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Abstract Requirements Engineering (RE) is considered as one of the most critical
phases in software development. Poorly implemented RE processes are still one of
the major risks for project failure. As a consequence, we can observe an increasing
demand for intelligent software components that support stakeholders in the com-
pletion of RE tasks. The aim of this chapter is to give an overview of the research
dedicated to the application of recommendation technologies in RE. On the basis
of an analysis of related work we exemplify the application of recommendation
technologies in different scenarios. In this context we focus on the approaches of
collaborative filtering, content-based filtering & clustering, knowledge-based rec-
ommendation, and group-based recommendation & social network analysis.

1 Introduction

Requirements Engineering (RE) can be defined as the branch of systems engineering
concerned with the desired properties and constraints of software-intensive systems,
the goals to be achieved in the softwares environment, and assumptions about the
environment [10]. Core activities of an RE process are elicitation & definition, val-
idation, negotiation, and release planning [44]. RE is considered one of the most
critical phases of a software development process and poorly implemented RE is
one of the major reasons for the failure of a project [24].

Due to the increasing size and complexity of software systems, we can observe a
growing demand for intelligent methods, techniques, and software systems that can

1Institute for Software Technology, Graz University of Technology, Inffeldgasse 16b,
A-8010, Graz, Austria, e-mail: {alexander.felfernig, gerald.ninaus, harald.grabner, flo-
rian.reinfrank}@ist.tugraz.at
2wsop, Muellnergasse 4, A-1090, Vienna, Austria, e-mail: {LWeninger}@wsop.at
3Applied Software Engineering, Technische Universitaet Muenchen, Boltzmannstrasse 3, D-85748
Garching, Germany, e-mail: {dennis.pagano, walid.maalej}@in.tum.de

1



2 A. Felfernig et al.

help to improve the overall quality of RE processes [3, 17]. In this chapter we focus
on the aspect of how recommendation technologies [38] can be applied to support
stakeholders in different phases of RE processes. Recommendation technologies are
intensively applied for the purpose of recommending products and services, for ex-
ample, movies, books, digital cameras, or financial services. The application of these
technologies in RE scenarios is an upcoming research area [3]. A recommender sys-
tem can be defined as any system that guides a user in a personalized way to inter-
esting or useful objects in a large space of possible options or that produces such
objects as output [5, 38].

The remainder of this chapter is organized as follows. In Section 2 we provide an
overview of existing research on the application of recommendation technologies
in RE. In Section 3 we discuss different application scenarios for recommendation
technologies with a focus on collaborative filtering [28], content-based filtering [37]
& clustering [46], knowledge-based recommendation [5, 14], and group-based rec-
ommendation [34] & social network analysis [22]. In Section 4 we discuss relevant
issues for future research. The chapter is concluded with Section 5.

2 Research on Recommender Systems in Requirements
Engineering

In this section we discuss existing research dedicated to the application of recom-
mendation technologies in Requirements Engineering (RE). Our discussion of re-
lated research is organized along the typical activities in a RE process – we take into
account the activities of requirements elicitation & definition, quality assurance,
and negotiation & release planning. In order to provide further technical insights
into the recommendation approaches discussed in this chapter, we provide exam-
ples for their application in Section 3.

2.1 Requirements Elicitation & Definition

Requirements elicitation & definition focuses on the collection of requirements from
different stakeholders. Typical resulting artifacts are, for example, textual require-
ment descriptions, scenario descriptions, use cases, and sketches of prototypical user
interfaces. The following recommendation approaches support activities related to
requirements elicitation & definition.

Recommending Stakeholders. This is an important task in the early phases of an
RE process since, for example, a low degree of user involvement in most cases leads
to project failure [31]. The major goal of stakeholder identification is to identify a
set of persons who are capable of providing a complete and accurate description of
the software requirements. Identifying a set of authorized, collaborative, responsi-
ble, committed, and knowledgeable stakeholders is a very important and challenging
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task [3, 31]. A common mistake is that the wrong representatives of groups are inte-
grated into a project or that stakeholders relevant for the project are simply omitted.

StakeNet [31] is an approach to stakeholder identification which is based on the
concepts of social network analysis [22, 33]. In StakeNet, an initial set of stake-
holders and recommendation information provided by these stakeholders is applied
for the construction of a social network (SN) where the included nodes represent
the stakeholders and connections between nodes represent recommendations artic-
ulated by the stakeholders, i.e., if stakeholder si recommends stakeholders s j with
a certain rating then this information is included in the corresponding social net-
work. This process of stakeholder recommendation is repeated in order to exploit
a kind of snowball effect. On the basis of the constructed social network, different
SN analysis algorithms are exploited for stakeholder prioritization. An example of
such an analysis approach is betweenness centrality which measures for a specific
stakeholder si the number of shortest paths between other stakeholders in which s j
is contained. A high value of this measure indicates a person’s capability of acting
as a broker between different groups of stakeholders.

Especially in large-scale and distributed software projects it is infeasible to orga-
nize personal meetings on a regular basis. In such scenarios requirements are often
defined in Wiki-based forums which are very receptive to the problems of informa-
tion overload, redundancy, incompleteness of information, and diverging opinions
of different stakeholders. In their approach to improve the stakeholder support in
ultra-large-scale software systems development (ULS software systems), Cleland-
Huang et al. [3, 7] introduce concepts for clustering user requirements and in the
following to assign (recommend) stakeholders to clusters on the basis of content-
based filtering [37]. One major motivation for such an assignment of stakeholders
to requirement clusters is to achieve a representative coverage, i.e., each requirement
should be discussed and evaluated by a sufficient number of stakeholders.

Recommending Requirements. A systematic reuse of already existing software
requirements has the potential of significantly reducing the overall costs of a soft-
ware project. A recommendation-based approach to requirements reuse is presented
by Dumitru et al. [12]. The basic idea is to analyze requirements which are ac-
cessible in software project repositories and to apply clustering algorithms for the
intelligent grouping of such requirements. The identified requirement groups can
be analyzed in future software projects for the purpose of reuse and also for the
purpose of completeness checking (are all relevant requirements contained in the
current requirements model). The proposed recommendation approach is content-
based filtering, where a vector of keywords (derived from the description of the
new software project) is matched with the keywords extracted from requirements
artifacts from the repository of already completed software projects.

Lim and Finkelstein [30] introduce the StakeRare approach which supports the
identification and reuse of requirements. StakeRare [30] is based on the afore men-
tioned StakeNet approach [31]. In StakeRare stakeholders are rating initial sets of
requirements. Additional (new) requirements currently not contained in the list are
then recommended using the concepts of collaborative filtering [28]. On the basis



4 A. Felfernig et al.

of the rating information (weighted with the stakeholders weight (influence) in the
current project) requirements are prioritized.

Similar to their approach of recommending (assigning) stakeholders to require-
ment clusters (topics), the requirements engineering environment discussed in
Cleland-Huang et al. [3, 7] also supports the recommendation of requirements to
stakeholders, for example, based on the concepts of collaborative filtering. A ma-
jor motivation for the application of collaborative filtering in this scenario was to
achieve serendipity effects which help to increase requirements quality (stakehold-
ers receiving recommendations regarding requirements they are interested in, have
a higher proability of analyzing these requirements). Another motivation for the ap-
plication of collaborative filtering is to improve requirement model understanding
since it generates personalized navigation paths for stakeholders.

2.2 Quality Assurance

A set of requirements has to be evaluated regarding properties such as consistency
(requirements are not contradictory), completeness (all relevant requirements should
be part of the requirements model), feasibility (technical feasibility as well as eco-
nomic feasibility), understandability (does the description fulfill the quality stan-
dards), and reusability (are the requirements reusable in future projects). Currently,
recommenders are applied to support the following quality assurance scenarios.

Managing Feature Requests. The major goal of feature request management is
to support the effective management of large sets of software features. Unstructured
request management can lead to suboptimal communication between stakeholders
and to the selection of in the worst case irrelevant features [3]. An approach to sup-
port effective feature management has been introduced by Cleland-Huang et al. [8]
where clusters of similar requirements are exploited for the identification of redun-
dancies and the prioritization of feature requests. Fitzgerald et al. [21] introduce an
approach to feature request management which is based on the idea of predicting
software failures (e.g., anbandoned implementation of a feature) by analyzing the
communication threads in feature management systems. Their approach to failure
identification is based on the idea of applying different machine learning algorithms
for the construction of a prediction model for failures. The prediction model is based
on an analysis of existing feature requests and their related positive or negative out-
comes. Prediction models are derived on the basis of parameters that are assumed
to be important for specifying the quality of a feature request, for example, involve-
ment of the right stakeholders or sufficient engagement of stakeholders in terms of
contributing to a feature-related discussion thread.

Consistency Management. Inconsistencies between requirements are resulting
from factors such as not enough time for consistency checking, different percep-
tions and goals, or different granularity of knowledge. Especially for informally
defined requirements the complete automation of consistency management is un-
realistic [25] but semi-automated tools help to keep the efforts acceptable. Assum-
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ing the existence of a formal description of the requirements model (on the basis
of a constraint satisfaction problem [45]) and the stakeholder preferences (priori-
ties) regarding the defined set of requirements, Felfernig et al. [19] introduce an
approach to the automated diagnosis of inconsistent requirement models and in-
consistent stakeholder preferences. In this context, a diagnosis is interpreted as a
minimal set of stakeholder preferences (or requirements) that have to be adapted or
deleted in order to restore consistency. A detailed introduction to the concepts of
model-based diagnosis can be found, for example, in the work of Reiter [40].

Dependency Detection. Due to the informal nature of requirement models, the
analysis regarding properties such as model consistency and completeness are chal-
lenging. Relationships between requirements are typically expressed in terms of de-
pendencies (e.g., requirement A requires requirement B or requirement A is incom-
patible with requirement B) which are defined by stakeholders [9]. Recommender
systems allow the provision of additional information which proactively supports
stakeholders in the identification of dependencies. Dependency detection between
requirements can be based, for example, on clustering techniques where require-
ments are grouped into clusters of similar topics (see, for example, Cleland-Huang
et al. [8]). The basic underlying assumption is that requirements which are assigned
to the same cluster are depending on each other. Although helpful, this approach
does not result in a complete specification of the type of dependency but serves as
a basis for a further analysis by stakeholders. Some preliminary work regarding re-
quirements and inconsistency discovery and classification in Open Source Software
Development (OSSD) which is based on the methods of Natural Language Process-
ing (NLP) is presented by Fantechi and Spinicci [13].

2.3 Requirements Negotiation & Release Planning

Requirements negotiation is the process of identifying conflicts between stakeholder
preferences and to facilitate efficient stakeholder decision making regarding priori-
ties and acceptance (this process is also denoted as requirements triage). The major
goal of release planning is the development of a schedule which specifies in which
development (release) period which requirement should be implemented.

Requirements Triage. Restrictions regarding the available resources (e.g., budget
and employees) and defined deadlines for the completion of a software system in
many cases require decisions regarding the set of requirements which should imple-
mented. Requirements have to be prioritized in order to take aside unimportant re-
quirements and to support project managers in conflict resolution and making trade-
offs. Prioritization of requirements is an often complex and iterative communication
and decision process [2] which has to take into account different soft factors such
as company policies, personal preferences, and social relationships between stake-
holders. Requirements triage is a term which stems from medical decision making
[10]. In disaster scenarios victims are categorized into three different types: those
who will die (independent of the medication), those who will survive (independent
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of the medication), and those whose survival depends on the given medication. Re-
quirements prioritization has to deal with a similar task: identify the requirements
which must not be included in the next release, requirements that are optional for
the next release, and the requirements that must be included in the next release.

The lack of efficient triage processes in large software projects with hundreds of
stakeholders and thousands of (sometimes conflicting) requirements lead to the de-
velopment of intelligent technologies supporting the semi-automated requirements
prioritization. The approach presented by Duan et al. [11] focuses on the generation
of clusters which are derived from different clustering criteria. The weight of dif-
ferent clustering criteria is specified by stakeholders and an initial prioritization is
generated on the basis of a utility function which is based on the number of clusters
a requirement is included in and the weights of the corresponding clusters.

Further Decision Support Approaches. Traditional models of human decision-
making are based on the assumption that humans are taking decisions on the basis
of rational thinking [36]. That is, a human would take the optimal decision follow-
ing a formal evaluation process. One major assumption is that preferences remain
consistent and unchangeable. In contradiction to these models, research has clearly
pointed out the fact that preference stability in decision processes does not exist, and
can also be easily manipulated [4]. A customer who wants to purchase a digital cam-
era could first define a strict upper limit for the price. But due to additional technical
information about the camera the customer could change her mind and significantly
increase the upper limit of the price. This typical example of preference reversal
[29] indicates the non-existence of stable preferences. Instead, the model of prefer-
ence construction [4] should be used, in which decision making processes are more
characterized by a process of iterative refinement and adaptation of the current pref-
erences in the face of new alternatives and as well in the face of opinions of other
users that are visible to the decision maker.

The idea of applying group decision making algorithms in Requirements En-
gineering is to exploit basic decision heuristics [35] such as majority voting (the
decision is taken conform to the majority of the votes of the engaged stakeholders)
or the fairness heuristic which guarantees that none of the stakeholders will be dis-
advantaged in the group decision process. Group decision heuristics already play an
important role in application scenarios outside software engineering [35]. Felfernig
et al. [20] applied group decision heuristics in the context of RE scenarios. They in-
troduce the IntelliReq environment which can be used for supporting group decision
process in distributed settings (e.g., open source platforms or large and distributed
software projects). The authors present the results of an empirical study which show
that group recommendation technologies can help to improve the perceived quality
of decision support. A further insight was that stakeholders should not be confronted
with the preferences of other group members at the beginning of prioritization – the
reason is that knowledge about preferences automatically triggers insufficient infor-
mation exchange between group members.

Recommendation of Release Plans. Ruhe et al. [42] introduce an approach to
release planning that is based on the concept of linear programming [43]. The basic
idea is to define a linear program that should calculate a sequence of assignments
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Table 1 Overview of recommendation approaches for Requirements Engineering.

Scenario Recommendation Approach
recommending stakeholders social network analysis Lim et al. [31]

content-based filtering Castro et al. [7, 3]
recommending requirements content-based filtering Dumitru et al. [12]

social network analysis Lim and Finkelstein [30]
collaborative filtering Castro et al. [7, 3]

managing feature requests clustering Cleland-Huang et al. [8]
machine learning Fitzgerald et al. [21]

consistency management knowledge-based Felfernig et al. [19]
dependency detection clustering Cleland-Huang et al. [8]
requirements triage clustering Duan et al. [11]

utility theory
negotiation & planning group recommendation Felfernig et al. [20]

utility theory

of features to a corresponding release taking into account the dependencies between
the different features. Ruhe et al. [41] show how to apply AHP (Analytical Hierarchy
Process) for determining a set of preferred requirements. This work is an important
contribution to improve the quality of requirements selection but depends on the
assumptions that stakeholders know their preferences and that preferences remain
stable. Felfernig et al. [16, 19] extend the work of Ruhe et al. [41] by introducing
automated diagnosis and repair mechanisms which effectively help to figure out
minimal sets of acceptable changes in situations where release plan preferences of
stakeholders become inconsistent.

Table 1 provides an overview of the discussed application scenarios of existing
recommendation approaches for requirements engineering.

3 Recommendation Algorithms for Requirements Engineering

In order to show how recommendation technologies can be exploited in the RE
context, we will now introduce basic application scenarios. These scenarios should
help to develop an understanding of potential applications of recommendation tech-
nologies and show how different recommendation approaches have to be tailored in
order to be applicable. Note that we interpret recommendation technologies as key
supportive technologies; we do not claim that information gaps in general can be
closed by the application of recommendation technologies. On the one hand infor-
mation does not substitute communication, i.e., effective RE processes still heavily
rely on personal stakeholder interaction. Furthermore, the quality of recommenda-
tions depends on the quality of information provided by stakeholders, i.e., the suc-
cessful application of recommendation technologies is only possible on the basis of
motivated and proactive stakeholders. Finally, successful RE strongly depends on
process quality, which can not be achieved and guaranteed only by the application
of recommendation technologies. In the following we discuss basic RE application
scenarios for the major types of recommendation technologies which are content-
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Table 2 Example of a content-based filtering recommendation problem.

requirement category planned release efforts (mds) description
r1 database 1 150 store component configuration in DB
r2 user interface 2 60 user interface with online help available
r3 database 1 300 separate tier for DB independence
r4 user interface 1 30 user interface with corporate identity

based filtering (CBF) [37] & clustering [46], collaborative filtering (CF) [28], group
recommendation (GR) [26] & social network analysis [22], and knowledge-based
recommendation (KBR) [5, 14].

Content-based Filtering. Content-based filtering (CBF) [37] exploits the similar-
ities between the preferences of the current user and descriptions of items the user
did not notice up to now. User preferences can be, for example, represented by fre-
quent keywords extracted from artifacts previously processed by the user. Another
alternative are predefined categories assigned to items as meta-information. Typical
recommendations derived by CBF recommenders are of the form item C is recom-
mended since you were also interested in item A (which is similar to item C).

When defining requirements, a recommender can support stakeholders, for ex-
ample, by indicating similar requirements or point out requirements already defined
in previous projects. Let us assume, the active stakeholder (s1) has already inves-
tigated the requirement r1 which has the assigned category database (see Table 2).
Now, CBF would recommend requirement r3 if r3 has not been investigated up to
now by the active stakeholder. If no such categorization of requirements is avail-
able, the detailed textual description of requirements can as well be used: keywords
have to be extracted [39] and the determination of similar requirements can then be
based on the similarity of the extracted keywords – a simple corresponding simi-
larity metric is shown in Formula 1. For example, sim(r1, r3) = 0.17, if we assume
keywords(r1) = {store, component, configuration, DB} and keywords(r3) = {tier, DB,
independence}.

sim(s,r) =
|keywords(s)∩ keywords(r)|
|keywords(s)∪ keywords(r)|

(1)

k-Means Clustering. A basic method for determining clusters is k-means cluster-
ing [46] where k specifies the number of clusters being sought. In the initial iteration
two requirements can be chosen as cluster centers and the other requirements are
assigned to their closest cluster. Different distance metrics can be applied [46] – for
the purposes of our example we apply the similarity between keywords (see Table 3)
extracted from the textual description of our example requirements ({r1,r2,r3,r4}
in Table 2). Thereafter the centroid (mean) per cluster is determined for each cluster
and an assignment of requirements to clusters takes place again. For our example
we assume that after one step the two clusters c1:{r1,r3} and c2:{r2,r4} have been
identified where sim(r1,r3) = 0.17 and sim(r2,r4) = 0.5.

Collaborative Filtering. Collaborative filtering (CF) [28] is perhaps the most
widespread recommendation approach where information about the rating behavior
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Table 3 Keywords extracted from the textual requirement descriptions in Table 2.

requirement extracted keywords
r1 store component configuration DB
r2 user interface help
r3 tier DB independence
r4 user interface corporate

of nearest neighbors (i.e., users with similar ratings compared to the current user)
is exploited for predicting the current user’s ratings for items not known to her/him
yet. Typical recommendations derived by CF recommenders are of the form users
who were interested in item A were also interested in item C.

Table 4 Example of a collaborative recommendation problem. A table entry ij with value 1 (0)
denotes that fact that stakeholder si has (has not) inspected the requirement r j .

r1 r2 r3 r4

s1 1 0 1 0
s2 1 0 1 1
s3 1 1 0 1

When stakeholders try to understand a given set of requirements (e.g., new stake-
holders in the project), recommender systems can provide support in terms of show-
ing related artifacts or showing those artifacts stakeholders have investigated when
working on the current or a similar requirement. In the setting of Table 4 the require-
ments {r1, r2, r3, r4} have already partially been investigated by the stakeholders {s1,
s2, s3}, for example, stakeholder s1 has already investigated the requirements r1 and
r3. The main idea of collaborative filtering (CF) is to exploit user ratings (in our
context the rating = 1 if a stakeholder has already investigated a certain requirement
and the rating = 0 if the stakeholder did not investigate the requirement up to now)
in order to identify additional requirements the stakeholder may be interested in.
User-based CF is a basic variant which is often used in industrial contexts [28].
User-based CF tries to identify the k-nearest neighbors of the active stakeholder
(stakeholders interested in a similar set of requirements) and calculates a prediction
for the active stakeholder rating for an item the stakeholder has not investigated up
to now. Such a rating can be defined, for example, as the weighted majority of the
k-nearest neighbors. In our example, stakeholder s2 can be identified as the nearest
neighbor (if we set k=1) since s2 has investigated all the requirements investigated
by stakeholder s1. Vice versa, stakeholder s1 did not investigate the requirement r4
up to now – in this context, our collaborative filtering algorithm would recommend
requirement r4 to stakeholder s1 since the nearest neighbor of s1 has already inves-
tigated r4.

Group Recommendation. Group recommendation (GR) [26] can support groups
in their decision process by taking into account the fact that individual decisions
depend on various factors, such as own evaluation of a solution alternative, beliefs
about the opinions of group members, and information about the individual motiva-
tion (e.g., egocentric or cooperative motivation [26]). GR includes algorithms and
heuristics that can be exploited for identifying solution alternatives that are (with a
high probability) accepted by all or at least the majority of group members, i.e., the
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major goal of GR technologies is to support/achieve consensus among group mem-
bers. Typical recommendations derived by group recommenders are of the form this
recommendation tries to take into account the preferences of all group members.

Requirements evaluation & negotiation have a clear need of group decision sup-
port: a group of stakeholders has to decide about the quality of individual require-
ments and in the following to figure out which requirements should be taken into
account. Let us assume that the requirement r has to be evaluated by the stakeholders
{s1, s2, s3, s4} – the individual evaluations of r are depicted in Table 5.

Table 5 Example of a decision problem: deciding about the group evaluation of requirement r.

requirement: r s1 s2 s3 s4

quality medium medium medium high
effort (mds) 10 7 14 8

decision accept revision accept accept

In this context, group recommendation concepts can be applied which propose
alternatives to be further evaluated by the group. Different strategies for determining
such a group recommendation are possible [34], for example, the least-misery strat-
egy would propose evaluations that are stable in the sense that none of the evaluation
dimensions has been over-estimated (or under-estimated, for example, in the case of
mds – man days). Applying this strategy in our context would mean to propose the
evaluation (quality = medium, effort = 14, decision = revision) as first alternative for
the overall group decision. On the basis of this and further proposals each individ-
ual stakeholder enters the next review round with the goal to achieve (if possible)
a consensus regarding the evaluation. A detailed discussion of further strategies for
determining group recommendations can be found in Masthoff [34].

Social Network Analysis. With the concepts of Social Network Analysis different
properties of a network of stakeholders engaged in a RE process can be identified. In
order to sketch the analysis of betweenness centrality of stakeholders, we introduce
the communication patterns between the stakeholders {s1,s2,s3,s4,s5} in Table 6.
For simplicity, we assume that each discussion thread (related to one requirement)
includes at most four comments and stakeholder si is connected to stakeholder s j
in a social network (see Figure 1) if both are in at least one common discussion
thread. Betweenness centrality measures for each stakeholder si the number of short-
est paths between pairs of other stakeholders s j (si 6= s j) in which si is included.
Table 7 depicts the results of the betweenness centrality evaluation in our working
example; the stakeholders s1 and s3 have a centrality measure of 3.0 whereas the
other ones have a measure of 0.0.

Table 6 Communication patterns (e.g., in a discussion forum) between stakeholders
{s1,s2,s3,s4,s5} regarding requirements {r1,r2,r3,r4}.

requirement: r comment 1 comment 2 comment 3 comment 4
r1 s1 s2 s1 s2
r2 s3 s4 s1 s3
r3 s3 s5 s3 s5
r4 s3 s1 s3 s1
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s1 s2

s3

s1

s4s3

s1

s4

??
??

??
??

?

s3

s5 ?????????

Fig. 1 Example Social Network (SN) derived from communication patterns of Table 6.

Table 7 Betweenness Centrality values for stakeholders {s1,s2,s3,s4,s5}.

stakeholder shortest paths between s j betweenness centrality
s1 s2− s3, s2− s4, s2− s5 3.0
s2 − 0.0
s3 s1− s5, s2− s5, s4− s5 3.0
s4 − 0.0
s5 − 0.0

Knowledge-based Recommendation. Knowledge-based recommendation (KBR)
[5, 14] exploits deep knowledge about the offered item assortment, knowledge about
user preferences, and knowledge about which items should be recommended in
which context. The explicit form of knowledge representation allows the genera-
tion of deep explanations as to why a certain item has been recommended or why
no solution exists in a certain recommendation context [16]. Typical recommenda-
tions derived by KBR are of the form you specified the item properties I={x,y,z}
therefore we recommend C which supports all the properties of I.

Recommendation technologies can support consistency management as well in-
telligent explanations in situations where no release plan can be identified due to
contradicting stakeholder preferences [16, 19]. Table 8 depicts a set of requirements
R={r1,r2,r3,r4} and a set of stakeholders S={s1,s2,s3}. For each requirement ri ∈
R each stakeholder specifies his/her preferences which can be 1 (include) and 0
(exclude), for example, c12=1 denotes the fact that stakeholder s1 wants to include
requirement r2 in the next software release. The set of stakeholder preferences is
denoted as C=∪ci j. Inclusion and exclusion are example constraints (preferences).
Further types of constraints are possible (see, e.g., the RE ontology proposed by
Lohmann et al. [32]) but not used in this example. For the preferences shown in Ta-
ble 4 there does not exist a solution, i.e, the stakeholder preferences are inconsistent.

Table 8 Example of inconsistent stakeholder preferences: each table entry represents a constraint
ci j , where ci j = 1 (0) denotes the fact that stakeholder i wants to include (exclude) requirement j.

s1 s2 s3

r1 1 1 1
r2 1 0 1
r3 0 0 1
r4 1 1 1

The first step to resolve this inconsistency is to figure out combinations of con-
straints (preferences) that are responsible for the inconsistency, for example, the
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Table 9 Example importance values for the stakeholder preferences shown in Table 8.

s1 s2 s3

r1 imp(c11)=0.5 imp(c21)=0.3 imp(c31)=0.4
r2 imp(c12)=0.2 imp(c22)=0.3 imp(c32)=0.2
r3 imp(c13)=0.2 imp(c23)=0.2 imp(c33)=0.2
r4 imp(c14)=0.1 imp(c24)=0.2 imp(c34)=0.2

Table 10 Utility values of repair actions {repc1, repc2, repc3, repc4}.

repck∈REPc utility(repck)
repc1 2
repc2 1.42
repc3 1.66
repc4 1.25

stakeholder preference c12 is inconsistent with the preference c22. The complete
set of such (minimal [27]) inconsistencies is CON = {con1:{c12, c22}, con2:{c22,
c32}, con3:{c13, c33}, con4:{c23, c33}}. Such sets can be determined using the algo-
rithm presented by Junker [27]. We can now determine all possible repairs for the
given set C of stakeholder preferences by simple deleting at least one element from
each subset of CON (see [40]). The possible repair constraint sets repk for CON
are elements of REP = {rep1:{c22, c33}, rep2:{c22, c13, c23}, rep3:{c12, c32, c33},
rep4:{c12, c32, c13, c23}} where a repair constraint set repk is defined as a minimal
set of stakeholder preferences (see [18]) that have to be changed in order to make
the stakeholder preferences consistent.

For the given set REP we can identify the following set of concrete repair actions
REPc= {repc1:{c22=1, c33=0}, repc2:{c22=1, c13=1, c23=1}, repc3:{c12=0, c32=0,
c33=0}, repc4:{c12=0, c32=0, c13=1, c23=1}. REPc can now be considered as a set
of alternative and minimal repairs for the original set of stakeholder preferences
such that consistency between the preferences can be restored.

4 Issues for Future Research

Based on our analysis of existing research on the application of recommendation
technologies in Requirements Engineering, we now focus on a discussion of relevant
issues for future research.

Decision Support & Preference Construction. Existing requirements engineer-
ing approaches rely on the assumption of stable stakeholder preferences (e.g., in the
context of requirements negotiation). The assumption of stable preferences is not
applicable for Requirements Engineering scenarios, in fact, related decision mak-
ing follows an incremental preference construction process [15, 20]. In order to
better integrate recommendation technologies into requirements engineering pro-
cesses, we are in the need of deep knowledge about human decision strategies. Such
a knowledge will help us to improve the decision support quality. The integration
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of human decision strategies into recommendation is a new and challenging field of
research which requires a strongly interdisciplinary research approach [20].

Recommendation Algorithms. We exemplified how RE recommendation prob-
lems can be solved by conventional recommendation approaches. However, there
are other settings with complex inter-dependencies between requirements and a
large number of inconsistent stakeholder preferences. These settings require to
adapt, combine, and extend existing recommendation approaches. One possible
direction is to adapt knowledge-based recommendation functionality for group-
based recommendation scenarios, for example, critiquing-based recommendation
approaches [6] have to be extended to support different types of group-based rec-
ommendation and diagnosis functionalities (for determining repair actions for in-
consistent stakeholder preferences).

Quality of Recommendations. Stakeholders are often skeptical regarding a new
form of automated tool support. As a consequence, recommendation technologies
will only succeed if they deliver high quality recommendations. To this end, we
have to design and conduct empirical studies to (a) learn about stakeholder needs
and (b) evaluate recommendation systems. The goal is to figure out how existing
recommendation algorithms have to be adapted for an optimal performance in RE
scenarios. Empirical studies should deliver grounded theories about the behavior of
stakeholders in particular situations, which are needed to train and optimize related
recommendation algorithms.

Social Networks in Recommendation Algorithms. The social status of stakehold-
ers often has enormous impact on RE-related decision processes. Social network
analysis is an important supportive technology for different types of recommenders.
For example, collaborative filtering recommenders can exploit trust information to
improve the quality of item predictions. Group-based recommenders can exploit
trust information for determining group recommendations.

Semi-Automated Dependency Detection. Effective dependency management is
crucial for efficient requirements engineering processes. Existing recommendation
support is focused on the analysis of similarities between requirements (using, e.g.,
clustering and content-based filtering methods). An important issue for future re-
search is to make dependency detection more intelligent in terms of making it pos-
sible to predict, for example, the type of dependency (e.g., refinement or incompat-
ibility dependency). Such new algorithms can rely on concepts from the areas of
natural language processing [13] and text mining [46].

Requirements Discovery in Open Source Software Development. Open Source
platforms include different types of communication channels and types of commu-
nication. As a consequence the filtering of requirement-relevant information is a
challenge but a prerequisite for improving the quality of recommendation support.
An issue for future research is the development of methods which allow to isolate
requirement-relevant artifacts before recommendation algorithms are applied.

Recommendation Beyond Textual Requirements. Existing RE recommendation
approaches focus on the analysis of textual requirements specifications which are
represented, for example, in a completely informal fashion or in terms of use case
scenarios. Future recommendation algorithms for RE should be able to deal with
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graphical data sources such as, for example, class diagrams, sequence diagrams,
state charts, etc. The inclusion and analysis of such artifacts has the potential to im-
prove the prediction quality of recommendation algorithms and – as a consequence
– also to improve the overall efficiency or RE related processes.

Context Awareness There are two basic recommendation modes: pull and push.
Pulling means that stakeholders are actively triggering recommendation functional-
ity when needed. When pushing the recommender application pro-actively detects
situations (contexts) in which a stakeholder needs a particular support [23]. In order
to deliver push recommendation, the context of a stakeholder has to be observed and
discovered [23]. In RE, detecting the context is difficult to realize. Humans consti-
tute the major part of the working environment and problem situations are implicit,
subtle, and subjective. One possible direction is the instrumentation of problem do-
mains to continuously collect users’ context and reason about user needs. Contex-
tual recommendation is an emerging field [1] and will also play a major role in the
development of recommendation solutions for RE.

5 Conclusions

Due to the increasing size and complexity of software systems as well as the grow-
ing share of the degree of distributedness in software projects, recommendation
technologies are becoming more and more popular as an intelligent technology for
Requirements Engineering (RE). In this paper we focused on a discussion of exist-
ing research related to the application of recommendation technologies in different
Requirements Engineering scenarios. In order to show the application of recom-
mendation technologies we came up with numerous examples. An outlook provides
insights into relevant topics for future research.
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