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Abstract—Reuse of third-party libraries promises significant
productivity improvements in software development. However,
dependencies on external libraries and their APIs also intro-
duce risks to a project and impact strategic decisions dur-
ing development and maintenance. Informed decision making
therefore requires a thorough understanding of the extent and
nature of dependencies on external APIs. As realistically sized
applications are often heavily entangled with various external
APIs, gaining this understanding is infeasible with manual
inspections only. To address this, we present an automated
approach to analyze the dependencies of software projects on
external APIs. The approach is supported by a static analysis
tool featuring a visualization of the analysis results. We evaluate
the approach as well as the tooling on multiple open source
Java systems.
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I. INTRODUCTION

Many software projects depend on external libraries and
frameworks to deliver feature-rich software in a cost-efficient
and timely manner. These libraries represent a great oppor-
tunity for productivity improvement and also can improve
overall code quality [1], [2]. However, relying on third-
party APIs entails loosing control over a part of a software
system’s functionality. This introduces potential risks for
software maintenance: Firstly, APIs keep evolving, often
introducing new functionality or providing bug fixes. Migrat-
ing to the new version is therefore often desirable. However,
depending on the amount of changes, e.g., in case of a major
new release of an API, backward-compatibility might not
be guaranteed. Secondly, an external API might not yet be
completely mature. Thus, it could introduce bugs into the
current software project, which might be difficult to find
and hard to fix. In this case, it would be necessary to replace
the current API with a more reliable one, as soon as it is
available. Thirdly, the provider of an API might decide to
discontinue its support, such that maintainers can no longer
rely on them for new functionality and bug fixes. Finally,
the license of a library or a project might change, making
it impossible to continue the use of a particular API. This,
for instance, is the case when commercializing a software
product built on non-commercial libraries. These risks are
beyond the control of the maintainers of a system but need

to be considered to make informed decisions about main-
tenance options of a software system. Consequently, it is
necessary to understand the complexity of the dependencies
to external APIs in detail. Without this knowledge, the effort
required for many maintenance scenarios is hard to estimate.
However, for realistically sized software systems, it is not
feasible to assess API dependencies manually. Tool support
is therefore needed to provide this information automatically.

Problem: Software development with external libraries
poses multiple challenges to software maintenance. Main-
tainers need to address these challenges when planning and
deciding maintenance activities for a system. This requires
a detailed understanding of the API dependencies and their
complexity. However, it is infeasible to manually retrieve
this information for large projects. To effectively maintain
projects with external libraries we, therefore, need dedicated
support that allows for informed decisions regarding migra-
tion of libraries.

Contribution: We present an approach that automat-
ically extracts information about library usage from the
source code of a project and visualizes it to support deci-
sion making during software maintenance. It enables quick
insight into how external libraries are used by a project and
how complex the dependencies are. It thus aids in decision
making regarding library migration scenarios. We identify
multiple use cases and evaluate the approach for a number
of open source Java systems.

Outline: The remainder of this paper is structured
as follows: Section II describes the use cases, whereas
Section IIT introduces related work and assesses its appli-
cability with respect to the use cases. Section IV presents
our approach, whilst Section V details the results of the
evaluation. Sections VI and VII discuss outcomes and threats
to validity. The paper proposes further research steps in
Section VIII and concludes with Section IX.

II. USE CASES

In the following paragraphs, we detail the use cases based
on which we will evaluate our approach. We consider them
to be typical maintenance scenarios.

A. API Evolution

A new release of an external library requires maintainers
to assess whether the new release is relevant for their system,



i.e., contains desired new functionality or bug fixes for the
parts of the API the system uses. If so, they need to decide
if and when to migrate the system to the new version of
the APIL. To allow a detailed estimation of the migration
effort, maintainers need information about which parts of
the system are currently using the old version of the API as
well as how complex the dependencies are.

B. API Replacement

At times, a library used by a project might have to be
replaced by a completely different one, for instance, when
a library is no longer supported. Maintainers of the project
need to be able to determine the trade-off between staying
with a discontinued library and migrating to a different
library. Replacement of an API also could become necessary
due to license conflicts: a library licensed under the GPL!
might be convenient to use as long as the project is non-
commercial. If, however, at some point the project should
be turned into a commercial one or license policies of
API producers change, the concerned libraries need to be
exchanged. In both scenarios it is important for maintainers
to know which parts of their projects depend on an API to
which degree. They also need to know which functionality
is used to be able to select a matching replacement, as well
as to estimate the dimension of the migration.

C. System Integration

System integration refers to a maintenance scenario in
which two software systems need to be integrated that are
using different libraries for the same functionality, e.g. one
of them uses Swing as GUI framework, the other one SWT.
No constraints are given concerning which library should
be used in the integrated system, however, at least one of
the two systems needs to be migrated to the other library
(it could also be the case that both systems are migrated
to a third library). From a strategical point of view, an
estimation about the effort of the integration is required to
schedule the migration. Furthermore, maintainers need to
decide on the API to migrate to, based on the complexity
of the dependencies.

III. RELATED WORK

Understanding the complexity of API dependencies in-
volves combining approaches from two fields of research,
impact analysis and library usage analysis. When building
the tool support and visualization, we also dealt with issues
of software visualization. In the following, we introduce
related work for these areas.

A. Impact Analysis

The goal of impact analysis is to determine which artifacts
are affected by a proposed change to the software. This
information can then be used to plan and implement the
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changes more accurately [3] as well as estimating and
directing test efforts [4]. Sangal etal. [5] employ dependency
structure matrices (DSMs) to manage complex software
architectures. A matrix visualizes the dependencies between
the modules of a system (as given by the Java package
structure), which can be used for impact analysis of pro-
posed changes to certain system modules. The cells of a
DSM contain a number that indicates the “strength” of a
dependency, given by the number of references from one
module to another. However, this does not yet provide a
measurement for the complexity of the dependencies which
we consider necessary in our use cases.

B. Library Usage Analysis

Limmel etal. [6] analyze the API usage of 1,476 open
source Java projects. Among others, they investigate the
footprint of API usage on a project level, given by the
number of APIs used and the number of (distinct) API
methods called. They suggest that these numbers can be
used as an indicator for API-related complexity. Their work
provides a general overview on API-related complexity on a
project level but does not foster the detailed understanding
of dependencies, which we require to support maintainers of
a system in the mentioned use cases. Acquiring this detailed
information necessitates a very detailed report on the actual
API-usage of a project, drilling down to package and class
level.

Mileva etal. [7] analyze the usage frequency of API
entities over time. If usage of an API element is decreasing,
they infer that the item might be problematic, e. g., exhibits
a defect. Their goal is to utilize the wisdom of the crowds to
produce recommendations telling that projects are increas-
ingly avoiding a particular API element and proposing alter-
native ones. This could consequently trigger improvements
to the user’s code base. The authors thus attempt to provide
support for API evolution scenarios. However, their goal is
to detect and remove problematic API elements, whereas we
focus on assessing the complexity of API dependencies and,
therefore, need additional dependeny information to support
our use cases.

Raemaekers et al. [9] analyze library usage in open source
systems with the goal of automatically discovering the risks
entailed by the use of third-party libraries. Among others,
they determine how the usage of a library distributes over the
system. If the usage is concentrated in a single component,
the risks introduced by a library are more isolated compared
to the situation where library references are scattered over
the whole system. The authors, therefore, consider the
distribution of API dependencies but do not assess their
complexity in terms of the functionality used. The scope
of the analysis is restricted to the package level on the basis
of package imports, whereas our use cases require more
detailed notions of API references to resolve dependencies
in a more fine-granular way.



C. Software Visualization

Software visualization, as a form of information visual-
ization, has the goal of transforming complex abstract infor-
mation into a visual form, in order to support users in better
understanding complex phenomena [10], [11]. Consequently,
it is used for intelligence amplification [12], helping people
that work with information to reason and communicate about
it. Diehl defines software visualization as “the visualiza-
tion of artifacts related to software and its development
process” which is employed with the purpose to represent
“the structure, behaviour, and evolution of software” [11].
Structural visualizations focus on information which can be
extracted from a software system without running it whilst
behavioral visualizations contain data extracted from pro-
gram executions, like run-time traces. Price et al. [13] further
differentiate between algorithmic and program visualization.

Our approach presents a structural program visualization,
displaying the hierarchical composition of the software
project in an interactive table view. The visual representation
of the analysis results was inspired by the extended SeeSoft
View [14] which encodes different characteristics of source
code, such as code age, into colored bars.

IV. APPROACH

Our approach automatically analyzes software systems
with the goal of determining the degree of dependence
to its included libraries. We statically analyze the code to
determine the dependencies and use the extracted informa-
tion to produce a visualization to gain a quick overview
of the library dependencies. To determine the degree of API
dependence and complexity, we measure three values: firstly,
we determine the total number of all method calls to external
APIs in order to find out which libraries are contributing to
a project and to which extent. This allows to rank APIs with
respect to their contribution. To take into account the variety
of API functionality which the project actually employs,
we secondly extract for each external API the number of
distinct method calls. Thirdly, our visualization encodes the
proportion of each distinct method call with respect to all
method calls.

A. Implementation

The approach is implemented in Java on top of the
open source software quality assessment toolkit ConQAT?,
a modular toolkit for creating quality dashboards which
integrate the results of multiple quality analyses. The current
implementation analyzes the API usage of Java programs,
however, it could be transferred to other programming
languages. The approach consists of two principal parts: fact
extraction and visualization. Both are presented in detail in
the following sections.

Zhttp://www.congat.org/

B. Fact Extraction

We use the Eclipse Java Compiler (ECJ) to obtain the
abstract syntax tree (AST) for Java code. We traverse the
AST to extract the API references of the source code of
software projects. We approximate the degree of dependence
to an API with the number of API method calls. For each
class, we determine the total number of API calls, the
number of distinct API methods called for each included
library as well as their proportion and aggregate the data
hierarchically along the package structure. We consider
every Java Archive File (JAR) contained in the project as
included library.

C. Visualization

We extend the HTML output and tree table visualization
capabilities of ConQAT to present the results of the fact
extraction. Figure 1 shows an exemplary screenshot of an
analysis output. The columns, labelled A, list all external
APIs, to which the project has dependencies. They are
ordered decreasingly by the number of overall API calls
from left to right. The table rows, labelled B, contain an
interactive tree that reflects the package structure of the
analyzed system. The table cells show the (aggregated) total
number of method calls, #fotal, from a system package to
a certain API, as well as the number of distinct method
calls, #dist. The width of the colored bars visualizes the
total number of API calls, #tfotal. Each color corresponds
to a distinct API method and the width of the colored
stripe (PDist) encodes proportionally how often it was called
compared to the other API methods.

swt-3.6-win32-x86.jar
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Figure 1. Excerpt of the API-Dependence Visualization, displaying the
column of one external library, labelled A, the rows with the system
composition, labelled B, and the values for number of total and distinct
API calls. The number of total calls and the proportion of the distinct calls
are encoded in the colored bar.

The top-level row allows to gain a quick insight into
the role a particular API plays within the project in terms
of overall usage. Expanding the tree reveals how packages
of the system use the APIs. It allows to understand to
which extent a package is dependent on APIs and also how
the dependencies of a certain APl span over the system
architecture. The table also allows to compare the degree
of API dependence between packages. Furthermore, the tree
enables a drill-down to the class level of the system, thus
allowing to pinpoint the API dependencies.



V. EVALUATION

In the following, we qualitatively evaluate our approach
by answering questions typically raised in the use case
scenarios of Section II. We illustrate the findings on three
study objects, which are listed in Table I. All of them are
open source Java projects, which use external libraries. The
extent to which these projects depend on external libraries,
however, differs notably in terms of complexity.

Table I
THE STUDIED JAVA APPLICATIONS
System Version Application Domain LOC
Azureus/Vuze 4504 P2P File Sharing 786,865
DrJava 20100913-r5387  Java Programming 160,256
OpenProj 1.4 Project Management 151,910

Our approach answers the following questions:

Which external libraries does the system depend on?:
This question is relevant for the use case API Evolution, as
deciding if one is concerned by a new API release requires
knowing all of a projects’ external libraries.

The Figures 2, 3, and 4 show the visualization of the
analysis results for OpenProject, Azureus and DrJava. All
external libraries which are used by the systems are listed
in the top row of the corresponding Figure?.

Which libraries are used most by the system? Is there a
package depending on a large number of external libraries?:
This information helps to estimate the criticality of a mi-
gration, concerning the use cases API Evolution and API
Replacement. If a central API is concerned, migration might
be more urgent than for a hardly used APIL

The external libraries are ordered decreasingly according
to their share of contribution to the system. Therefore, at
one glance, the most important libraries can be determined
for each of them (forms.jar for OpenProject, swt.jar for
Azureus, and plt.jar for DrJava). Also patterns of reuse can
be seen. In Figure 4 most of the dependencies are bundled
in the package “edu.rice.cs.drjava.model”, which indicates
the package as important for maintenance scenarios.

How many calls to a specific external library are
present in the system? How complex are the dependencies?:
This question is central to all use cases as it provides
information about the complexity of the dependence on a
specific library.

For each of the external libraries, the number of total and
distinct references is reported in the matching column in the
top row, which corresponds to the top level of the system
representation. Putting the numbers of total and distinct
references in relation allows an estimate of the complexity
of the dependencies. Take as example Figure 2: forms.jar,
which is most frequently referenced in the project (942 API
references), accounts for only 31 distinct references, whereas
jasperreports.jar (298 total references) accounts for 115

3Note that Figure 2 is split in two rows to retain readability.

distinct references. The colored stripes encode the proportion
of the distinct method calls. This allows to assess one more
aspect of the dependency complexity.

How are API calls distributed over a system? Which
packages are affected? Who needs to be notified of the
API migration?: This question applies to all use cases:
together with the question above, its results help to estimate
the dimension of a migration. After deciding to migrate a
project to a new version or a different API, maintainers
need to determine whom to notify of the changes. They
need to find out which parts of the system are affected by
a migration, as well as finding the programmers responsible
for the respective packages.

Expanding the interactive tree allows to immediately spot
which packages or classes are dependent on a library. In
Figure 3, expanding the root node of the tree shows that
about a quarter of the references to the swt.jar are in the
package “com” and three quarters in “org”. Expanding “org”
to investigate the further distribution of the API references
shows that only two packages, “org.eclipse” and “org.gudy”,
are including SWT-functionality. The significant share of
dependencies falls within the “org.gudy” packages.

VI. DISCUSSION

In many projects, third-party libraries are an integral
part of software development. A number of maintenance
scenarios caused by evolving APIs require detailed knowl-
edge about the extent and complexity of the dependencies
to these APIs. Our approach addresses this by analyzing
and visualizing the extent and complexity of the library
dependencies in a software project. The evaluation shows
that the central questions raised during the identified usage
scenarios can be answered by our approach. Since the
approach is completely automated, gaining this knowledge
comes at little cost. It is thus an effective way to support
informed decisions during software maintenance.

Our approach aims at getting a quick overview over
the library dependences of a software project. We believe
that the proposed approach complements existing work on
impact analysis, where the focus is to narrow down the parts
of a system that are affected by a given change as precise
as possible, for instance to direct testing efforts. Our goal
is a more abstract and aggregated view and our analysis is
specifically designed to focus on the dependencies to exter-
nal libraries and their influence on maintenance activities.

We envision the presented analysis and visualization to be
part of a quality analysis dashboard that allows to monitor
the dependence status to included libraries in a continuous
manner, for instance as a part of a nightly build.

VII. THREATS TO VALIDITY

With our approach we intend to measure and visualize the
complexity of a project’s dependence to external libraries.
The metrics we chose are the total number and the number
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Figure 2. Dependency visualization for OpenProj, displaying the global system overview in the first row. The following rows show the API dependencies
on the first package level.
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Figure 3. Dependency visualization for Azureus. This example demonstrates the localization of packages depending on SWT. Furthermore, it shows at
one glance to which library the system has the strongest dependencies.
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Figure 4. Dependency visualization for DrJava. This example shows the complete drill-down along the system hierarchy. Under the package
edu.rice.cs.drjava, a list of classes are visible (represented by nodes which can not be expanded) with their dependencies to the library plt.



of distinct API calls. There are further static references to
API elements, such as overridden types and methods as well
as field references, which could have been included in the
analysis. In preliminary evaluations, however, the share of
these references was by several factors smaller than the
one of API calls. Our notion of complexity is restricted
to a syntactic level. Arguably, the complexity of the API
dependencies is influenced by further factors, some of which
are hard to quantify. An example is the intrinsic complexity
of an API and its concepts. We also currently limit the
analysis to direct static API references and did not take
into account how the system transitively depends on the
functionality of a library.

VIII. FUTURE WORK

To complete the drill-down on the visualization side, the
next steps are to integrate the source code with the results
in a way that dependencies are directly highlighted where
they occur. Furthermore, we are planning to evaluate our ap-
proach more thoroughly. On one hand, we intend to perform
quantitative studies in order to determine metric values and
compare their occurrence over a large set of open source
systems. On the other hand, we are planning a use case
driven evaluation to assess the helpfulness and practicability
of our approach for real-life maintenance scenarios.

We envision extending the presented approach to provide
further support for API evolution scenarios. In addition to
detecting the currently used version of an API, it seems use-
ful to automatically determine whether newer versions are
available. In that case, automated checks for breaking API
changes could be executed to determine whether it is “safe”
to switch to the new version or whether incompatibilities
need to be addressed.

We are planning to employ our approach in the context
of a wider spectrum of software quality analyses and risk
assessment. For instance, the complexity of dependencies
of a software system on external libraries could be a factor
taken into account when evaluating the architecture of a sys-
tem: if an external API is extensively used across different
system packages, it might be necessary to revise parts of
the system’s architecture. Therefore, the complexity measure
could be included into a quality assessment of a system’s
architecture. The dependency complexity could also serve
as a risk indicator for a software project under development,
entailing a risk classification.

IX. CONCLUSION

We presented an approach for the automated analysis
and visualization of the API dependence for a software
project. The approach allows for substantiated decisions in
software maintenance scenarios, such as APl migration and
evolution. We introduced tool support and evaluated several
use cases on open source software systems. Our findings
indicate that the results of our analysis answer relevant

questions in the identified usage scenarios. As the work
presented in this paper is in early stages, a multitude of
open research questions remain. Therefore, we outlined a
number of interesting paths for future work.
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