
Figure © kreateur.de / Andreas Speck

Autosar Architecture
Automatic Checking of
Implementation Conformance
The Autosar-based development methodology is increasingly applied during software development for the volume

production. With this paradigm shift, the system‘s architecture is defined by an Autosar model that is used for

generating stubs of the software components as source code and middleware providing APIs for the communica-

tion between the components. Yet, this approach does not guarantee that the manually written code – or the

code generated by further tools – indeed complies with the architecture specified by the model. In a cooperation

of BMW Group and CQSE GmbH it was therefore analysed, how deviations between source code and the archi-

tecture specification of the Autosar model can be identified.

24

Development  Software

Software

Motivation

The fast erosion of architectures in the
conventional code centered development
is often mentioned in the literature
whereas in the analysed Autosar-based
systems hardly any violation of the
structural requirements could be
detected. Hence, the interesting result is
that some specified dependencies in the
model were not used in the actual code.
Usually this is the case when new inter-
faces were introduced but the deprecated
interfaces remain in the model. Unused
dependencies lead to models which are
more complex than necessary but may
cause the introduction of errors as well.
Therefore BMW applies automatic analy-
sis techniques to ensure the complete
conformance to the architecture continu-
ously during development. These analy-
ses are described in the following in
more detail.

Conventional Analysis of
Architecture Conformance

Large software systems are too complex
to be understood only on the source code
level. This is the reason why during soft-
ware development an architecture design
is – implicitly or explicitly – applied,
where the system is partitioned into
modules or components. Since each com-
ponent has to deal only with a part of
the overall functionality, the system is
divided into manageable units. During
this process it is defined which compo-
nents will communicate with each other
and which way of communication should
take place. Especially, it is specified
among which components no communi-
cation is allowed, e.g., to ensure easier
replacement of components.

In practice, such specifications are
usually created during the initial devel-
opment, often in a design step before the
system is implemented. During imple-
mentation, these structures are mapped
to the constructs of a programming lan-
guage. Studies show that within a few
years of development and maintenance a
heavy erosion of the intended architec-
ture can be observed, leading to the fact
that 10% to 20% of implemented
dependencies do not conform to the orig-
inal architecture specification [1]. On the
one hand, dependencies are introduced
between components which were not
intended to be coupled, on the other

hand, dependencies which were speci-
fied do not exist in the code anymore.
Often the lack of conformance between
the intended and implemented architec-
ture results from a lack of the developer’s
knowledge on the architectural guide-
lines. But in many cases the architecture
conception is enhanced mentally -by the
developer team while the architecture
specification is not updated. Both obser-
vations hamper the maintainability of
the system, since understandability of
the system is affected.

Architecture conformance analyses
are applied to countervail the architec-
ture erosion of software. These analyses
check automatically if an implementa-
tion complies to the specified architec-
ture [2, 3]. For this, the intended target
architecture is specified as a model in a
computer readable form. The dependen-
cies which are implemented in the code
(implemented architecture) are automati-
cally extracted from the code and their
conformance with the specified architec-
ture is checked.

The model of the architecture specifi-
cation consists of (potentially hierarchic)
components. An example is given in 1.
For each component the mapping of
source code files to the component is
specified, a (below). The architectural
constraints are stated by edges (arrows)
between components. Components
which are not connected with each other
must not show any communication rela-
tion in the code. If an edge connects two
components, it is expected that the
implementation of the source component
uses the implementation of the target
component (e.g., calling a function,
access to a global variable, etc.). Further-
more, usage of the child components of
the target component is allowed. A meta-
model of the architecture specification
language is given in 2, a detailed
description may be found in [4].

Autosar-based Architecture
Conformance Analysis

Automotive software development is
more and more done according to the
Autosar standard. In an Autosar-based
system the architecture is defined in
terms of Autosar models. These models
allow the partitioning of an overall sys-
tem in a network of components which
communicate over ports. These models
are used to generate a middleware layer

Authors

Dr. Martin Feilkas
is Founder and CEO of CQSE GmbH

in Garching near Munich (Germany).

Dr. Christian Pfaller
is Consultant for Continuous Quality

Control and Quality Improvement
Processes at CQSE GmbH

in Garching near Munich (Germany).

Dr. Christian Salzmann
is Head of the Department for
Software Engineering in Body

Electronics and Driving Assistance
at BMW Group in Munich (Germany).

Mike Pagel
is Software Architect for Body

Electronics at BMW Group
in Munich (Germany).

25  03I2013    Volume 8

Software

(runtime environment, RTE) which real-
ises (among others) the communication
between the components by an API.

Even when using Autosar, the speci-
fied and implemented architecture may
deviate over time. This manifests in the
following possible problems:
:: Missing communication relations in

the code: Components may not use the
generated RTE APIs. Hence, a specified
communication does not take place in
the analysed code.

:: Dependencies between components
without using the RTE: Within C
source code native C interfaces of
other components may be used,
bypassing the RTE. These hidden
dependencies make further develop-
ment more complex and hamper an
individual deployment of these
components.

To avoid these negative effects, an archi-
tecture analysis of the Autosar system
can be performed. 3 outlines the pro-
cess auf such an analysis. First, the
architecture specification is extracted
from the XML description of the Autosar
model and a structural view of the target
architecture is generated. Second, a
dependency graph is calculated by ana-
lysing the source code. For both steps

the analysis tool ConQAT is used, which
finally is also used to execute the con-
formance analysis.

Extraction of the Structural
Architecture Specification
from the Autosar models

The architecture specification used in
the analysis is based on the XML files of
the Autosar model. The components of
the extracted architecture specification
correspond directly to the Autosar com-
ponents. The mapping of source code to
a component may be specified in the
Autosar model or it is generated accord-
ing to the RTE generator used and pro-

ject-specific conventions, e. g., according
to the directory structure of the source
code.

Extraction of the
Implemented Architecture
from Source Code

The implemented architecture is a
dependency graph where the nodes cor-
respond to single source code files of the
system. Edges describe dependencies,
which exist in the code. This approach is
independent from the used programming
language – only the types of dependen-
cies differ. During the analysis of C/
C++ code, three dependency types are
analysed:
:: Include dependencies: An include

dependency exists between two files if
one file includes the other using the
pre-processing directive #include. This
dependency exists at compile time,
thus the file cannot be built if the
included file is not present. Since in C/
C++ any kind of (relative) path is
allowed for #include, it is almost
impossible for the build system to pro-
hibit unwanted dependencies.

:: Declaration / implementation depend-
encies: In C/C++ any data structure
must be declared before it is used.
Typically this is done in header files
which are added by an #include pre-
processing directive. In general, the
declaration of a function (for its later
usage) can be put in any place of the
code. Hence, these must be extracted
and considered during the analysis.

:: Indirect Autosar dependencies: Besides
the before mentioned direct dependen-
cies, with Autosar also indirect
dependencies exist which result from
the RTE communication. The Autosar
RTE specification [5] requires that the
communication must be realised by

1	Example model of the intended architecture of JUnit

2	Meta-Modell of the specification of the intended architecture

Development  Software

26

functions (or macros) named accord-
ing to the communication ports (like
Rte_Read_, Rte_Call_). Since these
functions are provided by the code
generator it is ensured that the naming
conventions are met. With this infor-
mation and information on the port
connections known from the Autosar
model, pairs of corresponding read/
write calls are identified.

Results

The analysis identifies dependencies
between fragments of code that are
not allowed according to the intended
architecture as stated in the Autosar
model and the derived structural archi-
tecture specification. It was observed
that such architectural violations rarely
occur. If a violation was observed, it
was mainly on dependencies to librar-
ies, which are not covered by the Auto-
sar model.

Beside unintended dependencies, the
analysis detects dependencies which are
specified between two components in
the model but which do not exist in the
actual code. Such unused dependencies
can occur if some functionality was not
implemented yet, the functionality is
not covered by the analysed variant of
the system, or if the planed architecture
is not up-to-date anymore. Unused
dependencies may also indicate errors
during programming if, for example,
wrong functions are called, resulting in
missing dependencies.

In particular, read accesses to ports
which are not written by the opposed
component are regarded as critical. In
such situations, the reading component
expects that certain data is provided but
actually only the initial value is read.

Less critical but sloppy are write
accesses to ports which are never read.

A regular execution of the architec-
ture conformance analysis ensures that
the intended architecture, which is
specified in the Autosar model, is
indeed implemented in the source code.
This allows identifying possible prob-
lems early before testing and hence a
more efficient removal of these prob-
lems. Furthermore, the value of the
Autosar model as a map of the system is
preserved. Using such an up-to-date
model, especially new members in a
development team may gain an over-
view of the system more quickly. Fur-
thermore, impact analyses and architec-
tural discussions can be achieved on a
more solid basis. At the same time, the
effort for the analysis is very low since
it is executed fully automatic. If embed-
ded in a nightly updated quality control
dashboard, deviations and their fixes
may be followed day by day. Such an
architecture analysis may also be part

of the quality examination of code sup-
plied by third parties.

References
[1]	 Feilkas, M.; Ratiu, D.; Juergens, E.: The Loss of
Architectural Knowledge during System Evolution:
An Industrial Case Study. Proceedings of the 17th
IEEE International Conference on Program Compre-
hension (ICPC 09), 2009
[2]	Murphy, G.; Notkin, D.; Sullivan, K.: Software
reflexion models: Bridging the gap between source
and high-level models. Proceedings of the Third
ACM Sigsoft Symposium on Foundations of Software
Engineering (FSE 95), 1995
[3]	Koschke, R.; Simon, D.: Hierarchical reflexion
models. Proceedings off the 10th Working Confer-
ence on Reverse Engineering (WCRE 03), 2003
[4]	 Deissenboeck, F.; Heinemann, L.; Hummel, B.;
Juergens, E.: Flexible architecture conformance
assessment with ConQAT. In Proceedings of
[5]	 the 32nd International Conference on Software
[6]	Engineering (ICSE 10), 2010
[7]	Autosar Administration: Specification of RTE,
version 3.2, 2011

Offprint from ATZelektronik 03/2013,
Springer Vieweg,
Springer Fachmedien Wiesbaden GmbH

3	Outline of the architecture analysis process based on Autosar and C/C++ code

27  03I2013    Volume 8

