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Abstract—Unintentional re-implementation of existing func-
tionality is an issue frequently reported in practice and causes
increased efforts for development and maintenance. However,
instances are hard to find with existing approaches. For practi-
tioners, this increases maintenance risks, such as inconsistent bug
fixing, and hinders quality improvement efforts. For researchers,
this hinders a reliable quantification of the issue.

We propose a pragmatic approach combining identifier-
based concept location with static analysis to detect candi-
date re-implementations between two sets of source code. We
present initial results from applying the approach to detect re-
implementations of utility functionality present in libraries within
a sample of Java projects.

Index Terms—software reuse, API, library, software mainte-
nance, Java, missed reuse opportunities, re-implementation

I. INTRODUCTION

An abundance of valuable software assets is present in
companies’ code repositories, via Open Source libraries, and
commercial component markets. Nevertheless, developers tend
to re-implement existing functionality [18], [3], missing out
on the benefits of reuse opportunities. Furthermore, this can
result in the creation of “Simions” [17], independent re-
implementations of existing functionality that do not share
a common origin in terms of code. Simions have long term
negative effects in the form of increased development and
maintenance efforts.

Re-implementations can happen easily for various reasons:
(1) the scale of development in large projects makes staying
up to date with reusable entities challenging. This entails a
certain amount of parallel implementation efforts. Despite the
higher probability of a required functionality being available,
the increasing effort for searching, understanding and adapting
a reusable incites implementing functionality from scratch [3],
[18]. (2) The use of established protocols might impose
specific implementation steps that are duplicated [1]. (3) To
achieve business goals, duplicate implementations might be
necessary at times. (4) Evolution of libraries might make parts
of the code obsolete [18]. (5) Low API usability prevents
users from finding the implementations realizing a specific
concept [26].

Discovering re-implementations is difficult in theory and
practice: first, semantic equivalence checking is well studied
(e.g. [7]) and a generally undecidable problem. Approaches to
detect re-implementations therefore are constrained to resort
to approximations. Second, previous work [9], [17] concludes

that existing approaches, such as clone detection or random
testing approaches [16], do not provide satisfactory results to
detect re-implementations in practice.

Consequently, research so far is unable to realistically
quantify the size of the problem. Practitioners, on the other
hand, miss an approach providing support to avoid new and
discover existing re-implementations [3]. Therefore, we need
a new approach to discover missed reuse opportunities in the
form of (unintentional) re-implementations.

Problem statement: Re-implementations of existing func-
tionality happen in practice and entail negative effects, such
as increased costs for development and maintenance. However,
we are lacking a comprehensive approach to discover them.
As a result, the extent of the phenomenon remains unclear.
Furthermore, practitioners lack support to address the issue.

Contributions: This paper presents a novel approach to
discover re-implementations between software libraries and
a system’s source code. To this end, we establish a broader
definition of similarity, based on the concepts embodied in
the identifiers. We implement our approach for Java systems
and provide a calibrated set of parameters for it. We report on
a proof of concept evaluation, detecting re-implementation of
library functionality in three Java systems.

II. RELATED WORK

Prior work has addressed cases of semantic code duplica-
tion. Our notion of re-implementations is related as follows:

Semantic clones [12] are code fragments with isomorphic
program dependence graphs, and therefore structurally similar.
Their behaviour can, but does not need to, be functionally
similar. Accidential clones [1] are code fragments of different
origin that are syntactically similar due to the adherence to a
specific protocol. This does, however, not imply behavioural
similarity. Type-4 clones [28], “wide miss” clones [20], and
Simions [17] refer to the same phenomenon: behaviourally
similar code fragments that have no common origin. Unlike
cloned code, these fragments are likely to differ greatly in their
structure [17].

In the following, we present approaches that aim to detect
or avoid untintentional re-implementations.

A. Detecting similar implementations

Closest to our approach is the work by Marcus and
Maletic [20]: they aim to interactively detect high-level con-



cept clones by computing the similarity of source code doc-
uments (that can be of the granularity of files or methods)
and clustering of the results. The similarity is computed
with Latent Semantic Indexing, LSI [8]. The clustering can
be enhanced by using structural information. Determining
relevant high-level concepts is done by the user. In a case
study, the authors uncover simions of a list within one system.
Our approach differs in scope and techniques: We aim to find
simions between a corpus of libraries and one or more systems.
Since the libraries determine the relevant concepts for the
analysis, we need a pragmatic way to extract their key concepts
from their source code. For this, we choose TF-IDF which is
robust accross systems and does not require extensive tuning.
Furthermore, we take use the program structure to restrict the
vocabulary used by the analysis.

Al-Ekram et al. [1] report empirical findings on acciden-
tial cloning across software systems. Their approach detects
structurally similar code fragments caused by usage patterns
required by specific technologies. However, the authors state
that their approach is likely to miss re-implementations that
are fundamentally different in structure.

Jiang and Su [16] propose random testing to automatically
mine functionally equivalent code fragments. The source code
is randomly cut in chunks. Two chunks are considered equiv-
alent if they produce the same output for the same random
input data. The study reports promising results for the test
systems, namely a Linux Kernel and a sorting benchmark.
These systems are written in C and, due to their functionality,
do not require functionality, such as string processing, which
is prevalent in average systems. Deissenboeck et al. [9] found
that reproducing Jiang and Su’s experiment on Java code
yielded insatisfactory results. Apart from challenges induced
by the different requirements of the technical platform, they
consider their definition of equivalence problematic: first, it
does not account for side effects. This causes code fragments
to be pronounced equivalent that a programmer would deem
fundamentally different. Second, independently of the given
input, most code chunks did not produce any output or yielded
exceptions. By their definition, these chunks are equivalent. In
practice, this information is of little value.

Kawrykow and Robillard [18] propose an approach to mine
Java systems for methods “imitating” library methods avail-
able to these systems. Their goal is to replace functionality
implemented in the client code by calls provided by the library.
They abstract method bodies to program elements and perform
a matching between the available library methods and the
client methods. Whilst they cater to the important use case
of replacing obsolete client methods by library methods, the
notion of equivalence on the method level is still too restrictive
for our task: the re-implementations we are looking for might
be present in different code structures and would therefore be
missed by the approach.

B. Detecting similar applications

Using API calls to find relevant code has been proposed and
applied before, e.g. in the context of code search [6], [22], [23]

and rapid prototyping [24]. However, we do not know of this
technique being used to track and quantify simions in existing
software systems. Despite the differing context of the work,
the successful use of API calls as indicators for relevant code
encourages us to exploit this idea for our goal.

Teyton et al. [30] support the process of library migration
by mining function mappings from projects that have already
completed the transition between two given libraries. This ap-
proach pragmatically overcomes the challenges of establishing
a notion of “similarity” in terms of the program constructs
themselves and is, therefore, immune against differences in
structure and vocabulary. However, in our context, historical
data is not applicable.

C. Preventing re-implementations

Thung et al. [31] address the proplem of duplicate imple-
mentation in a constructive way: by analyzing repositories to
determine which APIs are used together, they provide rec-
ommendations of potentially useful APIs for a given project.
Their goal is to inform developers of existing APIs before
they re-implement the respective functionality. Our work com-
plements this approach by discovering already existing re-
implementations that could be replaced by libraries.

Code recommenders, proposed by [11], [14], [15], [21],
[32], address re-implementations by recommending code snip-
pets or applicable library methods depending on the cur-
rent development context. Similar to code recommenders,
enhanced code completion [4], [27] aims to ease discovery of
existing functionality to the developer. These approaches do
not support detection of already existing re-implementations.
However, the techniques employed to generate recommenda-
tions include code structure and identifier analyses.

D. Concept location

The use of identifiers is a common strategy for concept
location [19]. Methods from text retrieval, TR, (such as
Term Frequency-Inverse Document Frequency, TF-IDF [29],
or Latent Semantic Indexing, LSI [8]) are used to extract
concepts given by e.g. use cases from source code. Recently,
these approaches have been enhanced by adding static and/or
dynamic program information. A study by Basset and Kraft [2]
further suggests that structural term weighting can improve
TR based concept location. To the best of our knowledge, the
mentioned techniques have not been applied to our case.

III. GENERAL APPROACH

The following section presents our approach. At this stage
of our work, we focus on discovering re-implementations of
well established concepts available in open source libraries.

Our simion detection proceeds as follows (see Figure 1):
it takes as input the so-called “concept library”, a curated
collection of libraries from which the concepts are mined,
as well as the “study object”, consisting of one ore more
software systems in which we look for simions. The identifiers
of concept library and study object are extracted and analyzed
in a preprocessing phase to learn the specific concepts present



in their source code. The preprocessed identifier information
is then used in the matching phase to compute the likelihood
of two code entities implementing equivalent functionality.

By resorting to identifiers, we overcome the problem of re-
stricting similarity to a syntactic level. As studies have shown,
identifiers are valuable sources for capturing programmers’
intent [5], [10]. Therefore, we assume that two code frag-
ments that contain identifiers belonging to the same concept
might provide the same functionality and could, therefore, be
potential re-implementations. This assumption is strengthened
by Haiduc and Marcus [13].

Preprocessing

Concept library Study object

C1 C2 C3 C4

C5 C6 C7

A B C D

E F G(...) (...)

C2 E....................

Extract identifiers

Compute identifier weighting

Matching

Extract identifiers

Compute identifier weighting

Output

Fig. 1. This figure illustrates our approach: we extract relevant identifiers
for each concept and compute the best matches within the study object. In the
preprocessing step, different approaches can be taken to select and prepare
the identifiers that are subsequently used.

Whilst the intuition behind this approach is quite simple,
relying solely on identifiers risks to clutter the results with
false positives: the same identifiers occur when defining a
specific functionality as well as when using it. To mitigate
this, we only consider identifiers present in declarations of
methods, fields, and classes.

Our approach abstracts functionality provided by identifiers
on a per-file basis. We opt for this granularity to capture
concepts spread over several methods. During the preprocess-
ing phase, we assign a set of “significant” identifiers to each
source code file. We deem those identifiers as significant that
best1 capture the concepts of the respective file. Based on
this information, we compute a similarity score for all files
within the study object and the files of the concept library2.

The similarity score is computed as follows:

∑
i∈Ib∩s

v(i)∑
i∈Ib

v(i)
, with

1“Best” is determined by the characteristic identifiers contained in the
corpus of libraries.

2Depending on the context, not all concepts need to be searched for. Instead,
the analysis can be run for specific concepts present in the library, such as
“Collections”, “I/O” etc.

Ib denoting the relevant identifiers of a concept file and Ib∩s

denoting the overlapping relevant identifiers of a concept and
a study object file. v(i) denotes the weight assigned to the
given identifier i.

We implemented our prototype on top of ConQAT3, an
Open Source software quality analysis tool.

IV. CALIBRATION OF THE APPROACH

The quality of the obtained results depends significantly
on the processing (and the quality) of the identifiers. In this
section, we describe the variation points and the steps of
calibrating the parameters of our approach.

There are two steps in the process that allow for variation:
(1) identifier extraction and (2) identifier ranking. For both
steps, we present the potential options. Then, we describe
the setup of the calibration process, the tested parameter
configurations, and the resulting set of parameters used for
our proof-of-concept evaluation.

Identifier extraction: The first step of the preprocessing
phase is the extraction of the identifiers. We assume that pre-
selection of identifiers guided by the program structure would
improve the precision of our findings. To quantify the effect of
this step we included this decision in our calibration process.
Second, we tested the impact of splitting4 and partitioning the
identifiers on our results.

Identifier ranking: The second step of the preprocessing
phase assigns a weight to the identifiers extracted for each
file. Pragmatically, one could count the absolute frequencies
to identify the most relevant concepts in a file. However, this
approach risks to overshadow important concepts. For this
reason, we compare the effect of ranking concepts according to
their absolute identifier frequency to using the TF-IDF metric.
Furthermore, we test the impact of several threshold values
for TF-IDF.

A. Calibration setup

To calibrate our approach, we considered the specific
use case of discovering potential re-implementations of well
known “Collections” concepts in the Qualitas Corpus. We
buildt up our concept library by curating these concepts
from well known Open Source libraries, such as Apache
Commons, Trove5 and Guava6. By manually assessing the
library implementations, we found that indeed the vocabulary
used to represent the concepts in the identifiers was very
similar.

Study Object: To test the suitability of a configuration,
we need a way to measure the quality of the result we
obtain. Since we can not manually establish the number of
re-implementations of a given concept within the 112 systems

3www.conqat.org
4We used CamelCase as well as non alpha-numeric characters as indicators

for splitting. Furthermore, we applied an English word stemmer and removed
trailing digits.

5http://trove.starlight-systems.com/
6https://code.google.com/p/guava-libraries/



present in the Qualitas Corpus7, we injected deliberate re-
implementations into the corpus by inserting the files of the
Guava Collections into the Qualitas Corpus8. In this way,
we obtain a known set of expected hits for our approach.
Nevertheless, determining the quality of the result remains
challenging. Manually validating the presence of all expected
Guava files in the results is infeasible. Furthermore, results
yielding the same number but different files can not be
differentiated in quality. To address these challenges, we set up
the experiment as shown in Figure 2: for each configuration,
we run our analysis once. Then, we randomly sample 10 files
from the Guava Collections and probe the result set to find out
1) whether they are included and 2) in which position of the
result set they occur. This probing step is repeated 100 times,
each time with a different random sample.

Configurations: We account for the mentioned variation
points in the following way: The selection of the identifiers is
done either by extracting all identifiers present in the current
file or extracting only identifiers present in declarations of
classes, methods, and variables.

Partitioning of the identifiers refers to employing split-
ting techniques and providing, in addition, substring repre-
sentations of the identifiers. Take as example the identifier
arrayStackItem. The ordered substring representations would
yield: {array, stack, item, arrayStack, stackItem, arrayStack-
Item}. This variation is either on or off. The configuration for
TF-IDF varies from counting the identifier frequency to using
TF-IDF with the threshold values of 5, 10, and 15.

To compare the results for each configuration, we computed
the following metrics per probing step: the average hit count,
establishing how many of the files in our probing set are
present in the results, and the position, denoting the rank of the
files in the result set. The final performance of a configuration
is rated by averaging the average hit count and the position
values for all the probing steps.

B. Calibrated configuration

The calibration procedure yielded the following configura-
tion as the most suitable: preselecting the identifiers according
to the program structure, partitioning the identifiers, and using
TF-IDF with a threshold value of 5. Consequently, we run our
proof of concept evaluation with these settings.9

C. Taxonomy of the results

From the calibration results, we built up a taxonomy of
findings by manually assessing the first 250 results. The code
fragments matched the following categories:

A code fragment is a potential re-implementation if it im-
plements or extends functionality contained by or equal to the
concept we searched for. Clearly, our approach can not prove
the fragment’s functional equivalence. However, it can point
developers to candidate points in order to establish whether

7We used the Qualitas Corpus version 20130901r and the JRE 1.6.0.
8For this setup, we removed the Guava Collections from the concept library.
9Comparing our calibrated approach to [20] would be interesting. However,

it is unclear if their system is available.
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Fig. 2. This figure visualizes our evaluation process for detecting re-
implementations of Collection functionality. To establish a base-line of known
duplicates, we injected the Collection implementation of Guava into the
Qualitas Corpus and measured the detection rates for these known “re-
implementations”.

they really present missed reuse opportunities. Potential re-
implementations can have a varying degree of similarity to the
concept implementation in the library. We therefore differen-
tiate between perfect match, where study object and concept
library implement the same functionality, similar match, where
study object and concept library implement similar aspects
of the same concept, and concept match, where study object
and concept library implement different aspects of the same
concept.

If a code fragment merely wraps library calls for a specific
concept, our approach will still include it in the result. How-
ever, we consider this case as a concept application and do
not classify it as missed reuse opportunity.

False positives unrelated to the considered concept are seen
as bad matches. For situations where we can not fit a result
in any of these categories, we label them as undefined.

Result classification: The distribution of the calibration
findings is as follows: 195/250 potential re-implementations
(out of which 11/195 perfect matches, 86/195 similar matches
and 98/195 concept matches), 30/250 concept applications,
18/250 bad matches, and 7/250 undefined. The ranking of the
results intuitively presented the potential re-implementations
with higher values than the other categories.

We, furthermore, assessed the 18 bad matches found within
the 250 results. The majority (16/18) of bad matches occurred
due to similarities in the vocabulary employed by different
concepts, in our case string manipulation and iterations over
collections. The remaining bad matches were applications of
the concept contained e.g. in implementations wrapping the
usage of a library.

V. PROOF OF CONCEPT EVALUATION

Our proof of concept evaluation provides a first answer to
the following question: Which re-implementations do we find
within our study objects?

To answer this question, we select three Open Source Java
projects, analyze them and manually examine the source code
indicated as re-implementation by our approach. We restrict
the search for re-implementations again to the “Collections”



concept. Furthermore, we limit the assessment to the first 30
results for each system.

Setup: The concept library used for this evaluation contains
the Apache, Trove and Guava collections. Our study objects
are the Apache projects “MyFaces” and “Tomcat”, present in
the Qualitas Corpus, and the “Spring IO” framework[25]. The
systems provide functionality related to web applications with
Java. Due to this specialization, we expect them to use given
collection implementations. Therefore, re-implementations of
this concept would be missed reuse opportunities.

Results: The inspection of the analysis results yielded the
following re-implementations: a perfect match of IteratorEnu-
meration and a concept match for MapEntries in MyFaces,
a NullComparator perfect match and a similar match for
a UnmodifiableMap in the Spring framework, and a perfect
match for the ArrayStack implementation, a perfect match for
the Entry implementation and a similar match for a HashMap
implementation in Tomcat. For all three systems, the perfect
matches ranked within the first five positions of the findings.

VI. THREATS TO VALIDITY

The preliminary character of our investigation entails a
number of threats to validity. Firstly, the concept library and
the study objects are currently very specific. It remains to be
seen how well the approach performs on a larger and less
carefully curated collection of libraries and systems.
Secondly, we calibrated our approach for a well known
concept, encompassing a clear vocabulary. This characteristic
might not be necessarily given for other concepts. It remains
to be seen if our approach can provide helpful results nev-
ertheless. Possibly, it could be enhanced by sourcing domain
knowledge from the implementors or including ontologies.
Determining the equivalence of implementations by automatic
ranking as well as manual inspection remains challenging.
Therefore, neither the weighting function nor the manual
assessment for determining the quality of the results can be
perfectly reliable.

VII. CONCLUSION AND FUTURE WORK

We presented a pragmatic approach to detect re-
implementations. Due to a wider notion of similarity, which
is based on the concepts contained in the source code, it is
able to find potential duplicates that likely would be missed
by established approaches such as clone detection. Our pre-
liminary results look promising and encourage us to follow
up with extended evaluations. In this way, we aim to quantify
the extent of re-implementations in software systems as well
as to support practitioners to avoid or remove missed reuse
opportunities.
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