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Abstract

Research in software engineering has shown that the reuse of software components reduces
bugs, improves code quality and decreases development time.
In the past many code search systems have been proposed to help developers find code

that is suitable for reuse in large code bases. Today large companies see several commits
to their software repositories every minute and developers expect information they rely
on to be up to date. This creates the need for a novel approach of analyzing the code
base and keeping the code search engine updated. The traditional approach to read the
entire code base becomes difficult as updating takes longer than the time between two
subsequent commits to the repository.
While other code search systems focus on text-based search or use test-cases to find

suitable code for reuse, we build on the approach of using a method’s context to find
useful methods for reuse. We complement this approach with signature matching and
techniques known from software engineering: architecture analysis and code review states
of code. These are used as metrics to rate a method’s suitability in a given context.
This thesis contributes a novel code search system designed for use with companies’

internal code bases. The proposed system uses an incremental approach to update its
index, updating only parts of data affected by the changes in each commit. This keeps
the analysis time low and allows the system to work with updated data in the matter of
seconds.
To evaluate the proposed code search system a novel evaluation method is introduced

that is built on the concept of incremental analysis. It enables the usage of a system’s
entire development history, accurately replaying the actual development process. The
system’s state and the changes made at any given commit can be used to accurately
evaluate the code search system using the data that would have been available at that
time.
The evaluation shows that our code search system consistently delivers results containing

the developers choice on two different systems in more than 50% of the cases when
retrieving 5 results. We evaluate all combinations of our proposed metrics and show which
lead to the best results.
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1 Introduction

1.1 Motivation

A developer working on software frequently faces the question: “Has someone written
the code that I am about to program?”. While this question can often be answered
fairly quickly on small projects, it is difficult to answer on industrial scale projects with
hundreds of thousands of lines of code. The programmer can no longer read all the code
to find possible sources to reuse but has to resort to using his experience or tools to search
the code base.
As software development is a collaborative effort on bigger projects, it becomes increas-

ingly difficult for a developer to track all the changes made by his colleagues. Google for
example has more than 20 changes per minute1. Keeping track of all new code would
be desirable in order not to miss future reuse opportunities but becomes impossible on
projects with many contributers as the amount of produced code cannot be memorized
by one single individual.
In software engineering reuse of existing software has been associated with many benefits:

It shortens development cycles, improves code quality and reduces the amount of code to
be maintained [20, 26].
Many forms of reuse have emerged since it was first envisioned in 1968 by McIlroy [28].

The simplest form of reuse is copying and pasting (cloning) code snippets from other files
or programs. This is generally viewed as bad practice and is known to cause bugs [22].
Reusing existing methods or entire classes as a whole is an established standard in

most software projects today [17]. The reused methods and classes can be part of the
project’s own code or contributed by external libraries. Using external libraries has the
benefit of being provided with generally well tested and commonly used code. Thereby
automatically improving the code’s quality. The reoccurrence of errors that have already
been found and corrected by the library’s authors can thus be prevented. Consequently,
the programmer reusing the code saves time and money.
With the rise of component-based and service-oriented development paradigms it has

become popular to reuse entire components instead of only smaller parts like methods and
classes. The reuse of larger components requires a deep understanding of their behavior in
order to correctly evaluate if they solve the problem at hand and its particular conditions.
Many code search engines provide service or component search (e.g. Merobase2, Service
Repository3).

1Google Engineering Blog: http://google-engtools.blogspot.de/2011/05/
welcome-to-google-engineering-tools.html (last accessed October 14, 2013)

2Merobase Component Finder: http://www.merobase.com (last accessed October 14, 2013)
3Service Repository: http://www.service-repository.com (last accessed October 14, 2013)
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1 Introduction

In recent years the open source community has seen a huge rise in the number of projects
[11], making it a valuable source of reusable software. Open source libraries like the
Apache Commons4 have become popular even among industry projects, as they often
provide sources of well tested code suitable for use in production quality software. To
aid the reuse of open source software, multiple source code search engines have been
introduced, e.g. Krugle5 and Ohloh Code Search6. The latter indexes over 20 billion
(October 2013) lines of code (LoC) that can freely be searched for any text. Nevertheless,
research indicates that developers often do not find what they are searching for using
services like Ohloh Code Search [3].

1.2 Problem Statement

As code bases grow, it is impossible for a single developer to know all the existing
functionality that is implemented within an application or library. This leads developers
to implement functionality that is available as part of the code base and that could be
reused. Every time a reuse opportunity is missed, an increased maintenance burden and
inconsistencies in the code base are likely to follow [23, 31, 22].

To aid developers with this problem, a system is needed that can assist them in finding
reusable code snippets in the entire code base. As companies tend to have an ever growing
collection of projects and code, it can easily happen that developers does not have the
company’s entire code base on his local machine, rendering local text search methods like
grep7 or the Windows search8 useless for finding reusable code.

Using Internet scale code search engines for internal code search does not seem to solve
the problem because the presented results appear to be inaccurate in many cases [3].
Other approaches are needed to sort the presented data, as not all code is suitable for
reuse and thus of limited interest to the developer.

Regular code search methods ignore additional information, such as the software’s
architecture or the code’s review status. Using a method from a package whose usage is
forbidden by the architecture leads to inconsistencies between the code and the architecture.
This possibly makes a reuse candidate a worse choice for than one that is allowed. Reusing
code that has not yet been reviewed comes with the risk of using code that is still under
development and possibly contains more bugs. Instrumenting the review ratings to ignore
code that has not yet been reviewed in the search could save the developer from these
risks.

4Apache Commons: http://commons.apache.org (last accessed October 14, 2013)
5Krugle: http://krugle.org (last accessed October 14, 2013)
6Ohloh Code Search: http://code.ohloh.net (last accessed October 14, 2013)
7grep website: http://www.gnu.org/software/grep (last accessed October 14, 2013)
8Windows search website: http://windows.microsoft.com/de-de/windows7/products/
features/windows-search (last accessed October 14, 2013)
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1.3 Contribution

1.3 Contribution

This thesis contributes a new approach to search searching for reusable methods by using
architectural information (section 2.9) and review state of code (section 2.3). These are
used as additional metrics to context matching (section 2.8) and signature matching
(section 2.4) for the retrieval of reusable methods.
We present a working prototype implemented as part of Teamscale (see section 2.11). It

is built on the usage of a text indexing framework as search back end for data retrieved.
Our implementation provides a service accessible to clients like our proposed IDE auto-
completion system, which formulates queries based on the programmer’s current context
and makes the results available to the developer without any manual interaction. Due
to our system’s incremental approach we provide up to date information in a matter of
seconds after each commit.
Additionally, we propose an incremental approach that evaluates our system using a

study object on a per-commit basis, therefore closely following the actual development
process. We measure the effectiveness of our approach on different study objects (see
chapter 5). Our evaluation approach is useful for all recommendation systems applied in
an auto-completion scenario where the code’s history is available.

1.4 Research Questions

We propose a set of research questions.

RQ 1: What are useful metrics and techniques for a code search system?

We want to identify a set of metrics that are useful in our scenario of a closed, company
internal software project to determine reusable methods, so that helpful results can be
presented to developers by a code search system.

RQ 2: Which combination of metrics provides the best results?

The proposed metrics should be evaluated and tested in multiple combinations on real
systems to find out which combination provides developers with the best set of reusable
methods for their query to the system.

RQ 3: Can a shallow parser replace a full parser in code search engines?

In order to generate data for our code search system we have to inspect the source code of
the underlying project. Our aim is to provide a maximum of indexing performance, so that
the latest data can be made available to the back end as quickly as possible. A shallow
parser can read great amounts of code quickly and provides a level of programming language
independence through abstraction. As this comes at the cost of limited functionality, we
want to evaluate whether using a shallow parser could be a valid option compared to a
full parser.
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2 Preliminaries

This chapter briefly introduces techniques used in this thesis and explains basic concepts
needed to understand it.

2.1 Auto-Completion in the context of an IDE

Most modern IDEs (integrated development environment), like Eclipse1, Netbeans2 or
IntelliJ IDEA3, provide developers with a way of automatically completing the word they
are currently writing. This can mean completing the name of a method, variable, a class
name, language keywords or more advanced use cases like automatically inserting a while
loop with all necessary syntax. Generally, the results are sorted by expected return type
and then lexicographically taking the already written characters into account. Figure 2.1
shows an example of the Netbeans auto-completion.

Figure 2.1: A sample of a Netbeans auto-completion session 4

1Eclipse website: http://www.eclipse.org (last accessed October 14, 2013)
2Netbeans website: http://www.netbeans.org (last accessed October 14, 2013)
3IntelliJ IDEA website: http://www.jetbrains.com/idea (last accessed October 14, 2013)
4Taken from https://netbeans.org/kb/docs/java/editor-codereference.html (last ac-
cessed October 14, 2013)
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2 Preliminaries

2.2 Internet Scale Code Search

The open-source movement has made large software projects freely available on the
Internet. Similar to searching the Internet for websites with Google or other search
engines, researchers and companies [2, 18, 19] found great interest in building search
engines used to search for source code on the Internet.
Internet scale code search engines usually index up to billions of lines of code (e.g.

Ohloh Code Search5 - ≥ 20 billion lines of code) and make them available through a
search interface. Many code search engines like Ohloh Code Search work just like normal
text retrieval engines and provide full text search. Others use more abstract data, e.g.
the Merobase Component Finder6, which allows the user to specify tests in order to find
entire matching components.

2.3 Code Reviews

Code review is a process in which a developer systematically examines source code to
identify problems. Code reviews were introduced in 1976 by Michael Fagan under the
name of formal inspections [12]. The inspections include the review of design, tests and
documentation. Code reviews can have multiple purposes, such as identifying actual bugs,
finding code with an inconsistent style or locating maintainability problems.

2.3.1 LEvD Code Review Rating Process

The CQSE GmbH employs the LEvD review process [10] to review code written for
Teamscale. It is a light weight review process tightly integrated with a bugtracker. Every
file can be in one of three basic states: RED, YELLOW and GREEN.

Figure 2.2: The LEvD review process.

Figure 2.2 shows an activity diagram of the process. The process starts with a ticket
(bug report, feature request on the bugtracker) assigned to a developer and separate
QA contact, who is in charge of the review. The developer then works on his changes

5Ohloh Code Search: http://code.ohloh.net (last accessed October 14, 2013)
6The Merobase Component Finder: http://www.merobase.com/ (last accessed October 14, 2013)
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2.4 Signature Matching

and before committing the code back, marks the code YELLOW and sets the ticket to
resolved. The QA contact then reviews the code. He marks all files that do not need
further improvement GREEN. Files that need improvements are marked as red and review
comments are added using TODO statements in the code.
In case all files under review are marked GREEN the ticket can be closed. If any file

is left RED, the ticket is set to reopened and the developer has to revisit any changes
requested by the reviewer. After he is done performing the changes and set all files back
to YELLOW, he sets the ticket back to resolved. The cycle can then be repeated until
the reviewer does not find any more necessary changes and marks the code as GREEN
and sets the ticket to closed.
The LEvD review process is used in ConQAT, on of our study objects, and thus has to

be supported by our code search system in order to use the review states.

2.4 Signature Matching

Signature matching is a technique introduced and defined by Zaremski and Wing [35]. It
determines whether two methods are syntactically interchangeable.
The signature for every method is defined by its return value and argument types.

Matching signatures indicate that methods are syntactically exchangeable, but they do
not guarantee that they have the same semantic functionality.
For example a simple Java method signature (listing 2.1) consists of a return type (here:

boolean) and argument types (String, int). The argument names (bookName, Year) and
method name (existsBook) are not taken into account for the matching process, as they
can easily be renamed.

Listing 2.1: A basic Java method signature

1 private boolean existsBook(String bookName, int year);

A more abstract notation of the existsBook method’s signature, as used by Zaremski
and Wing, is given in listing 2.2. The left part contains the argument types, while the
right-hand side of the arrow indicates the return value. The method has been abstracted
to contain only the information used for signature matching.

Listing 2.2: Abstract ML style signature description

1 (String, int) → boolean

When searching for methods in source code, one can use all or single parts of the
signature to find matches.

7
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Zaremski and Wing defined a number of strict and relaxed matching rules:

1. Exact Match: Matches only if return type and argument types strictly match.

2. Generalized Match: Matches if types in the signature database are more general
than the ones given in the query.

3. Specialized Match: Opposite of generalized match. Matches for specialized types.

4. Generalized and Specialized Match: A combination of the two allows more general
as well as more specialized types to match.

5. Unify Match: Matches if types in the query can be unified to match a signature in
the index.

6. Reorder Match: Allows argument types to be swapped in order to match the query.

For exact definitions and a more detailed explanation refer to [35].
In theory, it is possible to use signature matching on its own to search for methods.

One could, for example, try to find matching signatures for (String, double)→ boolean.
Doing so requires the developer to specifically know what he needs. Additionally, it
ignores all information that is encoded in the method name and argument names.
We use signature matching in our code search engine to narrow down result lists and to

provide functionality that can be useful in an auto-completion scenario.

2.5 Reusability Metrics

A number of reusability metrics for methods, classes or entire components have been
proposed [30, 33]:

• McCabe Cyclomatic Complexity [27]

• Halstead’s Software Science Metrics [14]

• Barnard’s reusability metric for object-oriented software [4]

A reusability metric is meant to allow an objective answer to the question: “How
reusable is software X? ”. As discussed in [30], the answer to this question is dependent on
the definition of reusability by the individual researcher or developer and is thus difficult
to answer universally.

2.5.1 Number of Method Invocations and other Code-Completion Metrics

The Eclipse Recommenders Project7 started with the approach of counting the number of
times a method is invoked from a given code base. The idea being that methods that

7Eclipse Recommenders Project website: http://www.eclipse.org/recommenders/ (last accessed
October 14, 2013)
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2.6 Shallow Parsing

have been called many times should be more reusable than those rarely called because
they have been reused multiple times in other situations.
Bruch et al. [7] found this approach to be quite limited for the prediction of which

methods of a given class the developer was looking for. However it can be used as a good
baseline to evaluate other approaches: Any newly introduced approach should be better
than the "most used methods" approach.
Bruch et al. proposed two other metrics: association rule based code completion and best

matching neighbors code completion. They found the best matching neighbors algorithm to
work best in their test scenario and implemented it as part of the Eclipse Recommenders
Project.

2.6 Shallow Parsing

Shallow parsing is a technique to parse source code on an abstract level. A shallow parser
only provides information about imports, classes and methods, but not more details like
type hierarchies and types for variables or method arguments.
This allows the program to understand the basic structure of a source file, without

having to use a full parser/compiler. If the programmer needs to retrieve additional
information about the source code, which is not provided by the shallow parser, he can
fall back to using the underlying token stream provided by the lexer. Often times this is
powerful and simple enough to opt for not using a full parser.
Because of their relative simplicity, when compared to full parsers, new shallow parsers

can be constructed fairly quickly and can parse large amounts of source code in a short
time.
The ConQAT 8 toolkit provides shallow parsers for many languages including Java,

C# and C++. The different shallow parsers are wrapped behind an abstract interface,
allowing the same program to work on different programming languages without any
change, as long as one does not work with the token stream.
We use ConQAT ’s shallow parser framework with the goal of creating a code search

system that is as language agnostic as possible, in order to make the system available for
many languages.

2.7 Latent Semantic Analysis (LSA)

LSA [8] is a technique used to analyze relationships between a set of documents, like
a set of documentation texts, by automatically creating a set of concepts related to
the documents and the terms they contain. The assumption is that similar texts will
contain words from similar concepts. It is therefore useful to find similar text pieces,
given a set of words or an entire text. This concept is used by Context-Dependent Method
Recommendation (section 2.8) to find similar contexts.

8ConQAT website: http://www.conqat.org (last accessed October 14, 2013)
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2.8 Context-Dependent Method Recommendation

Context-Dependent Method Recommendation [16] is a technique that uses the text around
method calls (context) to find reusable methods by matching their contexts to new
contexts by defining a similarity between them. The context of a given method call in the
source code can be the preceding N identifiers, or the surrounding lines. Other options
like using the method call’s position in the document, e.g. is the item in a class-, method-
or if-statement, etc. are possible as well. For this thesis, we will be be referring to the
context as the last N identifiers before an item.
We define the lookback as the number of identifiers we collect preceding the item.
Which identifiers are collected depends on the specific implementation. It is common to

leave out basic operators or even keywords, as one could argue that they do not add value
to the context. This is similar to the concept of stop words used in many text search
engines. A stop word is a word that appears so often, that it does not provide any unique
information. Typical examples in the English language are: “or”, “is” or “and”.

Listing 2.3: Java context example

1 private double calculate(double lower, double ceiling) {
2 double average = (lower + ceiling) / 2;
3 return min = Math.min(lower, average);
4 }

For example, if we collect the context for Math.min(lower, average) given in listing 2.3
and use a lookback of 4, we get: [lower, ceiling, 2, min].
This context extraction can be done for all method calls in the entire code base,

generating a many-to-one mapping of context sets to method calls. Given a new context
C, one can compare it to the already collected contexts using similarity metrics like LSA
(see section 2.7). A method call with contexts similar to the new context C may indicate
that the called method could be useful at the new contexts position as well.
Research performed by Heinemann et al. [16] shows that a lookback of 4 leads to the

best results on average. Therefore we will be using this value for our work.

2.9 Architecture Analysis

Most bigger software systems have an architecture description that explains which parts
of the software are allowed to interact with each other and which are not. It also describes
the intended interactions between the different components.
To avoid possible decay through an architecture’s life-time, architecture conformance

assessment has been proposed [29]. An architecture analysis calculates the real architecture
of a software system by collecting dependencies between different parts and compares
them to a specification. It can then detect illegal accesses that are found in the code (or
other subsystems like the database) and bring them to the developer’s attention.
A flexible framework for architecture assessment has been proposed [9] and implemented

in ConQAT.

10



2.9 Architecture Analysis

“ConQAT’s architecture model comprises components and policies. Policies model
allowed and denied accesses between components. Each component must have either a
subcomponent or a codemapping. A codemapping is a regular expression that defines which
types from the source code belong to the component the codemapping is associated with.”
[6]
Figure 2.3 shows a basic architecture for the Java project JUnit9. The image illustrates

how components like Core, Lib, etc. are connected by policies indicating access rights. For
example code from the Extensions component is allowed to access code in the Framework
component, but not the other way around. This information is stored in the policies
connecting components, indicated here by the green (‘ALLOW ’) and red (‘DENY ’)
arrows between different components.

Figure 2.3: A basic JUnit architecture in ConQAT 10

A yellow arrow indicates a ‘TOLERATE ’ policy, which contains a number of architecture
violations which are accepted during the analysis. This is useful to ignore older violations
until they can be addressed, while still making sure that no new violations are added
during development.
To perform an architecture conformance analysis the actual architecture is extracted

from the source code or other artifacts, by creating a dependency graph. For source code it
can be created by looking at e.g. imports or method calls. Other artifacts, like databases,
need special definitions for access to other modules, so that they can be recorded.
The dependency graph is then mapped onto the reference architecture by using the

software reflexion model technique [29], validating all policies. The result is a list of legal
and illegal accesses, showing the project’s conformance to the reference architecture.

9JUnit Website: http://www.junit.org (last accessed October 14, 2013)
10JUnit architecture from: https://www.conqat.org/demos/tutorial_architecture/junit/

(last accessed October 14, 2013)
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2.10 Lucene Search Engine Framework

Lucene11 is a Java framework originally created for building text search engines. It
provides powerful query parsing and customization capabilities.
In Lucene the basic searchable unit is a Document. This can be a text document, a

website or anything else to which textual information could be attached (e.g. methods
in our case). A document is made up of multiple fields which can hold data in different
formats (text, unique identifiers, numbers, etc).
There are three basic types of fields: StringField, TextField and IntField. StringFields

hold identifiers that will not be split into multiple terms, whereas TextFields contain
text that is split into terms and analyzed. This allows substring queries when using an
analyzer which supports this. An IntField contains a number, allowing range queries.
Each field has an assigned analyzer which processes the field’s content into multiple

terms and is able to do post processing on the them (e.g. lowercase everything). A term
is the smallest Lucene unit, which often contains exactly one word.
We use the following analyzers12:

• KeywordAnalyzer: Stores the content as-is, useful for keywords

• WhiteSpaceAnalyzer: Splits the given input string by whitespaces

• SimpleAnalyzer: Splits the input at non letter characters and lowercases everything

• StandardAnalyzer: Normalizes tokens, splits words based on a grammar, removes
stopwords and lowercases everything

Lucene stores a term vector (called TermFreqVector in Lucene) to allow fast lookup of
documents containing specific terms. It includes a mapping of terms to documents and
their occurrence frequency.
A query parser is provided by the framework. It can parse complex queries to the search

engine and allows combining queries with AND/OR and assignment of different weights
to separate parts oft the query. The analyzers are used to process the query for each
different field, each returning a list of used terms. From this list the term frequency vector
is calculated, which makes the efficient lookup of search results possible.
We use Lucene as our search back-end framework for our code search engine (see

section 4.3.2).

Example

We want to index the set of supermarket products shown in table 2.1. For each product
we have a unique ID, a name and a description.

11Lucene website: http://lucene.apache.org (last accessed October 14, 2013)
12Lucene Analyzers Doc.: http://lucene.apache.org/core/4_3_1/analyzers-common (last

accessed October 14, 2013)
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Id Name Description
ID12345 "Chocolate Cake" "Chocolate cake that tastes fluffy and jummy."
ID56789 "Cookies Deluxe" "Cookies made with chocolate and milk."
ID98765 "Coke" "Sparkling drink with caffeine."

Table 2.1: Example supermarket products that are to be indexed in Lucene.

We have to model the document to reflect the data and select appropriate analyzers to
work with it. The document will have three fields: ID, Name and Description. Each field
needs different analyzers to work as intended.
As we only want to find products by ID if the entire ID matches, we choose the

KeywordAnalyzer for the ID field, the type of this field is a StringField, as no splitting
and deep analysis is done. It will index the entire ID as one term. If the product name
consists of multiple words, we want to be able to find it using only a subset of these. We
therefore choose the WhiteSpaceAnalyzer for the Name field. The Name field is set to be
of type TextField because the contained text should be analyzed and indexed in a way
that allows us to find substrings. The Description is set to use the standard analyzer,
as we want the capabilities of full-text search for this field. A summary graphic of our
document model is given in fig. 2.4.

Document

ID: StringField

Name: TextField

Description: TextField

Figure 2.4: Our example document structure

Each product we want to enter into the search engine is added by creating a document
for it and filling all fields with data. Next the Lucene analyzers do their job and extract
the terms to make the product findable.
After the index is filled with documents it can be queried for matching results using the

Lucene query language13. If for example we want to search for any cake in the index, we
could use the query: “Name:’Cake’ OR Description:’cake’ ”. This would run the strings
in the query through the respective analyzers for each field and try to match them with
the content in the index. In our case it would check if the word ’cake’ was to be found
either in the name or description field and would return "Chocolate cake". Searching
for "Description:’chocolate’ would return both the "Chocolate Cake" and the "Deluxe
Cookies", but not "Coke".

13Lucene Query Language Overview: http://lucene.apache.org/core/4_4_0/queryparser/
org/apache/lucene/queryparser/classic/package-summary.html#Overview (last ac-
cessed October 14, 2013)
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2.11 Teamscale

Teamscale14 is a code quality monitoring system developed by CQSE GmbH 15. It is based
on the open-source quality analysis toolkit ConQAT which provides means for running
quality analyses and creates dashboards presenting the collected results.
Teamscale reads data from a revision control system and performs quality analyses on

the code after each commit. All analyses are implemented using an incremental approach
which only updates the database with the changes from every new commit, without
reanalyzing the entire repository. Teamscale allows access to the collected data through a
wide range of web services that can be used by different clients, e.g. the Teamscale web
UI or IDEs like Eclipse or Visual Studio.
Teamscale’s architecture (fig. 2.5) [5] is explained in the following paragraphs.

REST
Service
LayerNoSQL Store

Incremental Analysis Engine

Scheduler

Worker 1 Worker N

SVN

TFS

File System

Web Client

Eclipse

Visual Studio

Figure 2.5: Teamscale architecture

Storage System To store processed data in Teamscale, a key/value storage is used
(NoSQL Store in fig. 2.5). It allows efficient queries using single keys, key ranges and key
prefixes. The storage layer can utilize a variety of NoSQL databases as its back end.
The key/value storage has a simple interface to manage data using byte arrays as keys

and values. The interface is depicted in fig. 2.6. Three basic operations are supported, put
for adding data to the store, get for data retrieval and remove for data deletion. Because
using byte arrays is a very low level of access, Teamscale provides multiple wrappers (e.g.
to use Strings instead of bare byte arrays as keys and values) around the basic interface.

Trigger An analysis run in Teamscale is defined by a set of triggers. Each trigger
describes one step of the analysis and can be run periodically or only when the required
input data changes.

14Teamscale website: http://www.teamscale.com (last accessed October 14, 2013)
15CQSE GmbH website: http://www.cqse.eu (last accessed October 14, 2013)

14

http://www.teamscale.com
http://www.cqse.eu
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Figure 2.6: The basic interface used by Teamscale stores.

Figure 2.7: An example Teamscale configuration

Job Scheduling A job is defined as an analysis that is to be run on a set of files. It has
two input parameters: a set of modified keys that should be analyzed and the trigger
that is to be run. The job writes its output to the storage system and the changes made
are recorded. This allows running other jobs based on the changed data of a previous
job. A basic example of reading data from a revision control system and running a set of
triggers to calculate metrics is shown in fig. 2.7.
In step (A) data is read form the revision control system. The read data is stored into

15
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the File Content storage and the changed keys (also called delta) are passed to the metric
calculations in B and C. These can access the files’ content by using the File Content
storage. Next the calculated metrics are saved into a storage specific to each metric. The
values calculated in C are then used to calculate a derived metric in D, which uses values
from C and files from A.

Historization Teamscale only stores new values for changed files into the stores. Values
for unchanged files are stored for the old version. This allows the retrieval of the entire set
of values for every given point in time, which is useful for calculating trends and metrics
that make use of history information.

2.11.1 Metric Types

There are two types of metrics: local and global. Teamscale’s architecture allows the
calculation of both metric types.

Local Metrics Metrics that can be calculated using only a single file are called local.
Given a set of keys from the storage system that should be checked (e.g. list of files
changed in a commit), the metric can be calculated without changing values for files
outside the given key set. Typical examples for this type of metric are lines of code or
method length.

Global Metrics Metrics whose calculation possibly affects values of unchanged files are
called global.
One example for this type of metric is the clone coverage. A clone is a piece of source

code that appears at multiple positions in the same or multiple files [23]. The clone
coverage is the ratio of lines covered by at least one clone [21]. As a clone can appear
in multiple files, analyzing a modified file possibly finds clones with other files, thereby
changing their respective clone coverage.
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In the following chapter, we will give a short overview of the current state of the art in
code search engines and tools.
Code search systems aim at helping the developer find code that he can reuse for a

problem he is currently facing. If the system can efficiently help developers find what
they are looking for, then there is a potential of saving time and money through reuse of
existing code.
All systems that are used to search through code bases to find pieces of source code are

called code search systems. In their most basic form these can be general purpose text
search tools like the Unix utilities grep, find or the Windows Explorer search functionality,
even if not specifically designed for the special purpose of searching through code. They
allow the user to specify keywords that should be matched in the searched files, highlighting
any matches for the user.
As developers are facing ever growing code bases with millions of lines of code and

the amount of publicly available code on the Internet keeps growing, researchers and
companies alike are looking for more efficient ways of searching through code. Recent
systems are usually more specialized tools, e.g. an Internet search website dedicated
to searching code from open-source repositories (see section 3.1) or services providing
special APIs which can be queried using complex query languages or even test cases. This
chapter will give a detailed overview of code search systems available today.

3.1 Internet Scale Code Search Engines

In this section, we introduce the important available Internet scale code search engines
available today.
Internet scale code search engines index code found on the Internet and contain millions

of lines of code. They work like normal text based website search engines (e.g. http:
//www.google.com) with a search field for full text search. The user can specify a
number of keywords to retrieve pieces of source code in which these keywords are found.
Many engines provide special keywords to search specifically for method names or class
names, allowing the developer to be more precise in his query.

3.1.1 Ohloh Code Search

Ohloh Code Search1 is the biggest freely accessible code search engine. With over 20 billion
lines indexed it provides (October 2013) the largest index of open-source source-code

1Ohloh Code Search website: http://code.ohloh.net (last accessed October 14, 2013)
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available on the Internet. On October 25th 2012 Koders2 was merged into Ohloh’s code
search engine.
It allows full-text search and provides advanced search functionality for method/-

class/structure definitions using special keywords like cdef :< searchterms > for class
names. Ohloh Code Search does not provide advanced matching functionalities like
signature matching, and cannot make use of project specific information like architecture
information to enhance its results.
Ohloh Code Search is powered by the commercial code search engine Code Sight

developed by Black Duck Software3.

3.1.2 Krugle

Krugle’s OpenSearch4 currently indexes around 350 million lines of code, most of which
is written in Java. It allows full-text search of the indexed source code, as well as some
advanced searches for method definitions, method calls and class definitions.
It is very similar to Ohloh Code Search, but smaller in size. Like Ohloh Code Search it

does not provide any advanced matching functionalities and does not have the ability to
consider project specific information like the architecture or code review ratings.

3.1.3 Sourcerer

Sourcerer5 [2] is a code search engine specifically for Java, that was developed to be
a back-end for external clients by the University of California, Irvine. It provides an
in-depth model of the imported projects and stores the relations between source files and
entire projects and their dependencies. Additionally, it comes with a signature matching
service and index, as well as a web-service allowing access to the source code through an
internal file repository.
The Sourcerer project consists of multiple components. The lowest layer component is

the core infrastructure layer, which is used to crawl the Internet for source code, process
and index it. The downloaded source code is stored in a second component, the repository.
The repository was made available to the research community, but is currently unavailable
due to the repository service being off-line (October 2013). Using the information stored
in the repository, the core component extracts structural information from the source
code and stores it into a third component: Sourcerer DB. This relational database can be
used as the base for clients and is made available for read-only access to the researching
community.
The first client to be developed on the base infrastructure offered by the Sourcerer

project is a code search service. The code search service provides a query interface that

2Website formerly: http://www.koders.com (last accessed October 14, 2013)
3Code Sight website: http://www.blackducksoftware.com/products/code-sight (last ac-
cessed October 14, 2013)

4Krugle OpenSearch: http://opensearch.krugle.org (last accessed October 14, 2013)
5Sourcerer website: http://sourcerer.ics.uci.edu/index.html (last accessed October 14,
2013)
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can be used with Lucene queries, allowing complex queries on the entire database. A web
interface is provided for easy use. The test-driven code search tool CodeGenie[25] was
built on top of the code search services.
The Sourcerer project provides a complex infrastructure indexing open-source code on

the Internet and providing access to it via web services. As Sourcerer is a large scale
search infrastructure, it does not provide means for the application of project specific
information like architecture information and review results. Because Sourcerer scans
many sources for changes, not all changes submitted to these sources will be available in
a matter of minutes, which might possibly result in out-of-date search results.

3.2 Component Search Engines

Component search engines work on a more abstract level than code search engines. They
allow the user to search for specific interfaces or functionality by other means than just
full text search. For example they can offer test based search or use some form of formal
query language enabling the user to search for very specific functionality.

3.2.1 CompRE

CompRE [1] is based on an ontology based model called SCRO (Source Code Repre-
sentation Ontology). It captures object oriented dependencies between artifacts like
inheritance, method overriding, method overloading and method signature information6.
To save manual annotations and semantical information, the SCRO model is enhanced

to contain domain specific information like a description or information about the input
parameters. This extended SCRO model is called COMPonent REpresentation ontology
(COMPRE).
The ontology model is built automatically by analyzing the source code, but the domain

specific knowledge that is annotated needs to be entered manually into the knowledge
base.
To demonstrate the capabilities of the model an Eclipse plug-in called CompRE was

implemented. It allows the creation of complex queries for three scenarios:

• Type or signature based queries

• Metadata keyword queries

• Pure semantic-based queries

• A combination of the three

Data is stored using the Lucene framework (See section 2.10). All queries in CompRE
have to be provided using the Lucene query language. CompRE does not provide any
automated recommendations based on the current context. Thus, every developer has to

6SCRO website: http://www.cs.uwm.edu/~alnusair/ontologies/scro.html (last accessed
October 14, 2013)
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learn how to use the query language to use CompRE. Additionally, the index has to be
manually annotated and cannot be generated fully automatically, making it a slow and
labor intense process.

3.2.2 Merobase & CodeConjurer

Merobase7 has all features of a typical source code search engine, but also includes the
ability to search for component interfaces, web-services or even compiled source code
found on the Internet. Components can be found by using specialized commands for the
full text search or by using test-driven search.

Figure 3.1: The CodeConjurer main view, demonstrating a test case and the corresponding
results. Taken from [19]

.

CodeConjurer [19] is an Eclipse plug-in that uses Merobase as a back-end and allows
the developer to formulate test cases, which he wants the retrieved components to pass.
By specifying test cases (see fig. 3.1 for an example), the developer can not only make
sure the interface matches his needs, but can also specify the behavior of the component
in question. To find components with the correct behavior CodeConjurer tries to compile
the components and places them into the specified test case. Next, the test cases are run.
The components that fulfill the most test cases rank highest.

7Merobase website: http://www.merobase.com (last accessed October 14, 2013)
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3.3 Code Recommenders

A code recommender is a tool that provides code reuse proposals based on the current
source code position, without the user’s direct help. It autonomously collects the infor-
mation needed to query the used index and constructs a query to find useful results for
the developer. The results are displayed to the user without further interaction required.

3.3.1 CodeBroker

CodeBroker [34] aims to find reusable code when the programmer programs a new method.
It analyzes the method’s documentation string and method signature. It is implemented
as an Emacs8 plug-in.

Figure 3.2: CodeBroker’s main view. Below the editing area, recommended source code
samples are displayed. In this case the developer is trying to implement a
method that returns a random number in a given range.

In the example given in fig. 3.2 the developer’s goal is to implement a method that
creates a random number in a given range. CodeBroker now analyzes the documentation
text and compares it to the index of method documentation texts in the index, using
Latent Semantic Analysis (section 2.7).
CodeBroker employs this idea to find methods with a related documentation text, given

the newly written documentation provided by the programmer. In case the programmer
also provides a method signature, it is matched against all methods in the database
using method signature matching as introduced in section 2.4. The results from LSA and
signature matching are combined and ranked in order to provide the best possible result
to the developer.

8Emacs website: http://www.gnu.org/software/emacs/ (last accessed October 14, 2013)
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Finally, the results are then displayed in the lower part of the screen, making them
available to the developer. By running the queries automatically, CodeBroker ensures
that the developer is not distracted from his work and is presented with results when he
needs them.

3.3.2 Eclipse Code Recommenders

Eclipse Code Recommenders is an Eclipse9 plug-in which changes how the Eclipse auto-
completion sorts its results. Instead of sorting them lexicographically they are sorted
by their frequency of use in the current context. To achieve this, the project analyzed a
number of open-source projects’ source code and extracted a model containing records of
how often every method is used. The idea is that methods that have been used many
times are both reusable and useful to the programmer, as proven by their frequent use.
Especially in the Eclipse APIs, many classes contain over 100 methods a few of which

are actually employed most of the time. These are displayed first when triggering the
auto-completion in the expectation that the programmer will need them (See fig. 3.3).

Figure 3.3: The Eclipse auto-completion window with completions sorted by relevance by
the Eclipse Code Recommenders plug-in.

The project also provides other auto-completions like snippets which the developer might
find useful in the current context. When subclassing a class and wanting to overwrite a
method, snippets are provided that contain the most typical use-cases.
The project aims at giving the developer exactly the information he needs when

programming. Unfortunately, it is mostly limited to classes which he already knows and
toggles the auto-completion on. It cannot recommend utility classes or other classes which
fulfill the functionality needed.

Hippie Completion

Hippie Completion is part of the Codetrails Connect Eclipse plug-in. It is developed as a
commercial extension to the Eclipse Recommenders Project by the same developers.

9Eclipse Website: http://www.eclipse.org (last accessed October 14, 2013)
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The difference between the Eclipse Code Recommenders and the Hippie Completion is
the way the proposals are sorted. While the Eclipse Code Recommenders uses the number
of calls to a method as found in some code, the Hippie Completion collects crowd-sourced
completion events. Every time a developer, who has the plug-in installed, triggers the
auto-completion to complete some piece of code, the choice he makes is sent to a remote
server which stores it in an index. When a request is received, the server offers information
as to which method of a given class was called the most by other developers.
This provides the benefit of not being limited to the code which the project can analyze,

but also takes code written in closed-source projects into account. Additionally, it does
not depend on models being rebuilt in the background. The developer can decide for
which classes he would like to upload statistics, with the default only being highly utilized
open-source projects like the Apache Commons or the Eclipse APIs.

3.3.3 API Method Recommendation

Heinemann [15] proposed an Eclipse plug-in making use of his Context-Dependent API-
Method recommendation introduced in section 2.8.
The plug-in provides an Eclipse view which displays a list of methods matching the

programmer’s current context (section 2.8), after they have been requested using a
keyboard shortcut.
The system is implemented as a local service, which implies that every developer has to

enable it and run the initial analysis on his local machine before the service can be used.
Figure 3.4 shows the recommendation screen made available by the plug-in. The

documentation for each recommendation is presented in the Eclipse Javadoc view, to aid
the developer in understanding its functionality and purpose.

Figure 3.4: API Method Recommendation View displays methods with similar context to
the programmer’s current context [15].
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4 An Incremental Code Search System
for Reusable Methods

This chapter covers the design of our own code search system and our implementation of
the idea as part of Teamscale (section 2.11).

4.1 Scope

To help developers find reusable code, we want to develop a system that can be used to
locate code on company internal code repositories. We do not attempt to index large
amounts of open-source software from the Internet, as a number of tools are available for
this task (section 3.1) and because, in most cases, additional information like code review
states or architectures are unavailable for these projects.
We aim at making the entirety of a company’s code searchable, specifically not only

the code that the developer has checked out locally, but also the code that the developer
is not working on and which remains in the company’s repositories. This should help
developers find reusable code that has been created in other parts of the company and of
which he was not yet aware, thus fully utilizing the company’s code’s potential.
Third party libraries will not be included in our approach, as their source code is usually

not readily available as part of the companies’ repository. We believe supporting libraries
has potential and consider it part of future work (chapter 7).
Our project has a focus on automatically recommending reusable methods, without

removing the possibility of manual search. We want to be able to provide results without
developer intervention and without the usage of complicated query languages. Instead,
search results should be found by extracting the search query from the programmer’s
current context to find reusable methods. The index used by the back-end should be
easily usable for manual searches as well. Manual search is future work, as it is beyond
the scope of this thesis.
We aim at making the analysis results available to the developer as quickly as possible

after they have been committed. To achieve this goal we want to use an incremental
analysis approach, that only updates the database commit by commit and does not have
to re-index the entire code base completely, as this would be very time and resource
consuming. Using an incremental analysis significantly decreases the time until the
developer can retrieve results from the source code’s latest revision, as results are made
available within minutes or even seconds after committing the changes to the repository.
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4.2 Approach

We want to build a system that provides up-to-date data on reusable methods in the
current code base and allows the developer to query this data in multiple ways.
As projects with many developers can see many commits per hour or even minute1, it

becomes very important to keep the time between a commit and the latest data becoming
available to the search engine as small as possible. We solve this problem by designing the
system in a way that it will only analyze the recent changes introduced by the commit
and then updates the information present in the back-end. We propose an incremental
approach by reading the repository commit by commit, always updating the data when a
new commit is pushed to the repository. As the systems can grow very large, it is vital
to only work with changed data instead of re-analyzing the entire code-base for every
commit in order to keep the time needed for an analysis and update as low as possible.
In order to be useful in an automated environment, such as in an IDE’s auto-completion,

we need the query time to be sufficiently fast. This can not be achieved by running a live
search on the entire data collection for each request. Instead, we have to analyze the data
beforehand and store it into an indexing system, which allows us to perform real-time
queries on that index. By using the incremental system we can update the index quickly
after changes have been made, ensuring the correctness of the information provided to
the developers.
We want to allow access to our data to multiple clients at the same time. We propose

using a service based approach, which allows any client to send a query to the service
and receive the results it needs.
To provide useful information for the developer, we need to define how we find and rank

reusable methods. In response to RQ 1: What are useful metrics and techniques for a
code search system? (section 1.4) we propose a number of metrics and techniques that
can be used for this purpose:

• Method Call Contexts (section 2.8)

• Signature Matching (section 2.4)

• Code Review Ratings (section 2.3)

• Architecture Analysis (section 2.9)

• Code Reusability Metrics (section 2.5)

These metrics and the data required to use the techniques need to be calculated and
saved to the index together with the method definitions to make them available for search
queries. How the metrics are used is explained in section 4.2.2.
We want to provide two distinct clients for our main system design: an automated

method recommendation system and a text based code search.
1Google has more than 20 changes per minute: http://google-engtools.blogspot.de/2011/
05/welcome-to-google-engineering-tools.html (last accessed October 14, 2013)
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The automated method recommendation system is meant to be part of the IDE’s code
completion system. Using the current development context at the point the developer
triggers the auto-completion, a query is automatically created and sent to the service
to retrieve results. These results should then be shown as part of the regular auto-
completion to provide seamless integration into the developer’s normal development
process. No interaction on the developer’s part is required, making this client appear like
a recommender.
The text based system gives the developer the opportunity to enter keywords, for

example a name of a method, into a search field and start a query against the index. The
client will then display a list of reuse candidates. It can be extended to contain search
fields for the expected return type, the parameter names and types as well as selections
about which code review color the developer expects and from which package he would
like to call a method, taking the architecture conformance into account. This type of
client is a helpful instrument for the developer if he is planning to implement a given
feature-set and wants to find out whether or not parts of it are already implemented
elsewhere in the system.
These functionalities can be split into multiple components, that make up the system

(fig. 4.1):

• An incremental repository reader that reads commits from a repository

• An analysis/data-collection component that is run for every change

• A central index that can be accessed by services

• A code search service that can be queried by clients

• Clients using the service as data source

The incremental repository reader reads all changes from the repository commit by
commit and triggers the code search analysis, which extracts all needed data and stores it
into the central index. The automated IDE search and text-based search clients can now
query the code search service for results. It uses the central index to generate results and
return them to the clients (fig. 4.1). All components are explained in further detail in the
following sections.

Figure 4.1: Components of our system
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4.2.1 Incremental repository reader

In order to build an incremental analysis, we need a system that reads commits from a
repository one by one and allows another component to be run after each commit has
been read. The component has to be able to access all data collected from the repository
in order to collect necessary information or analyze it.
We want to collect the following information:

1. Which files were changed in each commit

2. Commit content (e.g. files)

We need this information to update our back-end with new data. The exact changes
determine what part of the source has to be re-analyzed and which part of the index has
to be updated for the given commit.
For maximum flexibility we store this information in a historized way, meaning that we

can access all the details for each commit at any point during the code search analysis.
The historized information is especially important during our evaluation (chapter 5). The
information is stored in a central index that can be accessed from other parts of the code
or can be used as a back-end for the central search server.

4.2.2 Code Search Analysis

The code search analysis component analyzes the source code and extracts all necessary
information to make it easily searchable. All the collected information is stored into the
central index.
During the analysis we propose collecting different kinds of information about the code

base. Generally we collect all methods found in the code and store additional types of
information for each of them. These are explained in the following sections. We have
evaluated the usefulness of the proposed ideas in chapter 5.
The collected data will be used by the central index and the services implemented on

top of it to generate useful search results for queries.

4.2.3 Method Signatures

Besides storing the method’s name for each method we find, we want to store the
entire method signature so that signature matching can be performed (as introduced in
section 2.4).
Having method signatures in the index allows us to perform many types of queries.

Most importantly it can be used for an auto-completion system, as it makes sense to only
allow results with a certain expected return type, if the expected type is available from
an editor like Eclipse. The signature is also useful for manual queries, as the programmer
might have a good idea of what he needs in terms of argument and return types and can
then use that information to query the service.
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This means we have to gather and store the following information for each method:

• Name

• Return type

• Argument types

• Argument names

Additionally we need to identify super- and subtypes, so that we can easily perform
generalized and specialized type matching. For best performance these should be stored
during the analysis phase, as calculating them at runtime can be very expensive (especially
for subtypes, as it requires traversing the entire type tree).

4.2.4 Reusability Valuation

In order to provide good results the system has to evaluate the usefulness and reusability
of a method given a certain query. A method judged as highly reusable should be ranked
higher than a method that was rated with a low reusability. We will be using three metrics
and techniques to evaluate the reusability and usefulness of a method for a given query:
context-dependent method recommendation, review ratings and architectural information.

4.2.5 Context-Dependent Method Recommendation

Our main technique to retrieve results, for queries generated by automatic tools such as
an IDE auto-completer, is context-dependent method recommendation (see section 2.8).
Its usefulness has been demonstrated [15] and it allows us to find methods useful in the
programmer’s current context.

Listing 4.1: A section the programmer is current working on

1 int lower = 5;
2 double minimum = <QUERY>

For example given the code in listing 4.1 and the sample context dataset in table 4.1, the
query will contain the programmer’s current context C for the query position (<QUERY>),
which is [minimum, double, 5, lower] for a lookback of 4.

Method Name Context
MathUtils.calculateMinimum [lower, minimum, double, math]
MaxUtils.calcMax [maximum, double, high, calc]
AvgUtilities.average [double, lower, maximum, avg]

Table 4.1: Example dataset of method names and the associated contexts.

Matching this context C to the three contexts in table 4.1 results in obtaining the best
match for MathUtils.calculateMinimum, as 3 of 4 words in the programmer’s context
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could be matched to its context (lower, minimum and double). The two other methods
only have matches of 1 of 4 and 2 of 4.

4.2.6 Review Ratings

We believe that review ratings (see section 2.3) are useful information for our code search
engine. Code that is still under review is not yet finished, still undergoes frequent change
and potentially contains more bugs. Therefore it is less suitable for reuse than already
reviewed code, which has been approved and marked as complete. Few actual studies
about the effectiveness of reviews for maintainability and fault detection exist, but they
indicate a positive effect [32, 12, 13].
Code reviews alone are not a useful method of finding reusable methods given a specific

query, but help with refining the results as a secondary rating by emphasizing good results
(reviewed) and demoting others (un-reviewed).

4.2.7 Architectural Information

Many software projects are designed based on a software architecture, therefore we believe
this information should be considered when creating a code search engine. Our idea is
that a result should be ranked higher if it conforms to the system’s architecture and lower
if it does not, promoting architecture preserving reuse.
Considering the architecture allows us to explicitly forbid access to methods which

would break it, if they were to be used. Completely blocking results that break the archi-
tecture specification could help keep a high level of architecture conformance throughout
the project’s development. However, it also introduces the risk of missing good reuse
opportunities, which the programmer could have fixed to adhere to the given architecture.
Allowing results with a bad conformance value but reducing their overall score should
help displaying a full set of results but emphasize more appropriate methods if available.
Another valid approach could be to not affect the ranking at all, but display a warning to
the programmer if he is reusing a method at a position where the method call will break
the system’s architecture.
For our prototype we will allow results which will break the architecture, but penalize

the result. To our knowledge no research regarding the usefulness of this approach exists.
We provide experimental data as a first step to fill this gap in chapter 5.

4.2.8 Central Index

All information that is gathered in the main analysis component is stored into a central
index or database. By collecting all data in a central place we can easily create services
on top of them to provide functionality for clients.

4.2.9 Code Search Service

The code search service provides an interface for clients to send code search queries and
retrieve results. It is responsible for handling all incoming queries, collecting the necessary
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data from the central index and possibly enhancing it depending on the requested result
type. For example a code completion request might use a different weighting scheme for
the return type than a method search using a web interface – while it could be seen as a
must-have requirement for the completion service, the developer using the web interface
might use it as one of many parameters of the query, therefore making it a less strict
requirement.

4.2.10 Clients

To provide useful features for the developer, different sorts of clients can be implemented
using the proposed code completion and code search services.

Code Completion Client

The code completion client (e.g. the Eclipse auto-completer) suggests methods matching
the current programming context. The client takes the context (section 2.8) and available
signature information and retrieves matching functions by sending a query to the code
search service. The returned results are then displayed to the programmer together
with the default (see section 2.1) auto-completion results, fully integrating it with the
developer’s known development environment without disrupting his normal work-flow.

Method Search Client

The method search service works similar to a classical Internet scale code search service
(see section 3.1). The developer can input a possible method name and additional
information like the expected parameter types and names. Just as the code completion
client, this client can then query results from the code search service that match the
developer’s query, hopefully providing the developer with a useful result of reusable
methods he was searching for.
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4.3 Implementation

This section will give a complete overview of our implementation of the proposed system
based on Teamscale, Lucene and Eclipse. Our implementation is designed to be easily
extendable to work with multiple programming languages, but for this thesis we will focus
on Java as our primary target language, as this is the language we are most familiar with
and that is best supported by the tools we use.

4.3.1 Architecture

Our system is implemented as a four layer architecture (see fig. 4.2). The three lowest
layers are part of Teamscale, while the upper layer is made up by external clients like a
web interface and Eclipse.

Figure 4.2: Our code search system’s basic architecture

Dataflow

The analysis starts by reading commits from a version control system. Teamscale provides
repository connectors for Git, SVN and TFS and we use them without changes. It reads
the necessary data from the repository commit by commit and stores it into the index.
By doing so, it triggers additional analyses on the new changes resulting in any analysis’
relevant data in the index being updated. Our code search analysis is part of the analyses
and collects the necessary information needed by our code search service.
The code search service is not tightly coupled to the analyses, therefore able to serve

requests even while new commits are being analyzed. This is possible because it reads
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all the necessary data from the index, resulting in full usability of the services during
the entire analysis time, albeit with slightly outdated data for short time intervals. As
only very small parts of the entire dataset are changed in a single commit, we find this
acceptable.
The client can send any Lucene query to the code search service, which will then use

Lucene to parse the query, retrieve results from the index and return them to the client.

4.3.2 Data storage

We use a Lucene (introduced in section 2.10) index to store all retrieved information and
make the information searchable. This relieves us from the task of implementing our
own system for this task. In Lucene data is stored in a Document. In our system that
means we will store every method declaration as one document. For each document we
have a set of fields containing the relevant information, needed for signature and context
matching. A list of fields is available in table 4.2.

Field Name Type Analyzer Example content
path String Keyword com/test/type.java
method_name Text Simple com.test.Type#aMethod
return_type Text Whitespace java.util.List java.lang.Object
argument_types Text Simple java.lang.String
argument_names Text Simple fileName
number_of_arguments Int Keyword 1
static String Simple true
context Text Standard string foo whatatext foo substring
packages Text Whitespace type.java
code_rating String Simple RED
ID String Keyword com/test/type.javacom.test.Type#aMethod1
unique_id String Keyword com.test.Type#aMethod(String)

Table 4.2: The fields that are stored into the Lucene index for every document.

Field Details

The following section will explain the details of every field used and listed in table 4.2.

path The path field contains the path to the file in which the method was found. This
is useful for the auto-completion to be able to point the programmer to the correct file in
case it is not checked out locally.

method_name The method_name field contains the method’s name. It is stored as
text, to make it easily searchable using full text search. It is stored together with the
surrounding class’s fully qualified name, to make the name unique.
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return_type The return type field contains the fully qualified name of the return type
and all its supertypes. The supertypes are stored here to make sure this field also matches
when requesting a supertype of the original return type.

argument_types The argument_types field contains the fully qualified name of the
argument types present in this method. We store them all in one field, as the ordering
does not play any important role for reusability. This field could be extended by the
subclasses of all these types, allowing for signature matching for more specialized types.
We did not implement subclasses here as it is out of the scope of the thesis.

argument_names The argument_names field contains the argument names used in
the method’s signature. These can be useful for full-text search later.

number_of_arguments This field contains the method’s number of arguments. This
is used only in the shallow parser to make a rough mapping of method calls to method
definitions possible, as no type information is available. This field is not used in the
AST based analysis. It is the only number based field in our document and requires
workarounds in Lucene to be updated properly2.

static Contains "true" or "false" indicating whether or not the method is static or not.

context This field contains all words from all contexts (sections 2.8 and 4.2.5) found for
the given method. The construction of this string is detailed in section 4.3.4. This is the
only field we use the StandardAnalyzer on to utilize the full power of Lucene’s full text
matching capabilities.

packages This field contains the fully qualified name of all packages from which this
method can be called according to the architecture. This field is used to implement
architecture conformance for results. The query can contain the package from which the
method is being called, matching this field if it is allowed to call the method from the
given package.

code_rating This field contains the code rating, which is one of RED, YELLOW or
GREEN according to the LEvD process (section 2.3.1). This field is used to request which
review states are accepted in a query.

ID The field ID is used to store a unique id for each method, as created by the analysis
using the shallow parser. It is made up of the file name, the method name and the number
of arguments. This is not completely unique, but is the best we can do with the shallow
parser framework in order to identify a method for later changes.

2Our problem and solution on stackoverflow.com: http://stackoverflow.com/questions/
17109371/lucene-search-query-using-a-intfield-not-working-after-document-update
(last accessed October 14, 2013)
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unique_id In the context of the JDT we have the possibility to create a fully unique id,
which we store in unique_id. This is made up of the fully qualified class name and the
methodname + argument types.

4.3.3 Code Search Analysis

This section will explain the details of how we implemented our code search analysis.
Our analysis takes a set of source files as input, extracts all information to create new
documents for each method declaration and stores them to the index with the goal of
making the information available for clients. There are two different approaches for the
implementation: first we implemented it using a shallow parser (see section 2.6). Secondly,
we used a more language specific approach using the Java abstract syntax tree. Each
analysis is implemented as a set of Teamscale triggers (see section 2.11), in order to run
in Teamscale’s incremental analysis engine.

Shallow Parser based Analysis

As shallow parsers are faster in reading source code and creating a model for it than
compilers, we attempt to implement parts of our system using a shallow parser as a first
step. Because we want to provide an up-to-date index as quickly as possible we highly
value speed when extracting information from the source code.
The shallow parser framework provided by Teamscale supports many languages, but we

will focus on Java for our first implementation.
As a first step in our analysis we want to find all method declarations. Using the shallow

parser to retrieve the data necessary to fill the document, as described in section 4.3.2,
works for method definitions that do not use generics. We can retrieve the method name,
argument types and names, as well as the return type in many cases. Because the shallow
parser does not provide this information entirely by default, we have to work on the token
stream of the parsed source code to retrieve it. This makes a truly language independent
implementation difficult, but through use of abstraction we believe that it is possible to
obtain a framework that can be extended to new languages.
Methods using generics are difficult to handle using the shallow parser framework, as

method signatures vary in their look considerable. In listing 4.2 we list a number of
signatures that might pose problems. Using simple whitespace splitting or counting
the token offset from the method name will not work for these examples. Instead it is
necessary to count closing and opening braces and generally use a lot of programming
language specific knowledge. The offset problem can be solved using abstraction and
small language specific functions, but does require a noticeable effort and deep knowledge
of the language’s syntax.

Listing 4.2: Different Java signature examples posing problems for shallow parser

1 private final static String[] getType(List<IToken> subList, int index)
2 private static final List<String> getType(List<IToken> subList, int index)
3 public abstract List<Map<String, int>> getType(List<IToken> subList, int index);
4 public abstract List<Map<A, B>> getType(List<A> subList, int index);
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For simple types it is often possible to determine the actual return type of a method,
but for classes this can be unclear. For example List could be java.util.List, but it could
be any other class called List (e.g. java.awt.List) as well. This is especially problematic
if generics like in line 4 in listing 4.2 are used. It is not possible to tell which type is
actually expected from reading the identifiers A or B.
This problem could be solved using rather simple heuristics utilizing language features

like imports. Doing so would not line up with our goal of a language agnostic implementa-
tion. In the long term it would not provide any benefit compared to using a full abstract
syntax tree generated by a compiler, which can provide the necessary information.
The second step of the analysis is extracting contexts from the source code. This is only

possible for static method calls using the ClassName.staticMethodName() syntax.
The shallow parser does not provide any support for finding method calls, as the smallest

entity it knows of is a statement. A single statement can contain multiple method calls or
none at all. Finding method calls can only be done by searching through the list of tokens
contained in the statement and trying to find method call patterns like a dot, followed by
text, followed by an opening brace, followed by some code, followed by a closing brace.
This detects many method calls, but we cannot easily identify on which class the method
is being called. For static methods using the specified syntax, we can find the class name,
which can be unique and allows us to map the context correctly. Again this problem
could be fixed by scanning the entire file for variable declarations, keeping an index of
them and using the imports to find out exactly to which package a class belongs, but this
would require a large development effort and is very language specific.
We can not provide sub and super-types for the return types and parameter types, as a

type hierarchy is very difficult to obtain using only shallow parser technology and not a
real parser.
Using the shallow parser leaves us with a simple method declaration indexing, that

works well for methods without generics in many cases. This can be combined with
context collection for static methods, resulting in a usable system for static method search.
The problems explained make a clear case for implementing a language specific version of
the code search analysis using a compiler that produces a complete abstract syntax tree,
which provides all the necessary information. This will be our second step.

RQ 3 - Can a shallow parser replace a full parser in code search engines? During
the implementation we found that a shallow parser cannot completely replace a full parser
for our purpose, unless a great effort is made in expanding the shallow parser system to
contain most of the information provided by a full parser.
The biggest challenge we experienced is mapping method calls to already indexed

methods in order to store the surrounding context identifiers. This is because we cannot
determine the argument types used and the instance type on which the method is called.
Because of the lacking type information we cannot clearly map the method call to a
method in the index.
The shallow parser can however be used for parts of the system, namely the method

declaration indexing with a few compromises such as no super/sub-type resolution.
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Abstract Syntax Tree based Analysis

As using the shallow parser framework proved limiting for our purpose, we decided to use
a full abstract syntax tree (AST) as provided by the EclipseECJ and JDT frameworks.
This approach is only usable for Java and the developed code can not easily be reused for
other languages. The Eclipseecj compiler provides facilities to traverse the AST using the
visitor pattern 3. The visitor class ASTVisitor provides callbacks for method declarations
and method calls which we will use to collect the data we need.
We can extract a signature from every method declaration using the information provided

by the compiler. It allows us to query the return and parameter types for each method
declaration and we can collect the supertypes for a given return type using the compiler’s
type hierarchy.
Collecting supertypes is interesting for the signature matching process, as when a

method returns a given type X, it is also usable at any given position where any supertype
of X is required. For example in Java, if java.util.ArrayList is returned, it can also be
used to assign the results to a normal java.util.List, which is a supertype of ArrayList.
We decided not to collect subtypes, even though this could be interesting for signature

matching with respect to parameter types. For parameter types the opposite of the return
type is true, meaning if the method takes a type Y as parameter, all subtypes of Y are
valid as well. We decided against collecting sub types as this is more difficult to implement
and we do not have a use case for the parameter type matching in this thesis.
The availability of the MessageSend signal makes finding method calls a trivial task.

In contrast to the shallow parser, the compiler provides all information needed to create
a unique signature (method name, return type and parameter types in Java) and thus
makes proper updating of the index possible.

4.3.4 Context Retrieval and Storage

In contrast to all other metrics we store, the data needed for the Context-Dependant
Method Recommendation can be seen as a global metric (see section 2.11.1). This means
that if the context changes, this affects files (or more precisely method declarations in
our case) which have not been changed in this commit.
For every method call a context is extracted (see section 2.8). If a file changes, the

context around multiple method calls can change and thus affect already stored contexts
for methods which have not been added in the same change. As a result we have to be
able to update the context for every method at any commit. We do this by storing the
context for every method call in a separate table, where we map the filename and method
call to the extracted single context. This allows us to remove single contexts when a file
is removed or added and change entries every commit.
At the end of the analysis, we combine all contexts for each method to one big context

and store it into the context field of the Lucene document.

3Visitor Pattern explained: http://en.wikipedia.org/wiki/Visitor_pattern (last accessed
October 14, 2013)
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By using this approach we avoid re-extracting all contexts over and over for each
commit, at the cost of having to store the context twice: once as many single entrys in
the mappings store and once as the combined string in each Lucene document, for each
method in the index.

4.3.5 Code Search Service

The code search service is a basic web service that takes a set of parameters. It can be
queried by sending an HTTP GET request containing the following parameters:

• Lucene query (see listing 4.3 for an example query)

• Number of desired results

The service is only a very thin wrapper around Lucene at this point and just passes the
query to Lucene without any changes. All results returned by Lucene are returned to the
caller as a JSON 4 string, containing all available information (see section 4.3.2) about
any method that is being recommended.

4.3.6 Eclipse Auto-Completion Plugin

We provide a working prototype of an Eclipse plugin, which includes a new auto-completion
provider, that connects to our code search service. It collects the current context (as
defined in section 2.8), the expected return type at the cursor’s position and the current
package and forms a simple Lucene query, which is then sent to the service (see example
in listing 4.3).

Listing 4.3: Lucene Query Example

1 return_type:’com.jgoodies.forms.builder.DefaultFormBuilder’ OR
2 packages:’net.sf.jabref.oo’ OR
3 context:’b getpanel setborder borderfactory createemptyborder b getpanel’ AND
4 (
5 code_rating:’GREEN’ OR
6 code_rating:’YELLOW’
7 )

The returned results are displayed as auto-completion results and are intended to be
used in exactly the same way as the default auto-completion entries. An example result
set is shown in fig. 4.3.

4JSON website: http://www.json.org/ (last accessed October 14, 2013)
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Figure 4.3: Demonstration of our Eclipse auto-completion.
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5 Evaluation

This chapter covers the details of the evaluation performed to measure the usefulness of
our approach.

5.1 Evaluation Design

In this thesis, we propose an incremental evaluation approach that closely follows the
stuy object’s actual development history.

5.1.1 Approach

Our idea is to leverage the experience we gained by developing an incremental code search
engine to design an evaluation system based on a similar approach.
In every commit a certain number of changes are performed by the programmer,

including adding new method calls. For each newly added method call we pretend the
developer used our auto-completion tool to trigger a query to our system at the position
where it was added. We are interested in seeing in how many cases the code search system
returns the programmer’s chosen result in its top M results. If the code search systems
returns the result matching the programmer’s choice in the top M results, we consider
the result to be correct.
Because of the incremental approach we can ”travel through time“ and measure the

accuracy for every commit based on the back-end data available at that point in time.
This means we get to evaluate our system using a study object automatically over a given
timespan, without being required to have collected any additional data besides the study
object’s code history during development. This is in contrast to most common evaluation
approaches like ten-fold cross-validation, which only work on one single snapshot of data.
We define the following variables:

• hits = number of times the programmer’s choice appears in the top M results

• queries = number of queries performed

From these variables we derive our evaluation metric: the Hit/Query Ratio

hit ratio =
hits

queries

The Hit/Query Ratio tells us how often our system would have proposed the program-
mer’s choice in the top M results. This metric provides insight on how reasonable the
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recommendations made by our system are. We want the hitratio to be as close as possible
to 1, as a higher value indicates more matching results for the number of queries.

Figure 5.1: The evaluation steps performed for each revision of the study object.

Figure 5.1 shows the single steps needed to perform the evaluation. After the changes
for a given revision N have been read they are passed to the evaluation. There we first
have to calculate the actual changes made in comparison with the previous revision N-1.
This is necessary to extract only the newly added method calls and the contexts around
them. After the methods and contexts have been extracted, we formulate a query for
each position a method call has been found. For each result set we check if the method
chosen by the programmer is contained in it. By repeating this process for each commit
we can incrementally calculate the overall hit ratio of result sets containing the correct
choice. After the system has finished the evaluation the code search analysis is started
and updates the index to contain the data added by revision N.
We evaluate different systems each with different sets of metrics used for the code search

system. We can disable or enable the following parameters:

1. Expected Return Value

2. Code Rating

3. Architecture Analysis

The parameters have been chosen because these are the parameters we can fill using the
auto-completion in the IDE. We can derive the required return value (where appropriate)
and set a code rating we wish our result to have (in our case: YELLOW and GREEN).
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By passing the package, the programmer is currently editing a file in, we can fill the
architecture analysis field.
This leaves us with 8 sets of combinations per study object, if all parameters can be

used. For each combination we will calculate the hit ratio for different result sets:

• 1-5, 10 and 20 results returned by our code search system for each combination of
settings

• The 1-5, 10 and 20 most used methods in the system

Result sets of size 1-5, 10 and 20 results are evaluated to answer the question of how
many results we should display to the programmer for the best hit ratio. We expect larger
result sets to result in a better hit ratio but it is uncertain of how much better the result
will be. The more results we have to display, the more entries the developer has to go
through to find a result. If too many results are displayed and no correct proposal is
provided developers will quickly turn away from the tool [3].
We use the result sets containing the 1,5, 10 and 20 most used methods in the study

object as a baseline for comparison to the results from our code search system. We do
this to make sure it produces something more useful than the most obvious metric - the
number of uses of a method.

5.1.2 Study Objects

We evaluate our code search system using two study objects – JabRef (section 5.1.2) and
ConQAT (section 5.1.2) – as base to gain more insight as to which parameters are useful.
An overview of basic information about the study objects is given in table 5.1.

Name Lines of Code Number of Commits Analyzed Timespan Analyzed
JabRef ~150.000 3815 91

2 Years
ConQAT ~340.000 5275 1 Year 2 Months

Table 5.1: Basic facts about JabRef and ConQAT , the study objects used as base for our
analysis.

JabRef

JabRef is the first system we use for the evaluation. “JabRef 1 is an open source bibliography
reference manager.”
JabRef was not developed using the LEvD (section 2.3.1) review process. Consequently,

no code rating colors are available from the source. We can therefore not evaluate this
metric on this project and can only compare using expected return types and architecture
analysis information.
In order to create an evaluation using JabRef , we derived an architecture for JabRef

from its code. This was done by creating a dependency graph between all components
1JabRef website: http://jabref.sourceforge.net/ (last accessed October 14, 2013)
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using Teamscale and then creating a basic architecture from that information using the
ConQAT architecture editor. The result is presented in fig. 5.2.

Figure 5.2: Our idea of the JabRef architecture.

We analyzed the JabRef GIT repository2 starting at the initial commit with revision
’9547faac89’ (Dated: Tue Oct 14, 2003). The last commit we analyzed was the commit
with revision ’bf47b353e9’ (Dated: May 28, 2013). This means we are evaluating on about
91
2 years worth of development history totaling 3815 commits over the entire time span.

JabRef has around 150,000 lines of code.

ConQAT

Our second test system is ConQAT. ”ConQAT is an integrated toolkit for creating quality
dashboards that allow to continuously monitor quality characteristics of software systems.“
3. It can provide an architecture and review ratings and is a system that we can use to
fully compare all combinations of our metrics.
We have analyzed all commits from revision 41125 (Date: Sat Jul 21, 2012) to 46400

(Dated: Mon Sep 23, 2013), a total of 5275 commits. The analyzed part of the system
contains roughly 340,000 lines of code and spans over a time of 11

2 years.
Figure 5.3 shows the part of the ConQAT architecture that we use for our analysis.

The ConQAT architecture was created some of the project’s central developers.

2JabRef GIT repository hosted at: http://sourceforge.net/p/jabref/code/ (last accessed
October 14, 2013)

3ConQAT website: http://conqat.cqse.eu (last accessed October 14, 2013)
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Figure 5.3: Part of the complete ConQAT architecture that is used for the analysis.

5.1.3 Implementation

Following our choice of Teamscale for the code search system, we decided to use Teamscale
for the evaluation as well. This provides many benefits like being able to access its internal
indexes directly for increased performance.
Most importantly though, it allows us to easily integrate the evaluation into the analysis

chain we built for our code search system. This is important, as the evaluation needs
access to parts of the current commit’s data (e.g. the newest abstract syntax tree to
extract the method calls) but also has to be able to send queries against the previous
commit’s code search base. This can easily be achieved if the evaluation is run just before
the code search analysis. This allows us to access any new information we need to create
the queries for the evaluation and guarantees the evaluation queries the code search data
available at that time, just as the programmer would have done.
Figure 5.4 shows a schema of the Teamscale trigger we created. It contains three main

parts. First, all changed files are read from the repository. Their content is then extracted
and passed to the compiler, where they are compiled and the abstract syntax tree (AST )
is created. The AST is passed to the evaluation where the exact changes are inspected
and each new method call is evaluated. Besides requiring the changed files, it also has to
work with the code’s history in order to calculate exactly which tokens were changed in
the source code in the current commit. With this information we know which method
calls were actually added in the current commit. This allows us to ignore method calls
that point to methods which were added in the same commit, as the code search system
can not possibly know about them.
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Figure 5.4: A schematic of our trigger and its data flow.

After the evaluation is complete, the AST is passed to the analysis, where all changed
data is analyzed and the index is updated.
We do not evaluate method calls to methods that have been added in the same commit.

Theoretically we would hope that our code search system would present alternatives to
the newly implemented methods, thereby leading to more reuse. As we have no way of
automatically evaluating if the proposed methods would have been alternatives to the
newly implemented method, we do not consider these method calls in our evaluation.

5.2 Results

In this section we present our collected results for each study object.

Results based on JabRef

We present the results based on analyzing JabRef in tables 5.2 to 5.5. Figure 5.5 gives an
overview of the obtained results.
The graph shows the size of the retrieved result set on the x-axis and the hit ratio on

the y-axis. Each curve shows the hit ratio development of one combination of metrics over
different result set sizes. Each point marked on a curve presents one hit ratio measurement
for the marked result set size.
For each setting, the best result has been marked bold in the corresponding table. Clearly

the best result combination of parameters for this project according to our evaluation is
using return types without the architecture analysis. Overall we get the best result when
retrieving 20 results, leading to a hit ratio of 0.6566. The fact that retrieving 20 results
leads to a higher hit ratio than 10 or even only 5 or 1 result is not very surprising as it
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Figure 5.5: Comparison of results based on JabRef. (AA: Architecture Analysis, RT :
Return Types)

greatly increases the chances of returning the correct method. The difference between
retrieving 5 or 10 results is noticeable with a hit ratio increase of 0.08 when using 10, a
16.8% increase. The difference between 10 and 20 is 0.07 or a 11.9% increase. The benefit
of a growing result set becomes less with each increase.

Interestingly using the top 20 most used methods every time leads to a hit ratio of
0.5041, which means that more than every second method call is to one of the twenty
most used methods in the program. This indicates the heavy reuse of a few methods at
a very high rate. Using our tool still results in a hit ratio improvement of 0.1525 or a
30.2% improvement.

The biggest noticeable difference is between analyses using the architecture analysis and
those not using it. Evaluations not using architecture analysis score significantly better
than those that do, with result being almost twice as good. This could have a number of
reasons: First, the architecture we created is artificial. As we are no JabRef developers,
we had to extract the architecture from the source code’s effective architecture, which
means very few restrictions for most parts of the code. Another problem is, that we only
have a snapshot architecture for one point in time (now) – JabRef ’s architecture might
have evolved over the past ten years – thus our architecture might not always accurately
demonstrate the system’s state at that time.
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Return Types Arch. Analysis Hit Ratio Total Queries
true true 0.2229 18419
true false 0.2997 18419
false true 0.2105 18419
false false 0.2814 18419

Table 5.2: 1 result per query for JabRef

Return Types Arch. Analysis Hit Ratio Total Queries
true true 0.3679 18419
true false 0.5021 18419
false true 0.3549 18419
false false 0.4801 18419

Table 5.3: 5 results per query for JabRef

Return Types Arch. Analysis Hit Ratio Total Queries
true true 0.4252 18419
true false 0.5867 18419
false true 0.4153 18419
false false 0.5637 18419

Table 5.4: 10 results per query for JabRef

Return Types Arch. Analysis Hit Ratio Total Queries
true true 0.4722 18419
true false 0.6566 18419
false true 0.4665 18419
false false 0.6387 18419

Table 5.5: 20 results per query for JabRef

Results based on ConQAT

We present the results based on analyzing ConQAT in tables 5.6 to 5.9. Figures 5.6
and 5.7 give an overview of the obtained results. Similar to the results for JabRef the
graphs show the size of the retrieved result set on the x-axis and the hit ratio on the y-axis.
Each curve shows the hit ratio development of one combination of metrics over different
result set sizes. Each point marked on a curve presents one hit ratio measurement for the
marked result set size. The measurements have been divided on two different graphs for
better readability. Figure 5.6 contains all results using parameter combinations not using
architecture analysis, whereas fig. 5.7 shows all results using combinations that do use
architecture analysis.
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Figure 5.6: Comparison of results based on ConQAT without using architecture analysis.
(AA: Architecture Analysis, RR: Review Ratings, RT : Return Types)
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The evaluation using ConQAT shows three very interesting results which we will discuss:

• Not using architecture analysis leads to a much better hit ratio than using it.

• The best performing settings are different for 1-4 and 5, 10, 20 retrieved results.

• The baseline result sets containing the N most used methods deliver a very low hit
ratio.

Enabling architecture analysis to find better search results leads to a significant drop of
the hit ratio value (compare figs. 5.6 and 5.7). The best hit ratio value with architecture
analysis is only about 1

3 of the best hit ratio value that does not use architecture analysis.
This is quite surprising as we would have expected it to perform at least similarly for both
cases. As with JabRefwe only have one snapshot of the architecture, possibly leading to
inaccurate results due to a wrong architecture in early revisions.
Figures 5.6 and 5.7 show an interesting effect between 4 and 5 retrieved results: The

analyses using return types result in a slightly lower hit ratio than those not using them.
The graphs demonstrate that the settings used in an actual production system should
be adjusted depending on how many results are to be retrieved. For example for our
auto-completion scenario, we should be using return types only for 1-4 results. For more
results we obtain better results when not using them. All other techniques should be
turned off. For a web search, using 20 results could be realistic. In that scenario we
should therefore disable all extra information to get the best results.
Returning our baseline, the result sets containing the N most used methods in the

system, instead of using our code search system leads to very low results for ConQAT .
This is expected, as ConQAT is a large system and the part we analyzed contains over
340,000 lines of code. Since ConQAT is a complex tool to create software quality analyses
it contains numerous methods for different purposes and does not have one or two central
methods that are called frequently. This result gives us confidence that our system scales
well with larger systems and that it is vastly better than just using the easiest case,
namely the most used methods.
The usage of review ratings seems to have a negative effect on the hit ratio value. One

reason could be that developers use many unreviewed methods during development. As
we evaluate every commit on the repository, we get the entire spectrum of the review
chain. This means many commits contain recently created, unreviewed code or changes to
such code. Using review ratings as part of the query, i.e. giving extra weight to reviewed
methods, will lead to worse results on these types of commits.
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Return Types Arch. Analysis Review Ratings Hit Ratio Total Queries
true true true 0.0958 7884
true true false 0.1176 7884
true false true 0.3061 7884
true false false 0.3387 7884
false true true 0.0907 7884
false true false 0.1131 7884
false false true 0.2950 7884
false false false 0.3288 7884

Table 5.6: 1 results per query for ConQAT

Return Types Arch. Analysis Review Ratings Hit Ratio Total Queries
true true true 0.1418 7884
true true false 0.1752 7884
true false true 0.4607 7884
true false false 0.5422 7884
false true true 0.1435 7884
false true false 0.1792 7884
false false true 0.4631 7884
false false false 0.5471 7884

Table 5.7: 5 results per query for ConQAT

Return Types Arch. Analysis Review Ratings Hit Ratio Total Queries
true true true 0.1540 7884
true true false 0.1910 7884
true false true 0.5223 7884
true false false 0.6140 7884
false true true 0.1574 7884
false true false 0.1971 7884
false false true 0.5317 7884
false false false 0.6271 7884

Table 5.8: 10 results per query for ConQAT
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Return Types Arch. Analysis Review Ratings Hit Ratio Total Queries
true true true 0.1649 7884
true true false 0.2032 7884
true false true 0.5822 7884
true false false 0.6753 7884
false true true 0.1697 7884
false true false 0.2107 7884
false false true 0.5991 7884
false false false 0.6975 7884

Table 5.9: 20 results per query for ConQAT

5.3 Discussion

We have evaluated our code search system based on two study objects: JabRef and
ConQAT . The study objects vary in size, age and development process. JabRef is an
open-source project that is developed entirely community based, whereas ConQAT is an
open-source project that is developed mainly be a single closed group of IT developers.
ConQAT is more than twice as big as JabRef in terms of lines of code.
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5.3 Discussion

In fig. 5.8 the two best results for ConQAT and JabRef are presented in one graph. The
results are fairly similar for both study objects, indicating that our code search system
performs similarly on different study objects. In contrast to ConQAT ’s results, JabRef ’s
hit ratio lines do not cross at a result set size of four. The gathered data is inconclusive
as to whether any conclusions can be drawn from this effect or not.
For ConQAT moving from 10 to 20 results we gain an improvement of 11.2%, while using

twice as many results. For JabRef we gain 11.9%, which is a little more. For ConQAT
we gain a 14.6% improvement moving from 5 to 10 retrieved results. Using JabRef we
gain 16.9%. The differences are too insignificant to draw any general conclusions from
this. More evaluations would have to be done to generate more conclusive data.
Figure 5.9 displays the hit ratio improvement per result for the best two results of

JabRef and ConQAT. Clearly the slope flattens the more results are retrieved, indicating
that no large gains in hit ratio are to be won by retrieving more results. Judging by the
results presented in the graph, we think using 5 results as the default setting for the
auto-recommender would be ideal as it leads to a good hit ratio and hit ratio improvement
per result is still acceptable.
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We introduced a number of techniques and metrics to improve the search results on
top of using the programmer’s context: Signature Matching (section 2.4), Architecture
Analysis (section 2.9) and Review Ratings (section 2.3).
Using signature matching information seems to work well, as the results for using only
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return types are generally the best. For JabRef this seems to scale well, whereas for
ConQAT there seems to be an upper limit of number of retrieved results up to which this
is still useful. More study objects would be needed for evaluation to accurately make a
judgment whether this technique is an improvement in general or only in certain cases. It
certainly is not bad and provided better results for lower numbers of retrieved results
(1-10) on both study objects.
The results for architecture analysis are generally a lot worse than those that do not

use it. There are multiple possible reasons, as to why the results probably are not better
with architecture analysis than without:

• Inaccurate architectures are being used

• Only one architecture version is available for each study object.

• Architecture analysis is not useful to improve the results

The first point is especially true for JabRef, as we built the architecture for JabRef
ourselves, without advice from any of the project’s developers. As there was no predefined
architecture available, we assume that the project has been developed without a defined
architecture, which explains the lack of usefulness of our architecture approach. The
architecture used for ConQAT should be fairly accurate for the current development state,
as it was developed by two of the project’s most senior developers. Unfortunately this
does not seem to help with retrieving better results.
Both architectures have the general problem of only being available for the current state

of development. Since we are analyzing thousands of commits in both projects, chances
are the architecture might be inaccurate for older commits, as in reality architectures
evolve together with the project. We believe that if an architecture is available throughout
a project’s history and it is updated together with the code, this will improve results.
The results of evaluations using review ratings are not very promising, as their hit

ratio value is about 50% lower than of those that do not use it. Being familiar with the
development process, we see two main reasons for this:

1. Developers use a lot of (their own) recently developed and therefore not yet reviewed
methods in their commits.

2. The developers developed the study objects without the help of our system, thus
we would hope the results could be better if the developer’s could have used our
system to find reviewed methods that fulfilled their requirements.

Judging from these results it is questionable if there is any value to using review ratings
based on the LEvD process to find better reusable methods in our code search system.
Overall we are content with the obtained results, as they indicate that our code search

system works well under an auto-completion scenario, with more than every second
recommendation set containing the expected result in our evaluation scenario. If this
result can be transferred to real development, then the tool should be useful to a developer
and assist him in finding the methods he is looking for.
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5.4 Threats to Validity

RQ 2 - Which combination of metrics provides the best results?

Combining the techniques for result retrieval seems to be of limited benefit according to
our results. Using all techniques together results in the worst hit ratio for ConQAT and
for the second worst hit ratio for JabRef, leaving a lot of room for improvement. The
lack of good results for all techniques in combination could be a result of weighting the
metrics equally, where possibly they should be weighted differently depending on the
queried project and general usefulness. More work in this area is required to find out if
weighting can make this approach more useful.

5.4 Threats to Validity

The results are subject to a number of threats. First, we use a new evaluation method,
which has not been proven to correlate with real world experiences. It would be useful
to evaluate our system in a study with real developers who work on a project using
our system for a while, to show if our evaluation correlates with reality. Our evaluation
method closely follows the actual development of a given study object, thereby mitigating
this risk.
As with every automatic evaluation, we have to assume that the developers chose the

best possible method available and reused methods where possible. There might have
been cases during evaluation where our system actually recommended a better or just as
good solution than the one used by the developer, but we cannot measure this without a
study questioning the developers.
The results involving the architecture analysis metric are greatly dependent on the

quality of the used architecture. Therefore especially the results obtained with JabRef
might be inaccurate, as the architecture used has been reconstructed by us, without a
deep understanding of the code. By using actual dependencies found in the code to create
the architecture, we made sure that we did not introduce any nonexistent constraints. A
second problem, which affects both used architectures, is that we only have one revision
of each architecture. For best results we would need the architecture to evolve together
with the code, in the best case developed and updated in the same repository in parallel
to the code.
The study objects we evaluated were not built using our system. Therefore we cannot

assume that the study object is in the same state as it would have been when building it
using our system. If built using our system, we would hope to obtain a better hit ratio,
as the developers should have used our system at least a few times to find matching
functions in cases where they would not have found the best match by hand.
We have only run the evaluation on two study objects: ConQAT and JabRef. Since

these are two Java systems, we cannot yet generalize the results to other systems with
much certainty. More study objects need to be evaluated to allow more trust in the
results. Finally, both study objects are of medium size with 100,000 - 300,000 lines of
code, making the results hard to generalize for smaller and bigger systems or those that
are written in a different programming language.
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6 Conclusion

This chapter gives a conclusion of the work performed in this thesis.
We have designed a code search system which uses Context-Dependent Method Recom-

mendation, Signature Matching (section 2.4), Architecture Conformance (section 2.9) and
Review Rating Matching (section 2.3) to find reusable methods for the programmer. We
have identified these techniques to be useful for identifying reusable code in response to
research question 1 (What are useful metrics and techniques for a code search system? –
section 1.4) following a comprehensive study of state of the art systems in chapter 3.
The system was designed to be used in multiple usage scenarios like an IDE auto-

completion and a web-based search interface, by providing an open interface for clients to
query using a special query language (in our case the Lucene query language).

Implementation

To answer research question 3 (Can a shallow parser replace a full parser in code search
engines? – section 1.4) we started of implementing the system based on the shallow parser
(section 4.3.3) to see which parts of the system could be implemented. In conclusion
the shallow parser can be used to create a basic index of method declarations in the
system, but due to its technical limitations it is not useful for extracting extended type
information and indexing contexts
Next we implemented the code search system entirely using a full parser (section 4.3.3),

providing us with all information necessary. This limits our current implementation to
the Java programming language, but allowed us to implement all features we proposed in
the system’s design (chapter 4).
As a proof-of-concept we implemented a simple Eclipse plug-in (section 4.3.6) which

adds a new auto-completion provider. This auto-completion provider uses our system to
retrieve results and display them in the Eclipse auto-completion dialog for the developer
to use.

Evaluation

To evaluate our system and to answer research question 2 (Which combination of metrics
provides the best results? – section 1.4) we proposed a new evaluation design (chapter 5),
based on the incremental approach we already used for our main system. The proposed
system can be used to evaluate any type of system which provides auto-completion
recommendations.
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6 Conclusion

We proposed reading the repository commit by commit and extracting all method
calls in the process. For each of these method calls we proposed to send a query to our
system containing the calls context, the expected return type at the calls position and
the files review rating and package. Our code search system then returns a result set.
We then measure the ratio of times we find the method call the developer actually chose
to the number of result sets retrieved. This gives us a measure of how often the system
would have returned the developers choice and could have thereby helped him during the
development process.
We ran our evaluation on the entire development history of JabRef and on around

5000 commits of ConQAT development history. In conclusion we found that depending
on the system under evaluation it is either best to use only Context-Dependent Method
Recommendation or Context-Dependent Method Recommendation plus Signature Matching
for return types. Using architecture analysis or review ratings in the query provided no
improvement in hit ratio.
With hit ratios of 54.71% (table 5.9) for ConQAT and 50.21% (table 5.5) for JabRef ,

when retrieving a result set of 5 results, we believe that our code search system provides
help for developers in a real world development context. A hit ratio of over 50% means
that more than every second set of results retrieved contains at least one result solving
the programmers current problem.
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7 Future Work

Many components of our code search system could be improved in the future: The analysis
gathering the data only works with Java source code, leaving room for expansion to
many other languages. Being able to instrument languages like C, C++ or C# could
foster adoption rates especially in the industry, as these languages are widely used1 for
commercial and open-source projects.
Expanding the system to work with dynamically typed languages such as Python, Ruby

or Javascript would be an interesting task, especially because they are widely used in
many open-source projects2. As static typing is missing in these languages, signature
matching becomes much harder to do, because it is not clear which types are to be used
in a given method. Architecture conformance, context matching and review ratings could
be used in these languages, so it would provide a great extension to our work.
Besides extending the system to work with multiple programming languages, one could

also work on the data back-end. We believe that implementing more code reusability
metrics, such as those discussed in section 2.5, could provide a significant benefit when
searching for reusable methods, because many methods offering similar functionality are
present in large code bases. Ordering them by reusability makes sense and keeps the
cognitive distance [24] for reuse low.
Currently we use the software architecture to avoid reuse of methods whose usage would

break the software’s architecture as defined by the provided architecture specification.
One could derive reusability metrics from the architecture specification, for example by
ranking methods in components which have a high ingoing/outgoing ratio higher, than
those that don’t. This stems from the idea, that components which are being accessed
from many places in the code base, but don’t access a lot of code by themselves, are in a
good form to be reused by others.
The system was designed to be able to provide a web based search client. The web

based search client would offer an interface allowing the programmer to specify the search
parameters by hand and inspect the results on a web interface. We believe this client
has a different use-case then a auto-completer: The web based client is more interesting
as a tool to find out whether a planned functionality already exists or if it has to be
newly implemented. This can be useful in a planning stage, as well as shortly before the
programmer starts the actual implementation.
The web client would have to be evaluated in a study, in order to find out if the interface

and service actually produce results that are useful to the developer. In this context,
1Programming language popularity on langpop.com: http://langpop.com/ (last accessed October
14, 2013)

2Github programming language statistics: http://pxhr.blogspot.de/2013/07/
githubs-statistics-programming-languages.html (last accessed October 14, 2013)
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7 Future Work

it could be interesting to find out how many "wrong" results (as in searches without a
useful hit) can be displayed, before the developer loses interest in the tool and decides to
not use it again in subsequent searches.
We have provided a prototypical implementation of an auto-completion plug-in for

Eclipse. The implementation is very basic, only provides the user interface and does
not yet allow inserting code automatically. Implementing this functionality would be an
interesting task for the future, as it comes with a host of challenges. One of our goals was
allowing the programmer to search code in the repository, that is not checked out locally.
This makes auto-completion difficult, as the programmer might not have the code for a
given result available locally when using it. This means the plug-in needs to take care
not only of inserting the correct method call, but also of setting up the project in the
programmer’s environment, making sure the code can actually compile after inserting the
method call.
With a working auto-completion one could evaluate the system together with users in a

study. This would require developers to work with the system for a certain amount of
time either on their normal work or on specific projects designed to make evaluation more
precise and save time. Both variants could provide interesting insight into whether or not
the system is actually useful and delivers as promised.
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