ Z[x]/(xt + 1) and outputs a polynomial which is
congruent to a mod g. In our implementation we simply set â = a which is trivially
correct, since technically it is a polynomial, but it seems that this was not the intention
of the authors.

Another issue was the choice of parameters. There are several parameters which can
be set about which the authors only make relatively vague, sometimes conflicting state-
ments regarding their magnitude and relation to each other. After a lot of adjustments,
we managed to make some choices which enable a partially working version, which
allows the encoding of elements at different levels, addition and multiplication and a
zero test at the highest level. Nonetheless error terms do not work properly, because
even after a very small number of additions and multiplications of encoded elements,
they grow too large and it is not possible anymore to perform a successful zero test.
This means that the complete construction is probably not secure since the error terms
are crucial for the security of the Multilinear Jigsaw Puzzle. We were not able to figure
out if this is related to an inappropriate choice of parameters or because of the way we
are computing â.

4.6 Fixing Programs

Following the description of the complete candidate in Section 3.3, Alice chooses the
correct matrices for her part of the input and then sends all of them to Bob. There is
a slight improvement that we would like to propose, which will cut down the size of
obfuscated programs and might actually make it harder for Bob to launch any attacks,
since he has less informations. The idea is that instead of sending all the fixed matrices
to Bob, Alice already multiplies all of the fixed matrices to both matrices in the nearest
instruction to the left which is not fixed and subsequently drops the fixed matrices.
Observe that this will not change the result of Bobs computation in the slightest, since
he was going to perform these multiplications anyways, it will however cut down the
size of the obfuscated program by a big margin (see experiments in Section 5.3).

To formalize, in the original setting when Alice has a Universal Branching Program
and the binary description C′ of a circuit C, she sends to Bob the set of fixed matrices F
as well as the set of matrices belonging to his input I:

F = {Ai,C′inp(i)
: i ∈ [n], inp(i) ≤ |C′|}, I = {Ai,b : i ∈ [n], b ∈ [0, 1], inp(i) > |C′|}.

36

4 Implementation

The addition now is that for every j, k ∈ [n] so that there exists Aj,b, Ak,b ∈ I but no Al,b ∈
I where j < l < k, she computes Āj,b = Aj,b ·∏k−1

i=j+1 Ai,C′inp(i)
for b ∈ [0, 1]. Informally

this means that whenever there are any fixed matrices between two instructions, these
fixed matrices will be multiplied to both matrices in the first instruction. She then
gives to Bob Ī = {Āi,b : i ∈ [n], b ∈ [0, 1], inp(i) > |C′|} and nothing else. This
same technique is also possible for Randomized Branching Programs and even for the
encoded versions.

37

5 Experiments

The experiments are essentially divided into two parts: generation and evaluation. The
former tries to establish the difficulty of creating the obfuscated version of a given
circuit and investigates which step in the generation process is responsible for how
much of the overhead. The latter investigates how the cost of evaluating a given
circuit increases as it undergoes the obfuscation process. In total this aims not only
to assess the feasibility of using this construction in real-world programs, but also to
determine which parts contribute most to the cost of the construction and thus need to
be improved the most.

Each experiment was repeated X times and every data point was then averaged
over the number of repetitions in order to eliminate possible outliers. The execution
time was determined using direct access to the process time via time.clock(), which
according to the documentation [32] is the correct way of benchmarking Python. To
determine the amount of RAM consumed by each step in the construction we used
Guppy/Heapy [33], a Python heap profiler, where it was possible and top otherwise.
All experiments where run on a virtual machine with a CPU with 2.30 GHz and 2 GB
of RAM.

5.1 Generation

In order to understand how difficult it is to generate the obfuscation of a given circuit,
we would like to benchmark each intermediate step of the complete candidate for
several input circuit families, each of which contains circuits with the same number
of gates and number of inputs. That is, firstly generate all Universal Circuits up to a
certain point, transform all of them into their respective Universal Branching Program,
then transform these Branching Programs into Randomized Branching Programs by
applying the garbling techniques described in 3.3 and finally encode this using a
Multilinear Jigsaw Puzzle. In each step we would load the result of the step before and
then perform the necessary operations to reach the next step, meanwhile monitoring
the time elapsed as well as the increase in memory usage. It turned out that a complete
benchmark is often not feasible, because the growth is just too fast and the generated
objects really quickly do not fit into memory anymore. For these cases we opted to at
least determine an estimation of the implied overhead.

38

5 Experiments

5.1.1 Universal Circuit Generation

The first step simply measures how long it takes to generate a Universal Circuit from the
basic building blocks as described in section 4.2 and how much memory the resulting
objects use. Additionally we computed some of the interesting data of these circuits,
like how many AND and NOT gates they are comprised of.

There are two ways of counting the number of gates that a circuit has. The most
intuitive one is to count the number of unique gates in the circuit. However due to the
reuse problem explained in section 4.3 it is more useful for us to count the number of
gates that the circuit had if it was not possible to use the output of a gate more than
once. This essentially entails duplicating every subcircuit whose output is used by two
different gates.

The range of Universal Circuits Us,n that we generated corresponds to all useful
pairs of size s and number of inputs n up to a maximum number of four inputs. To
determine what pairs can be regarded as useful, consider the following. Given a fixed
number of inputs n, the smallest circuit that uses every input, has a size of n− 1 and
consists solely of AND gates. The biggest useful circuit on the other hand without
reusing any gates or inputs has size 3n− 2 and consists of the same AND gates as the
smallest possible one, but also has NOT gates interspersed at every possible position.
To understand the formula notice that for n = 1 the biggest circuit has one NOT gate,
and then for each additional input it is possible to add exactly three gates. Thus every
size between n− 1 and 3n− 2 is useful and we generated exactly them for input sizes
{1, 2, 3, 4}.

5.1.2 Applying Barrington’s Theorem

In this step we took the generated Universal Circuits from the fist step and transformed
them into Branching Programs. While this step does not have any further parameters
which could be tweaked, it turned out to be sensible to only transform some of the
circuits, because the Branching Programs for the others are already too big in itself,
before even applying the next steps.

Thus, instead of generating them and then determining their properties, we used
the following recursive formula to calculate the expected length l of the Branching
Program which implements the same functionality as a circuit defined by its output
gate g (this should be exact and not an estimation):

lenBP(g) =

1 if type(g) = Input

lenBP(g.inp) if type(g) = ¬
2lenBP(g.inp1) + 2lenBP(g.inp2) if type(g) = ∧

39

5 Experiments

This enables us to also estimate some of the other properties, most notably the
size in memory which grows linear with the length of the Branching Program, since
it essentially only depends on the length of the instruction lists. By dividing the
memory usage by the length of the Branching Programs we got an approximate factor
of 24.4 Byte per length, which we used to estimate the size of the Branching Programs
that we couldn’t generate. Using the same method we got a factor of proximately
2 · 10−6 seconds per length for the generation time, albeit with a bit higher variance,
so this might be a bit less precise. All values that are highlighted are calculations or
estimations.

s l Universal Circuits Branching Programs
AND gates NOT gates memory length memory time

1 2 17 26 18672 461 16 KB 0.002 s
2 2 97 150 41560 53549 1380 KB 0.036 s
2 3 157 250 62360 248429 6.3 MB 0.167 s
3 2 497 770 74432 6211757 151 MB 9.226 s
3 3 797 1270 105192 28817837 705 MB 43.604 s
3 4 1097 1770 133264 119242157 2.9 GB 238 s
4 2 2497 3870 120016 7.20 · 108 17.58 GB 1441 s
4 3 3997 6370 157256 3.34 · 109 81.56 GB 1.85 h
4 4 5497 8870 194496 1.38 · 1010 337.50 GB 7.68 h
5 3 19997 31870 218424 3.88 · 1011 9.46 TB 215.42 h
5 4 27497 44370 264832 1.60 · 1012 39.15 TB 37 d
6 3 99997 159370 288824 4.50 · 1013 1.10 PB 2.85 y
6 4 137497 221870 344464 1.86 · 1014 4.54 PB 11.8 y
7 3 499997 796870 368392 5.22 · 1015 127.32 PB 330 y
7 4 687497 1109370 433200 2.16 · 1016 526.80 PB 1368 y
8 4 3437497 5546870 531168 2.50 · 1018 61.11 EB 1.58 · 105 y
9 4 17187497 27734370 638264 2.91 · 1020 7.09 ZB 1.84 · 107 y

10 4 85937497 138671870 754680 3.37 · 1022 822.29 ZB 2.16 · 109 y

Table 5.1: Results of Universal Circuit and Branching Program generation

5.1.3 Randomizing the Branching Programs

Even for the already reduced subset of Branching Programs that we could actually
generate in the preceding step, it was not possible to generate the randomized counter-
parts in all but two cases. This despite the fact that we are using the smallest size for

40

5 Experiments

the randomized matrices by setting m = 1, which results in 7× 7 matrices, instead of
m = 2n + 5 as originally described. We decided to take this liberty because the original
paper introduced the value 2n+ 5 as an "additional safeguard for unanticipated attacks"
and notes that there is not any known reason why setting m = 1 should be insecure.
Moreover the construction is very slow and memory consuming, that much bigger
matrices would make it completely unusable. Also, we randomized all programs with
a value of p = 1049, because bigger values lead to much higher memory usage. To
understand the impact that bigger matrices and bigger values of p would have on the
generation time, we rand a small experiment where we only converted the smallest
Universal Branching Program for 2 inputs and 1 gate. The results for this can be found
in Figure 5.1.

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90 100

tim
e

(s
)

matrix size (m)

p = 1049
p = 15485863

p = 104395301

Figure 5.1: Randomized Branching Program Generation with different m

For those Branching Programs where the explicit conversion did not work, we
decided to at least try an estimation of the impact of this step in the construction. The
principle is again the same, we calculated the factor of Byte per length and seconds per
length for the Randomized Branching Programs that we could generate and took these
factors to estimate the values for the bigger Branching Programs. Since our sample
here is quite small, we also generated some more smaller Branching Programs and
randomized them in order to have some more values. All in all we found a cost of
about 2500 Byte per length for the memory consumption and 3.5 · 10−3 seconds per

41

5 Experiments

length for the generation time. Notice that this means that Randomized Branching
Programs need about 100 times more memory than Branching Programs. The resulting
estimations for different Randomized Branching Programs can be found in table 5.2.

A big problem with the data collection for all of the constructs using Sage was that
Heapy did not produce reliable results anymore. It turned out that this is due to the fact
that it cannot reliably keep track of objects that are generated in some of the libraries
that use C/Cython. This meant that we could not collect results in an automated
fashion and had to do it by hand using top and ps.

5.1.4 Encoding with Multilinear Jigsaw Puzzles

Even though our implementation of Multilinear Jigsaw Puzzle is not working com-
pletely, as explained in Section 4.5.1, we can use it nonetheless to understand how long
it would take to encode the Universal Randomized Branching Programs. Unless cor-
rectly computing â is very expensive, the results should be very similar for a completely
working version. Since we could only create two Randomized Branching Programs,
we decided to reach an estimation for the encoding time via a different process than
before.

Essentially, instead of measuring the time it takes to encode a whole Randomized
Branching Program, we only encoded single elements (that is just one number in the
ring Zp) and noted how long this took. For each set of parameters we repeated this
1000 times for 40 different elements that were randomly sampled from Zp and then
averaged the results, to get a grasp on how long it takes on average to encode one
element. Since we know that a given Randomized Branching Program of length n
has 4 · n · (2m + 5)2 elements (4 sets of (2m + 5)× (2m + 5) matrices), we can multiply
this with the time it takes to encode one element in order to get an estimation of the
time it would take to encode the whole program. As already mentioned above, Heapy
does not produce reliable results for Sage object, because it cannot track some of the
externally generated objects. It is however possible to treat its results as a lower bound
for the increase in memory and that turned out to be a factor of about 3.5 across all of
the experiments.

The parameters for this experiment are the number of levels k that the Multilinear
Jigsaw Puzzle should support and the dimension t which determines the degree of the
polynomials that represent encoded elements. The number of levels should actually be
the length of the Branching Program, so here it is useful to look a bit at the development
of the encoding time dependent k. The dimension on the other hand is defined in
the paper as t = k1/δ, which is simply not possible for practical purposes. Thus we
decided to look at a number of fixed dimensions instead. The encoding performed is
always an encoding at the highest level, since that is the most difficult one requiring

42

5 Experiments

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0 100 200 300 400 500 600 700 800 900 1000

tim
e

(s
)

multidimensionality (k)

t = 16
t = 32

Figure 5.2: Encoding time development with increasing multilinearity

the maximum number of multiplications, thus giving an upper bound on the difficulty.
The results in Figure 5.2 show that the encoding times grow approximately linear

with the multidimensionality following the formula timeenc(k) = 2.7 · 10−5 · k for
t = 16. Using this and the formula for the number of elements in a Randomized
Branching Program, we get following formula for estimating the time it takes to
encode a Randomized Branching Program of length n with random matrix dimension
m: timeenc(n, m) = (2m + 5)2 · 1.08 · 10−4 · n2 Using this formula we can estimate the
time it would take to encode all of the Randomized Branching Programs with matrix
dimension m = 1.

5.1.5 Generation Analysis

The Universal Circuits that we are generating are technically not optimal, thus there is
an opportunity for improvement. Nonetheless, it is important to note that the step that
is by far most expensive is the generation of Branching Programs due to their inability
to cope with reused gates. Even smaller Universal Circuit constructed with one of
the other methods, are going to reuse gates a lot. In fact reusing gates is an inherent
component of constructing Universal Circuits, because it is necessary in order to allow
every possible wiring between the Universal Circuits simulation gates. This means that

43

5 Experiments

s l Randomized Branching Programs MJP Encoding
length memory time time

1 2 461 1200 KB 1.80 s 1125 s
2 2 53549 137 MB 179.91 s 175 d
2 3 248429 621 MB 869 s 869 s
3 2 6211757 15.5 GB 6 h 10 y
3 3 28817837 72 GB 28 h 139266 y

Table 5.2: Estimations for Randomized Branching Program generation and encoding

the Branching Program generation is always going to cause an explosion in the size and
while the time cost and memory overhead of Randomizing the Branching Programs
and encoding them is also not small, it is linear in the length of the Branching Program
and thus less of a problem.

To summarize the cost of the construction, we can estimate a lower bound for the size
in memory of a completely obfuscated Branching Program of length n as 3.5 · 2500 · n
Bytes. It would take approximately 2 · 10−6 · n+ 3.5 · 10−3 · n+ (2m+ 5)2 · 1.08 · 10−4 · n2

seconds to compute it.

5.2 Evaluation

With this experiment we tried to understand how long the evaluation of an obfuscated
circuit would take. Again we also tested the different intermediate steps to estimate
which step is most expensive and thus most attractive for eventual improvements. The
execution time is always averaged over all possible circuits for that circuit family and
over all possible inputs to these circuits.

The estimated values for Branching Programs were calculated using the formula
2 · 10−6 · n which is the average time per length that was obtained from looking at the
other programs. The Randomized Branching Programs are using m = 1 and p = 1049
and the estimations are obtained using the formula 4.5 · 10−5 · n, also the average time
per length from looking at the other programs.

To estimate the impact of the Multilinear Jigsaw Puzzle Encoding on the evaluation,
we compared the time it took to compute the sum and the product of two elements
from the plaintext space Zp with the time it took to perform the same operations
with encoded elements. We used different Multilinear Jigsaw Puzzles with values
of t = 16, 32, 64 and several different values for the multilinearity k. The results (as
displayed in Figure 5.3) show that the multilinearity has nearly no impact on the
evaluation time, whereas using bigger values of t cause higher evaluation costs. To

44

5 Experiments

20

25

30

35

40

45

50

55

60

65

0 100 200 300 400 500 600 700 800 900 1000

sl
ow

do
w

n
fa

kt
or

multidimensionality (k)

t = 16, add
t = 32, add
t = 64, add
t = 16, mult
t = 32, mult
t = 64, mult

Figure 5.3: Slowdown of addition and multiplication in the encoding

estimate the cost of evaluating encoded Randomized Branching Programs, we simply
took the overall average slowdown factor which was about 37. This means that we
expect an accumulated cost of 1.665 · 10−3 · n seconds when evaluating an encoded
Randomized Branching Program of length n using m = 1, p = 1049 and t = 16. In
table 5.3 the relative slowdown factor is always in relation to the preceding construct,
meaning that the Randomized Branching Program Times are compared to the Branching
Program times.

s l circuit Universal Circuit Branching Program RBP MJP
1 2 946 µs 1010µs (1.05x) 2.24 ms (2.21x) 27 ms (12x) 1 s
2 2 646 µs 652 µs (1.02x) 111 ms (170x) 2.37 s (22x) 88 s
2 3 614 µs 537 µs (0.87x) 494 ms (920x) 11.18 s (22.5x) 414 s
3 2 1050µs 1140µs (1.10x) 11.6 s (10225x) 279.52 s (24x) 172 m
3 3 571 µs 778 µs (1.35x) 57.6 s (74000x) 1297 s (22.5x) 13.32 h
3 4 556 µs 808 µs (1.46x) 238.5 s (295000x) 5366 s (22.5x) 55 h

Table 5.3: Evaluation results

45

5 Experiments

Evaluation Analysis As already mentioned above, the biggest problem of the con-
struction are in fact the Branching Programs. This is very clearly visible, when one
checks the relative costs for evaluating the different intermediate steps of the construc-
tion. Both Randomized Branching Program and the encoding with Multilinear Jigsaw
Puzzles only add a linear factor to the evaluation time, the Branching Program cost
on the other hand increases with the input length. This is of course partly because of
our choice to set m = 1 and to fix t, in the ’true’ construction described by the authors
these values are also dependent on the Branching Program length. Nonetheless, the
most important factor for the cost of evaluating the obfuscated circuits will always
be the length of their corresponding Branching Programs, making the Branching Pro-
gram construction the most interesting target for improving the practicality of this
construction.

5.3 Fixing Universal Programs

This small experiment aims to understand the size of the final obfuscations of circuits
when using the technique proposed in Section 4.6. To do so we took the generated
Universal Branching Programs, fixed them for different circuits and took note of the
length of the resulting Branching Programs. Notice that the structure of the index
list is not affected at all when randomizing a Branching Programs or when encoding
them with a Multilinear Jigsaw Puzzle, hence the memory savings will be identical
(percentage wise) when one would use the same technique on a Randomized Branching
Program or on an encoded Randomized Branching Program. In fact, it is to be expected
that the evaluation time goes decreases by about the same percentage for all of the
constructs.

s l length before length after decrease
1 2 461 224 51.4 %
2 2 53549 25984 51.5 %
2 3 248429 116928 52.9 %
3 2 6211757 3014144 51.5 %

Table 5.4: Results of Universal Circuit and Branching Program generation

46

6 Conclusion

This chapter contains an outline of potential improvements for the implementation
and further research directions as well as the conclusion regarding the question of
practicality.

6.1 Potential Improvements

Even though the paper presenting this candidate [1] was published only quite recently,
there are already several works [34][35][36] improving it in different areas. Especially
the improvements related to efficiency would be very interesting to examine and include
in this implementation, in order to speed up the construction and hopefully make it
more useful in practice.

As for optimizations of the implementation itself, there are several things that come
to mind. Of course it would be better to generate the smallest Universal Circuit possible,
instead of the version that is easiest to generate. Even more interesting would be a
different way of generating Branching Programs which somehow softens the impact
of the reuse problem. As an idea, it might be possible to directly generate Universal
Branching Programs, which do not come from an application of Barrington’s theorem to
a Universal Circuit. In fact the Branching Programs that we generate with Barrington’s
theorem only use about 17 of the 120 possible permutations, which suggests that they
do not utilize the full range of computational power that Branching Programs have to
offer.

Additionally to these changes to parts of the algorithm, there is of course potential for
optimization in the realization of the algorithm. While the matrices over Zp that Sage
offers are already quite optimized, it might be possible to speed up the implementation
of Multilinear Jigsaw Puzzles by implementing a custom version of Zq[x]/(xt + 1) that
makes use of the special modulus. Also Sage offers a lot of functionality that we do not
need, it is very probable that the memory efficiency could be improved by dropping
that. Another performance boost could be obtained by parallelizing the code. Most
of the operations can be performed in parallel, which could speed up the evaluation
considerably especially on machines with multiple cores. Finally it could bring another
performance boost to move away from Python completely to a more efficient low-level
language like C.

47

6 Conclusion

On the usability front, it would be nice and relatively straight forward to have
Universal Circuits that can simulate circuits with different gates than just AND and
NOT gates. For this it would be sufficient to adapt the Simulation Blocks to also include
different boolean functions, like for example OR and XOR. A very interesting addition
would be the ability to programmatically transform a program of some sort into a
circuit, thus enabling us to obfuscate actual programs without having to design their
corresponding circuits by hand. This could either be done by implementing some
sort of primitive programming language for which the transformation to a circuit is
trivial or maybe by leveraging already existing research in that area. For example there
exist compilers [37] from C to the hardware description language VHDL [38]. While
electrical circuits are different from the boolean circuits used in this thesis, it might be
possible to modify them relatively easily.

One last thing that we would like to point out is the fact that it is actually possible to
pre-generate large portions of the construction. Once the enormous growth has been
addressed, one could generate encoded Randomized Universal Branching Programs for
several input circuit families and load them as needed. This could even be outsourced
to large server farms. To obfuscate a circuit a user would then only need to compute its
binary description and fix the matrices of the encoded Randomized Universal Branching
Program with that.

6.2 Practicality of The Candidate

The implementation presented in this thesis has several caveats, which have an impact
on the performance. Most notably is the relatively primitive implementation of Univer-
sal Circuits, which creates a big overhead especially for bigger circuits. Additionally
there was little optimization done in terms of algorithmic design, specialized data
structures or parallelization all of which could speed up the evaluation considerably.
Even though most of Sage libraries are implemented in C and optimized as far as
possible, most of our code is certainly not optimized and implemented in Python,
which is not necessarily the most performance oriented language.

That said, it is indisputable that the circuits that we are able to obfuscate so far
are tiny and of no practical use whatsoever. Seeing that the obfuscation of a circuit
with three gates and three inputs would probably take about 140 thousand years, it
seems likely that even heavy optimizations of the implementation cannot overcome
the inherent problems of the construction. Not to mention that this estimation is
quite optimistic and more of a lower bound when one wants to implement the ’true’
candidate which uses m = 2n + 5 and also a correct value for t.

The complete construction uses many expensive constructions and because of the

48

6 Conclusion

way they are applied on top of each other, their overhead accumulates in a multi-
plicative fashion. Thus, despite the restrictions mentioned above we conclude that the
construction is not ready for practical use just yet.

49

Bibliography

[1] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. “Candidate
indistinguishability obfuscation and functional encryption for all circuits.” In:
Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on.
IEEE. 2013, pp. 40–49.

[2] Sage. url: http://www.sagemath.org/ (visited on 09/14/2014).

[3] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and
K. Yang. “On the (im) possibility of obfuscating programs.” In: Advances in
Cryptology-CRYPTO 2001. Springer. 2001, pp. 1–18.

[4] C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transformations.
Tech. rep. Department of Computer Science, The University of Auckland, New
Zealand, 1997.

[5] C. Wang, J. Davidson, J. Hill, and J. Knight. “Protection of software-based sur-
vivability mechanisms.” In: Dependable Systems and Networks, 2001. DSN 2001.
International Conference on. IEEE. 2001, pp. 193–202.

[6] C. Collberg, C. Thomborson, and D. Low. “Manufacturing cheap, resilient, and
stealthy opaque constructs.” In: Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. ACM. 1998, pp. 184–196.

[7] T. Sander and C. F. Tschudin. “On software protection via function hiding.” In:
Information Hiding. Springer. 1998, pp. 111–123.

[8] Z. Vrba, P. Halvorsen, and C. Griwodz. “Program obfuscation by strong cryp-
tography.” In: Availability, Reliability, and Security, 2010. ARES’10 International
Conference on. IEEE. 2010, pp. 242–247.

[9] D. Low. “Java control flow obfuscation.” PhD thesis. Citeseer, 1998.

[10] C. S. Collberg and C. Thomborson. “Watermarking, tamper-proofing, and obfuscation-
tools for software protection.” In: Software Engineering, IEEE Transactions on 28.8
(2002), pp. 735–746.

[11] D. Aucsmith. “Tamper resistant software: An implementation.” In: Information
Hiding. Springer. 1996, pp. 317–333.

50

http://www.sagemath.org/

Bibliography

[12] H. W. Lenstra and C. Pomerance. “A rigorous time bound for factoring integers.”
In: Journal of the American Mathematical Society 5.3 (1992), pp. 483–516.

[13] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P. Gaudry,
A. Kruppa, P. L. Montgomery, D. A. Osvik, et al. “Factorization of a 768-bit RSA
modulus.” In: Advances in Cryptology–CRYPTO 2010. Springer, 2010, pp. 333–350.

[14] D. Madore. Quines (self-replicating programs). url: http://www.madore.org/
~david/computers/quine.html (visited on 09/15/2014).

[15] S. Goldwasser and G. N. Rothblum. “On best-possible obfuscation.” In: Theory of
Cryptography. Springer, 2007, pp. 194–213.

[16] A. Sahai and B. Waters. “How to Use Indistinguishability Obfuscation: Deniable
Encryption, and More.” In: IACR Cryptology ePrint Archive 2013 (2013), p. 454.

[17] S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

[18] T. Holenstein. Branching Programs and Barrington’s Theorem. url: http://www.
complexity.ethz.ch/education/Lectures/ComplexityHS10/ScriptChapterTwelve

(visited on 09/15/2014).

[19] K. Hansen and C. Jensen. Barrington’s Theorem. url: http://www.cs.au.dk/
~arnsfelt/CT10/scribenotes/lecture16.pdf (visited on 09/15/2014).

[20] J. Kilian. “Founding crytpography on oblivious transfer.” In: Proceedings of the
twentieth annual ACM symposium on Theory of computing. ACM. 1988, pp. 20–31.

[21] D. Boneh and A. Silverberg. “Applications of multilinear forms to cryptography.”
In: Contemporary Mathematics 324.1 (2003), pp. 71–90.

[22] D. Boneh. “The decision diffie-hellman problem.” In: Algorithmic number theory.
Springer, 1998, pp. 48–63.

[23] S. Garg, C. Gentry, and S. Halevi. “Candidate Multilinear Maps from Ideal
Lattices.” In: Eurocrypt. Vol. 7881. Springer. 2013, pp. 1–17.

[24] J.-S. Coron, T. Lepoint, and M. Tibouchi. “Practical multilinear maps over the
integers.” In: Advances in Cryptology–CRYPTO 2013. Springer, 2013, pp. 476–493.

[25] M. Naor. “Bit commitment using pseudorandomness.” In: Journal of cryptology 4.2
(1991), pp. 151–158.

[26] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. “(Leveled) fully homomorphic en-
cryption without bootstrapping.” In: Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference. ACM. 2012, pp. 309–325.

[27] PyPI. the Python Package Index. url: https://pypi.python.org/pypi/ (visited on
09/14/2014).

51

http://www.madore.org/~david/computers/quine.html
http://www.madore.org/~david/computers/quine.html
http://www.complexity.ethz.ch/education/Lectures/ComplexityHS10/ScriptChapterTwelve
http://www.complexity.ethz.ch/education/Lectures/ComplexityHS10/ScriptChapterTwelve
http://www.cs.au.dk/~arnsfelt/CT10/scribenotes/lecture16.pdf
http://www.cs.au.dk/~arnsfelt/CT10/scribenotes/lecture16.pdf
https://pypi.python.org/pypi/

Bibliography

[28] L. G. Valiant. “Universal circuits (preliminary report).” In: Proceedings of the eighth
annual ACM symposium on Theory of computing. ACM. 1976, pp. 196–203.

[29] T. Schneider. “Practical Secure Function Evaluation.” MA thesis. Friedrich-Alexander-
Universität Erlangen-Nürnberg, 2008.

[30] T. Schneider. FairplayPF. Secure Evaluation of Private Functions. url: http://
thomaschneider.de/FairplayPF/ (visited on 09/14/2014).

[31] NumPy. url: http://www.numpy.org/ (visited on 09/14/2014).

[32] Documentation - The Python Standard Library. time - Time access and conversions. url:
https://docs.python.org/2/library/time.html (visited on 09/13/2014).

[33] S. Nilsson. Guppy-PE. A Python Programming Environment. 2013. url: http://
guppy-pe.sourceforge.net/ (visited on 09/13/2014).

[34] B. Barak, S. Garg, Y. T. Kalai, O. Paneth, and A. Sahai. “Protecting obfuscation
against algebraic attacks.” In: Advances in Cryptology–EUROCRYPT 2014. Springer,
2014, pp. 221–238.

[35] Z. Brakerski and G. N. Rothblum. “Virtual black-box obfuscation for all circuits
via generic graded encoding.” In: Theory of Cryptography. Springer, 2014, pp. 1–25.

[36] P. Ananth, D. Gupta, Y. Ishai, and A. Sahai. “Optimizing Obfuscation: Avoiding
Barrington’s Theorem.” In: IACR Cryptology ePrint Archive 2014 (2014), p. 222.

[37] B. Buyukkurt, Z. Guo, and W. A. Najjar. “Impact of loop unrolling on area,
throughput and clock frequency in ROCCC: C to VHDL compiler for FPGAs.” In:
Reconfigurable Computing: Architectures and Applications. Springer, 2006, pp. 401–
412.

[38] Z. Navabi. VHDL: Analysis and modeling of digital systems. McGraw-Hill, Inc., 1997.

52

http://thomaschneider.de/FairplayPF/
http://thomaschneider.de/FairplayPF/
http://www.numpy.org/
https://docs.python.org/2/library/time.html
http://guppy-pe.sourceforge.net/
http://guppy-pe.sourceforge.net/

	Acknowledgments
	Abstract
	Zusammenfassung
	Introduction
	What is Obfuscation?
	State of the Art
	Formally Secure Obfuscation
	Black Box Obfuscation
	Indistinguishability Obfuscation

	Thesis Intention

	Preliminaries
	Circuits
	Nick's Class (NC)

	Notions of Obfuscation
	Branching Programs
	Barrington's Theorem

	Kilian's Protocol
	Universal Circuits
	Multilinear Jigsaw Puzzles
	Formalized

	Candidate Construction for NC1 Circuits
	Underlying Idea
	Problems and Solutions
	Attacks Not Respecting the Algebraic Structure
	Partial Evaluation Attack
	Mixed Input Attacks

	Complete candidate
	Limitations

	Implementation
	Circuits
	Universal Circuits
	Construction Based on Building Blocks
	Generating the Binary Description of a Circuit

	Circuit to Branching Program
	Randomized Branching Programs
	Multilinear Jigsaw Puzzles
	In Practice

	Fixing Programs

	Experiments
	Generation
	Universal Circuit Generation
	Applying Barrington's Theorem
	Randomizing the Branching Programs
	Encoding with Multilinear Jigsaw Puzzles
	Generation Analysis

	Evaluation
	Fixing Universal Programs

	Conclusion
	Potential Improvements
	Practicality of The Candidate

	Bibliography

