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Abstract—As a new developer, getting to know a large un-
known software system is a challenging task. If experienced
developers are available, they can suggest which classes to read
first, helping new developers to quickly grasp the system’s
most fundamental concepts. In practice, however, experienced
developers often are no longer available. In these cases, the
set of most important classes must be reverse engineered. This
paper presents a thorough analysis of using different network
analysis metrics on dependency graphs to retrieve central classes.
An empirical study on four open source projects evaluates the
results based on a survey among the systems’ core developers. It
demonstrates that the algorithmic results can compete with the
suggestions of experienced developers.

I. INTRODUCTION

Over the life-time of a software system, the core de-
velopment team often changes. In many cases, e. g., when
outsourcing providers are exchanged, complete hand-overs to
different teams occur. However, before a new developer can
successfully work on a specific task, he needs to gain a general
understanding of the system. As becoming familiar with an
unknown system at once is not feasible, central classes provide
a starting point for task-independent system understanding.

For a new developer, it is not obvious which classes are the
best entry point. Thus, as part of knowledge transfer to new
team members, experienced developers typically recommend
certain classes to focus on first before assigning specific tasks
to the new team member. However, from our industrial expe-
rience, there are many cases in which experienced developers
are not available when taking over the software. Reasons
include switching development of a system to a new sub-
contractor without transition time or loss of core developers
due to fluctuation. In such cases, missing knowledge of
experienced developers needs to be reverse engineered.

A possible approach to a recommendation algorithm for
central classes is provided by the field of network analysis,
where numerous metrics have been proposed to define the
centrality of a node in a graph. Applying these metrics on
a graph representation of a system, e. g., a dependency graph,
provides a ranking of the system elements (such as classes).
How well these metrics capture the notion of an experienced
developer, who recommends classes as a starting point for
system understanding, however, is an open research question.

Research problem. The goal of our work is to provide new
developers with a list of the classes that are most important

when getting to know a new system independent from a
specific task. We seek an automated approach to calculate the
centrality of each class in a system. The algorithm should
weight centrality similar to an experienced human developer.

Contribution. The paper compares various algorithmic ap-
proaches based on network analysis of dependency graphs:
With the help of a case study, we provide a thorough and
systematic analysis of existing centrality metrics and evaluate
their usefulness in practice. The study comprises four open
source projects written in Java. For each project, several core
developers named the most important classes of their system.
Individual rankings of the developers were used to evaluate
the results of the centrality metrics. The study shows that
the algorithmic results can compete with recommendations of
developer groups, and are even better than recommendations
of single developers, as the algorithm balances out individual
developer preferences.

II. RELATED WORK

Previous work ranks software artifacts, predicts defects and
maintenance effort based on network analysis and also detects
central classes with non-graph-based approaches.

A. Ranking Software Artifacts

Perin et al. [1] use PageRank for ranking software artifacts
in order to list search results in reengineering platforms. The
authors rank classes of the Pharo Smalltalk system based
on a dependency graph representing class-inheritance and
class-references. For evaluation, they extract the class names
mentioned in an introductory book and compare them to the
PageRank ordering. The authors also rank code entities in
Moose, considering class inheritance, class references, method
invocations and attribute access. The paper contains a listing
of the top-5-ranked classes for several test cases, but an
evaluation of the accuracy is missing. Perin et al. claim: “The
authors of the respective Smalltalk frameworks confirmed the
correctness of the results, although they also reported some
other core classes that did not show up in the top 5.” In contrast
to this vague statement, we present a case study with a detailed
evaluation, which includes several different centrality indices.

B. Using Network Analysis for Prediction

Several papers have used network analysis for prediction:
Zimmermann and Nagappan [2] use network analysis on



dependency graphs in order to predict defects in software
systems. With the help of an empirical study, they show
that centrality measurements successfully find central, and
therefore critical, escrow binaries on the Windows Server
2003, and outperform previous complexity metrics. Besides
predicting bug severity, maintenance effort, and defect-prone
releases, Bhattacharya et al. [3] also use source-code based
graph metrics to reveal differences and similarities in structure
and evolution of software systems. Kpodjedo and Ricca [4]
propose a recommendation system for software testers, using
evolution cost and PageRank. Although there is no empirical
evidence of a correlation between error proneness and criti-
cality of a class, the authors claim that classes identified by
their approach should be tested thoroughly. Compared to these
three papers, we evaluate the use of similar centrality indices.
However, we do not use network analysis for prediction, but
for finding a useful entry point to a software system.

C. Recommending Software Artifacts

Others use completely different approaches for finding
central classes: Čubranić and Murphy [5] recommend perti-
nent software development artifacts for newcomers to open-
source software projects based on an implicit group memory
containing information about source versions, bugs, archived
electronic communication, and web documents. The authors
tackle the same problem of introducing a new team member
when mentoring is not possible (such as open source com-
munities being geographically separated and located across
time zones), but they focus on recommending existing artifacts
relevant to a specific task. In contrast, our work contributes to
initial task-independent system understanding prior to the first
task assignment. The authors state that newcomers can have
trouble determining the relevance of recommendations when
the recommendation list is long. Prior task-independent system
understanding can potentially help solving this problem.

Storey et al. [6] recommend related files for a given task as
a developer navigates the software system. The work is based
on the assumption that navigation patterns reveal relatedness
between files. In contrast to our work, the authors focus on
task dependency. Interestingly, they lack a meaningful ranking
strategy when displaying file recommendations. Currently,
they rank based on occurrence time, considering a combina-
tion of recency and frequency for future work. It might be
challenging to determine whether our approach contributes to
this aspect of their work.

Further, [7] and [8] recommend relevant files for modifi-
cation tasks based on mining of change patterns in change
history. Again, our work should be seen as a prior step
for task-independent system understanding before working on
modification tasks.

III. TERMS & DEFINITIONS

Dependency graph. A dependency graph is a graph G =
(V,E) where the vertices V represent the interfaces/classes
of the system. In directed graphs, edge e = (v1, v2) connects

vertex v1 to vertex v2, if v1 depends on v2. In undirected ones,
edge e = {v1, v2} connects vertices v1 and v2, if v1 depends
on v2 or vice versa.

Recommendation set. A recommendation set of the algorithm
is the set containing the classes with the highest centrality
values. The top ten recommendation set includes the top ten
classes of the algorithm’s ranking.

(Recommendation) precision. The (recommendation) pre-
cision denotes the fraction of correct recommendations. A
recommendation of the recommendation set is correct if it
was listed by at least one of the developers participating in
the survey.

IV. APPROACH

This section describes the approach of ranking classes of
software systems according to their importance. The top-
ranked classes serve as a recommendation for an entry point.

In our approach, a class of a software system is considered
to be important/central if many other classes depend on it.
Dependency relations between classes are captured in the
dependency graph of a system. In network analysis, a variety
of centrality indices are commonly used and constitute metrics
for the importance of a single node within a graph. Computing
a centrality index results in an importance ranking among all
classes of the system. Thereby, using different indices leads to
different results. Furthermore, these rankings also depend on
the dependency types used for creating the graph. Different
information such as data dependencies or call dependencies
can be included.

The approach mainly consists of two phases: First, the
dependency graph is extracted (IV-A). Second, the algorithm
calculates a centrality index for each node of the graph (IV-B)
and determines the recommendation set.

We implemented the approach with the open source quality
analysis framework ConQAT1. The current implementation
takes the source and byte code of software systems written
in Java as input.

A. Design of Dependency Graph

In a first step, the algorithm extracts the dependency graph
of the system. We distinguish between different kinds of
dependencies as follows: An edge e = (v1, v2) represents a
dependency iff one of the following statements holds
• v1 implements/extends the interface/class v2 (Inheri-

tance dependency)
• v1 has a field of type v2 (Field dependency)
• v1 calls a method of v2 (Method dependency)
• a method of v1 returns an object of type v2 (Return

dependency)
• a method of v2 takes an object of v1 as a parameter

(Parameter dependency)
It is not obvious which subset of dependency edges achieves
the highest recommendation precision. An empirical study

1http://www.conqat.org/



will answer this question and determine the edge set of the
dependency graph (Section V).

In general, each node corresponds to exactly one interface
or class. However, we sometimes merge interfaces with their
implementation: The decision when to combine nodes is
based on the inheritance tree of the graph, where an edge
e = (v1, v2) indicates that v1 implements v2. Interface IA is
merged with its implementation A, iff A is the only child of
IA in the inheritance tree which does not have any children
of itself. This means that interface IA is implemented by
only one single class A. However, IA could be extended by
more subinterfaces IB , IC , which, in turn, have their own
implementation classes. We merge interface IA with its single
implementation A because of the following reason: If class A
is used within the source code, then only its interface IA will
occur in any dependency. This is due to the purpose of an
interface to hide the details of its implementing class. Hence
interface IA will have many incoming dependency edges. The
outgoing edges, however, belong to class A, because only
the concrete class makes calls and references to other classes
of the system. When A is the single implementation of IA,
the interface can be identified with its implementation and
therefore we merge both nodes in the dependency graph.

B. Centrality indices

In the second step, the algorithm calculates a centrality
index for the given dependency graph. Over the years, re-
searchers proposed a variety of different centrality measure-
ments. In preliminary experiments we evaluated a large set of
centrality indices to narrow down the choice. Thereby, simple
centrality measurements such as degree-based centralities (in-
degree, out-degree, degree) did not lead to promising results.
We choose betweenness centrality [9], PageRank [10], Page-
Rank with priors [11], HITS [12], HITS with priors [11],
and Markov [11] for further experiments. Additionally, we
introduce a hierarchical flow model.

Betweenness. The shortest-path betweenness centrality of a
node v is calculated as cB(v) =

∑
s6=v∈V

∑
t 6=v∈V δst(v)

where δst(v) denotes the fraction of shortest paths between
s and t that contains v. The betweenness centrality of a node
measures the control over communication between others.

PageRank. The PageRank algorithm is a feedback centrality,
so the score of one node depends on the number and scores
of its neighbours. The PageRank algorithm is based on the
random-surfer-model [9]. The random-surfer-model simulates
the navigation of a user through the web as a random walk:
After reading one web page, the random surfer either follows
a link to another page or randomly jumps to a new page.
Applied to the context of a dependency graph, the surfer is
considered to be the new developer who reads through the
source code. After visiting one class he either follows a link
(dependency edge) to another class or randomly jumps with
probability α to a new class. The random-jump-probability
α is an important parameter of the algorithm, that needs to

be chosen appropriately. Considering the random-surfer-model
over infinite time, the PageRank gives a stationary probability
distribution to represent the likelihood that the developer will
read any particular class.

In an extension, the algorithm can generate biased ranks by
using priors. Priors represent nodes of the system which are
known to be important prior to running the algorithm. Prior
nodes have higher initial probabilities and therefore the output
ranking is biased towards these nodes.

HITS. Similar to PageRank, HITS is an algorithm originally
designed to rank web pages. However, it does not assign
a single value to each node, but calculates two scores, the
hub and the authority score. A good hub represents a node
that points to many good authorities and a good authority
represents a page that is pointed to by many good hubs.
Roughly speaking, good authorities are nodes with a large
number of incoming links and hubs are pages with a large
number of outgoing links. For more detailed information about
the algorithm, see [12], [11]. Preliminary experiments showed
that in our context it is better to use the authority score as
centrality metric than the hub score.

In the same way as PageRank, the HITS algorithm incorpo-
rates a random-jump-probability as a parameter input. HITS
can also be extended and supplied with previous knowledge
about priors.

Markov. The Markov approach is to view the dependency
graph as a first-order Markov chain, where a “token” traverses
the graph in a stochastic manner for an infinitely long time.
The stationary distribution denotes the fraction of time that the
token spends at any single node [11]. The Markov centrality
of a node v then denotes the inverse of the average mean first
passage time in the Markov chain. The mean first passage time
msv is defined as the expected number of steps taken until the
first arrival of the token at v starting at node s. The average
is taken over all nodes, that are specified as priors of the
algorithm. In contrast to PageRank and HITS, the specification
of prior nodes is not optional, but required.

Hierarchical flow model. In addition to commonly used cen-
trality metrics in network analysis, we also designed a hierar-
chical flow model. The flow model is specifically designed for
the context of software systems and models information flow
through the system. To calculate a centrality measurement,
the hierarchical flow model is built in two steps: First, a
centrality index is used on an aggregated dependency graph,
where each node corresponds to one package rather than one
class. Edges of each package node represent the accumulation
of all edges of the classes/interfaces within the package:
Any non-empty set of all edges between classes/interfaces
of two packages defines one single edge between the two
corresponding package nodes. Packages in Java are considered
to have a tree-like structure so that subpackages are aggregated
to the package on the next higher level in the tree. The final
level of aggregation can be tuned as an input parameter.
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Fig. 1. Flow model of org.conqat.engine.commons

The centrality index provides an importance ranking among
all packages. In preliminary experiments, we worked with
PageRank, Markov, and HITS as centrality indices. The results
did not differ significantly, mostly the same packages were
considered to be the most important, only in different orders.
Hence we arbitrarily chose to use PageRank for the first step.

In a second step, a flow model is built for each package. The
graph GF of the flow model contains a set V consisting of
one vertex for each class/interface of the package. In addition,
the graph contains an artificial source and an artificial sink
vertex, which represent the rest of the system:

GF = (V ∪ {source, sink}, E)

with

E = {(v1, v2)| v1 depends on v2 ∧ v1 ∈ V ∧ v2 ∈ V }

∪ {(source, v2)| v2 has an incoming edge from a node

outside the package}

∪ {(v1, sink)| v1 has an outgoing edge to a node

outside the package}

For example, let v be a class within the package and
x and y a class outside the package. Further, let x call a
method from v and y call a different method from v. Both
dependencies will result in a single edge e = (sink, v). Figure
1 illustrates an example of the flow model for the package
org.conqat.engine.commons from our tool ConQAT. Note that
the resulting graph is not necessarily acyclic as the one in
Figure 1. Also, not every node has to be connected to the
source (or the sink) if the class does not depend on the rest
of the system.

The edges of the graph have a capacity according to the
following weight function w:

w((v1, v2)) =

{
occ(v1, v2), v1 = source
sum, otherwise ,

.

where occ(v1, v2) denotes the accumulative occurrences of
the dependencies between v1 and v2 and

sum =
∑
v∈V

occ(source, v) .

TABLE I
RANKING ON ORG.CONQAT.ENGINE.COMMONS

Class rank
ConQATProcessorBase 414
ConQATPipelineProcessorBase 125
CommonUtils 17
ConQATParamDoc 0

The capacities are designed such that flow coming in from
the source is not restricted by the capacity of any edge along
a path to the sink.

The score of each vertex within the package is calculated
as the decrease in the maximum flow of the graph when the
node and all incident edges are removed. The maximum flow is
calculated with the Edmonds-Karp algorithm [13]. The higher
the decrease of the maximum flow, the more central we assume
the node to be. In the context of a software system, the graph
models the flow of information coming in from the rest of the
system, flowing through the package, and back to the rest of
the system. The score is designed such that it represents the
control of each vertex over the flow. The scores for vertices
of the package org.conqat.engine.commons can be found in
Table I.

It remains to be determined how the overall recommenda-
tion of the model is calculated (see Section V). The recom-
mendation should include a certain number of the most central
nodes of each package in the ordering (or a variant of it) as
determined by the PageRank values in step one.

V. CASE STUDY DESIGN

The large number of different centrality indices leads to a
variety of possible results. This section describes the design
of an empirical case study for evaluation, and concludes with
a suggestion for the most useful recommendation algorithm.

A. Research Questions

The following questions guided the design of the case
study. Questions 1-4 investigate the set up of the approach,
whereas questions 5 and 6 evaluate the best set up found.

RQ1: What is the influence of the priors? Some of the
centrality indices require prior nodes or take them as optional
user input. We investigate how the choice of different prior
nodes effects the outcome of the algorithm.

RQ2: Should the dependency graph be directed or
undirected? We evaluate the results based both on the
directed and undirected dependency graphs.

RQ3: Which dependencies should be represented as an
edge of the dependency graph? We investigate how the
kinds of dependencies included in the dependency graph
influence the recommendation precision. We consider five
different kinds of dependencies, as described in Section IV-A.



RQ4: Which centrality index yields the best result?
We examine which index suits our recommendation model
best. Some indices have additional parameters (see Section
V-D), which are chosen according to preliminary experiments.

RQ5: How does the algorithm perform compared to
recommendations of a single developer? We compare the
recommendation set of the algorithm with the recommendation
of each single developer and also investigate the intersection
of the developers’ opinions per project.

RQ6: How much better is the algorithm compared to
a trivial approach? We compare our approach to a trivial
approach, which is neither based on a centrality index nor on
the system dependencies. We choose the size of a class in lines
of code as a trivial measurement and build the recommendation
set based on the largest classes of the system.

B. Study Objects

The study was conducted on four Java open source projects
(see Table II). JEdit and jMol are two open source projects
available from SourceForge:2 JEdit is a text editor, jMol a visu-
alization tool for chemical structures in 3D. The third project,
ConQAT Engine, is the core of the software quality analysis
tool ConQAT. The voTUM framework visualizes optimization
techniques of compilers.3 Table II gives an overview of the size
of the projects, measured in LoC (lines of code), and denotes
the number of vertices and edges in the directed dependency
graph. The vertices are counted after merging interfaces with
single implementations. The number of edges includes all five
dependencies mentioned in Section IV-A.

C. Evaluation

To evaluate the recommendation set of the algorithm, de-
velopers of each project answered the following question:

Assuming a new developer who does not have pre-
vious knowledge about your software system: What
are the 10 most important classes of your system,
which you would first suggest him to look at?

Table III shows the number of developers of each project
who replied to the survey. For ConQAT all four developers
were core developers, who have participated in the devel-
opment of the system from its beginning. The two jEdit
developers are both registered as administrators of the source
forge project and commit on a daily basis. For voTUM

2http://sourceforge.net/
3http://www2.in.tum.de/votum

TABLE II
OPEN SOURCE PROJECTS EVALUATED IN THE STUDY

Project Version LoC Vertices Edges
ConQAT Engine 2011.9 186.486 1571 7116
jEdit 4.5 164.783 499 2817
jMol 12.2 229.980 455 2671
voTUM 0.7.5 60.792 275 1393

TABLE III
OPEN SOURCE DEVELOPERS PARTICIPATING IN THE STUDY

Project # developers
ConQAT Engine 4
jEdit 2
jMol 3
voTUM 3

two experienced core developers answered as well as one
student. The three jMol study participants were the project
leader since 2007, a core developer since 2009 and one
additional developer. Hence, we assume that the developers
have enough experience to provide a meaningful evaluation of
our algorithm.

For research questions RQ1 - RQ4, we evaluate the results
based on the recommendation precision, calculated over the
union of the developers’ opinions. A recommendation in the
recommendation set is considered to be correct if it was named
by at least one developer. Thus, we do not take any ordering
into account. We consider the top ten, top 20, and top 50
classes for the recommendation set of the algorithm and refer
to the corresponding precisions as RP10, RP20 and RP50.

For research question RQ5, we calculate the recommenda-
tion precision for each single developer of the project. Hence,
a recommendation is only considered correct if it was named
by the specific developer under evaluation.

D. Parameter configurations

As described in Section IV-B, some of the centrality indices
require parameters. In the following we list the configuration
with which we ran the case study:

Random-Jump-Probability. Page-Rank and HITS require a
random-jump-probability α. In general, α should be chosen
between 0 and 1. To find the best α, we used preliminary
experiments and ran Page-Rank and HITS with different values
for α. These experiments showed that the higher the α, the
more uniform the final distribution. Because a non-uniform
final distribution with high variance between two different
node values is desirable, we choose α to be very small and
used a random-jump-probability of 0.001.

Priors. Some algorithms take priors as an optional or required
input. Research question 1 will discuss in Section VI and VII
with the help of preliminary experiments, which priors are best
to use. Based on that conclusion, Table IV shows the priors
used for the case study.

TABLE IV
PRIOR NODES USED IN THE STUDY

Project prior
ConQAT Engine org.conqat.engine.core.driver.Driver
jEdit org.gjt.sp.jedit.jEdit
jMol org.jmol.applet.WrappedApplet/

org.jmol.applet.Jmol
voTUM de.tum.in.wwwseidl.votum.gui.VoTUM



TABLE V
DIFFERENT SETS OF PRIORS FOR CONQAT ENGINE

Test Priors
1 Driver
2 ConQATProcessorBase
3 IConQATProcessor
4 Driver, IConQATProcessor,

ConQATProcessorBase
5 Driver, WebconsoleMain,

ConQATRunner
6 JavaDocAnalyzer, ResourceBuilder

CloneEditPropagator

Flow model. For the hierarchical flow model, we decide to
use the top 25 packages according to the PageRank algorithm.
Within each package we use the top two classes according
to the maximum decrease in the flow value. To get a total
order, we rank the top two classes of the most important
package first, followed by the top two classes of the second-
most important package etc.

With manual inspection, we investigated if the overall
ranking of the flow model could be constructed differently.
We determined that approximately only the top ten packages
according to PageRank contained classes that were named
by one of the developers. Within each package only the top
two classes seemed to be relevant. We evaluated if different
rankings, e.g. a ranking containing the top class of the top ten
packages first, followed by the second-most important classes
of the top ten packages etc. would perform better. However,
the overall ranking as mentioned above suits our requirements
best in terms of recommendation precision.

VI. EXPERIMENTS & RESULTS

RQ1. To investigate the influence of the priors, we compare
the results of using different prior test sets for ConQAT
Engine, as shown in Table V. The class Driver.java contains a
main method and is the entry point of the system. ConQAT-
ProcessorBase and IConQATProcessor were both named by at
least one developer as the most important class. ConQATPro-
cessorBase is also determined to be important by our algorithm
and frequently found in the top ten recommendation set. In
contrast, IConQATProcessor is not considered to be important
by our algorithm and is usually not included in the top twenty
recommendation set. In addition to the three individual test
sets, test set 4 includes all three of them. Test set 5 consists
of three classes that contain a main method each and test set
6 contains three randomly chosen classes.

We use these priors to calculate the Markov centrality, the
PageRank with priors, and the HITS centrality with Priors on
ConQAT Engine. For the dependency graph we experiment
with different combinations of dependency edges: inheritance
dependency (I), parameter dependency (P), return dependency
(R), field dependency (F) and method dependency (M). We
take the combinations I, IPR, IFM and IFMPR. Figure 2, 3
and 4 show the resulting recommendation precisions RP10,
RP20 and RP50 for using each test set on the dependency
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Fig. 2. Influence of choosing different priors for Markov centrality, run on
ConQAT Engine
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Fig. 3. Influence of choosing different priors for PageRank, run on ConQAT
Engine

graphs I, IPR, IFM and IPRFM. Thereby, RP10, RP20 and
RP50 are displayed in one column: The bottom section of
each column represents RP10 (highest opacity). The bottom
and the middle section together represent RP20, and the entire
column represents RP50.

We also ran similar experiments on the other study objects.
However, since the results for ConQAT engine are represen-
tative, we do not include additional tables.

RQ2 - RQ4. Since research questions RQ2, RQ3 and RQ4
can not be answered separately (the best type of dependency
graph might vary for different centrality indices), we design
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Fig. 4. Influence of choosing different priors for HITS, run on ConQAT
Engine

an experiment to answer the three questions together: We
evaluate the recommendation precisions RP10, RP20, RP50
for different combinations of centrality index and dependency
graph. As index we use closeness-betweenness, PageRank,
PageRank with priors, HITS, HITS with priors, Markov and
the flow model. In addition, we work with the dependency
graphs I, IPR, IFM and IPRFM in both the directed and
the undirected version. Tables VI, VII, VIII, and IX show
the results: Rows represent the kinds of dependency graphs,
columns the centrality indices. Each cell contains the RP10,
RP20 and RP50 values. For each kind of edge set, the highest
recommendation precision is printed in bold. The global
maximum precision per project is marked with a grey cell.

RQ5. Developers of the same project often have a different
view on their software. Their feedback on our survey reveals
that human recommendation on central classes can differ. For
each project Table X (middle column) shows the intersection
size of the developers’ opinion. For ConQAT Engine and jEdit
the developers agree on three classes to be among the top ten.
For voTUM and jMol the intersection size is even only one.

We evaluate the recommendation precision of our algorithm
based on the opinion of each individual developer. Figure 5
shows the results for the project ConQAT Engine, evaluated on
the dependency graphs I, IFM, IPR and IPRFM, using Markov.
Figure 5 is representative for the results on the other case study
objects. Hence we do not attach further graphs.

RQ6. In another experiment we evaluate how much better our
approach is compared to a trivial one. The trivial approach
recommends the ten (twenty or fifty) largest classes of the
system, measuring size in lines of code. Table X (right column)
shows the recommendation precision RP10, RP20, and RP50.

# Correct Rec.

1
2
3
4
5
6

Recommendation Precision for individual developers
among top ten recommendation set

I IPR IFM IPRFM

de
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de
v1

de
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v3
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v3

de
v3

de
v4

de
v4

de
v4

de
v4

Fig. 5. Recommendation precision of individual developers of ConQAT
Engine

VII. DISCUSSION

RQ1: What is the influence of the priors? The results as
shown in Figures 2, 3 and 4 reveal that using different sets of
priors does not change the outcome significantly. On graphs
IPR, IFM, IPRFM, the values of RP10 for example differ by
at most one, often they are the same for all sets of priors. On
dependency graph I, the results vary slightly more. However,
the recommendation precisions on this graph are lower than
on the other graphs, so we will not use this kind of graph.

For an independent algorithm, priors should be chosen such
that the least amount of developers’ knowledge is required.
We use a class containing the main method. However, in
most of our test systems there are multiple classes containing
a main method, so the prior needs to be chosen manually or
randomly. Table IV previously showed the priors we selected
manually for the remaining research questions.

RQ2: Should the dependency graph be directed or
undirected? Throughout all four test projects, PageRank,
PageRank with priors, Markov, and the flow model perform
better on the undirected dependency graphs than the
directed ones. HITS and HITS Prior often obtain similar
results for directed and undirected graphs. For undirected
graphs, both scores authority and hubs are the same. For
directed graph, we use the authority score as centrality
index, because the authority score leads to better results.
The betweenness-centrality sometimes performs better on
directed graphs. However, in most cases, the betweenness-

TABLE X
SIZE OF THE INTERSECTION SET OF DEVELOPERS’ OPINIONS AND

RESULTS OF THE TRIVIAL APPROACH BY MEASURING THE SIZE OF A
CLASS

Project intersection RP10, RP20, RP50

ConQAT Engine 3 2
10

, 2
20

, 3
50

jEdit 3 4
10

, 7
20

, 11
50

jMol 1 7
10

, 7
20

, 12
50

voTUM 1 2
10

, 4
20

, 7
50



TABLE VI
RESULTS ON PROJECT CONQAT ENGINE

Graph Betweenness PageRank PageRankPr HITS HITSPr Markov Flow

I undirected 3
10

, 3
20

, 4
50

2
10

, 2
20

, 3
50

1
10

, 1
20

, 2
50

2
10

, 2
20

, 3
50

1
10

, 1
20

, 2
50

, 0
10

, 0
20

, 0
50

3
10

, 3
20

, 4
50

I directed 2
10

, 3
20

, 6
50

4
10

, 5
20

, 6
50

2
10

, 2
20

, 2
50

2
10

, 2
20

, 6
50

1
10

, 2
20

, 2
50

4
10

, 5
20

, 6
50

2
10

, 4
20

, 4
50

IPR undirected 6
10

, 9
20

, 12
50

7
10

, 9
20

,11
50

7
10

, 9
20

,11
50

7
10

, 9
20

, 9
50

6
10

, 9
20

, 13
50

7
10

,10
20

,11
50

4
10

, 6
20

, 8
50

IPR directed 6
10

, 9
20

, 11
50

3
10

, 4
20

, 9
50

1
10

, 2
20

, 4
50

4
10

, 4
20

, 4
50

4
10

, 5
20

, 6
50

4
10

, 5
20

, 9
50

4
10

, 4
20

, 7
50

IFM undirected 6
10

, 8
20

, 12
50

9
10

, 11
20

, 14
50

9
10

,11
20

,15
50

7
10

, 9
20

, 10
50

7
10

, 12
20

, 13
50

9
10

, 10
20

, 14
50

4
10

, 7
20

, 10
50

IFM directed 1
10

, 6
20

, 12
50

5
10

, 7
20

, 15
50

1
10

, 1
20

, 2
50

8
10

, 11
20

, 14
50

8
10

, 11
20

, 15
50

5
10

, 8
20

, 15
50

0
10

, 3
20

, 5
50

IPRFM undirected 6
10

, 8
20

, 14
50

8
10

, 13
20

, 15
50

8
10

,13
20

,16
50

8
10

, 12
20

, 14
50

8
10

, 11
20

, 15
50

8
10

, 12
20

, 15
50

6
10

, 10
20

, 12
50

IPRFM directed 5
10

, 9
20

, 13
50

4
10

, 7
20

, 12
50

1
10

, 1
20

, 5
50

8
10

, 11
20

, 14
50

7
10

, 11
20

, 14
50

2
10

, 4
20

, 12
50

3
10

, 5
20

, 10
50

TABLE VII
RESULTS ON PROJECT JEDIT

Graph Betweenness PageRank PageRankPr HITS HITSPr Markov Flow

I undirected 0
10

, 0
20

, 3
50

0
10

, 1
20

, 4
50

2
10

, 2
20

, 2
50

0
10

, 0
20

, 0
50

2
10

, 2
20

, 2
50

0
10

, 0
20

, 0
50

0
10

, 0
20

, 1
50

I directed 0
10

, 0
20

, 1
50

0
10

, 2
20

, 3
50

1
10

, 1
20

, 2
50

0
10

, 2
20

, 4
50

1
10

, 1
20

, 2
50

0
10

, 1
20

, 4
50

1
10

, 1
20

, 1
50

IPR undirected 4
10

, 5
20

, 9
50

4
10

, 6
20

, 10
50

4
10

, 6
20

, 10
50

0
10

, 0
20

, 0
50

4
10

, 7
20

, 8
50

6
10

, 8
20

, 10
50

3
10

, 4
20

, 4
50

IPR directed 6
10

, 8
20

, 11
50

1
10

, 3
20

, 7
50

6
10

, 9
20

,10
50

0
10

, 0
20

, 0
50

4
10

, 5
20

, 9
50

3
10

, 4
20

, 9
50

3
10

, 3
20

, 4
50

IFM undirected 2
10

, 6
20

, 9
50

5
10

, 7
20

, 11
50

5
10

, 7
20

, 11
50

4
10

, 7
20

, 12
50

4
10

, 5
20

, 10
50

4
10

, 9
20

, 13
50

4
10

, 5
20

, 5
50

IFM directed 5
10

, 8
20

,10
50

1
10

, 3
20

, 9
50

3
10

, 7
20

, 10
50

5
10

, 6
20

, 13
50

2
10

, 5
20

, 9
50

1
10

, 3
20

, 9
50

3
10

, 5
20

, 5
50

IPRFM undirected 4
10

, 6
20

, 10
50

4
10

, 7
20

, 12
50

4
10

, 7
20

, 12
50

4
10

, 7
20

, 12
50

4
10

, 6
20

, 10
50

4
10

, 8
20

, 12
50

4
10

, 4
20

, 4
50

IPRFM directed 5
10

, 8
20

,10
50

3
10

, 5
20

, 11
50

4
10

, 8
20

, 13
50

5
10

, 7
20

, 13
50

4
10

, 6
20

, 10
50

3
10

, 7
20

, 11
50

3
10

, 4
20

, 4
50

TABLE VIII
RESULTS ON PROJECT JMOL

Graph Betweenness PageRank PageRankPr HITS HITSPr Markov Flow

I undirected 1
10

, 1
20

, 1
50

1
10

, 1
20

, 5
50

2
10

, 2
20

, 2
50

0
10

, 0
20

, 0
50

2
10

, 2
20

, 2
50

0
10

, 0
20

, 0
50

1
10

, 1
20

, 1
50

I directed 0
10

, 1
20

, 2
50

1
10

, 1
20

, 3
50

4
10

, 4
20

, 5
50

1
10

, 1
20

, 2
50

3
10

, 4
20

, 5
50

2
10

, 2
20

, 3
50

0
10

, 1
20

, 2
50

IPR undirected 3
10

, 4
20

, 10
50

6
10

, 8
20

, 12
50

6
10

, 8
20

, 13
50

7
10

, 9
20

,13
50

4
10

, 7
20

, 11
50

6
10

, 9
20

, 12
50

3
10

, 5
20

, 6
50

IPR directed 4
10

, 5
20

, 9
50

1
10

, 3
20

, 8
50

3
10

, 5
20

, 10
50

6
10

, 7
20

, 11
50

2
10

, 3
20

, 8
50

0
10

, 0
20

, 1
50

1
10

, 4
20

, 5
50

IFM undirected 3
10

, 6
20

, 12
50

5
10

, 7
20

, 14
50

5
10

, 7
20

, 14
50

5
10

, 8
20

, 12
50

3
10

, 6
20

, 13
50

5
10

, 7
20

, 13
50

4
10

, 6
20

, 6
50

IFM directed 5
10

, 9
20

,12
50

3
10

, 4
20

, 9
50

4
10

, 4
20

, 9
50

4
10

, 5
20

, 9
50

3
10

, 7
20

, 8
50

2
10

, 3
20

, 8
50

4
10

, 5
20

, 6
50

IPRFM undirected 3
10

, 8
20

, 11
50

5
10

, 8
20

, 14
50

5
10

, 8
20

, 14
50

6
10

, 9
20

,11
50

3
10

, 7
20

, 12
50

5
10

, 9
20

, 13
50

4
10

, 6
20

, 6
50

IPRFM directed 5
10

, 9
20

, 13
50

3
10

, 5
20

, 11
50

3
10

, 6
20

, 12
50

4
10

, 7
20

, 11
50

3
10

, 7
20

, 8
50

4
10

, 7
20

, 12
50

4
10

, 6
20

, 6
50

TABLE IX
RESULTS ON PROJECT VOTUM

Graph Betweenness PageRank PageRankPr HITS HITSPr Markov Flow

I undirected 4
10

, 7
20

, 12
50

6
10

, 7
20

,12
50

2
10

, 3
20

, 5
50

3
10

, 4
20

, 6
50

2
10

, 3
20

, 5
50

2
10

, 2
20

, 4
50

3
10

, 3
20

, 4
50

I directed 5
10

, 7
20

, 10
50

5
10

, 8
20

, 13
50

2
10

, 5
20

, 8
50

4
10

, 7
20

, 13
50

2
10

, 4
20

, 8
50

5
10

, 7
20

, 13
50

6
10

, 6
20

, 8
50

IPR undirected 4
10

, 8
20

, 17
50

6
10

, 10
20

, 17
50

6
10

, 11
20

, 17
50

6
10

, 9
20

, 12
50

6
10

, 10
20

, 16
50

8
10

,10
20

,14
50

7
10

, 7
20

, 9
50

IPR directed 5
10

, 8
20

, 15
50

3
10

, 4
20

, 9
50

4
10

, 6
20

, 14
50

2
10

, 3
20

, 12
50

5
10

, 10
20

, 15
50

2
10

, 2
20

, 12
50

2
10

, 5
20

, 8
50

IFM undirected 4
10

, 7
20

, 12
50

6
10

, 8
20

, 15
50

6
10

, 8
20

, 15
50

6
10

, 8
20

, 10
50

6
10

,10
20

,15
50

5
10

, 9
20

, 12
50

6
10

, 6
20

, 8
50

IFM directed 5
10

, 6
20

, 9
50

5
10

, 7
20

, 14
50

3
10

, 4
20

, 7
50

6
10

, 9
20

, 10
50

5
10

, 8
20

, 13
50

5
10

, 7
20

, 14
50

5
10

, 7
20

, 9
50

IPRFM undirected 5
10

, 8
20

, 13
50

4
10

, 11
20

, 14
50

4
10

, 11
20

, 14
50

6
10

, 7
20

, 12
50

5
10

, 10
20

, 16
50

6
10

,10
20

,13
50

5
10

, 6
20

, 8
50

IPRFM directed 4
10

, 6
20

, 13
50

2
10

, 5
20

, 9
50

4
10

, 6
20

, 12
50

5
10

, 8
20

, 12
50

4
10

, 9
20

, 15
50

2
10

, 4
20

, 9
50

4
10

, 5
20

, 8
50



centrality is outperformed by the other algorithms. In the
few cases, where betweenness-centrality achieves the highest
recommendation precision for one type of graph, Markov
and PageRank reveal similar results on the undirected graph.
Therefore it is legitimate to say that it is outperformed in the
general case. This indicates that the usage of shortest-path
measurements on dependency graphs is not useful for a
centrality recommendation system. This is in contrast to the
results of [2], who are most successful applying their shortest-
path-centrality. We conclude that the best recommendations
are given when the dependency graph is undirected.

RQ3 & RQ4: Which dependencies should be represented
as an edge of the dependency graph? Which centrality
index yields the best result? In all test projects except
for ConQAT Engine the highest precision is found for the
IPR dependency graph, which includes inheritance, parameter
and return dependencies. However, the index with the highest
precision varies.

Figure 6 visualizes the results of Tables VI-IX on the
undirected IPR dependency graph. It shows only the results
of PageRank, HITS, and Markov, because the betweenness
centrality and the flow model are generally outperformed.
Considering only the undirected version of the IPR graph, the
best indices (primarily based on RP10) are Markov for projects
jEdit and voTUM. On ConQAT engine, PageRank, PageRank
with priors, and Markov perform equally well. For jMol,
HITS leads to the best results, directly followed by Markov
as the second best index. We conclude that applying the
Markov centrality on the IPR depdency graph yields the best
recommendation in accordance with the developers’ opinion,
because it performs the best on three projects and second-best
on the fourth one.

# Correct Recommendations

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

RP10, RP20 and RP50
for different centrality indices on all case study objects
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Fig. 6. Results of applying different centrality indices on the IPR undirected
dependency graph

On projects ConQAT, jEdit, and jMol all centrality indices
perform very poorly when applied to the inheritance graph (I).
For voTUM the results of the inheritance graph are slightly
better. In general this shows (as expected) that inheritance
information on its own is not sufficient for a recommenda-
tion tool but needs to be combined with other dependency
information. Why results are better for voTUM is speculative.
VoTUM is the smallest project of all four study objects and
the one with the strongest framework character. Maybe this
leads to an increase in the ratio of inheritance dependency to
the rest of the dependencies.

In most cases, the flow model is outperformed by random-
walk based centralities. Manual inspection revealed that using
the decrease in the flow value within one package does produce
useful results in accordance with the developers’ opinions.
However, ranking the packages among themselves based on
PageRank and recommending the top two vertices for each
package does not have strong correlation with the developers’
recommendation.

On the undirected versions of the dependency graphs,
PageRank and Markov obtain similar results in terms of
recommendation precision. In many cases, both algorithms end
up with the same recommendation set, just in slightly different
orders. A comparison between the two recommendation sets
can be found in [14]. This observation is in accordance to
the results of White and Smyth [11], who evaluate the same
network algorithms on a variety of real world data sets.

RQ5: How does the algorithm perform compared to
recommendations of a single developer? Figure 5 shows
that the recommendation precision of the algorithm based on
the opinion of a single developer is at most 50%. Calculating
the precision based on the union of all developers’ opinions as
in RQ1-4 leads to much better results, with a precision up to
90%. The small intersection size of the developers’ opinions
(Table X) explains the difference: Developers agree only on
a small number of classes to be central. Depending on which
parts of the system they work with the most, they consider
different classes to be important. However, the union over all
developers’ opinions matches the output of the algorithm.
RQ6: How much better is the algorithm compared to
a trivial approach? We compare the trivial algorithm with
our one, using Markov on the undirected IPR graph, and
show the results in Table XI. For the three projects ConQAT,
jEdit, and voTUM, our algorithm clearly outperforms the
trivial approach: On ConQAT Engine, the trivial approach
only enumerates two out of ten classes correctly, whereas
we achieve a precision of eight out of ten. On the fourth
project, jMol, both approaches perform equally well. With
seven compared to six correct recommendations, the trivial
approach achieved a slightly higher precision among the top
ten set. However, we do not consider the difference of one
correct class as significant. In general, the class size in jMol is
much higher than in the other projects. It seems that over time
the central classes grew into god classes. Hence, the biggest
classes match the ones named by the developers.



TABLE XI
CORRECT RECOMMENDATIONS AMONG THE TOP TEN OF THE TRIVIAL

APPROACH COMPARED TO MARKOV ON THE UNDIRECTED IPR
DEPENDENCY GRAPH.

Project trivial Markov
ConQAT Engine 2 7
jEdit 4 6
jMol 7 6
voTUM 2 8

VIII. THREATS TO VALIDITY

Based on our experience, data from developers to evaluate
the case study is difficult to collect. In the absence of more
available data, the case study comprises only four projects.
However, they were chosen from different domains so that they
represent a large area of software applications. As we compare
our algorithm to the opinions of humans, the experience of
the case study participants influences the results. As mainly
core developers responded to the survey, we believe that their
opinion constitutes a meaningful foundation for our evaluation.
For knowledge transfer, there is currently no other possibility
than relying on the opinion of core developers. We are aware
of the limitation of this approach with respect to the size of
the project. Once the project’s sizes exceeds a certain limit, no
developer is able to give a complete overview of the system.
Hence for very big systems, there is no comparison for our
algorithm. However, for such large systems, knowledge will
be transferred for each subsystem individually. Consequently,
for smaller subsystems, which are within human grasp, our
algorithm can be applied and validated.

Our evaluation metric precision is designed such that it
depends on the number of available developer opinions: More
developer participating in the survey make it more likely for
our algorithm to achieve a higher precision. One could argue
that a large enough number of participants will result in a
precision of 100%. Hence our evaluation metric is invalid as
a class should not belong to the recommendation set of the
algorithm because one single developer thinks that it is impor-
tant, but because a vast majority of developers agrees on its
centrality. However, we conducted another survey (see RQ5,
Section VII) in which we showed the recommendation set to
the ConQAT developers. Without exception, they commonly
agreed that the recommended classes are central. Therefore we
believe that our algorithm does produce very useful results.

One could argue that evaluating the precision only is not
sufficient, because the recall of the algorithm is not taken
into account. However, for the purpose of knowledge transfer,
we validated that the recommendations of the algorithm are
in accordance to the developers’ opinions and, furthermore,
that the algorithm is less biased towards a specific part of the
system than a single developer. Limited by a small number of
participants, the recall could not be evaluated appropriately.
If more developers’ opinions were available, the recall could
have been determined based on inter-rater agreement. We
consider this to be an interesting and challenging task for
future work.

We conducted some preliminary experiments to narrow
down the parameter space of the case study. However, it is not
possible to make an exhaustive search through the parameter
space. To our best knowledge, we chose the preliminary
experiments such that they did not affect the results.

IX. CONCLUSION AND FUTURE WORK

This paper has shown that using network analysis on
dependency graphs successfully retrieves important classes
of a system and results in a recommendation which can
compete with recommendations given by core developers. The
algorithmic results are even better than the recommendation
of a single developer, because they are less biased towards
personal preferences. An empirical case study was designed
to find the best combination of centrality measurement and
dependency graph. The case study which included four open
source projects revealed a variety of interesting results: The
centrality indices work best on an undirected dependency
graph including information about inheritance, parameter and
return dependencies. Using the Markov centrality leads to the
best results, with a precision between 60% and 80% in the top
ten recommendation set.

For future work, confirming those results on a larger data
base and extending the evaluation to industry software system
will be challenging. Evaluating the recall of the algorithm
based on inter-rater agreement constitutes an interesting task.
We also plan on evaluating the algorithm on software projects
which were written C/C++ or C#.
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