Feature-Based Detection of Bugs in Clones

Daniela Steidl, Nils Gode
CQSE GmbH, Germany
{steidl, goede}@cqse.eu

Abstract—Clones bear the risk of incomplete bugfixes when
the bug is fixed in one code fragment but at least one of its
copies is not changed and remains faulty. Although we find
incompletely fixed clones in almost every system, it is usually time
consuming to manually locate these clones inside the results of an
ordinary clone detection tool. In this paper, we describe in how
far certain features of clones can be used to automatically identify
incomplete bugfixes. The results are relevant for developers to
locate incomplete bugfixes—that is, defects still existing in the
system—and for us as clone researchers to quickly find examples
that motivate the use of clone management.

Index Terms—Software quality, code clones, bug detection

I. INTRODUCTION

The continuous research and improvement of clone detec-
tion algorithms has led to a number of industrial strength
approaches, for example [1]-[3], that can detect not only
identical code fragments but also similar code fragments with
minor differences. These clones are commonly referred to as
inconsistent clones or gapped clones. Figure 1, taken from [2],
shows such an example. Multiple studies, for example [2], [4],
[5], have shown that these differences are often unintentional
and may sometimes point to bugs, which have been fixed only
partially. That is, the bug was fixed in some of the fragments,
but at least one of the copies was not changed and the bug
remained effectively in the system.

As quality experts, we are frequently confronted with large
industrial systems from domains such as automotive systems,
energy controls, or insurance business. Our clone analysis, an
integral part of our quality assessment, shows that incomplete
bugfixes exist in almost every system. However, it is unclear
which factors induce bugs in cloned code. Bugs in clones
are relevant for both developers and researchers. Clones that
resemble incomplete bugfixes point to bugs that still exist
is software systems and may cause sever damage. Hence,
detecting them allows to reduce the number of defects in
software systems. Besides improving correctness, incomplete
bugfixes are also well-suited examples for clone researchers to
motivate the use of clone management. Finding clone-related
bugs helps us as researchers and quality experts to argue why
clone management should be an integral part of quality control.

Our experience tells us that incompletely fixed clones exist
in almost every system. Locating them, however, is a time-
consuming process. A number of approaches have been sug-
gested to sort clones according to the probability of containing

This work was partially funded by the German Federal Ministry of
Education and Research (BMBF), grant “EvoCon, 011S12034A”. The respon-
sibility for this article lies with the authors.

a bug. However, none of these approaches was evaluated with
respect to how effective the sorting really is. Therefore, we are
currently left with manual inspection of the clones in random
order. Given the number of clones that is usually returned
by an ordinary clone detection tool, the inspection takes long
since incomplete bugfixes are usually found in only a small
percentage of all detected clones [1], [2].

Problem Statement. Software contains a large number of
clones. Currently, there exists no algorithm to efficiently detect
gapped clones that contain an incompletely fixed bug as it is
unclear which factors induce bugs in cloned code.

In this paper, we evaluate which factors induce bugs in
cloned code and in how far we can speed up the detection
process of incompletely fixed bugs by using an automatic
clone classification. We often observe that clones with in-
completely fixed bugs have specific features.! For example,
these clones often have only few differences (gaps). For clones
with multiple gaps, the differences are much more likely to
be intentional. To detect which clone features are relevant
for predicting bugs, we employ machine learning algorithms.
Please note that we do not think such an algorithm can provide
a perfect classification, but any automated classification with
higher precision than manual inspection in random order
would be beneficial.

Contribution. We examine which clone features are rele-
vant to predict incompletely fixed bugs.

Outline. This paper is structured as follows. Section II
presents previous work which is related to ours. Section III de-
scribes the data used for machine learning. We explain the rel-
evant features of clones in Section IV. Section V, Section VI,
and Section VII outline the machine learning algorithm we use
along with the evaluation technique. Section VIII presents our
results which are discussed in Section IX. Section X contains
threats to validity, our conclusions are given in Section XI.

II. RELATED WORK

In this section, we present previous work, which is related
to ours. We limit ourselves to publications that investigate the
relation between clones and bugs as part of a case study. For
a general overview of clone research, please refer to existing
surveys—e. g., [6] and [7].

Li etal. [4] detected copy-paste related bugs based on the
consistency of identifiers in clone pairs. In particular, they
calculated the UnchangedRatio that describes to which degree

UIn this paper we use the term feature, taken from the machine-learning
terminology, to describe characteristics of code clones.

I Ukilities For arrays of elements
public String showElements{ModelElernent[] elements, String nomsg) {

i Ukilities For arravs of elements

public String showElements(MadelElement]] elements, String nomsg) 4§

boolean found = False;
StringBuffer res = new StringBuffer();
if {elements 1= null) {
Indesx. getinstance). setCurrentRenderer(
FlatReferenceRenderer . getInstance:));
for {int i = 0; i < elements.length; i++) {
ModelElement, &l = elements[il;
res . append(showElementLink{el)). append{HTML.LINE_BREAK);
found = true;

}
Indesx. getinstance!) . resstCurrentRenderer();

13
if {!Found &
res,append; TS

g nomsg, lengthi) = 03 {
={nomsg));

reburn res.boString();

boolean found = False;
StringBuffer res = new StringBuffer();
if {elements 1= null) {
Index.getinstancel), sebCurrentRenderer(
FlatReferenceRenderer, getInstance);
for {inti=0; i < elements.length; i++) {
ModelElement. &l = elements(i];
res. append{showElementLink{el)}. append{HTML.LINE_BREAK);
found = brue;

}
Index.getInstancel), resebCurrentRenderer();

I3
if {!Found &2 nomsg.lengthl) = 00 {
res, append{HTML.italics(nomsg));

reburn res. koString();

Fig. 1. Example of an inconsistent clone

identifiers are consistent. Their hypothesis is the lower the
UnchangedRatio (the more identifiers have been changed),
the more likely the clone pair contains a bug—except for
when the UnchangedRatio is 0. Although Li etal. use the
UnchangedRatio to prune the results and sort clone pairs
according to their likelihood of having a bug, there is no
empirical investigation of how useful the UnchangedRatio
really is to identify clones with bugs.

An alternative approach to detect bugs based on inconsis-
tencies has been presented by Jiang and colleagues [8]. Instead
of inconsistencies between the cloned fragments themselves,
inconsistencies in the contexts of the cloned fragments have
been used to locate bugs. Jiang etal. identified different types
of context inconsistencies which potentially indicate whether
the inconsistency is a bug or not. But again, the usefulness of
the types of inconsistencies has not been empirically evaluated.

Higo etal. [5] presented another approach to detect bugs
based on inconsistencies. Clones which might contain a bug
were extracted by subtracting the results of a more restrictive
detector from those of a more tolerant clone detector to
extract certain types of clones which potentially contain a bug.
Whether these particular clones are more likely to contain a
bug than others has not been investigated.

An elaborate study on bugs in inconsistent clones has been
conducted by Juergens etal. [2]. For systems from different
domains, experts rated whether a given inconsistent clone
contained a bug or not. The results show that a notable number
of inconsistencies in clones are actually unintentional and
contain a bug. However, apart from the inconsistency, no other
features of the clones have been analyzed according to whether
they might help to find bugs.

In summary, all of the previous studies identified bugs in
clones, using a particular pre-sorting based on certain features
to identify clones likely to contain a bug. However, no previous
work investigated how good the pre-sorting actually is. The
usefulness of certain clone features to categorize the clone as
defective or not is unkown. In this paper, we extend previous
research by establishing a list of features motivated by earlier
work and our practical experience and use machine learning
to analyze the usefulness of these features.

TABLE I
SUBJECT SYSTEMS

Name Organization = Language Age [Years] Size [KLOC]
A MunichRe C# 6 317
B MunichRe C# 4 454
C MunichRe C# 2 495
Sysiphus TUM Java 8 281

III. CASE STUDY DATA

In the following, we describe the training data used to
predict incompletely fixed bugs in gapped clones. To obtain
reasonable results, it is important to have a sufficiently large
set of clone classes where experts for the corresponding code
determined if they contain an incompletely fixed bug. Since
this process is very time-intensive for us and the experts,
we reuse data of a previous study [2], which had a different
goal, but nevertheless collected data suitable for this approach.
These data include the code base of the subject systems, the
detected clones, and the experts’ rating.

Systems. The training data comprises five systems studied in
[2]. Due to our syntax-based classification, we excluded the
COBOL system because of the significant syntactic differences
between COBOL and the C-like languages C# and Java. The
remaining subjects are three systems developed by different
organizations for the Munich Re Group—one of the largest
re-insurance companies in the world—and a collaboration
environment for distributed software development projects,
Sysiphus, developed at the Technische Universitdt Miinchen
(TUM). Details about the systems are given in Table I.

Clone Detection. We also reused the clones from the former
study, which were detected using our tool ConQAT.?> Gen-
erated code was excluded prior to the detection. The clone
detection algorithm is in principle token-based. However, the
individual tokens of each statement were merged into a single
artificial token representing that statement. Hence, detection is
based on the sequence of statements rather than the sequence

2www.congat.org

Clone Classes

Inconsistent

Consistent
Non-Faulty

Intentional

Unintentional

Non-Faulty Faulty

[INO

Fig. 2. Rating of clone classes as faulty and non-faulty

L[] YES

of original tokens. Identifiers and literals have been normalized
except for regions of repetitive code. Clones were not allowed
to cross method boundaries. The minimal clone length was
set to 10 statements. For a more detailed description of the
algorithm and its parameters, please refer to [2].

Rating. We also reused the developers’ rating of the clones
from the previous study. The detected clone candidates were
presented to the developers who rated them in three steps:

1) The developers removed false positives of the clone
detection, i.e., code fragments without semantic re-
lationship although the tool detected them as clones.
From the true positives, we removed clones without
inconsistencies (gaps).

2) For inconsistent clones, the developers rated the incon-
sistencies as unintentional or intentional.

3) If a clone class was unintentionally inconsistent, de-
velopers classified it as faulty or non-faulty, or don’t
know in case their decision was unsure. Intentional
inconsistent clones are non-faulty by definition.

Figure 2 visualizes the sets of different clones. In cases
where developers could not determine intentionality or faulti-
ness, e. g., because none of the original developers was avail-
able for rating, the inconsistencies were treated as intentional
and non-faulty. We used the developers’ answers from the third
step to assign each clone class one of the following labels:

« YES. Differences between gapped clones were uninten-
tional and faulty: the clone class contains an incompletely
fixed bug (dark gray in Figure 2).

o NO. The differences between the cloned fragments are
on purpose or were unintentional but do not contain an
incompletely fixed bug (light gray in Figure 2).

Data Size. In total, the developers rated 582 gapped clones,
among which 104 clones were labeled with YES, i.e., con-
tained an incompletely fixed bug. 456 clones were labeled
with NO. We excluded 22 clones from the data set which
were labeled with don’t know. The resulting data set is an
imbalanced data set as one class (with label NO) is highly
overrepresented compared to the other class (with label YES).
We describe in Section VI how we handle the imbalanced data
set in our approach.

IV. FEATURES

Our hypothesis is that we can identify incompletely fixed
bugs based on certain features of gapped clones. Therefore,
we evaluate in how far this hypothesis holds for a given set of
features. The features we use originate from recurring patterns
that we observed during many years of manually inspecting
gapped clones. This experience includes but is not limited to
the clones in our training data set. Please note that the set of
all possible features is infinite and our selection provides only
a first starting point. However, our analysis can be repeated
for other features with only little effort. The remainder of this
section describes the selected features that turned out to be
useful for machine learning and documents our assumptions
why we believe a feature is relevant for predicting faulty
inconsistencies.

We use features to describe both the whole content of cloned
fragments (global features) as well as only the gaps between
the clones (local features).

A. Global Context Features

o length (Integer) — Length of copied code fragment
ignoring gaps.
Bugs are more likely to occur when there are differences
within long similar code sequences compared to only
short fragments.

o nesting_depth (Integer) — Maximal nesting depth of a
code fragment.
Faulty inconsistencies between code fragments are more
likely to occur in algorithmic code with higher nesting
depth than in data code.

o comment (Boolean) — Any gap is preceded by a com-
ment.
Often developers comment on a gap when fixing a bug
and denote an issue-id or a short bug-fix discription.
Hence, we assume commented gaps to indicate an in-
complete bugfix.

o preceded_by_assignments (Boolean) — Any gap is pre-
ceded by two assignment statements.
It is easy to forget a single assignment while writing a
set of assignments, e. g., setting various attributes of an
object. Hence, a gap preceded by a set of assignments
can indicate a faulty inconsistency. We use the simple
heuristic to detect assignments by searching for lines
containing = but not if, else, for, and while.

B. Local Gap Features

o attribute (Boolean) — Any gap contains an attribute
declaration.
An attribute declaration seems to be a major change,
indicating that the change was on purpose.

« new (Boolean) — Indicator for any gap containing the
keyword new.
The keyword new signals the creation of an object. We
assume the creation of a new object to represent a major
change on purpose.

o equal_null (Boolean) — Any gap contains a condition
including == null.
While writing if, for, or while statements, it is easy
to forget a null check. Hence, we believe a gap containing
a null check indicates an incomplete bugfix.

« not_equal_null (Boolean) — Any gap contains a condi-

tion including != null.
Analogous as the previous feature, we believe that an
easily forgotten != null check indicates a faulty in-
consistency.

o continue (Boolean) — Any gap contains the keyword
continue.

During the implementation of loops, developers easily
forget necessary continues. We assume this indicates a
faulty inconsistency.

o break (Boolean) — Any gap contains the keyword break.
During the implementation of loops, developers easily
forget necessary breaks. We assume this indicates a faulty
inconsistency.

« num_token_type (Integer) — Number of different token
types in the gaps.

We believe inconsistencies are more likely to occur in
algorithmic code than in data code with fewer token types
than algorithmic code.

« method_call (Boolean) — Any gap matches the method
call pattern
Weuse [a-zA-Z]+\.[a-zA-Z]+\ (.*\) as aregular
expression for a method call and assume that a method
call in a gap indicates a bugfix.

C. Feature Implementation Details

Both global and local features of gapped clones contain
boolean and integer features. In general, machine learning
algorithms are applicable not only for feature representations
with a unique type (e. g., an integer vector) but also for feature
representations with mixed types (e.g., a feature vector with
booleans and integers). However, including integer features
with a broad range of possible values (e. g., the length feature
with a value range of [minimal clone length..0co]) in a feature
vector with mostly boolean features causes problems during
machine learning. The classifier predominantly uses this fea-
ture to achieve a high precision/recall: The classifier makes a
decision by splitting the large feature value range into very
small subintervals such that most subintervals contain exactly
one training data point. Consequently, the classifier separated
the data set and does not need to consider other features.
Solely based on this large-range integer feature, the classifier
performs reasonably well. However, it strongly overfits the
training data and cannot be generalized.

To avoid this phenomenon, we manually limit the number
of different values for integer features that have a broad
value range, i.e., the length and num_token_type feature. (The
nesting_depth feature, in contrast, reveals a small value range
in our data set with most values being in the interval [0..4] and
a barely occurring maximum value of 6. Hence, the chance of
overfitting based on this feature is low.)

For the length features we split the value range as follows:
[minimal clone length..20] is mapped to value 0, [21..00]
to 1. For the num_token_type feature, values in [0..5] are
transformed to 0, [6..10] to 1 and [11..00] to 2. The feature
value transformations were obtained based on preliminary
experiments and manual inspection of the data set.

V. DECISION TREES

We assume that the features outlined in the previous section
are relevant to classify a gapped clone as incomplete bugfix
or not. Using a machine learning algorithm, we analyze how
relevant each feature truly is. In this paper, we use decision
trees as classifier and the standard machine learning library
WEKA? for implementation.

A decision tree is a tree with decision nodes as interior
nodes and class labels as leaves. To classify an instance, the
decision tree is a set of 1f-then-else statements: Based
on the value of a single feature, a decision is made at each
interior node to further traverse the left or the right branch of
the tree until a leaf is reached. The class label represented by
the leaf is assigned to the instance as its classification.

After preliminary experiments comparing the performance
of various different classifiers (support vector machines, naives
bayes, AdaBoost, etc.) we chose decision trees due to their
results being the most promising and easy to understand: the
result of a decision tree can be easily visualized and under-
stood by humans as opposed to, e.g., the high-dimensional
hyperplanes of support vector machines. In particular, we used
the J48 implementation of a decision tree [9].

VI. COST-SENSITIVE TRAINING

As described in Section III, our underlying training data
set is imbalanced. This is problematic as machine learning
algorithms operate under two assumptions:

1) The goal is to maximize the prediction accuracy.
2) The test data has the same underlying distribution as the
training data.

In our data set, 18.6% of the data is labeled with YES
(minority class), 81.4% is labeled with NO (majority class).
Consequently, if the classifier predicted label NO for all data,
it would already achieve an accuracy of 81.4% by default
without learning from the data.

Machine learning research has proposed a variety of meth-
ods to overcome issues with imbalanced data sets, [10], i.e.,
artificially sampling the data set to balance class distributions
or adapting the learning algorithms: To improve the data
set, upsampling approaches (interpolating more data samples
of the minority class) or downsampling approaches (remov-
ing samples of the majority class) exist. In our case, the
naive approach of randomly downsampling (using the WEKA
SpreadSubsample) did not succeed as the results strongly
varied with the randomly chosen negative data points and
hence overfitted the data. More sophisticated approaches to

3http://www.cs.waikato.ac.nz/ml/weka/

TABLE 11
COST MATRIX FOR FALSE POSITIVES AND FALSE NEGATIVES

Classified as — YES NO
YES 0 5 (FN)
NO 1(FP) 0

upsample the data (e. g., with the SMOTE algorithm [11]) did
not significantly improve the results.

Instead of balancing the distribution of the data by sampling,
we used cost-sensitive training to adapt the learning algorithm
to the imbalanced data set: Cost-sensitive learning addresses
imbalanced data by using cost matrices describing the costs
for misclassifying any particular data example [10]. We used
the WEKA CostSensitiveClassifier in combination with a
decision tree to reweight the data points according to the
cost matrix in Table II which was obtained by preliminary
experiments. The matrix indicates that false negative mistakes
are penalized five times more than false positive mistakes
which makes the classifier more sensitive to the minority class
of the training data. For more detailed information about cost-
sensitive training, refer to [10] and the WEKA documentation.

VII. EVALUATION METHOD

We evaluate the cost-sensitive decision with k-fold cross-
validation [12], using precision and recall. Precision and recall
are calculated for each label [separately and then (weighted)
averaged over all labels. As we use the experts’ rating (YES
or NO) the classification problem is binary.

Precision and recall. Pecision represents the probability that
the classifier makes a correct decision when predicting that
the instance is labeled with [. Recall denotes the probability
that an instance with label [/ is detected by the classifier.

For this approach we are particularly interested in the
precision for the positive label (YES): The algorithm’s goal
is to detect clones that contain incompletely fixed bugs. To
achieve this, we are currently left with manual detection. For
a quality engineer, finding incomplete bugs in an unfamiliar
code base corresponds to inspecting code clones in a random
order. Hence, the probability for the quality engineer to find
an incomplete bugfix is equivalent to the relative frequency of
incomplete bugfixes among all gapped clones. Hence, if the
algorithm has a higher precision for the positive label than
visiting clones in random order, it speeds up the process of
retrieving incomplete bug fixes. For the scenario of a begin-
ning continuous control process, precision is more important
than recall to convince developers of the necessity of clone
management. In our training data set, the relative frequency
of incomplete bugfixes is 18.6% (= 104/560). Hence we aim
for a precision above 19%.

Cross validation. The overall evaluation of the algorithm
is based on k-fold cross validation, a standard evaluation
technique in machine learning to determine the quality of a
classifier [12]: The training data set is split into &k subsets.

attribute

false true

‘ preceeded_by_assignments ‘ ‘ comment ‘

true false true false
\ length \ [length | [NO | [not_equal null|
J L fase /. \ e

\ NO \ ‘num token._type | YES

Fig. 3. Resulting classification model for bug detection

The classifier is built k£ times with £ — 1 out of k subsets as
training data. For each run, the remaining subset is used as test
data and the classifier’s precision and recall are calculated on
this fold. To get an overall evaluation, precision and recall are
averaged over all £ runs. Common values for &k are 5 or 10. In
this paper, we only present results of 5-fold cross validation as
they did not differ significantly from 10-fold cross validation.

VIII. RESULTS

This section describes the results of our approach obtained
by applying a decision tree algorithm on the real-world data
set presented in Section III with the features described in
Section IV. We first interpret the classification model learned
and show precision, recall, and classification errors based on
the results from cross-validation.

A. Classification Model

Figure 3 shows the top levels of the resulting decision tree.
The complete tree with a maximum depth of ten is not included
in this paper due to length restrictions. The visualization of the
classification model provides insights about the most relevant
features for bug identification. The closer a feature is located
to the root of the decision tree, the more information gain it
provides for clone classification. The feature used for the root
is the local feature attribute indicating that at least one gap
contains an attribute declaration. At the next depth levels, the
tree uses the features preceded_by_assignments and comment
(depth 1), length and not_equal_null (depth 2), and new and
num_token_types (depth 3).

In the following, we present a simplified, top-level inter-
pretation of the decision nodes: The existence of an attribute
declaration in any gap indicates a non-faulty gap if the gap was
commented. If no gap contained an attribute declaration, but
a gap was preceded by variable assignments, the decision tree
mostly decides for a faulty gap. If neither the attribute nor the
preceded_by_assignments features are true, the decision tree
splits the data based on the length and the new feature. In most
of the cases, if a new object was created in any gap, the tree
classifies the majority of data points as faulty.

B. Classification Evaluation

Table III shows the classification’s confusion matrix. Rows
represent the real label of the data, columns indicate the

TABLE III
CONFUSION MATRIX

Classified as — YES NO

YES 62 42

NO 218 238
TABLE IV

RESULTS OF J48 FOR CLONE CLASSIFICATION

Class TP Rate FP Rate Precision Recall
YES 0.596 0.478 0.221 0.596
NO 0.522 0.404 0.850 0.522
Weighted Average 0.536 0.418 0.733 0.536

label assigned by the classifier. Hence, entries on the matrix
diagonal are correct classifications, other entries indicate clas-
sification errors. In total, the classifier labels 300 instances
correctly (54% of all data), 62 clones with incomplete bugfixes
and 238 clones without bug. The classifier did not detect 42
incomplete bugfixes and misclassified 218 clones without bug.

Table IV shows the classification’s precision, recall, true-
positive rate, and false-positive rate which are calculated
for each label individually and summarized in a weighted
average over all instances (weights for each label correspond
to the relative frequency of the label within the training data).
Precision is calculated as the number of true positives over
true positives plus false positives, recall as number of true
positives over true positives plus false negatives.

For clones with incomplete bugfixes, the algorithm achieves
a precision of 22.1% (= g5 7g), better than the target
precision of 18.6% (see Section VII). The recall of 59.6%
(= %) indicates that the classifier detects more than every
other incomplete bugfix. For clones without bug, precision is
85%, recall 52%. However, these metrics were not the primary
target of our approach. In total, the classifier results in a
weighted average precision of 73% and recall of 53%.

We also used a 10-fold cross validation and ran both the 5-
fold and 10-fold cross validation multiple times with different
random seeds but did not detect a significant change in the
output.

IX. DISCUSSION

The results revealed that the machine learning approach
achieves a higher precision for incompletely fixed bugs than
manual detection in an unfamiliar code base where clones are
inspected in random order and hence, the probability to find
an incomplete bug fix corresponds to the relative frequency of
incomplete bug fixes in the data set. However, our experiments
also show limitations of feature-based approaches which are
discussed in this section. First, we enumerate additional fea-
tures that were not beneficial for bug prediction. Second, we
show why not all information relevant for bug detection can
be captured in features. Third, we discuss the challenges in
obtaining a data base for classification.

A. Excluded Features

Initially, we experimented with more features than presented
in Section IV. However, including some features in the data
representation caused a lower performance of the classifier—a
phenomenon frequently seen during machine learning. Nev-
ertheless, it is valuable information which features do not
provide information for detecting incompletely fixed bugs in
clones. The following list describes our initial assumptions
more in detail and explains the consequences when adding a
single feature to the feature set.

o gap (Integer) — Total number of gaps in a clone class.
The more the code fragments differ, the less likely the
clone class contains a bug. If there are only few differ-
ences, the probability of a bug is higher. Similar assump-
tions have been stated in previous work [4], [8]. Contrary
to our assumption, our experiments showed that using the
gap instead of the length feature or both together lowers
precision and recall for faulty inconsistencies.

o if / else (Boolean) — Any gap contains the keyword if
or else.

We assumed that a forgotten if or else statement
indicates an incompletely fixed bug. Both features reduce
the performance of the decision tree and do not seem to
have significant information gain. The else feature does
not even occur in the pruned version of the decision tree,
the if feature only at high depths close to the leaves.

« boolean_check (Boolean) — Any gap contains a
together with a boolean literal
Similar to the not_equal_null and equal_null features, we
assumed that a forgotten condition in a if, while, or
for statement can indicate incomplete bugfixes. Adding
or removing this feature from the data representation does
not influence the result significantly. It neither provides
information gain nor causes the decision tree to make
wrong decisions.

o boolean_assign (Boolean) — Any gap contains an =
assignment of a boolean literal
We assumed that forgetting to assign a boolean variable
with control structures such as loop, while, or if
often causes bugs when the boolean variable is used as a
control condition. Adding this features lowers precision
and recall.

B. Limitations of Features

Experimenting with different sets of features provides some
insights about successes and limitations of a feature-based ap-
proach. The feature-based approach is well-suited to correlate
syntactic properties of cloned fragments with the existence of
incomplete bugfixes such as a missing != null condition.

However, we observed that the presence of an incomplete
bugfix strongly depends on implicit context information that
cannot be expressed in features. Often, it is hard for any
human, who is not an active developer of the code base, to
judge whether an inconsistency is unintentional or error-prone.

For example, the presence of a comment preceding a
gap may indicate two things: Either a bug was fixed and

commented but forgotten in the other cloned fragment—
indicating an incomplete bugfix—or the developer cloned code
and commented on intentionally added new functionality—
indicating an intentional inconsistency. A human might be able
to differentiate both cases by referring to the natural language
information of the comment. A feature-based representation,
however, fails to capture this difference. In case the comment
contains signal words such as “bug”, “fix”, or “added”, natural
language processing can be useful for classification, but this
does not generalize to an arbitrary commenting style.

The presence of the keywords i f or else is another such
example that can either indicate an incomplete bugfix (for-
gotten if condition in one code fragment) or the intentional
adaptation of a clone fragment to a different scenario. In such
cases, it is even for a human hard to make a decision about
the correctness without deep knowledge of the code.

C. Challenge of Data Collection

The success of any machine learning approach depends
on the training data used. In particular, we experienced that
the imbalanced class distribution of our data hinders further
success. With random downsampling, we achieved a precision
for the positive label up to 68% in some cases. However, this
performance varied so strongly with the random sample that
it cannot be generalized. Nevertheless, the partial success of
the approach makes us believe that using automated clone
classification has potential for future work if a better (larger
and balanced) data set of inconsistent clones is available.

X. THREATS TO VALIDITY

This section summarizes various factors that threaten the
general validity of our results. First of all, our choice of
features was based on syntactic properties of C-like languages
like Java, C++, and C#. Therefore, we cannot generalize our
results to all programming languages.

Second, we mainly focused on the application of our
approach in the domain of quality control to motivate the use
of clone management. Hence, we argued that the precision of
the positive label is the most important evaluation aspect. For
other use cases, which include the retrieval of remaining bugs
in the system, recall is also crucial. Future work should study
features that improve the recall while maintaining precision.

Third, using experts’ ratings as evaluation contains several
threats already described in [2]. However, within this context,
we rely on the experts’ rating as no other evaluation method
is available.

Furthermore, the configuration of the clone detection tool
strongly influences detection results shown to the experts.
Refer to the justification in [2], which is based on a pre-study
and long-term experience with clone detection.

XI. CONCLUSION AND FUTURE WORK

In this paper, we examined how much a feature representa-
tion of gapped clones can help to retrieve incomplete bugfixes
in cloned code. We experimented with a broad range of fea-
tures and used machine learning to determine their relevance

in bug prediction. The machine learning classifier achieved a
precision of 22% for clones with faulty inconsistencies which
is better than manual inspection in random order.

For developers, our approach can be used as a recommenda-
tion tool for finding incomplete bugfixes to remove errors still
remaining in the system. For the use-case of motivating clone
management, our approach helps to quickly find faulty clones
in our customers’ code. We often observed that one or two
examples of unintentional faulty inconsistent clones from the
customers’ own code can significantly support our argument
to use clone management. In that sense, our approach is a first
step to minimize the effort of retrieving convincing examples.

Our approach is a good starting point for future work as
it has shown that feature-based bug detection and automated
clone classification has a certain potential. The two most
promising directions for future work are the creation of a
larger data set for learning and the evaluation of other features.
These may, for example, even include non-syntactic features
like change frequency or authorship.

REFERENCES

[1] N. Gode and R. Koschke, “Frequency and risks of changes to clones,”
in Proceedings of the 33rd International Conference on Software Engi-
neering. ACM, 2011, pp. 311-320.

[2] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?” in Proceedings of the 31st International Conference on
Software Engineering. 1EEE Computer Society, 2009, pp. 485-495.

[3] C. K. Roy and J. R. Cordy, “NICAD: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization,”
in Proceedings of the 16th International Conference on Program Com-
prehension. 1EEE Computer Society, 2008, pp. 172-181.

[4] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding copy-paste
and related bugs in large-scale software code,” IEEE Transactions on
Software Engineering, vol. 32, no. 3, pp. 176-192, 2006.

[51 Y. Higo, K. Sawa, and S. Kusumoto, “Problematic code clones iden-
tification using multiple detection results,” in Proceedings of the 16th
Asia-Pacific Software Engineering Conference. 1IEEE Computer Society,
2009, pp. 365-372.

R. Koschke, “Survey of research on software clones,” in Duplication,
Redundancy, and Similarity in Software, ser. Dagstuhl Seminar Pro-
ceedings, R. Koschke, E. Merlo, and A. Walenstein, Eds., no. 06301.
Dagstuhl, Germany: Internationales Begegnungs- und Forschungszen-
trum fiir Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

[71 C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queens University at Kingston, Ontario, Canada, Technical
Report, 2007.

L. Jiang, Z. Su, and E. Chiu, “Context-based detection of clone-related
bugs,” in Proceedings of the 6th Joint Meeting on European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering. ACM, 2007, pp. 55-64.

R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans.
on Knowl. and Data Eng., vol. 21, no. 9, pp. 1263—-1284, Sep. 2009.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
Synthetic minority over-sampling technique,” Journal of Artificial Intel-
ligence Research, vol. 16, pp. 321-357, 2002.

R. Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy Es-
timation and Model Selection,” in Proceedings of the 14th International
Joint Conference on Artificial Intelligence, ser. IJCAI ’95. Morgan
Kaufmann, 1995, pp. 1137-1143.

[6

=

[8

[t}

[9

—

[10]

(11]

[12]

