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Abstract—If a bug gets fixed in duplicated code, often all
duplicates (so called clones) need to be modified accordingly.
In practice, however, fixes are often incomplete, causing the bug
to remain in one or more of the clones. In this paper, we present
an approach to detect such incomplete bug-fixes in cloned code.
It analyzes a system’s version history to reveal those commits
that fix problems. It then performs incremental clone detection
to reveal those clones that became inconsistent as a result of
such a fix. We present results from a case study that analyzed
incomplete bug-fixes in six industrial and open source systems to
demonstrate the feasibility and defectiveness of the approach. We
discovered likely incomplete bug-fixes in all analyzed systems.
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I. INTRODUCTION

“I had previously fixed the identical bug [...], but didn’t
realize that the same error was repeated over here.” [1]
This excerpt of a commit message is a common verdict of
developers who unveil inconsistencies in duplicated (cloned)
code. As research in software maintenance has shown, most
software systems contain a significant amount of code clones
[2]. During maintenance, changes often affect, and thus need
to be carried out, on all clones.

If developers are not aware of the duplicates of a piece of
code when they make a change, the resulting inconsistencies
often lead to bugs [3]. Awareness of clones in a system is
especially important, if a developer fixes a bug that has been
copied to different locations in the system. Those clones that
are not fixed continue to contain the bug. Many studies have
reported discovery of errors in clones in practice, often due to
incomplete bug-fixes [3, 4, 5, 6, 7, 8, 9].

To avoid such incomplete bug-fixes, clone management [2]
approaches have been proposed to alert developers of the
existence of clones when they perform changes. However,
while such approaches can possibly ease future maintenance,
they are of no help with those incomplete bug-fixes that have
happed in the past. How can we detect such inconsistent bug-
fixes that are already part of the source code of a system?

One approach to detect incomplete bug-fixes in cloned code
is to search for clones that differ from each other, e.g. in
modified or missing statements. These differences could hint
at incomplete bug-fixes. Several clone detection approaches
exist that can detect clones with differences (so called type-3
clones) [10]. Unfortunately for the precision of this approach,
however, not every difference between a pair of clones hints

at a bug. In many cases, a developer copy & pastes a piece
of code and modifies it intentionally, since the new copy is
required to perform a slightly different function.

During the past five years, we have inspected clones
in numerous industrial and open-source systems. Most of
them contain substantial amounts of clones—including type-3
clones. Searching for incomplete bug-fixes by manually in-
specting type-3 clones is inefficient, simply because many of
the differences were introduced intentionally, often already
during the creation of the clone. To reveal incomplete bug-
fixes more efficiently, we ideally require an approach that can
(at least to a certain degree) differentiate between intentional
and unintentional differences between clones.

This paper proposes a novel approach to reveal inconsistent
bug-fixes. It iterates though the revision history of a system
and classifies changes as bug-fixes, if the commit message
contains specific keywords like bug or fix. It then tracks the
evolution of code clones between revisions to detect clones
which become inconsistent as consequence of a fix. Our
assumption is that such inconsistencies have a high likelihood
of being unintentional. The case study that we have performed
for this paper confirms this assumption.

Furthermore, in contrast to clones detected on a single
system version, this approach provides information on which
change, by which author and for which defect, caused the
difference between the clones. From our experience, this
information substantially supports developers in judging if and
how to resolve differences between clones.

Problem: Bug-fixes in cloned code are often incomplete,
causing the bugs to remain in the system. We lack approaches
to efficiently reveal such incomplete bug-fixes.

Contribution: This paper presents a novel approach for
detecting missing bug-fixes in code clones by combining clone
evolution analysis with information gathered from the version
control system.

We have implemented the approach based on the incremen-
tal clone detection functionality of the open-source program
analysis toolkit ConQAT1. We have evaluated it in a case study
on six industrial and open-source systems in Java and C#. The
results of the case study show that the approach is feasible and
does reveal missing bug-fixes.

1http://conqat.org
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II. RELATED WORK

This section gives an overview of approaches to reveal
incomplete or missing bug-fixes. We distinguish between work
concerning system evolution and clone detection.

A. Evolution-based

Kim et al. [11] proposed a tool called BugMem, which uses a
database of bug and fix pairs for finding bugs and suggesting
fixes. In particular, this system-specific database is built via
an on-line learning process, since each revision of the version
control system is scanned for a commit message hinting at
a bug-fix. As suggested by Mockus and Votta [12] they use
the terms ”Bug” or ”Fix” for identifying bug-fixes, as well as
reference numbers to issue-tracking software like Bugzilla. For
each fix-commit, the changeset data is extracted and separated
into code-with-bug and code-after-fix. These code regions are
normalized to generalize identifiers and stored in the database.

We use the same method for scanning the version history
for interesting terms, but refrain from including references to
bug tracking reports, since some systems track both bugs and
feature requests with such tools. For including them, further
work is required to distinguish bugs and requests, as well as
making the data available offline.

Zimmermann et al. [13] took a similar approach by min-
ing data from a version control system for a change rec-
ommendation system. Their goal is to suggest in an IDE
changes and fixes [14] in the manner of shopping applications:
”Programmers who changed these functions also changed...”.
The precision of meaningful suggestions is 26%. From a
user-perspective the main difference to our approach is, that
the recommendation tool tries to prevent bugs by suggesting
changes upon modification of files in the IDE. Yet, the amount
of wrong recommendations is rather high.

B. Clone-based

Juergens et al. [3] inspected a set of gapped clones for in-
complete bug-fixes using their open source tool suite ConQAT.
They proposed an approach for identifying gapped code clones
using an algorithm based on suffix-trees and evaluated it on
several large-scale systems. The results of this study show an
average precision of 28% for detecting unintentional incon-
sistent clones. Nevertheless, the tool reported for all but one
system over 150 inconsistent clones, which is a large amount
for initial analyses.

The approach proposed in this paper also builds upon
ConQAT, but uses another technique for detecting inconsistent
code clones using an index-based algorithm in conjunction
with evolution analysis. Hence, we compare our approach to
that from Juergens et al. in terms of reported inconsistencies,
precision and execution time.

C. Combined – Clone-evolution-based

APPROX of Bazrafshan et al. [15] is a tool for searching
arbitrary code fragments in multiple versions and branches for
similar fragments to find missing fixes. The search is based on
code clone detection, but limited to search for code fragments

similar to a search term. In contrast to our approach APPROX
requires developers to know beforehand which code snippet
contains a bug-fix and is of interest.

Duala-Ekoko and Robillard [16] created an extension for the
Eclipse IDE, which reads a clone report from SimScan2 and
tracks the location of the clones automatically as code changes
in the editor or between revisions. The approach focuses more
on getting an overview about all related clones while editing
a file, since they provide automated edit propagation to other
clone siblings as well.

In contrast, Kim et al. [17] analyzed clone genealogies by
combining CCFinder [18] with a clone tracking approach. In
a case study they showed that only up to 40% of all clones are
changed consistently during system evolution. Canfora et al.
[1] used another clone detection tool as well as other study
objects and reproduced the results from Kim et al. with about
43% of all clones being consistently modified. In detail, the
inconsistencies sum up to 67% whereas 14% of these were
propagated later to become consistent again.

Also Göde and Rausch [19] analyzed the evolution of three
open source systems during a time frame of five years. For this,
they used an iterative clone detection and tracking algorithm,
and showed as well, that 43.1% of all changes to clones
are inconsistent with 16.8% being unintentional inconsistent.
Again, the total amount of reported inconsistencies is with
131 clones quite high and includes lots of false positives with
respect to unintentional inconsistencies. As we go further and
filter the revisions by commit message, we significantly reduce
the amount of false positives.

Geiger et al. [20] presented an approach for identifying
interesting correlations between code clones and change cou-
plings mostly with respect to different subsystems. Change
couplings are files that are committed at roughly the same
time, from the same author and with the same commit message
[21]. Nevertheless, they conclude that a correlation is too
complex to be easily expressed and more information is
needed to identify harmful clones. In our approach we will
not correlate change coupling, but use a prediction of which
commit is a fix based on its commit message.

III. REVEALING MISSING BUG-FIXES

This section provides an in-depth explanation of how the
analysis process of the proposed approach works. As depicted
in Fig. 1 the process is an iteration over the available revisions
of the version control system in order to simulate the source
code evolution. For each iteration, several steps are performed
to identify incomplete bug-fixes in code clones. At the end of
each cycle, the iterator is queried for the next revision and a
new detection starts. As soon as no newer revision is available,
the bug detection results are reported and the analysis process
terminates.

A. Get Next Revision

Upon the start of the analysis the version control system is
queried for all or a subset of available revisions. During the

2http://blue-edge.bg/simscan
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Fig. 1: Overview of the iterative bug detection process

iteration loop, the revisions are checked out in chronological
order and metadata containing the commit message is handed
over to the next steps.

B. Preprocessing

First, the source code is read from the disk into memory.
Regular expressions are used as include and exclude filters for
omitting generated and test code, since the former does not
contain manual modifications and the latter is not interesting
for production use. We further strip unnecessary statements,
like package identifiers or include statements as these are
unlikely to contain bugs. Finally, the source code is normalized
into a generic representation which is insensitive to method
names, variable names and literals.

C. Clone Detection

For detecting code clones, we use an algorithm using a hash
index [22], which allows incremental updates of the clone data
with high performance. For each revision, we gather the list
of altered, added and deleted files and remove all data from
the index, that belongs to these files. Afterwards, these files
are added to the index again, but with updated content. Thus,
we can keep most of the data and update just a small fraction
depending on the changeset size.

Detection is configured to keep clones from crossing method
boundaries. Hence, we can minimize the amount of semanti-
cally not meaningful code clones. Moreover, we do not take
gapped clones (type-3) into account, which contain statement
additions, removals and modifications after normalization.
Including gapped clones in this step will not allow us to
determine if the inconsistency in such a clone is related to
a bug-fix.

D. Clone Tracking

This step performs the actual evolution analysis for code
clones. For this, the reported clones from the clone detection
step are mapped to those from the previous iteration cycle

Fig. 2: Clone tracking dataflow process

(cf. Fig. 2). Modifications that are performed inconsistently
between clones, turns a group of ungapped cloned into a group
of gapped clones. Moreover, these gapped clones are marked
as modified in this revision.

The clone tracking is also performed by ConQAT and
roughly follows the approach proposed by Göde and Koschke
[23]. It first calculates the edit operations of a code clone
between two consecutive revisions. Then it propagates these
edit operations to the clones of the current revision, so the
clone positions are updated accordingly. Afterwards, the up-
dated clones are mapped to those from the the current detection
step: First, those clones are matched, which positions do not
differ. Second, a fuzzy coverage matching is performed on the
remaining clones, that determines whether one clone covers an
other and reports clones with modifications and gaps, that are
of interest for the proposed bug detection approach.

E. Filtering

All clones without gaps are filtered, because they cannot
contain incomplete bug-fixes. We also remove clones that
differ too much with regards to their length. The threshold we
choose is 50% around the average length of all clone instances
of a group.

For example, a group of clones with two instances of length
23 and one of length 8 has an average clone length of 18. As
the length of the shortest instance lies outside the 50% interval
around this average length ([9, 27]), it is removed from the
group. The other instances remain, because they lie within the
interval. If all clones of a group lie outside this interval, the
entire group is discarded.

F. Bug Detection

Clones are classified in those that contain an incomplete
bug-fix and those that do not, as outlined in Fig. 3. To achieve
this, the version control system is first queried for the commit
message of the current revision. In the message we search for
terms like fix, defect or bug that may indicate a bug-fix. If
such a term is found, the whole commit and its modifications
are seen as bug-fix commit. Mockus and Votta [12] proposes



Fig. 3: Incomplete bug-fix detection flow

an even more extensive approach for finding fixes in commit
messages. In our case, system specific terms were sufficient.

Afterwards, the list of code clones is searched for those that
were marked as modified in this revision in the clone tracking
step. For those, the approach suggests that the clone contains
an incomplete fix, as the commit is a bug-fix and the clone
was inconsistently modified in this revision. Consequently, it
will be added to the global list of all incomplete bug-fixes.
Finally, we also need to clean this list of incomplete bug-fixes
as soon as a clone became consistent again or vanished. We
continue with a new iteration loop, as long as newer revisions
are available.

G. Result Reporting

After the revision iteration terminates, the result reporting
is the last step. It writes all incomplete bug-fixes into a
XML file for manual inspection with the ConQAT Clone
Workbench. The report contains details about the location of
clone instances in the source code, which includes file name,
start and end line, as well as the position of gaps. Moreover,
also information about the revision that caused the clone to
become inconsistent are stored, namely the commit message
and the revision identifier.

H. Performance Optimization: Revision Compression

After analyzing the version history of some software sys-
tems, we found that only a small percentage of the commits
represent a bug-fix. In the studied systems roughly 25%. We
can exploit this for a notable performance improvement, since
we only need to inspect each commit that represents a bug-
fix. All revisions between bug-fixes can be compressed into
a single composite revision, as depicted in Fig. 4. These

Fig. 4: Compressing non-bug-fix revisions (white) into single
commits. Revisions including a bug-fix (gray) are not com-
pressed.

compressed revisions are created by appending the commit
messages and merging the changesets of altered files.

The general performance improvement can be described as
follows: Let R be the total number of commits and F be
the amount of fixes in a system (determined from the commit
message) with of course F ≤ R. Then we have to inspect R
revisions without compression. With revision compression at
most 2 ∗ F + 1 revisions have to be inspected, whereas R is
still an upper limit that cannot be exceeded. For a system with
a ratio of one fix per four commits, we can skip at least 50%
of all revisions.

IV. CASE STUDY

This section presents a case study which examines the
amount of fixes in code clones of industrial and open source
software systems. Moreover, it evaluates how well bugs can
be detected with the proposed clone evolution approach and
compares it to gapped clone detection on a single system
revision.

A. Research Questions

We investigate the following five research questions:
RQ 1: Can fixes be determined from commit messages?

The first question serves as fundamental analysis of how fixes
can be detected solely from analyzing commit messages. It
analyzes if a set of a few keywords can be chosen in a manner
that they identify a commit as fix.

RQ 2: Which amount of code clones is affected by fixes?
If inconsistent changes to clones do not occur in software
systems, further analyses do not make sense.

RQ 3: How many inconsistently fixed clones qualify as
bug candidates?
This question investigates whether the proposed approach is
appropriate for detecting bugs and how many false positives
are returned. For a toolkit in production use, a high precision
in detecting incomplete bug-fixes is desireable.

RQ 4: What is the impact of the commit changeset size
on the bug-finding precision?
Commits with a lot of modified files are likely to contain
refactorings, feature additions or branch merges besides the
actual fix. We suspect that more false positives are reported and
try to give evidence by analyzing the precision with respect
to limited changeset sizes.



TABLE I: List of the analyzed software systems

System Organization Language History Size Commits
(years) (kLOC)

A Munich Re C# 1.5 81.4 823
B Munich Re C# 1.5 370.6 638
C Munich Re C# 5 652.7 7483
D Aol Java 1.5 47.5 1449

Banshee Novell C# 7 165.6 8097
Spring VMWare Java 4 417.6 5034

RQ 5: How does evolution-based bug-detection compare
to gapped clone detection on a single revision?
Finding incomplete bug-fixes can also be achieved by gapped
clone detection. Hence, the question arises if the overhead of
analyzing history information is justified compared to gapped
clone detection in terms of precision and the amount of
reported inconsistently fixed clones needed to be inspected
by a developer or quality assurance engineer.

B. Study Objects

The case study was performed on six real-world software
systems as listed in Table I. The reason for choosing these
projects was on the one hand the requirement of having an
evolved version history, on the other hand we need access to
the version control system even for non-open-source projects.
Thus, we relied on own contacts for industry code. In contrast,
Banshee and Spring are available as open source systems and
maintained by Novell and VMWare.

All systems are written by different teams, have individual
functionality and evolved independently. They also differ in
size and age. System A, B and C are owned by Munich Re,
but are developed and maintained by different suppliers. They
are written in C# and used for damage prediction and risk
modeling. System D is an Android application developed by
AOL. The two open source applications are the popular open
source cross-platform audio player Banshee3 written in C# by
more than 300 contributors and the Java enterprise application
framework Spring4 developed by over 50 contributors. All
systems are actively developed and in production use.

C. Determining Bug-Fixes — RQ 1

Design and Procedure: This question explores how well
fixes can be determined from the commit messages of a
version control system. To answer it, we manually inspected
commit messages from all study objects and identified reoccur-
ring terms which are used in bug-fix commits. These keywords
were compiled to a regular expression so that it matches any
of the terms.

Results: The manual inspection of all six systems yielded
the following list of keywords suitable for identifying bug-
fixes: Fix, Bug, Defect, Correct. As system A, B and C
are developed by German engineers, some of the commit
messages are written in German as well. This yields an
extended set of keywords also containing the German words

3http://banshee.fm
4http://springsource.org/spring-framework

Fig. 5: Excerpt of commit logs from Banshee

TABLE II: Total amount and percentage of identified fixes

System Commits Fixes Fixes (%)
A 823 194 23.6
B 638 203 31.8
C 7483 1754 23.4
D 1449 326 22.5

Banshee 8097 2016 24.9
Spring 5034 648 12.9

Fehler, Defekt, behoben and korrigiert. Additionally, the word
correct seems to be often misspelled by developers as corect,
so we also took this variant into account.

We decided against identifying commits as fixes solely
from the presence of a reference to a bug-tracking software.
As shown in Fig. 5, such references are mostly given by a
number code representing the identifier of a bug or feature
request in the issue-tracker. In the example, only the sec-
ond commit with a bug-tracking identifier (Ë) is a bug-fix,
while the first one (Ê) references a feature request. Thus,
we suspect to threaten precision by generally taking these
identifiers into account. All in all, we can compile the follow-
ing regular expression to match a commit message against:
(?is).*(fix|bug|defe(c|k)t|fehler|behoben|

co(r|rr)ect|ko(r|rr)igier).*
Table II summarizes the amount of fixes detected by the

above regular expression in each analyzed system. According
to this result, almost every fourth commit is a fix.

Discussion: The results show that detecting bug-fixes
from commit messages works reasonably well, at least for
the systems we studied. Of course, the list of keywords used
for detection varies depending on the software system and the
language the developers speak. The proposed terms provide
an initial starting point. But as soon as the bug detector is
used on other systems, the terms need to be customized and
tailored.

Still, it might happen that a commit is falsely identified as
bug-fix, as depicted in Fig. 5 (Ì). However, this seems to be a
rare problem and in case of the above example the modification
was at least related to a bug-fix.

D. Amount of Incomplete Fixes — RQ 2

Design and Procedure: The second research question
investigates the amount of code clones that is affected by fixes
and became inconsistent thereby. To answer it, we counted
both, the total amount of incomplete fixes during project
evolution, as well as those that were still present in the latest
revision of the system history. Therefore, our bug detection

http://banshee.fm
http://springsource.org/spring-framework


TABLE III: Evolution of incomplete bug-fixes

System Total Incomplete Fixes Still Present
A 48 28
B 60 50
C 108 61
D 26 15

Banshee 112 21
Spring 35 23

toolkit has been slightly modified to deliver these statistics.
The configuration remained as described in Section III with a
minimal clone length of 7 statements. Additionally, groups of
clones with more than three instances were filtered, because
for them the tracking approach is unreliable. Including these
clones remains for future work.

Results: Table III shows for each system the amount of
incomplete bug-fixes in code clones. For all systems less fixes
are present in the last revision than occurred in total. This is
due to corrected inconsistencies or completely removed clones.
Moreover, a code clone can also be affected by more than one
bug-fixed and appear multiple times in the above statistic.

Discussion: Depending on the system, we were able to
reduce the total amount of code clones to a small fraction
compared to all gapped clones, as shown by Table VI later in
the case study.

Comparing the low amount of incomplete fixes for Banshee,
which are still present in the last revision, to all inconsistencies
found during the analysis shows that the detection algorithm
is not stable with regards to big refactorings. The Banshee
developers partially restructured the project with regards to
sub components, which caused some detected bugs to be lost
during tracking. Even gathering renamed files from the version
control system will not completely eliminate this issue, since
code may be exchanged between files as well. Also system C
suffered from this in a minor extent.

Moreover, The Banshee Git repository contains lots of
branching on the main development line, but the analysis loops
through all commits in a sequential order provided by the jGit
library. Thus it might switch between branches for consecutive
runs and causing some bugs to disappear, due to tracking
issues. An adapted evolution analysis is needed for this case,
that traverses merged branches separately. This requires some
major rework for the entire revision iteration and bug detection
process, which is left for future work.

E. Detection Precision — RQ 3

Design and Procedure: This question investigates bug-
detection precision. The inconsistently fixed clones, which
were gathered with RQ 2, were manually inspected by the
researcher and separated in false positives and bug candidates.
For answering the question, we calculated the precision of the
bug detector according to Equation 1.

precision =
# bug candidates

# inconsistently fixed clones
(1)

The decision if an inconsistently fixed clone qualifies as
bug candidate was made upon comparing the source code of

TABLE IV: Results of the bug detection for each system

System Total Inconsistently Bug Precision Time
Clones Fixed Clones Candidates (min)

A 200 28 11 0.39 2.7
B 765 50 9 0.18 23
C 778 61 23 0.38 116
D 170 15 6 0.40 5

Banshee 165 21 5 0.25 119
Spring 518 23 4 0.17 127

clones using the ConQAT clone workbench for Eclipse and
manual inspection of the commit message and modifications.
This is shown in Fig. 6. We used a Laptop with a 2.2 GHz
Quadcore CPU and 4 GB of RAM running a 32 Bit Ubuntu
Linux with Oracle JDK 7 for the detection.

Our goal is to cost-effectively find missing bug-fixes. We
are thus willing to sacrifice recall for higher precision and
leave analysis of recall (if feasible at all) for future work.

Results: Table IV summarizes the total amount of code
clones, which were detected during history evolution and
present in the last revision, as well as the inconsistently fixed
clones. Additionally, it lists the amount of bug candidates
resulting from manual inspection, the precision calculated with
Equation 1 and the time the detection took in minutes.

Besides Spring, the detection algorithm identifies roughly
10% of all clones as inconsistently fixed. The manual in-
spection of the researcher revealed that 17% to 40% of these
reported clones are classified as bug candidates. The execution
times varies with regard to the project size and the amount of
revisions chosen for evolution analysis. Still, all analyses were
performed in less than three hours.

Discussion: The lowest result with respect to precision
shows system B and Spring. The latter has a very low rate
of bug-fixes in general and just 23 bugs were reported out
of over 5000 revisions with more than 400.000 lines of code
per revision. According to the documentation it has very strict
guidelines5 for third party contributions with respect to coding
style, unit-testing and patch submission and similar rules seem
to apply for internal work as well.

For system B, lots of false positives were introduced by
big commits that “fixed“ coding style related issues. We did
not count these as bugs. The same problem also decreases the
results for system C. RQ 4 tries to alleviate this problem by
limiting the amount of modified files per commit in order to
be recognized as bug-fix.

F. Changeset Size Impact — RQ 4

Design and Procedure: This question analyzes how
the size of the commit changeset influences the bug-finding
precision. Analogous to RQ 3, we answered this question
by inspecting the returned inconsistently fixed clones and
determining the precision according to Equation 1. Therefore,
the detection toolkit was executed with the same parame-
ters as described for RQ 3. Additionally, a minimum and

5https://github.com/SpringSource/spring-framework/wiki/
Contributor-guidelines
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Fig. 6: Screenshot of the ConQAT clone workbench including a clone compare view (Ê) and metadata about the commit this
inconsistency was introduced by (Ë)

maximum threshold to the changeset size of a commit is
applied, which is evaluated at the time of revision compres-
sion. The changeset size is limited with window of size 5
sliding from 1 to 21. This results in the following intervals:
[1, 5], [6, 10], [11, 15], [16, 20], [21,∞[

Results: The results are summarized in Table V and
grouped by the limit interval. One can clearly see that the pre-
cision in intervals [1, 5] and [6, 10] is almost two times higher
than the average precision from Table IV and ranges from 30%
to 60%. In contrast, the precision drops off significantly for
commits with changeset sizes larger than 10. As discussed,
the style related fixes in system B which lowered the results
for RQ 3 fall into this category. Nevertheless, the systems
performing worse before did not catch up to the other systems
in terms of precision, but an increase is still noticeable.

It is worth a remark that the sum of the reported bugs or
bug candidates of each system may not be equal to the results
from Table IV, since a clone can be altered by fixes of different
changeset sizes. Thus, some clones are listed multiple times.

Discussion: Applying a maximum limit to the changeset
size of at most 10 altered files, the precision of the approach
could almost be doubled and bugs are detected with an ac-
ceptable precision of 30% to 60%. We consider this sufficient
for use in real-world assessments.

G. Gapped Clone Detection Comparison — RQ 5

Design and Procedure: This research question compares
the evolution based bug-finding approach to the less time-
consuming gapped clone detection. To answer it, we run a

TABLE V: Results with limits applied to the changeset size

Limit System Inconsistently Bug Precision
Fixed Clones Candidates

[1, 5]

A 11 8 0.73
B 20 5 0.25
C 35 13 0.37
D 11 5 0.45

Banshee 12 4 0.33
Spring 17 5 0.29

[6, 10]

A 4 2 0.50
B 5 2 0.40
C 11 9 0.82
D 3 1 0.33

Banshee 4 1 0.25
Spring 3 1 0.33

[11, 15]

A 0 — —
B 1 0 0.00
C 5 1 0.20
D 0 — —

Banshee 2 0 0.00
Spring 0 — —

[15, 20]

A 3 1 0.33
B 0 — —
C 0 — —
D 1 0 0.00

Banshee 0 — —
Spring 0 — —

[21,∞[

A 7 0 0.00
B 26 3 0.12
C 5 2 0.40
D 0 — —

Banshee 3 0 0.00
Spring 0 — —



TABLE VI: Results for finding bugs with gapped clone
detection

System Reported Inspected (%) Bug Precision
Clones Candidtates

A 42 42 (100%) 13 0.31
B 219 109 (50%) 26 0.23
C 192 96 (50%) 25 0.26
D 60 60 (100%) 15 0.25

Banshee 34 34 (100%) 8 0.24
Spring 166 83 (50%) 17 0.20

gapped clone detection with ConQAT on the study objects and
filter the returned clones to contain at least one modification.
The parameters from RQ 3 are used again with the following
parameters being chosen especially for the gapped clone
detection according to Juergens [24]: The gap ratio must be
at most 20% and the edit distance has a maximum of 5 edits.

Finally, we determined the precision of finding bugs in this
set of clones with Equation 1. The results are then compared to
those of RQ 3 and RQ 4. Due to the large amount of reported
inconsistently fixed clones for some systems, we just inspected
a percentage of the reported clones for bug candidates, which
are randomly chosen from the entire result set.

Results: Table VI presents the results for the gapped
clone detection executed for each of the study objects. Com-
pared to the results from the evolution based approach, one can
see that the overall precision is more homogeneously ranging
from 20% to 30%. Hence, there is no significant difference
to the evolution analysis without taking changeset sizes into
account. Nevertheless, the detection reported 2 to 6 times more
clones we have to manually inspect. As positive side effect,
also more bug candidates were detected. As for the enhanced
approach with limits applied to the changeset size, the gapped
detection performs clearly worse in terms of precision.

Discussion: The results of the evolution based approach
are gained with a time consuming analysis that took over
two hours for some systems. Hence it is valid to ask if a
simple gapped clone detection, which only takes two minutes
to execute, does the job of finding inconsistent clones with
similar precision.

Just by taking the results from the basic evolution based
approach one may concede this point. Nevertheless, the gapped
detection was performed with additional parameters that al-
ready filtered lots of false positives. Not applying those filters
increases the size of inconsistently changed clones for system
A from 42 to 309. For the evolution-based approach, we
did not apply these filters and may gain further precision by
applying them. Furthermore, when it comes to comparison
with limited changeset sizes, the precision is clearly higher
than for gapped clone detection. Thus, we consider the long
execution times as justified.

Besides precision, there are other valid arguments for favor-
ing the history based approach: First, we can gain important
information about the fix from the corresponding commit
messages. Furthermore, in an continuous scenario, we just
have to update the clone index for altered files and can thus

return new results in almost real-time. Related to the future
extensions, the revision information can also be used to get
knowledge about the person who introduced the inconsistency.

It is noteworthy that the gapped detection unveiled some
bugs, we did not encounter before, but vice-versa the evolution
based approach reported some bug candidates not found by the
gapped approach as well. Hence, also a combination of both
methods could be beneficial.

H. Threats to Validity

This section gives an overview of internal and external
threats to validity of the case study and how we tried to
mitigate them.

Internal Validity: The main error source for the case
study may be determining if an inconsistently fixed clone is
a bug candidate, since the researcher has no deep knowledge
of how the analyzed systems are built and components work
together. We tried to mitigate the threat by inspecting the
results twice and concluded with the same results. For future
work we also want to verify the results by developers.

For answering the research questions, we did not take recall
into account. Yet, this is no problem with regards to the aim
of the proposed toolkit. The key requirement is to find bugs
with high precision combined with context information. This
set of tool-reported bugs should contain as less false positives
as possible to minimize manual inspection efforts. As long as
the time spent searching for bugs is justified by the bugs we
find, we do not mind how many we miss: the time invested
into finding bugs paid off.

Another group of threats concerns the program evolution.
Depending on the version control system used, fixes that
happen on feature branches are not visible on the main branch
after being merged. All systems that were imported from Sub-
version and Microsoft Team Foundation server suffer from this
problem, whereas the Git based systems Banshee and Spring
do not. Similarly, we will not detect clones that were newly
created and a fix was applied to the code before committing
to the version control system again. These problems are more
or less technical restrictions that cannot be prevented and thus
the set of reported bugs may be smaller than the actual set of
inconsistent fixes that were applied to code clones.

A further problem may be clone false positives, which
are code regions that are syntactically similar to each other
but contain no semantic similarity. Examples are e.g. lists of
getters and setters with different identifiers. We included those
false positives in the results of the case study and counted them
as not representing a bug candidate. Doing so, we penalize the
precision of the bug-finding tool.

Finally, the list of keywords for identifying bugs may not be
exhaustive. Again, our aim is not to find all possible bugs, but a
subset with a high precision. Moreover, adding new keywords
for other systems is easy.

External Validity: The systems chosen for the case study
as study objects may not represent an average software system.
Yet, for closed-source systems, we are limited to existing
industry contacts. However, all systems are developed by



different teams and for different purposes as described in
Section IV-B. Moreover, RQ 1 and RQ 3 showed that they
also have different characteristics in terms of bug evolution
and amount of code clones. We are thus convinced that we
have no strong bias in the results.

V. CONCLUSION AND FUTURE WORK

This paper contributed to the analysis of the evolution
history of code clones with the goal to find incomplete bug-
fixes. A novel approach has been proposed that inspects
commit messages for terms indicating a bug-fix in conjunction
with unveiling gapped clones from evolution analysis.

We have performed a study on six real-world open source
and industrial software systems for evaluating this approach.
The results clearly show that inconsistent fixes—although
varying in number—are a problem common to many software
systems. The proposed toolkit helps revealing this missing
bug-fixes in code clones with an acceptable precision of 30%
to 60%. Compared to gapped clone detection, which has a
precision of 20% to 30%, the evolution analysis produces more
precise results. Moreover, bugs are not only reported, but with
commit messages and inconsistent clone pairs valuable context
information is provided.

The approach is suitable for both first-time analyses of a
system which may even be performed by persons not familiar
with the system as well as continuous analyses. The latter is
supported by the index-based clone detection backend, which
supports fast incremental updates.

For future work, the approach can be extended, to gain
further precision or performance improvements. We plan to do
a combined approach of gapped clone detection and evolution
analysis with some kind of weighting of the found incomplete
fixes. Also the content of altered source code can be taken into
account. Added null-checks, catched exceptions or additional
if-clauses are highly suspect to represent missing bug-fixes
if applied inconsistently. However, this requires additional
research and goes beyond the scope of this paper.

Further performance improvements can be gained by keep-
ing the normalized source code in memory between consec-
utive iterations and just update modified files. An analogous
method is already used for updating the clone index and needs
to be applied here as well, since disk operations are one
essential bottle neck for large-scale system analyses.
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