Quality Analysis of Source Code Comments

Daniela Steidl

Benjamin Hummel

Elmar Juergens

CQSE GmbH, Garching b. Miinchen, Germany
{steidl,hummel,juergens} @cgse.cu

Abstract—A significant amount of source code in software
systems consists of comments, i. e., parts of the code which are
ignored by the compiler. Comments in code represent a main
source for system documentation and are hence key for source
code understanding with respect to development and mainte-
nance. Although many software developers consider comments
to be crucial for program understanding, existing approaches
for software quality analysis ignore system commenting or make
only quantitative claims. Hence, current quality analyzes do not
take a significant part of the software into account. In this work,
we present a first detailed approach for quality analysis and
assessment of code comments. The approach provides a model for
comment quality which is based on different comment categories.
To categorize comments, we use machine learning on Java and
C/C++ programs. The model comprises different quality aspects:
by providing metrics tailored to suit specific categories, we show
how quality aspects of the model can be assessed. The validity
of the metrics is evaluated with a survey among 16 experienced
software developers, a case study demonstrates the relevance of
the metrics in practice.

I. INTRODUCTION

A significant amount of source code in software systems
consists of comments, which document the implementation
and help developers to understand the code, e. g., for later
modification or reuse: Several researchers have conducted
experiments showing that commented code is easier to un-
derstand than code without comments [1], [2]. Comments are
the second most-used documentary artifact for code under-
standing, behind only the code itself [3]. In addition, source
code documentation is also vital in maintenance and forms an
important part of the general documentation of a system. In
contrast to external documentation, comments in source code
are a convenient way for developers to keep documentation
and code consistently up to date. Developers widely agree
that poor general documentation leads to misunderstandings
[4], and studies have shown that poor documentation signif-
icantly lowers the maintainability of software [5]. Although
developers commonly agree on the importance of software
documentation [3], commenting code is often neglected due to
release deadlines and other time pressure during development.

Previous approaches to analyzing software quality ignore
comments, or make only quantitative claims: they evaluate the
comment ratio of a system to measure documentation quality
[6], [7]. However, this metric is not sufficient: Several com-
ments (copyrights or commented out code) should be excluded

This work was partially funded by the German Federal Ministry of Education and
Research (BMBF), grant EvoCon, 01IS12034A. The responsibility for this article lies
with the authors.

as they do not enhance system understanding and quantitative
measures cannot detect outdated/ useless comments.

Furthermore, a complete model of comment quality does
not exist. Coding conventions, e. g., marginally touch on the
topic of commenting code but mostly lack depth and precision
[8]. So far, (semi-) automatic methods for comment quality
assessment have not been developed as comment analysis is a
difficult task: Comments comprise natural language and have
no mandatory format aside from syntactic delimiters. Hence,
algorithmic solutions will be heuristic in nature.

Problem Statement. Current quality analysis approaches ig-
nore system commenting or are restricted to the comment ratio
metric only. Hence, a major part of source code documentation
is ignored during software quality assessment.

Contribution. Based on comment classification, we provide
a semi-automatic approach for quantitative and qualitative
evaluation of comment quality.

We present a semi-automatic approach for comment quality
analysis and assessment. First, we perform comment cat-
egorization both for Java and C/C++ programs based on
machine learning to differentiate between different comment
types. Comment categorization enables a detailed quantitative
analysis of a system’s comment ratio and a qualitative analysis
tailored to suit each single category. Comment categorization
is the underlying basis of our comprehensive quality model.
The model comprises quality attributes for each comment cate-
gory based on four criteria: consistency throughout the project,
completeness of system documentation, coherence with source
code, and usefulness to the reader. To assess quality attributes,
we provide metrics detecting quality defects in comments
of specific categories. We evaluate the metrics’ validity and
relevance separately: Validity is evaluated with a survey among
experienced software developers. The survey shows that the
metrics can additionally give refactoring recommendations. A
case study of five open source projects evaluates the relevance
of our approach showing that comment classification provides
better insights of the system documentation quality than the
simple comment ratio metric and that our metrics reveal
quality defects in practice.

II. RELATED WORK

We group the related work into categories of general
comment analysis, information retrieval techniques, comment
evolution studies, and code recognition approaches.

A. Comment Analysis

Khamis [9] et al. present the tool JavadocMiner to ana-
lyze the quality of Javadoc comments. With a set of simple
heuristics, they aim to evaluate the quality of language used
in comments and the consistency between source code and
comments. They target the same research questions as we do:
how to measure the comment quality. However, the authors did
not evaluate whether metrics such as readability indices, noun
and verb count heuristics, or abbreviation count heuristics
can measure comment quality with meaningful results. Also
the approach neither differentiates between different comment
types nor detects any inconsistencies between code and com-
ments beyond structural requirements of Javadoc.

Storey et al. [10] and Ying et al. [11] focus on the analysis
of task comments. However, they do not provide automatic or
semi-automatic assessments of task comment quality. In our
work, we do not focus on task comments in particular but
provide a general assessment of comment quality which also
includes other comment categories.

Tan et al. [12] explore the feasibility and benefits of com-
ment analysis to detect bugs in code. With their technique,
they detected 12 bugs in the Linux kernel, two of them being
confirmed by developers. They convincingly reveal the need
for an automated comment analysis. However, the analysis is
tailored to the specific topic of synchronization. In contrast,
our approach analyzes comments independent of the context.

B. Information Retrieval Techniques

Lawrie et al. [13] use information retrieval techniques based
on cosine similarity for vector space models to assess function
quality under the guiding assumption that “if the code is
high quality, then the comments give a good description
of the code”. Similar as in this work, we also investigate
the similarity relation between source code and comments.
However, we compare the relation between comment and
method name and hence focus on a group of comments that has
been ignored by this work. [14] and [15] also use information
retrieval techniques to recover traceability links between code
and documentation. However, comments do not play a major
role in these approaches which rather focus on the general
relation model between code and free text documentation.

C. Evolution of Code and Comments

Jiang and Hassan [16] study the evolution of comments over
time to investigate the common claim that developers change
code without updating its associated comments which is likely
to cause bugs. However, the study reveals that developers
update function comments regularly. Similarly, Fluri et al. [17]
expect that code and comments are not necessarily updated
at the same time and investigate how code and comments
evolve. The study reveals that among all comment changes
triggered by source code changes, about 97% are done in the
same revision as the source code change. The authors also
evaluate the comment ratio over time to give a trend analysis
whether developers increase or decrease their effort on code
commenting. However, as in [6], [7], commented out code or

copyrights should be excluded in this metric because it does
not provide any information gain for system understanding.

D. Source Code Recognition

Comment categorization (Section IV) includes source code
recognition. To recognize code during email data cleaning,
Tang et al. [18] use support-vector machines (SVMs), with
a precision of 92.97%, and a recall of 72.17%. We apply
similar machine learning techniques but achieve a higher recall
while maintaining precision. In contrast, [19] provides faster
lightweight techniques (regular expressions, pattern matching)
to identify code within emails, leading to 94% precision and
85% recall. Precision and recall of this approach and our
approach are approximately the same. However, we detect
code snippets among comments and not among email data.

III. APPROACH

Our approach consists of four steps: We perform comment
classification with machine learning to differentiate between
different comment categories (IV). Based on the categories, we
develop a comment quality model (Section V). For member
and inline comments, we propose one metric each to assess
parts of the model in practice (Section VI). We evaluate the
metrics’ validity with a survey (Section VII) and show the
approach’s relevance with a case study (Section VIII).

IV. COMMENT CLASSIFICATION

As different comment categories have the same underlying
syntax, no parser or compiler can perform comment classifi-
cation based on grammar rules. Hence, the problem requires a
heuristic approach. We define seven different comment cate-
gories and employ machine learning techniques for automatic
comment classification as there is no simple reliable classifica-
tion criteria due to a large amount of features influencing the
classification decision. For implementation, we use the existing
machine learning library WEKA.!

A. Comment Categories

For the Java and C/C++ programming language, we differ-
entiate between seven different types of comments:

o Copyright comments include information about the
copyright or the license of the source code file. They
are usually found at the beginning of each file.

o Header comments give an overview about the function-
ality of the class and provide information about, e. g.,
the class author, the revision number, or the peer review
status. In Java, headers are found after the imports but
before the class declaration.

e Member comments describe the functionality of a
method/field, being located either before or in the same
line as the member definition. They provide information
for the developer and for a project’s APIL.

o Inline comments describe implementation decisions
within a method body.

1 http://www.cs.waikato.ac.nz/ml/weka/

o Section comments address several methods/fields to-
gether belonging to the same functional aspect. A fic-
titious example looks like

// —-——-— Getter and Setter Methods ---

and is followed by numerous getter and setter methods. .

e Code comments contain commented out code which
is source code ignored by the compiler. Often code is
temporarily commented out for debugging purposes or
for potential later reuse.

o Task comments are a developer note containing a re-
maining todo, a note a about a bug that needs to be fixed,
or a remark about an implementation hack.

B. Training Data

In general, a supervised machine learning algorithm learns
a classification of an object based on a training data set.
Training data is labeled with the classification to be learned
and represented with features extracting relevant information.
The success of machine learning depends on an appropriate
feature representation which is not known a priori.

We created two separate training sets, one each for programs
written in Java and C++. For Java, we randomly sampled files
from twelve open source projects and manually tagged 830
comments with labels corresponding to the categories in IV-A.
Table I shows the number of comments tagged per project and
a project domain description and also presents the number of
comments tagged in each category.” Analogous, we tagged
about 500 comments in C++ code. More information about
the C++ data is provided in [20].

C. Feature Extraction

Table II shows the features used for machine learning.
As the optimal set of features is not known a priori, we
experimented with a variety of features. However, the final
decision tree revealed that only the subset of our initial set
as presented in Table II is relevant for classification. The
preliminary feature selection process can be found in [20].

As it is the most interesting example, we only explain the
code snippet feature calculation which represents whether the
comment contains commented out code. The code snippet
feature is true if the ratio of lines of code to all lines of
the comment is higher than a threshold. After preliminary
experiments, we set the threshold to 0.1. A line is considered
to contain code if one of the three characteristics is fulfilled:

o it matches the regular expression® for the Java method
call pattern [a—zA-2]1+\\.[a-zA-2Z] +\\ (.*\\)

it matches the regular expression of an if or while
statement: (1£\\s*\\ (.*) | (while\\sx\\(.x*)

« it ends with either ; or { or contains ‘=, ==, ;, or void

20ne could argue that the Java classifier is trained predominantly to classify
comments in jMol, as 389 comments were tagged in this project. However, we also
trained the classifier without the jMol data. Considering the decrease in the size of the
data set, the classifier still performed comparably well. We use comments from jMol
to ensure enough data in categories that rarely occur in other projects such as tasks,
commented out code, and section comments.

3We use the regular expression syntax as used in the java.util.regex package:
http://docs.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html

TABLE I
JAVA TRAINING DATA SET GROUPED BY CATEGORIES AND PROJECTS
category | copyright | header | inline | member | section | code | task
Tags 61 48 297 271 65 73 15
Project Version | Content # Comments
tagged
CSLessons | N.A. simple code examples 39
EMF 2.7 modeling tool 24
Jung 2.0.1 framework for graph algorithms 32
ConQAT 2011.9 | quality assessment toolkit for SE 89
jBoss 6.0.0. application server 16
voTUM 0.7.5 visualization for compiler 109
optimizations 109
mylyn 3.6.0 monitoring tool 38
pdfsam 22.1 split and merge tool for pdfs 39
jMol 12.2 chemical visualization for 3D 389
structures
jEdit 4.5 text editor 10
Eclipse 3.7 Compiler (eclipse.pde.core) 3
jabref 272 management tool for 42
bibliographies
TABLE II
MACHINE LEARNING FEATURES FOR COMMENT CATEGORIZATION
Name Type Description
copyright bool true if comment contains “copyright” or
“license”
braces int indicates how many braces are open at the

position of the comment
measures the distance in lexical tokens
to the next method/field declaration

decl. distance | int

frame bool true if comment contains a separator string
multiple times (e. g., “***7, “- - 27 “//[”)

length int counts the number of words, separated by
white spaces, in the comment

task tag bool true if comment is tagged with “task”,
“fixme”, or “hack”

followed bool indicates whether the comment is directly
followed by another comment

special double | indicates the percentage of special characters

characters in a comment (e. g., “;”, “=", “(”, “)”)

code snippet bool true if comment contains code snippets

The code snippet feature was designed for Java. However,
we also use it for classifying C++ comments with reasonable
success (see Section IV-D). Slight feature adaptations such as
the C++ method call pattern probably improve C++ results.

D. Algorithms and Evaluation

Based on preliminary experiments [20], we chose the J48
decision tree algorithm [21] as it provided the most promising
results. For evaluation, we use the standard five-fold cross
validation method [22], calculating precision and recall. Table
IIT shows that the algorithm performs comment classification
successfully. In total, the decision tree achieves a weighted
average precision and recall of 96%. For most categories,
precision and recall are above 93%. For commented out code,
precision drops below 90% because code is often misclassified
as inline, member, or section comments and vice versa. Section

TABLE III
RESULTS FOR J48 ON JAVA (P: PRECISION, R: RECALL)

Class P R Class P R
code 0.89 | 0.95 member | 0.96 | 0.97
copyright | 098 | 1 section 092 | 0.83
header 0.98 | 0.96 task 0.93 | 0.93
inline 0.98 | 0.98

comments are also occasionally difficult to distinguish from
member comments without deeper semantic knowledge.

With the same features, comment classification also works
successfully in the C/C++ case: The J48 tree results in 95%
precision and recall (weighted average). Although comment
classification is the foundation for this work, it is not in the
primary focus of this paper. Hence, we refer to more details
about the C++ use case in [20].

V. QUALITY MODEL

Analyzing the quality of code comments requires a precise
definition of comment quality. Our quality model resembles
the quality models in maintenance [23]. Due to limited space,
we only present a small part of the model providing context
for the metrics proposed in Section VI.

The model is based on entities, activities, and criteria:
Entities describe the concept whose quality is under evaluation
i. e., the comment categories. Activities represent the develop-
ers’ intentions to comment code, e. g., to better understand
implementation details or to know bugs/hacks. We group
activities in a hierarchical tree structure with an increasing
level of detail from root to leaves as seen in Figure 1.

Criteria represent quality aspects for different entities and
show the impact of an entity on a specific activity. This sepa-
ration of concern reveals the general impact how commenting
can support developers’ activities. Our model comprises four
criteria - coherence, usefulness, completeness, and consistency:
We state the criteria more precisely by defining specific
attributes for different entities (see Table IV). Each attribute
creates either a positive impact (+) indicating that the entity
(comment type) is meant to support the corresponding activity
or a negative impacts (-) indicating a comment type hindering
an activity. We observed and defined these impacts based on
manual analysis and interpretation of the training data. In
the following, we show how each attribute influences specific
activities, grouped by the main four criteria.

Coherence covers aspects of how comment and code relate
to each other, dealing with local aspects of a single comment.
Member comments should be related to the method name
as this is a strong indicator for an up-to-date comment and
a meaningful method identifier. This supports calling public
methods and understanding the system design. Further, devel-
opers expect member and inline comments to explain the non-
obvious by providing information beyond the code to enhance
understanding implementation and design details. Member
comments in particular should provide more information than
just repeating the method name.

I Source Code Understanding |
Developing Code Using Code
_T —
%) » =
4] 2] = = {=2]
x = o] o 7]
S g @ £ 3| |y 8
< o o a Q s} o
gl 121 sl el [S]el]|5]|E
ol |zl |23 @ el l2 o
a £ i} O = 2 o =
%) = o o 2 n = g
2 c o c = o =
%) = c = [=% & > (=2
& =1 5 =l 19 < a c
) c @ o k<] =
ol | 8 sl |& ol |52 ?
= 12} % o = < = o
HEEIRE HEEIREIRE
< < 2 2 2 <
X =} 5 < 5
Copyrights +
Header + e
@ + +
c
[
g e e + +
£
o
© Ar et
e

Fig. 1. Positive impacts (+) and negative impacts (-) of entities on activities

Usefulness describes properties that make a single comment
contributing to system understanding. Comments should clar-
ify the intent of code. In general, readers of the code should
perceive the comment as helpful. If source code understanding
was not harder with the comment being deleted, the comment
would not be helpful. Clarifying, helpful comments make all
activities about understanding and using code easier.

Completeness covers global aspects of system commenting
by reinforcing comments at certain positions: placing a copy-
right in each file provides full information about copyrights,
placing a header for each class documents the system design.
Documenting every method and field with a member comment
helps an API user to select public methods and fields.

Consistency attributes describe features that ought to be
consistent through the system: Comments should be written
in the same language (e. g., English) for better code reading.
Further, each file should be under the same copyright with a
consistent format, promoting knowing copyrights and authors.

The impacts as described among the four quality criteria are
visualized as a matrix in Figure 1. (In general, we consider
code comments to have negative impacts as they do not
provide any information.) The impact matrix reveals that only
a subset of entities promote system understanding: header,
member, inline, and section comments can possibly enhance
activities such as calling methods/fields, understanding the
system design, and implementation aspects (see Figure 1).
Nevertheless, other comments (copyrights, tasks) are also an
indispensable part of the documentation.

The quality model requires automatic assessment to be
reinforced in practice. In this paper, we focus on the coherence
category. Approaches for assessing consistency and usefulness
can be found in [20].

TABLE IV
QUALITY CRITERIA

Coherence Completeness
Member | Related to method name Copyright | for every file
. . Header for every file
All Explaining non-obvious Momber Tor every method
Consistency Usefulness
All consistent language All | clarifying
. consistent holder
Copyright and format All | helpful

VI. ASSESSMENT METRICS

In this section, we propose two different metrics for member
and inline comments to assess coherence attributes.

In general, we preprocess comments before applying any
metric: normalization removes commented out code as iden-
tified by the machine learning feature (Section IV) as well as
Javadoc tags, comment delimiters (*“/**7, “//” %7 “**/” etc.),
line breaks, and special characters.

A. Coherence between Code and Comments

To measure the coherence between member comment and
method name, we define a metric called coherence coefficient
(c_coeff), which evaluates the attributes explaining the non-
obvious and related to method name for member comments.
Figure 2 shows an example where the comment explains the
obvious and is hence unnecessary. The comments in Figure
3 and 4 are not related to the method name due to an non-
informative comment (Fig. 3) or an non-informative identifier
(Fig. 4). In the latter, the method should be better renamed to,
e.g., calcEigenvalueDecomposition. Our proposed
metric will detect all three cases.

Metric. We extract words contained in the comment and
compare it to the words contained in the method name.
Words in the comment are assumed to be separated by white
spaces, words in the method name are extracted using camel-
casing. The comparison counts how many words from one set
correspond to a similar word in the other set. Two words are
similar iff their Levenshtein distance is smaller than 2. The
c_coeff metric denotes the number of corresponding words
divided by the total number of comment words. The comment
in Figure 2, e. g., has c_coeff= 0.75.

Based on preliminary experiments with manual evaluation,
we set two thresholds and inspect member comments with
c_coeff = 0 and c_coeff > 0.5.

Hypothesis 1. Comments with c_coeff = 0 indicate that the co-
herence between method name and comment is not sufficient:
They should have additional information to emphasize the
relation to the method identifier or indicate a poor identifier.

Hypothesis 2. Comments with c_coeff > 0.5 are trivial as
they do not contain additional information.

We assume the middle group (0 < c_coeff < 0.5) to be a
gray area with most comments containing additional informa-

/% removes all defined markers =/
public void removeAllMarkers() { ... }

Fig. 2. Example of a trivial member comment

/++ Thanks to benoit.heinrich on forum.java.sun.com
* @param str
*/

private String HTMLEncode(String str) {...}

Fig. 3. Example of a member comment that should provide more information

/*% Check for symmetry, then construct the
* eigenvalue decomposition
* @param A square matrix
*/
public void calc(double[][] A) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {V[ill[jl= A[il[j]:}

tred2 (); // Tridiagonalize .
tql2(); // Diagonalize.

Fig. 4. Member comment where the method should be renamed

public void run(){

if (server != null){
final Thread shutdownThread = new Thread () {...}
/! Run

shutdownThread . start () ;
try { shutdownThread.join(); }
catch (final InterruptedException ie) {...}

Fig. 5. Example of a short inline comment that is unnecessary

tion but some comments being trivial or unrelated. We expect
comments with c¢_coeff = 0 to be a strong indicator for bad
comment quality (insufficient information, Figure 3) or low
code quality (poor method identifier, Figure 4) and comments
with c_coeff > 0.5 to be trivial (Figure 2, c_coeff= 0.75).

B. Length of Comments

As the second metric, we use the length of inline comments
as an indicator of their coherence to the following lines
of code. This evaluates the quality attribute explaining non-
obvious of inline comments. Intuitively, shorter inline com-
ments contain less information than longer ones but the role of
very short or long inline comments has not been investigated
scientifically. Figure 5 shows a very short comment that is
unnecessary as it explains the obvious. The comment in Figure
6 describes the functionality of the following for-loop. It
would be better to extract the loop into a new method with
the comment as method identifier. In contrast, the comment
in Figure 7 contains non-obvious information that cannot be
extracted from the following lines of code.

private CloneGroup canBeMerged(CloneGroup gl,

CloneGroup g2) {

CloneGroup merged = new CloneGroup () ;

// merge

for (int i = 0; i < gl.graphs.size(); i++) {
ModifiableModelGraph mergedGraph = gl.graphs. get

(i).copy();

ModifiableModelGraph toMerge =
mergedGraph . merge (toMerge) ;
merged. graphs . add (mergedGraph) ;

}

if (merged.isValid()) {return merged;}
return null;

g2 .graphs.get(i);

Fig. 6. Example of a short inline comment that indicates a method extraction

private void finishSaving(View view, String oldPath,
String oldSymlinkPath, String path,
boolean rename, boolean error) {
if (lerror & !path.equals(oldPath)){
Buffer buffer = jEdit.getBuffer(path);
if (rename){
/+ 1if we save a file with
that’s already open, we presume that we
* close the existing file, since the user
would have confirmed the overwrite in the
* “save as’ dialog box anyway
*/
if (buffer != null &% !buffer.getPath().equals(
oldPath)){
buffer.setDirty (false);
jEdit.closeBuffer (view, buffer);

}

the same name as one

can

Fig. 7. Example of a long inline comment that contains global information

Metric. After normalization, the metric counts the number of
words in a comment.

Based on preliminary experiments with manual evaluation,
we set two thresholds and inspect inline comments with at
most two and with at least 30 words.

Hypothesis 3. Comments with at most two words should either
be deleted or indicate that the following lines of code are
better extracted into a new method with the comment content
expressed in method name. They contain only information that
can be extracted from the following lines of code.

Hypothesis 4. Programmers want to keep comments with at
least 30 words. They contain information that can not be
extracted from the following line(s) of code.

Both hypotheses consist of two claims, each of which are
to be evaluated independently. For comments with more than
two, but less than 30 words we expect that the length of the
comment can not be used as a reliable indicator for either the
delete/keep decision or a decision about the information scope.

VII. EVALUATION

We evaluated both metrics with a survey among develop-
ers. In the following, we describe the survey design before
presenting the evaluation results. For each metric, we present
the survey question, the sampling process of the comments
presented in the survey, the results, and their implications.

A. Survey Design

The survey was designed in form of an online questionnaire,
containing two independent evaluation tasks, which were both
completed by 16 developers. The survey was sent to members
of the Software and System Engineering Chair of Technische
Universitit Miinchen, TUM,* the Software Engineering group
of the University of Bremen®, students of TUM, employees of
the software quality consulting company CQSE GmbH® and
some of their clients. For each evaluation task, the participant
was shown questions regarding his experience in program-
ming and several example comments with their following
or surrounding method, which were selected from the Java
training data (Section IV-B). For evaluation (Figures 8§ - 10),
examples are numerated consecutively. In the survey, however,
comments were displayed in random order.

Every participant had at least 5 years, 62% more than ten
years of programming experience in general. 94% had at least
5 years of programming experience in Java. 69% use code
from other projects, frameworks, or libraries frequently, 75%
have worked on commercial, 88% on open source projects.
Hence, although the number of participants is only 16, we
assume that the participants are sufficiently experienced to
provide an objective representative evaluation.

We visualize the answers with traffic light coloring: Red
indicates low comment quality, green represents high comment
quality. Yellow and orange symbolize moderate quality.

B. Evaluation of the Coherence Coefficient Metric

In order to evaluate the coherence coefficient, the survey
asked the following question:

Survey Question 1. Please decide for each comment:

a) It would not make a difference if the comment was not
there because the comment is trivial. It does not provide
additional information which is not already contained in
the method name.

b) The comment should have additional information be-
cause it is not obvious how comment and method name
relate to each other.

or The method name could be more meaningful. The
comment provides some useful information but a better
method name could have been chosen.

¢) The comment provides additional information, which is
not contained in the method name, and the method name
is meaningful.

4http://www4.in.tum.de/

5 http://www.informatik.uni-bremen.de/st/index.php

6www.cqse.eu

Majority vote
of participants

Evaluation for Coherence Coefficient = 0

" ©
% %
o o

Evaluation for Coherence Coefficient > 0.5

o <+ v © =~] o
& & & & a
% ¢ ¢ ¢ 1 s
d [} 5] 5]

& 5
%

<3} <o)

7] b Insufficient information or Improve method name [I] d) Sufficent

B —

[—

Ex. 8 [
B ——
Ex 10 [

Ex.3
Ex. 4

Majority vote
of participants

I(J()%i

90% ‘

80% ‘

70% ‘

60% ‘

50% ‘

40% ‘ ‘

30% |

20% |

10% |

0%
a
4

Fig. 8. Survey results for comments with c_coeff = 0 and c_coeff > 0.5

o
a

<
53]

B o Trivial

Ex. 30

% %
5] o

Additionally, the question provides the answer possibility
“other” where the participant is able to enter a comment.

Based on this survey question, Hypothesis 1 is fulfilled
if developers vote for answer b) when evaluating comments
with c_coeff = 0. Developers voting for a) when evaluating
comments with c_coeff > 0.5 support Hypothesis 2.

Sampling. To evaluate the hypotheses, we sampled member
comments as identified by the machine learning classifier
according to their coherence coefficient: we grouped them
into three categories based on the two thresholds 0 and 0.5.
From each group we randomly sampled ten comments. In the
questionnaire, we display all 30 comments in random order to
not influence the opinion of the participants.

Results. Diagrams 8 shows the results of the survey, indicating
the majority vote of the participants. For eight out of ten
comments with c_coeff = 0, the participants voted with abso-
lute majority for an insufficient relation between comment and
method name (b). In five cases, the participants indicated that
the comment is missing relevant information. In three cases,
they preferred to rename the method. This result strongly
supports Hypothesis 1. In nine out of ten examples with
c_coeff> 0.5 (Figure 8), the voters agreed on the comments
being trivial without information gain for system commenting
(a). In all nine cases, the agreement was with above 80% very
strong. This strongly confirms Hypothesis 2.

Implications. The c_coeff metric is a useful metric to detect
trivial comments fully automatically, tolerating a correctness
of 90%. For comments with an insufficient coherence, the
developer still needs to decide manually whether the method
should be renamed (code refactoring) or information should be
added to the comment (documentation improvement), which
results in a semi-automatic analysis.

C. Evaluation of the Length Indicator

In order to evaluate the length indicator, we asked the
developers the following two survey questions:

Survey Question 2. If you work on improving the quality
of system commenting and you have the following choices,
which one do you pick?

a) Delete the comment because it is redundant and unnec-
essary. Without the comment the source code would not
be harder to understand.

b) Remove the comment by extracting a method. The lines
of code following the comment can be extracted into a
new method by using the content of the comment as a
method name. After this refactoring, the comment would
not exist anymore but be expressed in the method name.

c) Keep the comment. The comment helps to understand
the code and the system.

Survey Question 3. Please decide:

d) The comment contains some information which can
not be extracted from the following line(s) of code
(global information, explanations beyond the scope of
the current method, general assumptions, design de-
cisions, information describing the system’s behavior,
information not obvious to express in code, potential
risks or failures etc.)

e) The comment contains only information which can be
extracted from the following line(s) of code.

We refer to the information described in d as global, the
one in e as local information.

For comments with at most two words, developers voting for
answers a and b validate part one of Hypothesis 3, e suppots
part two. For comments with at least 30 words, votes for ¢
and d support part one and two of Hypothesis 4.

Sampling. We sampled inline comments from the Java train-
ing data set, excluding jMol. Beforehand, manual inspection
revealed that inline comments from jMol have significantly
less quality than inline comments in other projects, including
but not limited to being out-of-date, at the wrong place, or
just not understandable. From all other projects, we selected
randomly five inline comments. Out of this pool, we sampled
ten inline comments with at most two words, ten with > 30
words, and ten with > 2 and < 30 words. Sampling from the
preselected pool of comments ensures a uniform distribution
over the quality of inline comments among different projects.’

Results. Figure 9 represents the results of Question 2. They
visualize the vote distribution over all three answers, unifying
answer a and b because both represent a comment deletion.
We take the majority vote criterion to determine the final

7We could have sampled ten comments per category from all inline comments
of all projects. However, as some projects contain significantly more inline comments
than others, the survey might have been biased towards the comment quality of a few
individual projects instead of being representative for all projects.

Usefulness of Comments with < 2 words

" © ~ 3
@ 5] @ @

Usefulness of Comments with > 30 words

Vote distribution
of participants

Ex. 4
Ex.
Ex. 10

Vote distribution
of participants

Ex. 27 I:‘:I

33885323888
TRRSesaERSR
Ex. 21
Ex. 22
Ex. 23 i:l
Ex. 24
Ex. 25
Ex. 26
Ex. 28
Ex. 29
Ex. 30

. 2) Delete D b) Extract D ¢) Keep

Fig. 9. Survey participants’ decisions for short and long inline comments

participants’ answer per example. For comments with at most
two words, in five cases, the majority of participants voted for
deleting the comment. In two cases, 50% of the participants
wanted to extract a new method and thereby remove the com-
ment. Summing up, in 70% of all examples, the participants
removed it directly or by method extraction. This supports
the first part of Hypothesis 3. An example (Ex. 10) that did
not concur with the hypothesis is shown in Figure 11. For
comments with at least 30 words, Figure 9 shows that in all
ten cases developers wanted to keep the comment, with a very
high agreement among each other of at least 88% in nine out
of ten cases. This strongly validates part one of Hypothesis 4.
As expected, the survey did not reveal a clear programmers’
preference how to handle comments with more than two but
less than 30 words.

Figure 10 reveals that eight out of ten comments with
at most two words contain only local information with an
agreement of at least 75%. In contrast, comments containing
at least 30 words contain global information in ten out of
ten examples, with an agreement among voters of at least
92% in nine cases (Figure 10). Both facts support part two
of Hypothesis 3 and 4. Comments between two and 30 words
contain both local and global information.

Implications. The length indicator can be used fully-
automatically to detect comments with at most two words
strongly indicating redundant local information that should be
deleted. This metric can be used to suggest developers where
lines of code should be extracted into a new method and hence
give refactoring recommendations.

In contrast, comments with more than 30 words contain
significant global information which promotes better under-
standing of the system. It is inappropriate to conclude that
inline comments should contain at least thirty words. In gen-
eral, they should not. However, for semi-automatic assessment,

Content of Comments with < 2 words

<+ "
5] 5]

Content of Comments with > 30 words

Majority vote
of participants

100% i ‘
%
)

90%

Majority vote
of participants
100% i

90%

Ex. 3 [

Ex. ¢ [N
ex. 7 I

Ex. s [N

Ex. o [N
Ex. 10 I

Ex.

Ex. 22 [
Ex. 23 I
Ex. 2+ I

Ex. 25
Ex. 26 I
Ex. 27 I
Ex. 23 [
Ex. 20 I
Ex. 30 I

B Global Information [l ¢ Local Information

Fig. 10. Survey results about information content in short and long inline
comments

JARClassLoader (boolean delegateFirst){

this.delegateFirst = delegateFirst;
/] for debugging
id = INDEX++; live++;

}

Fig. 11. Inline comment with two words that developers wanted to keep.

their absence can potentially indicate that global aspects of
the system are not commented. It remains to verify if global
aspects are documented elsewhere (e. g., in header comments
or external system documentation). Vice versa, too many
very long inline comments can signal that too much global
information is documented in comments. This can indicate that
either architecture descriptions or framework documentation
of the system are missing, domain-specific knowledge is not
documented externally, or the system design is too general.

VIII. CASE STUDY

Whereas the previous survey evaluated the correctness of the
proposed assessment metrics, we additionally conduct a case
study to evaluate the relevance of the entire model, showing its
use case in practice. The following research questions guided
the design of the case study:

RQ 1: How many comments do not enhance system
understanding? We investigate if applying the comment
classification provides different insights than measuring the
comment ratio as in previous literature.

RQ 2: Do the proposed metrics reveal quality defects in
practice? We calculate the coherence coefficient for member
comments and the length indicator for inline comments to
show quality defects addressed by these two metrics frequently
occur in practice.

TABLE V
RESULTS OF CASE STUDY
Mol | ConQAT | jEdit | voTUM | JUNG
CR 25% 38% 36% 29% 33%
Copyright 28% 49% 31% 39% 18%
£ | Header 5% 16% 10% 9% 20%
£ | Member 28% 28% 33% 38% 49%
< | Inline 21% 4% 10% 8% 6%
& | Section 6% 2% 13% 2% 2%
O | Task 0% 0% 0% 0% 0%
Code 11% 0% 3% 3% 4%
[] Cr¥ | 15% | 19% | 24% | 17% | 25% |
member 42 1774 168 15 30
trivial 2%) (9%) (5%) (1%) (1%)
8 | member 690 1679 897 251 504
;l; unrelated (39%) (9%) (26%) (19%) (23%)
£ | itine short | 294 785 535 215 69
o “4%) | 4% | Q1% | 29%) | (9%)
. 296 80 88 17 10
inline long
(5%) (2%) (3%) (2%) (1%)

The purpose of this case study is not to provide an overall
ranking of the comment quality between the five systems.
Instead, we show that our approach is a very useful tool to
provide a first semi-automated step for quality analysis.

A. Case Study Design

We chose five open source projects (jMol, ConQAT, jEdit,
voTUM, JUNG) that were also used in Section IV-B.® For
RQ 1, we measure the comment ratio (CR) as percentage of
characters in source code which belong to comments. The
classification shows the percentage of comment characters
belonging to different comment categories. CR* denotes the
character percentage that potentially contributes to system
understanding (header, member, inline, and section). For RQ
2, we present results from the c_coeff metric and the length
indicator. We denote the percentage of all member comments
(measured in number of comments), which are trivial or not
related to the method name and the percentage of all inline
comments which are too long (> 30 words) or too short
(< 2 words). We also show the absolute finding numbers.

B. Results

RQ 1. To answer Research Question 1, we first calculate the
simple CR metric, analyze the results of comment classifica-
tion and then compare the CR* with the CR metric.
Calculating the simple CR metric reveals (Table V) that
ConQAT has the highest comment ratio (38%), followed by
jEdit (36%) and JUNG (33%). The classification provides
more insights about the types of comments that do not promote
system understanding (copyrights, tasks, and commented out
code): Among all projects, between 18% (JUNG) and 49%
(ConQAT) of the comments are copyrights. Although ConQAT

8with ConQAT, we use a tool as study object developed by our own research group.
However, the first author of this paper performing the study was not an active maintainer
of ConQAT and hence objective enough to provide a fair evaluation.

has the highest overall comment ratio, at least half of the com-
ments do not enhance documentation quality. The percentage
of task comments is insignificantly small for all projects.”
Furthermore, between 0% of the comments (ConQAT) and
11% (jMol) are commented out code.

The remaining comment categories (header, member, in-
line, section) potentially contribute to documentation quality.
Among all projects, jMol has the highest percentage of in-
line comments (21%) and section comments (6%). Manual
inspection suggests that jMol depends on these comments as
the average method length and file size are too large. The
analysis also reveals that jMol has deficits in documenting
the system design as only 5% are header comments. (A
completeness analysis confirms this as only 37% of all files
are documented with a header comment.) In contrast, ConQAT
is barely documented with inline and section comments, but
mostly in header comments (16%) and member comments
(28%). JEdit has the highest amount of section comments
(13%) because a grouping style is used that spans groups of
method with a //{{{ and //}}} comment even if the group
contains a single method. VoTUM and JUNG have the highest
percentage of member comments (38% for voTUM, 49% for
JUNG) due to their framework/library character.

With this classification, we calculate the CR* metric which
excludes categories that do not promote system understanding.
The CR* metric shows that at most 25% of all source code
characters in JUNG can enhance the system documentation
quality, followed by 24% for jEdit, and 20% for ConQAT.
Whereas the simple comment ratio metric ranked ConQAT as
the best documented system, JUNG has the highest percentage
of comments potentially contributing to system understanding.
The CR* metric shows that comment classification is neces-
sary to differentiate between different comment types to get
more quantitative insights about a system commenting.

We do not claim that the CR* metric should be used in the
future as the one and only metric to measure comment quality.
This would not be sufficient but the CR* metric constitutes
one aspect of a thorough comment analysis, providing better
insights than the simple comment ratio.

RQ 2. Applying the c_coeff-metric and the length indicator
reveals defects in system commenting and gives refactoring
recommendations. For example, ConQAT has the highest rel-
ative number of trivial member comments (9%) which results
in an absolute number of 1774 comments with c_coeff> 0.5
because project settings produce warnings when member com-
ments are missing: To avoid a compiler warning, developers
prefer to write a quick, but trivial member comment. These
comments should be reinspected to add missing information.

All projects have a percentage of unrelated member com-
ments between 9% (ConQAT) and 26% (jEdit). Developers
should check these findings in terms of identifier quality of
the method and information content of the comment.

9For all projects the task comment percentage was below 0.5% and, hence, rounded
to 0% in Table V.

An analysis of inline comments in jMol shows that 2945
have at most two words (44%), indicating a very low quality of
inline documentation. These comments should be reinspected
and either be deleted or used for the name of a newly extracted
method. 296 inline comments have at least 30 words (5%).
Manual inspection reveals that developers should document
the system better in an external architecture description as
these comments contain useful information but should mostly
not be placed in the source code.

Using the c_coeff-metric and the length indicator results in
a significant number of findings showing that the addressed
quality defects frequently occur in practice. These findings
are a first suggestion to developers how to improve comment
quality and also how to refactor the source code.

IX. APPLICATION

This work provides a first approach towards a thorough
analysis of code comments. In this section, we evaluate
the strengths and weaknesses of our analysis. Our analysis
provides quantitative and qualitative assessment of comment
quality: Compared to the previously used comment ratio, our
comment classification provides better quantitative informa-
tion about system commenting. Compared to related work,
we suggest two metrics to detect quality defects in comments
and to give refactoring recommendations whose correctness
and relevance were evaluated with a survey and a case study.

Comment classification and the suggested metrics are ap-
plicable for a one-time quality audit or for continuous quality
control to give a trend analysis about system commenting.
The c_coeff metric and the length indicator can be used to
display warnings in the IDE during development to call the
developer’s attention to insufficient comment or code quality.

The suggested metrics are semi-automatic and require man-
ual inspection which is, however, already often included in
the use-case of quality control. The approach as suggested
in our paper cannot be used to rank the comment quality of
several projects and also does not provide a complete comment
quality assessment. However, this work is the foundation for a
thorough quality analysis by providing comment classification
and a quality model. Similar as for code quality, our metrics
only reveal defects but cannot detect high quality directly.

X. CONCLUSION AND FUTURE WORK

This work presented a first detailed approach for the ana-
lysis and assessment of code comments. A machine-learning
approach for comment classification provides the foundation
for a model of comment quality. The model describes detailed
quality attributes in terms of coherence, consistency, complete-
ness, and usefulness. With the coherence coefficient and the
length indicator, we provided two metrics to assess quality at-
tributes of the model and evaluated them with a survey among
experienced developers. The case study demonstrated that our
approach can provide a much more detailed analysis compared
to existing approaches: Comment classification provides better
quantitative insights about the system documentation as the
simple comment ratio metric. For a qualitative analysis, the

suggested metrics reveal quality defects in code commenting
that frequently occur in practice. Furthermore, the metrics
can also be used to give refactoring recommendations. The
length indicator, e. g., suggests to extract methods when inline
comments with at most two words are used. The c_coeff
metric detects both comments with insufficient information
and methods with a low-quality method identifier.

This work constitutes the foundation for future comment
quality assessment. More work is required to find additional
comment quality metrics and to determine how many more
aspects of comment quality can be assessed fully- or semi-
automatic and how many remain only manually assessable.

REFERENCES

[1] T. Tenny, “Program Readability: Procedures Versus Comments,” /[EEE
Trans. Softw. Eng., vol. 14, no. 9, 1988.

[2] S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen, “The effect of
modularization and comments on program comprehension,” ser. ICSE
’81, 1981.

[3] S. C.B. de Souza, N. Anquetil, and K. M. de Oliveira, “A Study of the
Documentation Essential to Software Maintenance,” ser. SIGDOC ’05,
2005.

[4] C. S. Hartzman and C. F. Austin, “Maintenance productivity: Obser-
vations based on an experience in a large system environment,” ser.
CASCON 93, 1993.

[5] B. P. Lientz, “Issues in Software Maintenance,” ACM Computing Sur-
veys, vol. 15, no. 3, 1983.

[6] M. J. B. Garcia and J. C. G. Alvarez, “Maintainability as a Key Factor
in Maintenance Productivity: A Case Study,” ser. ICSM ’96, 1996.

[7]1 P.Oman and J. Hagemeister, “Metrics for Assessing a Software System’s
Maintainability,” ser. ICSM ’92, 1992.

[8] I. S. Microsystems, Code Conventions for the Java Programming
Language, 1997. [Online]. Available: http://www.oracle.com/
technetwork/java/codeconv-138413.html

[9]1 N. Khamis, R. Witte, and J. Rilling, “Automatic Quality Assessment of

Source Code Comments: the JavadocMiner,” ser. NLDB 10, 2010.

M.-A. Storey, J. Ryall, R. I. Bull, D. Myers, and J. Singer, “TODO

or To Bug: Exploring How Task Annotations Play a Role in the Work

Practices of Software Developers,” ser. ICSE 08, 2008.

A. T. T. Ying, J. L. Wright, and S. Abrams, “Source code that talks: an

exploration of Eclipse task comments and their implication to repository

mining,” ser. MSR 05, 2005.

L. Tan, D. Yuan, and Y. Zhou, “HotComments: How to Make Program

Comments More Useful?” ser. HOTOS ’07, 2007.

D. J. Lawrie, H. Feild, and D. Binkley, “Leveraged Quality Assessment

using Information Retrieval Techniques,” ser. ICPC 06, 2006.

A. Marcus and J. I. Maletic, “Recovering Documentation-to-Source-

Code Traceability Links using Latent Semantic Indexing,” ser. ICSE

’03, 2003.

G. Antoniol, G. Canfora, A. de Lucia, and G. Casazza, “Information

Retrieval Models for Recovering Traceability Links between Code and

Documentation,” ser. ICSM 00, 2000.

Z. M. Jiang and A. E. Hassan, “Examining the Evolution of Code

Comments in PostgreSQL,” ser. MSR ’06, 2006.

B. Fluri, M. Wursch, and H. C. Gall, “Do Code and Comments Co-

Evolve? On the Relation between Source Code and Comment Changes,”

ser. WCRE ’07, 2007.

[18] J. Tang, H. Li, Y. Cao, and Z. Tang, “Email data cleaning,” ser. KDD

’05, 2005.

A. Bacchelli, M. D’Ambros, and M. Lanza, “Extracting Source Code

from E-Mails,” ser. ICPC *10, 2010.

D. Steidl, “Quality analysis and assessment of code comments,” Master’s

Thesis in Computer Science, 2012, available online at http://www4.in.

tum.de/~hummelb/theses/2012_steidl.pdf; visited on January 16th 2012.

R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann,

1993.

R. Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy

Estimation and Model Selection,” ser. IICAI ’95, 1995.

F. Deissenbock, S. Wagner, M. Pizka, S. Teuchert, and J.-F. Girard, “An

Activity-Based Quality Model for Maintainability,” ser. ICSM ’07.

[10]

[11]

[12]
[13]

[14]

[15]

[16]

(17]

[19]

[20]

[21]
[22]

(23]

