Reengineering Required: Quality Deficits of Industrial Software*

Nils Gode

CQSE GmbH
Lichtenbergstr. 8, 85748 Garching bei Miinchen, Germany
goede@Qcqse.eu

Abstract

A lack of comprehension, obstacles to changing the
source code, and a high number of defects increase
the costs of developing and maintaining software. Un-
awareness or ignorance of existing quality deficits may
boost development costs and result in situations where
an expensive rewrite or complete abandonment are
the only viable options. This paper summarizes recur-
ring quality problems that we often find in industrial
software during our quality audits. These problems
highlight areas where reengineering is required and
continuous quality control is advisable.

1 Introduction

During our activity as quality auditors, we get to know
a lot of different software systems. Our goal is to iden-
tify quality deficits within these systems that already
hinder the current maintenance or may become ob-
stacles for future development. And although each
system is unique with respect to requirements and its
environment, we identified a number of recurring qual-
ity deficits that we find in almost every system. It is
worth being aware of these problems, because if they
are not solved, they naturally get worse over time and
may have severe consequences.

In the remainder of this paper we share our experi-
ences from analyzing a variety of industrial projects.
We describe the major quality deficits we commonly
observe during our audits. The descriptions can be
used as a checklist and serve as starting points for
reengineering activity. The information can also be
used to identify areas for future reengineering re-
search.

2 Quality Deficits

The list of quality deficits described in this section
is not exhaustive. That is, systems may suffer from
other problems apart from those described here. In
addition, the order of the descriptions does not have
any meaning.

*This work was partially funded by the German Federal
Ministry of Education and Research (BMBF), grant “EvoCon,
01IS12034A”. The responsibility for this article lies with the
authors.

Redundancy. Duplicated code occupies the first
place in Fowler’s “stink parade of bad smells” [1]. And
in fact, we find a notable number of duplicated code
fragments—code clones—in every system. Copy-and-
paste programming is not a rare phenomenon but the
usual practice. Consequently, most systems contain
between 20% to 40% of redundant code. Individual
systems contain more than 50% redundant code.

During our quality audits, we observe two of the
major negative consequences of code clones. First,
we find a lot of clones that evolved consistently dur-
ing the system’s history. These duplicated code frag-
ments require additional effort, because changes need
to be propagated to all copies. Second, unwanted in-
consistencies are often bugs that have been fixed in
one place but not in the copied code fragments [3].

Code Anomalies. Nowadays, there are static
analysis tools for many programming languages that
automatically locate suspicious code fragments and
identify bugs. In the context of Java, PMD and Find-
Bugs are among the most prominent. But although
these tools are used within most development teams,
the results are often ignored.

Depending on the configuration, these tools deliver
code anomalies of different severity. While some are
only style issues, others influence the resource usage,
and yet others reflect incorrect behavior. While a lot
of these findings may not require immediate attention,
those with high severity should be cared for as soon
as possible. It is not uncommon that we find derefer-
ences of invalid pointers or infinite loops in productive
software using these static analysis tools.

Error Handling. A consistent handling or errors
and exceptions is important for a system to recover
from unexpected situations and provide appropriate
information to identify the cause of the error. Unfor-
tunately, error and exception handling is inconsistent
and incomplete in most systems. In C++ systems, for
example, we find a lot of inconsistency in whether an
error is dealt with by throwing an exception or by the
return values of functions. In addition, it is often un-
clear in which situations, which information is logged
to which destination.

In Java systems, there is often no clear decision
of whether checked or unchecked exceptions are used.



Apart from that, exceptions are often dealt with by
catching the top-level exception classes Ezxception or
even Throwable. This has high risk of also uninten-
tionally catching and hiding other errors, e.g., null-
pointer dereferences or stack overflows due to an infi-
nite recursion. Paired with a large number of code
anomalies, inappropriate error handling is a severe
problem that may lead to incomprehensible system
behavior and make errors untraceable.

Architecture. While every software system cer-
tainly has an implicit implemented architecture, there
is often no common understanding and no explicit
specification of that architecture. This causes a num-
ber of problems. For example, there is no guideline of
how things should be implemented. An architecture
specification should provide directions for how certain
things are to be implemented. Apart from that, the
architecture cannot be discussed and evaluated with-
out a specification. The lack of a specification also
prevents an architecture conformance analysis where
the specified architecture is compared to the imple-
mented architecture.

In contrast to a lack of specification, there are also
projects where the specification is too detailed. The
problem of having too much detail is that the speci-
fication requires frequent changes and is likely to get
outdated very soon. We also observed that only parts
of a system are specified when the level of detail is very
high. Large parts of the system remain unspecified.

Documentation. Another problem is a lack of
documentation—external as well as internal. In many
cases, there is no description of the system and its
structure. This includes, for example, an appropriate
specification of the architecture. The lack of external
documentation increases the time needed to under-
stand the system or locate relevant parts for a given
maintenance task. This is especially true for new de-
velopers that join the team.

Internal documentation refers to the comments
that are contained within the source code to describe
the system. In many cases, the source code does not
contain any comments at all. Thus, it is often unclear
what the purose of a particular class is or what a given
method does. In other cases, the amount of comments
is misinterpreted as the quality of the documentation.
This leads to comments that contain mostly redun-
dant information.

3 Continuous Reengineering

None of the problems described in the previous section
occurs from one day to the other. The majority of
quality deficits evolves in small steps and slowly gets
worse over time. Although this fact is widely known,
hardly any countermeasures are taken in practice.
One option to prevent this decay is following a sim-
ple policy, which ensures that none of the problems
gets worse when the system is changed. If followed
strictly, the quality will inevitably stop getting worse.

Implementing such a policy requires to differentiate
between old legacy problems and new problems that
were caused by the latest changes. One approach to
implemented such a policy is delta analysis, described
in our earlier work [2].

Based on such a policy, the next step is to clean up
code fragments that are changed as part of a change
request. These small reengineering activities help to
continuously increase the quality of the software. The
limited scope allows to clean up with reasonable effort.
The extra reengineering effort is small since these code
fragments need to be understood and tested anyway.

4 Larger Reengineering Projects

Not all quality improvements can be broken down
into small steps that can be done as part of the daily
maintenance work. In such cases, larger reengineering
projects have to be carried out. It it not surprising
that development teams that invest more time in con-
tinuous reengineering are less often faced with larger
reengineering projects.

In any case, it is important to have an appropriate
level of test coverage to ensure that no new problems
are introduced by the reengineering activity. We find
that development teams with a sophisticated regres-
sion test infrastructure are much more likely to carry
out reengineering projects compared to teams without
appropriate test coverage.

5 Conclusion

Despite the diversity of software systems, there are
common quality deficits, which we find in most sys-
tems. The major problems are a high level of redun-
dancy, many code anomalies, inconsistent error han-
dling, no explicit architecture specification, and inap-
propriate documentation. All of these problems can
also be seen as starting points for reengineering activ-
ity to improve the quality.

Needless to say that our results cannot automat-
ically be generalized, because we have seen only a
limited number of systems. In addition, there is
an infinite number of peculiarities and each system
may suffer from problems that are much worse than
those described in this paper. However, we still think
the common problems are worth knowing about as
they point out where future reengineering research is
needed. They can also serve as a checklist to test one’s
own system for likely quality deficits.

References

[1] M. Fowler. Refactoring: Improving the Design of Eux-
isting Code. Addison-Wesley, Boston, MA, USA, 1999.

[2] N. Gode and F. Deissenboeck. Delta analysis. Soft-
waretechnik-Trends, 32(2), 2012.

[3] E. Juergens, F. Deissenboeck, B. Hummel, and
S. Wagner. Do code clones matter? In Proceedings
of the 81st International Conference on Software Engi-
neering, pages 485-495. IEEE Computer Society, 2009.



