
Identifier-Based Context-Dependent
API Method Recommendation

Lars Heinemann Veronika Bauer Markus Herrmannsdoerfer Benjamin Hummel
Technische Universität München, Germany

{heineman, bauerv, herrmama, hummelb}@in.tum.de

Abstract—Reuse recommendation systems support the devel-
oper by suggesting useful API methods, classes or code snippets
based on code edited in the IDE. Existing systems based on
structural information, such as type and method usage, are
not effective in case of general purpose types such as String.
To alleviate this, we propose a recommendation system based
on identifiers that utilizes the developer’s intention embodied
in names of variables, types and methods. We investigate the
impact of several variation points of our recommendation algo-
rithm and evaluate the approach for recommending methods
from the Java and Eclipse APIs in 9 open source systems.
Furthermore, we compare our recommendations to those of a
structure-based recommendation system and describe a metric
for predicting the expected precision of a recommendation.
Our findings indicate that our approach performs significantly
better than the structure-based approach.

Keywords-software reuse; recommendation system; identi-
fier; data mining

I. INTRODUCTION

Code reuse is known to have positive effects on produc-
tivity, overall product quality, and time to market [1], [2]. A
main challenge for effective reuse is the retrieval of reusable
entities, which has been an active area of research since the
late 1990s [3]. Today, the Internet provides a tremendous
amount of freely reusable code and thereby serves as a rich
reuse repository [4]. It is even said to be emerging as “a
de facto standard library for reusable assets” [5]. With this
ubiquitous code repository, reuse rates1 of 40% and more are
achieved in many open source Java projects [6]. While this
represents a big opportunity for productivity improvement,
lack of accessibility is preventing to unlock the full potential
promised by reuse. Often, libraries and frameworks are large
and complex. For instance, version 1.7 of the Java API
lists more than 4,000 API types. Within these large sets
of reusable entities, identifying those relevant for the task
at hand is a real challenge even for experienced developers.
To ease this difficulty, numerous code retrieval approaches
have been proposed [4], [7]–[9]. Even though they report
improvements in API accessibility and thus encourage reuse,
they still require active user interaction in terms of formulat-
ing a query. Two problems arise as a consequence: Firstly,
no matter how advanced the tool, the developer must already

1ratio between reused code and total amount of code of a software system

have an idea of what to look for. Secondly, developers
are forced to interrupt their workflow, which is likely to
disturb their concentration and focus on the current problem,
consequently decreasing their efficiency [10].

To alleviate these problems, reuse recommendation sys-
tems have been proposed. These systems automatically
derive queries from the current development context and
propose reusable code useful for the task at hand. Consider
the following code snippet from an open source Java system:

1 i f (a n g l e != g e t A n g l e ()) {
2 f l o a t a n g l e D e l t a = a n g l e − g e t A n g l e () ;
3 s u p e r . s e t A n g l e (a n g l e) ;

As the code deals with angles, trigonometric functions,
such as Math.sin () , could be recommended to the user.
Existing reuse recommendation systems utilize structural
program information, e. g., the types and methods used, to
infer what functionality might be needed [11]–[13]. How-
ever, cases where no methods or types are used in the context
or only general purpose types are used, are not supported
well by these approaches. In our example snippet, the only
type involved is float and the only methods are simple
getters and setters. Thus, when relying only on structural
information, a reliable recommendation is hard to determine.

In preliminary experiments, we showed that identifiers,
i. e., the names of the variables, types and methods in a
program chosen by a developer, are a promising source for
mining term-method associations that can be used to build
a method recommendation system [14]. In this paper, we
evaluate the impact of several modifications to the basic
algorithm and perform a quantitative comparison to an exist-
ing structure-based approach. We evaluate our approach for
recommending methods from the Java and Eclipse APIs and
present initial results on the potential of a hybrid approach
using both structural and identifier information.
Research problem. Current reuse recommendation systems
use structural information such as method or type usage
in the code to derive recommendations. However, if no
method calls exist in the code of the current context or
only general purpose types are used, these approaches are
not effective. Identifiers, on the other hand, are typically
available in any context, and as identifiers embody valuable
knowledge about the intent of a programmer [15], they

represent a promising basis for recommendation systems.
It needs to be determined how well information from iden-
tifiers can be used for building a recommendation system
and how the recommendation quality compares to that of
existing structure-based approaches. Furthermore, it is an
open question whether a hybrid approach has the potential
of outperforming stand-alone structure-based or identifier-
based approaches.
Contribution. We describe an approach that mines the
intentional knowledge embodied in the identifiers of existing
source code and uses an index of this information to rec-
ommend API methods based on the code being developed.
We evaluate the precision of the approach by recommend-
ing Java API methods for 6 open source Java systems
and Eclipse API methods for 3 open source Eclipse-based
projects. Furthermore, we analyze the impact of several
algorithm parameters on the recommendation results. Fi-
nally, we quantitatively compare our approach to an existing
structure-based recommendation system and investigate to
which degree the expected precision of both approaches can
be estimated for a given context.

II. RELATED WORK

Two major directions have been proposed to increase
API accessibility, thus fostering reuse: classic code re-
trieval and code recommendation systems. Code retrieval
allows to query code from repositories. Prominent exam-
ples are keyword-based code search engines like Google
Code Search2 or Koders3. Advanced approaches use signa-
tures [16], specifications [17], test cases [4], or combinations
thereof [18] to search for reusable entities. These methods,
however, require users “to derive abstractions of what they
actually want in order to find the artifacts that are poten-
tially useful” [3]. On the language level, the “vocabulary
problem” [19] often hampers the effectiveness of the listed
tools as developers unfamiliar with an API may query
in a terminology differing to the one employed by the
API. Recent approaches address this issue, enabling free-
form natural language queries: SNIFF [7], a Java search
engine, enriches the API with its documentation. Apatite [8],
provides an interface for associative browsing of the Java and
Eclipse APIs and aids the developer by providing also API
items frequently related to their query. Hill et al. [9] propose
an approach for contextual code search, which enriches
query results with natural language phrases drawn from the
context of the proposed method.

Despite their increase in effectiveness, code retrieval ap-
proaches fail to overcome an important obstacle: the user
has to abandon the current task to actively formulate a query,
which disrupts his workflow. Code recommendation systems
address this issue by using the current development context

2http://www.google.com/codesearch/
3http://www.koders.com/

to automatically extract queries and recommend code entities
that may be useful for the task at hand. This can even happen
proactively, i. e., without the user anticipating the existence
of a relevant code entity.

In the remainder of this section, we focus on code rec-
ommendation systems which can be categorized as follows:

“Classic” IDE code completion offers a list of available
variables, types and methods. Partially entered names are
used to narrow the proposed completions. The focus is on
syntactical applicability and visibility of the suggestions.
The order of the proposals is usually regarding the type of
item (e. g., method, variable, type) and furthermore alphabet-
ical. The quality of the suggestions heavily depends on the
programming language. Strongly typed languages typically
allow for better suggestions, since the type system allows to
infer what suggestions are applicable.

Enhanced code completion aims at improving code com-
pletion systems by producing more relevant completion pro-
posals. In [20], Bruch et al. introduce an example based code
completion system. They enhance current code completion
systems by making context-sensitive method recommenda-
tions. Their approach is based on mining knowledge from
an example code base. They present three different methods
for using the information in the code repository: frequency
of method calls, association rule mining and a modification
of the k-nearest-neighbor algorithm. While they employ a
method similar to ours, they use method calls as the context.
Moreover, they recommend only methods applicable to a
variable of a class type. In contrast, since we use the
identifiers as the context, we can recommend methods of
classes yet unused by the developer.

Code example recommendation systems suggest complete
code examples. Bajracharya et al. [21] propose structural
semantic indexing which utilizes API usage similarities
extracted from code repositories to associate words with
source code entities. Their goal is to improve the retrieval of
API usage examples from code repositories by addressing
the vocabulary mismatch problem. This is done by sharing
terms among code entities that have similar usage of APIs
and are thus functionally similar. Mapo [22] mines API
usage patterns from existing source code. The patterns are
given by methods that are frequently called together and that
follow certain sequential rules. The patterns are used for an-
swering queries for methods by returning example snippets
illustrating the usage of that method. Strathcona [23] is a
tool for retrieving useful code snippets from a repository of
code examples. It extracts the structure of the code under
development and matches it to the code in the repository.
The repository can be created automatically from existing
software systems. The authors developed several heuristics
for structure matching of code, including inheritance and
call/use relations. While these tools suggest code examples,
our approach recommends API methods.

API method recommendation systems propose methods
or method sequences from APIs based on different aspects of
the development context. CodeBroker [24] infers queries for
reusable components from Javadoc comments and signatures
of the code currently being developed. It uses latent semantic
indexing for matching the comments in the code against
those of repository code. Signature matching is used to
ensure the syntactic compatibility with the code context.
While our approach uses the code context to make recom-
mendations, CodeBroker requires the desired functionality
to be described in terms of comments and/or signatures.
Parseweb [12] and Prospector [13] can answer queries of
the form source class type → destination class type. The
result is a method sequence that transforms an object of
the source type to an object of the destination type. As
opposed to our approach, these tools require the source and
destination type of a required method sequence to be known.
Rascal [11] is the approach most similar to ours. It suggests
API methods based on a set of already employed methods
within a class. It uses collaborative filtering (CF), whereby
classes are interpreted as users and the called methods are
treated as items. While we use the identifiers in the vicinity
of a method call to associate terms with methods, Rascal
utilizes the similarity of method usage of whole classes.
Class recommendation systems suggest useful classes
from APIs or code repositories. Javawock [25] employs an
approach similar to Rascal. The main difference is that the
items for the CF are API classes instead of methods. The
authors also investigate item-based CF in addition to user-
based CF done by Rascal. Code Conjurer [26] automatically
retrieves reusable components based on JUnit test cases
written in advance according to the test-driven development
methodology. The test cases are executed on candidate
components that match the required signature derived from
the usage in the test code. Components passing the tests
are then returned as recommendations. While these tools
recommend classes, our approach suggests API methods.

III. TERMS & DEFINITIONS

Development context. The development context refers to
the code edited within an IDE. In the scope of this paper,
this context is given by the source code preceding a cursor
position within a source code file.
API method. An API method is a method (static or non-
static) that is declared in a type that belongs to an API,
such as the Java API, and has protected or public visibility.
An API method is uniquely identified by its signature, i. e.,
methods with the same name but different parameters are
considered as distinct methods.
Recommendation set. A recommendation set is a set of
API methods recommended in a given development context.
Recommendation rate. The recommendation rate denotes
the fraction of correct recommendation sets produced by

Extract API calls with positions Determine cursor position

Index creation Index query

Determine context of position

Extract identifiers

Split and stem identifiers

Store association in index Query index

Association index

Figure 1. Overview of our approach

a method recommendation system when trying to predict
method calls in existing code from the context of the method
call. A recommendation set is considered correct, if the
method actually employed is in the recommendation set.

IV. APPROACH

This section describes our API method recommendation
approach, which uses data mining for learning term-method
associations that are used for recommending API methods
during the development of new code.

The approach has a training phase that builds an asso-
ciation index by analyzing existing software systems. This
index is then used to answer queries that are formed of a set
of terms extracted from the development context. Both, the
up-front index creation and the index query, share a number
of common processing steps as illustrated in Figure 1.

We implemented the approach in Java on top of the
open source quality analysis framework ConQAT4, which
provides basic functionality for static code analysis. Our
current implementation is targeted at Java programs, but
could be adapted to other programming languages.

A. Index Creation

The index creation analyzes API method calls in Java
classes. We build and traverse the abstract syntax tree (AST)
of a class and process all API method calls. For each
method call, we extract a configurable number of identi-
fiers preceding the method call (called lookback). To avoid
unrelated identifiers, we consider only identifiers within the
same method body. This also means that for method calls
close to the beginning of a method body, it is possible
that not enough identifiers can be extracted and thus no
context can be determined. The extracted identifiers are split
into words according to the camel case notation, which is

4http://www.conqat.org/

recommended by the official Java Code Conventions [27].
Identifier parts that only consist of a single character are
discarded. The split words are reduced to their stem by using
an English stemmer5. Multiple occurrences of the same term
are treated as one by the term extraction process. We store
an entry in the index that associates the set of terms with
the API method that was called. The method is represented
by its signature consisting of the fully qualified name of its
declaring type6, the method name, and the list of parameter
types. The index consists of a list of these association entries.

Consider the following code snippet as an example:

1 t r y {
2 r e a d F i l e () ;
3 }
4 c a t c h (IOExcep t ion e) {
5 S t r i n g e r r o r M e s s a g e = e . ge tMessage () ;
6 JOp t ionPane . showMessageDialog (n u l l ,

e r r o r M e s s a g e) ;
7 }

From this snippet, using a lookback of 5 identifiers, the
following association entry would be extracted for the API
method call in line 6:

{io, except, string, error,messag, get} →
javax.swing.JOptionPane#showMessageDialog(

Component,Object)

The index creation step has several parameters, which are
discussed in the following.
Lookback (1,2,3,...). The number of distinct identifiers
preceding a method call that are considered for the extraction
of terms can be configured with the parameter lookback.
Stopwords (preserved, removed). In information retrieval,
stopwords are words that occur very frequently and are not
useful to find documents depending on a search query. These
words are typically not indexed by search engines. Examples
include articles and prepositions [28]. The parameter stop-
words of our approach denotes whether these words shall
be removed from the set of terms associated with an API
method. We used the list of 119 stopwords from [29].
Keywords (included, excluded). Since keywords carry
information about the structure of the code, they can serve as
a simple extension to our approach for considering structural
information in addition to the identifiers. For instance, the
keyword catch indicates an exception handler and can
therefore add important information to a method association
in our index. The parameter keywords specifies whether

5The English language represents parts of speech, tense, and number
by inflected (i.e. morphologically varied) words. Stemming is used in
information retrieval to match queries also to documents containing derived
words [28]. For instance, the word read shall be also matched with the word
reading.

6in case of inheritance, the most “specific” type in the inheritance
hierarchy declaring the method is considered

keywords that occur in the context of the method call should
be considered in addition to identifiers. Technically, we
wrap the keywords with brackets (which are non-identifier
characters) and treat them just as normal terms during
subsequent processing. For instance, the keyword catch
is transformed to <catch>. Due to the brackets, we obtain
a unique term and avoid a meaningless relation to an equal
term embodied in an identifier.

B. Index Query

A query to the index consists of a set of terms extracted
from the code preceding the current cursor position within a
source code editor. The extraction of the terms is done as in
the index creation. From the cursor position, the context is
determined by analyzing the preceding identifiers according
to the configured lookback. The identifiers are split and
stemmed which results in the set of terms for the query.

For a query to the index, given by a set of terms, we
determine those association entries in the index whose term
set is most similar to the query term set. For this, a notion of
similarity between sets of terms is required. Our approach
uses the Jaccard similarity known from data mining [30].

The Jaccard similarity (js) is defined for arbitrary sets
and is given by the ratio between the size of the intersection
and the size of the union of the sets:

js(T1, T2) =
|(T1 ∩ T2)|
|(T1 ∪ T2)|

The following example illustrates the computation of the
similarity measure for two exemplary sets of terms. Given
T1 = {file, input, read} and T2 = {file, write}, the value
of the Jaccard similarity is computed as follows:

js(T1, T2) =
|{file}|

|{file, input, read, write}|
= 0.25

Based on this similarity measure, a set of method rec-
ommendations is built by successively considering the most
similar index entries with decreasing similarity. For each
similar entry, the associated method is added to the recom-
mendation set until it contains a configurable yet fixed num-
ber of recommendations. Since different term sets can be
associated with the same method, we may have to consider
more entries than the number of required recommendations.
Moreover, since multiple entries can have the same similarity
to the query, it can occur that we cannot add all methods
associated with these entries to the recommendation set
because we already have reached the desired amount of
recommendations. In that case we have to arbitrarily choose
from the entries with equal distance until we have the
required number of recommendations.

V. REIMPLEMENTATION OF RASCAL

For a quantitative comparison to our approach, we chose
Rascal [11] as a representative for structure-based ap-
proaches. It is most similar to our approach, since it also

recommends single API methods based on the development
context. Instead of identifiers in the context, it uses the meth-
ods already employed in a class to derive what method might
be needed next. Since Rascal is not publicly available and
we could not obtain the implementation from the authors, we
carefully reimplemented the approach as described in their
paper. In this section, we briefly describe their approach and
present the results of an evaluation of our reimplementation.

A. Approach

Rascal uses collaborative filtering which is used to predict
the preferences of a user regarding how they “like” a
particular item based on what other items the user likes
and what items similar users like. Adopted for API method
recommendation, Rascal interprets Java classes as users and
API methods as items. A user-item preference database is
created from existing software that stores for each class the
API method calls it contains. The method usage of a class is
modeled as a vector in the space Nn. Each component of a
vector represents as a natural number how often a particular
method was called by the class and thus n is the overall
number of distinct methods used collectively by all classes.
For computing a recommendation set of methods, a set of
already employed methods in a class under development
is matched against the database. Depending on a query
vector, they compute the nearest neighbors with different
approaches, of which vector similarity performs best. The
vector similarity of two users is computed as the cosine of
the angle formed by their vectors. For the recommendation,
they use content-based filtering to predict how a query user
likes a particular item. They determine how a query user
likes the items that are collectively used by its nearest
neighbors. The recommendation set then consists of the 5
items liked most.

B. Reevaluation

To assess the validity of our reimplementation, we first
attempted to reproduce the results reported by McCarey
et al. [11] by reenacting their evaluation setup as closely as
possible. They tried to predict method calls to the Swing API
in classes taken from 30 GUI applications. Since they did not
report what exact applications were used in their case study,
we used 5 open source Java applications from our study
objects (see Table I) that use the Swing API. We created
the user-item preference database from them. As in the
paper from McCarey et al., we consecutively removed Swing
methods from the end of the class and queried the index
with the sequence of the remaining Swing methods in the
class. The recommendation set was considered correct, if the
removed method was among the recommendation set. Mc-
Carey et al. report a recommendation rate of 43% achieved in
their experiment. The user-item preference database created
in their experiment contained 228 classes with calls to 761
distinct Swing methods.

The user-item preference database created for the 5 Java
applications in our reevaluation contained 1,014 classes with
a total of 22,963 calls to 1,942 distinct Swing methods.
The average fraction of correct recommendations for the
systems ranged from 40% to 44%. This indicates that our
reimplementation of Rascal achieves recommendation rates
close to the number reported by McCarey et al. for the
vector similarity based implementation (43%). Thus, we are
confident that we correctly reimplemented their approach.

VI. CASE STUDY DESIGN

A. Research Questions

RQ1: How do the parameters impact the recommenda-
tion rate? We investigate how the ratio of correct recom-
mendations depends on the parameters of our approach. The
best parameter settings are selected to optimize the system’s
performance and used as parameter configuration for the
following research questions.
RQ2: How does ignoring well-known methods affect the
recommendation rate? For employing a recommendation
system in practice, recommending API methods that are
already well-known to a developer is not desirable. We
analyze how the rate of correct recommendations is affected
when ignoring well-known methods in index creation and
index query.
RQ3: How does the approach perform for APIs other
than the Java API? To assess the transferability of our
approach, we determine the quality of the recommendations
for the Eclipse API.
RQ4: How does our approach compare to a method
usage-based approach? To further evaluate our approach,
we analyze how the recommendation results compare to
those from the method usage-based approach Rascal. Fur-
thermore, we investigate the potential of a hybrid approach.
RQ5: Can we use the similarity measure for deriving
a confidence level for recommendations? We investigate
whether the similarity measures of the approaches can
be used for deriving a meaningful confidence level for a
recommendation set.

B. Study Objects

Table I lists the study objects that we used for our case
study together with a set of metric values. The column
MCAPI denotes the total number of method calls to the
studied API. The column DM shows the overall number
of distinct API methods called within the source code. To
put the measurements of the recommendation rates into
perspective as well as to be able to assess the difficulty of
the recommendation problem, we also computed a baseline
recommendation rate for a trivial approach that always
recommends the 5 API methods used most frequently within
that project. The values of the baseline rate are presented in
column BLRR.

Table I
THE STUDIED JAVA AND ECLIPSE RCP APPLICATIONS

Studied API System Version Description LOC MCAPI DM BLRR

Java

DrJava stable-20100913-r5387 Java Programming Environment 160,256 21,090 2,026 11.8%
FreeMind 0.9.0 RC 9 Mind Mapper 71,133 8,725 1,439 12.9%
HSQLDB 1.8.1.3 Relational Database Engine 144,394 9,735 1,100 24.0%
JabRef 2.6 BibTeX Reference Manager 109,373 21,350 1,691 18.1%
JEdit 4.3.2 Text Editor 176,672 17,341 1,934 10.5%
SoapUI 3.6 Web Service Testing Tool 238,375 24,659 2,500 11.3%

Eclipse
MyTourbook 11.3 Bike Tour Visualization and Analysis Tool 238,963 18,865 1,160 12.3%
Rodin 1.4.0 Event-B Modeling / Verification Environment 273,080 5,924 1,122 7.5%
RssOwl 2.0.6 RSS / RDF / Atom News Feed Reader 174,643 12,774 1,199 12.6%

Java API. For RQ1, RQ2, RQ4 and RQ5, we stud-
ied the Java API. We used 6 popular Java projects of
different application types from the open source project
repository SourceForge7. All projects were among the 100
most downloaded Java applications with the development
status Production/Stable8.
Eclipse API. For RQ3, we studied the API provided by
Eclipse for building Rich Client Platform (RCP) applica-
tions. We used 3 open source Eclipse RCP applications.
To be representative, we chose applications from com-
pletely different domains—geovisualization, software mod-
eling, and news reading. Since we also needed the binaries
of the applications for our analyses, we were restricted to
applications where we could easily download or compile
the binaries. We considered as API all callable methods that
are defined by classes whose full qualified name starts with
org.eclipse.

C. Design and Procedure

To evaluate the recommendations, we “remove” method
calls from existing software systems and use the recommen-
dation system to “guess” the removed method call from its
context—in case of our approach given by the identifiers
preceding the method call.

We measured the suitability of the recommendations with
the recommendation rate, which is computed as follows.
Let MCWC be the set of method calls with a non-empty
context, i. e., where the recommendation system is applicable
and can make a recommendation. Let m(c) be the method
targeted by the method call c, ctx the function that yields the
context for a given method call and query the function that
returns a set of recommended methods for a given context.
The recommendation rate is then given by:

RR =
|{c ∈MCWC | m(c) ∈ query(ctx(c))}|

|MCWC|

Intuitively, the recommendation rate is the fraction of
method calls that can be “predicted” by the recommendation
system based on the context of each method call.

7http://sourceforge.net/
8as of April 27th, 2011

We mined the association index and the user-item pref-
erence database respectively from half of the project files
and used it to predict the method calls in the other half of
the files. The sets of files were determined randomly with
a fixed random seed ensuring equal results in consecutive
runs. The recommendation sets contained 5 methods each9.
RQ1: Influence of parameters. To determine the impact
of the algorithm parameters, we ran our analysis with
different configurations. First, we determined the influence
of different lookback values. We then used the best setting
for this parameter to evaluate the influence of the parameters
stopwords and keywords.
RQ2: Ignoring well-known methods. We analyzed how the
recommendation rate is affected when a set of well-known
methods is ignored completely during index creation and
query. We approximated this set of well-known methods by
the set of all methods of the 20 types used most frequently
in 76 open source applications as reported in a study about
the usage of the Java API by Ma et al. [31].
RQ3: Other APIs. To assess the transferability of our
approach to other APIs, we evaluated the recommendation
rate for the 3 Eclipse RCP applications in Table I.
RQ4: Comparison to Rascal. For the quantitative compar-
ison of our approach with the reimplementation of Rascal,
we evaluated the recommendation rate for the 6 Java appli-
cations and both approaches. Both approaches have different
sets of cases where they are applicable. This has to be
taken into account for a quantitative comparison. Figure 2
illustrates the applicability for method predictions of both
our approach and Rascal. The outer rectangle MC denotes
the set of all method calls in the classes used for evaluation.
The set MCAPI contains all method calls to the API under
consideration, which is the Java API in the comparison.
As previously described, our approach needs a context to
derive identifiers from, and Rascal needs at least one method
call to be able to make recommendations. Therefore, there
are cases where Rascal can make recommendations and our
approach is unable to do so, and vice versa. This is illus-
trated by the two rectangles Our approach applicable and

9In our opinion, a developer is willing to inspect 5 potentially useful
method recommendations. This is also the value used by McCarey et al.

Figure 2. Applicability of approaches

Rascal applicable. We perform two comparisons. First, we
evaluate the recommendation rates for both approaches for
all cases where they are applicable. Second, we determine
the recommendation rate for cases where both approaches
are applicable, i. e., we consider the method calls in the dark
gray intersection in Figure 2.

We also evaluated in how many cases one of the ap-
proaches can predict a method and the other cannot. From
these numbers, we computed the recommendation rate of a
hypothetical ideal hybrid approach that assumes a perfect
oracle which can decide which recommendation set should
be returned as an answer to a query. The oracle always de-
cides for the approach that has the correct recommendation.
In case both recommendation sets are correct, an arbitrary
approach is chosen. To build a real hybrid approach, we
would need to implement such an oracle.
RQ5: Confidence level. To implement an oracle, we at-
tempted to compute a confidence level for both approaches
that allows us to decide for an approach depending on the
query and the recommendation set produced by both tools.

To compute a confidence level for a recommendation
set, we used the similarity of the nearest neighbor and
most similar association entry respectively for a query. For
Rascal the similarity measure is given by the vector (cosine)
similarity and for our approach it is the Jaccard similarity.
Formally, this can be expressed as follows. Let nn(q) be
the nearest neighbor or most similar index entry for a query
q. Then the confidence of the recommendation for given a
query q is given by:

c(q) = similarity(q, nn(q))

We related the confidence level to the recommendation
rate. For both approaches, we computed the average rec-
ommendation rate over all 6 Java applications within 10
confidence intervals from 0 to 1 in steps of 0.1. The average
was computed over all method calls in all applications.

VII. RESULTS

RQ1: Influence of parameters. Table II presents the rec-
ommendation rates for lookback values ranging from 1 to 6
identifiers. The rate of correct recommendations varies only
moderately for different lookback values. On average, the
best recommendation rate is achieved with a lookback of
4. Consequently, for the following experiments, we use a
lookback of 4 identifiers.

Table II
RECOMMENDATION RATE REGARDING LOOKBACK

Lookback 1 2 3 4 5 6
DrJava 33.6% 38.9% 39.4% 40.5% 38.7% 39.4%

Freemind 33.1% 38.3% 39.4% 39.0% 38.8% 38.5%
HSQLDB 24.8% 34.5% 33.9% 35.9% 36.8% 38.1%

Jabref 37.0% 45.3% 45.8% 47.0% 46.1% 44.9%
JEdit 34.7% 38.8% 39.6% 39.6% 38.6% 38.2%

SoapUI 37.0% 46.8% 46.5% 45.6% 44.9% 43.9%
Average 33.4% 40.5% 40.8% 41.3% 40.7% 40.5%

Table III
RECOMMENDATION RATES WITH STOPWORDS PRESERVED/REMOVED

Project Stopwords
preserved removed

DrJava 40.5% 39.7%
Freemind 39.0% 39.7%
HSQLDB 35.9% 36.0%
Jabref 47.0% 46.7%
JEdit 39.6% 39.0%
SoapUI 45.6% 45.2%

Table III shows the results regarding the impact of stop-
words. Removing stopwords has a very small effect on the
recommendation rate. In all cases, the difference is below
0.6%. For 2 of the study objects, the rate slightly increases
while for 4 the rate slightly decreases. Consequently, the
stopwords parameter is set to preserved during the analysis.

Table IV presents the recommendation rates when key-
words are excluded vs. included. The results show that
taking keywords into account has a notable positive effect
on the recommendation rates for all study objects. The
analysis including keywords is performing 3.8% to 5.6%
better compared to the analysis with excluded keywords.

Based on the outcomes of RQ1, the parameter configura-
tion for the remaining analyses is as follows: a lookback of
4 identifiers, stopwords preserved, and keywords included.
RQ2: Ignoring well-known methods. Table V displays the
results of the analysis when ignoring vs. including well-
known methods. Ignoring well-known methods decreases the
recommendation rate between 0.7% and 11.4%. We provide
an interpretation of these numbers in the discussion.
RQ3: Other APIs. Table VI shows the recommendation
rates of our approach applied to the Eclipse RCP applica-
tions. The resulting recommendation rate ranges from 49.4%
to 67.8%, thus indicating that our approach can also be

Table IV
RECOMMENDATION RATES WITH KEYWORDS EXCLUDED/INCLUDED

Project Keywords
excluded included

DrJava 40.5% 44.3%
Freemind 39.0% 43.1%
HSQLDB 35.9% 41.6%
Jabref 47.0% 52.1%
JEdit 39.6% 45.1%
SoapUI 45.6% 51.2%

Table V
RECOMMENDATION RATES WITH WELL-KNOWN METHODS

INCLUDED/IGNORED

Project Well-known methods
included ignored

DrJava 44.3% 42.8%
Freemind 43.1% 32.2%
HSQLDB 41.6% 30.1%
Jabref 52.1% 50.5%
JEdit 45.1% 44.4%
SoapUI 51.2% 48.3%

Table VI
OTHER APIS

Project RR
MyTourbook 67.8%
Rodin 49.4%
RssOwl 57.5%

successfully used to recommend methods for APIs other
than the Java API.
RQ4: Comparison to Rascal. Table VII shows the results
of the comparison to Rascal regarding its own applicability.
Column Appl shows in how many cases each of the ap-
proaches can make recommendations. Rascal is applicable
in 96.1% to 98.4% of the cases, whereas our approach can be
applied in 68.9% to 89.1% of the cases. The columns RRap

show the recommendation rates for the approaches taking
only those method calls into account where the approach
is applicable. For a better comparison, RRgl shows the
“global” recommendation rate, normalized for all method
calls, i. e., it is the product of columns Appl and RRap.
Globally, the recommendation rate for Rascal ranges be-
tween 24.4% and 32.0%, while our approach recommends
the correct method in 33.1% to 43.1% of the cases.

Table VIII shows the recommendation rates for the ap-
proaches in cases where both of them are applicable. For
these calls, Rascal showed recommendation rates ranging
from 19.1% to 33.4%. Our approach was able to recommend
the correct method in 41.2% to 51.7% of the cases. The
recommendation rate of the ideal hybrid approach is shown
in column Hybrid. It ranges from 47.5% to 58.8%, which is
an increase of 5.5% to 12.4% compared to our approach.
RQ5: Confidence level. The results of the confidence
level analysis for the 6 Java applications are shown in
Figure 3. For both Rascal and our approach the average

Table VII
COMPARISON TO RASCAL (OWN APPLICABILITY)

Project Rascal Our approach
Appl RRap RRgl Appl RRap RRgl

DrJava 98.0% 30.5% 29.9% 79.9% 44.3% 35.4%
Freemind 97.2% 25.1% 24.4% 76.9% 43.1% 33.1%
HSQLDB 98.4% 32.5% 32.0% 89.1% 41.6% 37.1%
Jabref 97.8% 26.7% 26.1% 82.8% 52.1% 43.1%
JEdit 97.4% 25.3% 24.6% 73.5% 45.1% 33.1%
SoapUI 96.1% 26.9% 25.9% 68.9% 51.2% 34.8%

Table VIII
COMPARISON TO RASCAL (SHARED APPLICABILITY)

Project Appl RR
Shared Rascal Our appr. Hybrid

DrJava 78.7% 31.9% 43.7% 56.1%
Freemind 75.2% 19.1% 42.0% 47.5%
HSQLDB 88.2% 33.4% 41.2% 52.1%
Jabref 81.9% 25.0% 51.7% 58.8%
JEdit 71.8% 26.7% 45.2% 54.0%
SoapUI 66.7% 24.7% 50.2% 57.4%

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

[0.0..0.1]

]0.1..0.2]

]0.2..0.3]

]0.3..0.4]

]0.4..0.5]

]0.5..0.6]

]0.6..0.7]

]0.7..0.8]

]0.8..0.9]

]0.9..1.0]
A

v
er

ag
e

re
co

m
m

en
d
at

io
n
 r

at
e

[%
]

Confidence interval

Our approach
Rascal

Figure 3. Average recommendation rate vs. confidence

recommendation rate relation is monotonically increasing
with the confidence interval.

VIII. DISCUSSION

According to the results, our approach includes the correct
recommendation in the returned set of 5 methods in about
every second case. This is a significant improvement over
a naive approach that always returns the 5 most frequent
methods, which on average succeeds only in 1 out of 9 cases.
A central parameter of our approach is the lookback. As
expected, taking too many identifiers into account decreases
the recommendation rate, as potentially unrelated identifiers
are considered. Taking too few identifiers also has a negative
effect, since the descriptive power of the context is reduced.
Consequently, there seems to be an optimum value in
between, which we determined with our experiments.

In RQ2, we investigated the effect of excluding well-
known methods both from mining and the recommendation.
As expected, the recommendation rates drop, since well-
known methods are used frequently in the source code and
are therefore easier to recommend. For the majority of the
projects (4 of 6), the decrease is only moderate (below 3%).
For two of the projects, we had a significant, although not
threatening, reduction in the recommendation rate.

Our results are consistently good for both the Java and the
Eclipse API, indicating that the approach is not limited to a
specific API. The slightly better results for the Eclipse API

could be caused by having a more specific purpose than the
Java API. However, to really answer this question, further
experiments with other APIs are required.

When comparing our results to method usage-based
approaches—here represented by Rascal—we find our ap-
proach to return the correct suggestion in 5.5% to 17.0%
more of the cases. The reduced recommendation rates of
Rascal compared to the numbers reported in [11] and Sec-
tion V are likely to be caused by the different APIs used. The
original experiments were limited to the Swing API, which
is a subset of the Java API used in our setup. As the number
of possible methods increases, the recommendation rate is
expected to drop. Additionally, in the evaluation from [11],
the class for which the recommendations are retrieved is part
of the training set, while in our experimental setup, the files
used for index creation and recommendation are disjunct.
While we consider our setup more realistic, it can have an
impact on the recommendation rate.

Given that both our approach and Rascal are applicable
in slightly different contexts and recommendation rates of
about 50% still allow further improvement, a combined
approach using both method usage and identifier contexts
seems feasible. The results of RQ4 suggest, that such a
hybrid approach could add another 5.5% to 12.4% to the
recommendation rates of our approach. The question of
which results to use if both approaches are applicable for
a context is partially answered by RQ5. Our results show
that the confidence level we suggested is a good predictor
for the expected recommendation rate of both algorithms.
Based on this, a recommendation system could calculate
recommendations with both algorithms and present the one
with the higher confidence level to the user. However, how
good exactly this approach would be compared to the ideal
hybrid approach is an open question for further research.

The confidence level determined in RQ5 opens another
interesting application. A proactive recommendation system
could be configured to actively suggest recommendations if
the confidence level is sufficiently high, thus not interrupting
programming if the results are unlikely to help. To evaluate
and assess such a setting would require more details on
the interaction of the recommendation system with the user.
Additionally, it would have to be evaluated in an experiment
with several subjects, which is planned for future work but
is beyond the scope of this paper.

Regarding the application in an interactive development
environment, we measured times for building and querying
the index for each study object. Index construction time
was between 30s and 231s. Typically, the construction of
the index is performed only once in a preparation step and
thus its duration is less important than the query time. The
average index query took between 5ms and 26ms, which is
sufficient for an interactive setup.

IX. THREATS TO VALIDITY

Internal validity. The choice of returning 5 methods in
the recommendation set is arbitrary and affects the results.
However, returning 5 methods seemed to be a suitable
compromise from a programmer’s perspective and is the
same value as used in [11]. Additionally, as all numbers
reported are based on 5 methods in the recommendation
set, the numbers are comparable to each other.

The context for recommending methods also includes the
identifiers in the line of the method call up to the position
of the method call. Cases in which this line contains the
variable declaration for a very specific return type limit the
choice of possible methods and thus increase the probability
of a correct recommendation set. However, a user might not
know the return type of an appropriate method in advance.

Our evaluation is based on counting how often the method
actually used in the code is contained in the recommendation
set. This might be different from the recommendation rate
actually perceived by a user. However, we argue that this
is a one-sided error, as the method actually used in the
code should be correct in any case, while a user might
even find other methods in the recommendation set useful,
even if they were not used in the implementation. Thus, the
recommendation rates found in a study with subjects would
be expected to be higher rather than lower.
External validity. The results of our experiments might
be biased by the choice of study objects. We tried to
mitigate this threat by choosing applications from different
application domains. Further questions are also how the
results transfer to commercial systems (rather than open
source) and other programming languages besides Java.
While both are interesting questions for further research, we
did not try to answer them in this paper.

Our comparison to Rascal could be invalidated by an
incorrect reimplementation. However, as explained in Sec-
tion V, we could reproduce the results of [11] with our
implementation, which makes us confident that our imple-
mentation of Rascal resembles the published algorithm near
enough for a valid comparison.

X. CONCLUSION AND FUTURE WORK

In this paper, we described an API method recommenda-
tion algorithm based on identifier context. We experimen-
tally found optimal settings for the algorithm’s variation
points. With these settings, we obtain recommendation rates
between 41.6% and 67.8% if the context allows application.
Compared to method usage-based approaches, our algorithm
is correct in 5.5% to 17.0% more of the cases. Finally, we
showed how a confidence level can be used to predict the
expected precision of both algorithms, opening the path to a
hybrid approach and a more goal-oriented interaction with
a user.

A promising next step is the implementation and eval-
uation of a hybrid recommendation approach that would
be expected to have better recommendation rates than both
the method usage and the identifier based approach. Ad-
ditionally, it would be interesting to perform a practical
evaluation of the recommendation system in an industrial
setting with developers to better understand the impact of
recommendation systems on their productivity.

ACKNOWLEDGMENTS

We thank the Google Research Awards Program for
supporting our research. Moreover, we are grateful to Daniel
Ratiu, Benedikt Hauptmann, and Andreas Vogelsang for
helpful comments on the paper.

REFERENCES

[1] C. Krueger, “Software reuse,” ACM Computing Surveys,
vol. 24, no. 2, pp. 131–183, 1992.

[2] W. Lim, “Effects of reuse on quality, productivity, and eco-
nomics,” IEEE Software, vol. 11, no. 5, pp. 23–30, 2002.

[3] A. Mili, R. Mili, and R. Mittermeir, “A survey of software
reuse libraries,” Annals of Software Engineering, vol. 5, no. 1,
pp. 349–414, 1998.

[4] O. Hummel and C. Atkinson, “Using the Web as a Reuse
Repository,” Reuse of Off-the-Shelf Components, pp. 298–
311, 2006.

[5] W. Frakes and K. Kang, “Software reuse research: Status and
future,” IEEE Transactions on Software Engineering, vol. 31,
no. 7, pp. 529–536, 2005.

[6] L. Heinemann, F. Deissenboeck, M. Gleirscher, B. Hummel,
and M. Irlbeck, “On the Extent and Nature of Software Reuse
in Open Source Java Projects,” in ICSR’11, 2011.

[7] S. Chatterjee, S. Juvekar, and K. Sen, “SNIFF: A Search
Engine for Java Using Free-Form Queries,” in FASE’09, 2009.

[8] D. Eisenberg, J. Stylos, and B. Myers, “Apatite: A new
interface for exploring apis,” in CHI’10. ACM, 2010.

[9] E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically
capturing source code context of nl-queries for software
maintenance and reuse,” in ICSE’09, 2009.

[10] S. Monsell, “Task switching,” Elsevier TRENDS in Cognitive
Sciences, vol. 7, no. 3, pp. 134–140, 2003.

[11] F. Mccarey, M. Cinnéide, and N. Kushmerick, “Rascal: A
recommender agent for agile reuse,” Artificial Intelligence
Review, vol. 24, pp. 253–276, 2005.

[12] S. Thummalapenta and T. Xie, “Parseweb: a programmer
assistant for reusing open source code on the web,” in ASE’07,
2007.

[13] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman, “Jungloid
mining: helping to navigate the API jungle,” ACM SIGPLAN
Notices, vol. 40, no. 6, pp. 48–61, 2005.

[14] L. Heinemann and B. Hummel, “Recommending API Meth-
ods Based on Identifier Contexts,” in SUITE’11, 2011.

[15] F. Deissenboeck and M. Pizka, “Concise and consistent
naming,” Software Quality Journal, vol. 14, no. 3, pp. 261–
282, 2006.

[16] A. Zaremski and J. Wing, “Signature matching: a tool for
using software libraries,” ACM Transactions on Software
Engineering and Methodology, vol. 4, no. 2, pp. 146–170,
1995.

[17] B. Fischer and G. Snelting, “Reuse by contract,” in FoCBS’97,
1997.

[18] S. Reiss, “Semantics-based code search,” in ICSE’09, 2009.

[19] G. Furnas, T. Landauer, L. Gomez, and S. Dumais, “The
vocabulary problem in human-system communication,” Com-
munications of the ACM, vol. 30, no. 11, pp. 964–971, 1987.

[20] M. Bruch, M. Monperrus, and M. Mezini, “Learning from
examples to improve code completion systems,” in ESEC-
FSE’09, 2009.

[21] S. Bajracharya, J. Ossher, and C. Lopes, “Leveraging usage
similarity for effective retrieval of examples in code reposi-
tories,” in FSE’10, 2010.

[22] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO: Min-
ing and recommending API usage patterns,” in ECOOP’09,
2009.

[23] R. Holmes and G. C. Murphy, “Using structural context to
recommend source code examples,” in ICSE’05, 2005.

[24] Y. Ye and G. Fischer, “Information delivery in support
of learning reusable software components on demand,” in
IUI’02, 2002.

[25] M. Tsunoda, T. Kakimoto, N. Ohsugi, A. Monden, and
K. Matsumoto, “Javawock: A Java Class Recommender Sys-
tem Based on Collaborative Filtering,” in SEKE’05, 2005.

[26] O. Hummel, W. Janjic, and C. Atkinson, “Code Conjurer:
Pulling reusable software out of thin air,” IEEE Software,
vol. 25, no. 5, pp. 45–52, 2008.

[27] Sun Microsystems. (2011, Apr.) Code Conventions for
the Java Programming Language. [Online]. Available: http:
//www.oracle.com/technetwork/java/codeconv-138413.html

[28] S. Chakrabarti, Mining the Web: discovering knowledge from
hypertext data. Morgan Kaufmann, 2003.

[29] Text Fixer. (2011, Apr.) List of common words.
[Online]. Available: http://www.textfixer.com/resources/
common-english-words.txt

[30] P. Tan, M. Steinbach, V. Kumar et al., Introduction to data
mining. Addison Wesley, 2006.

[31] H. Ma, R. Amor, and E. Tempero, “Usage Patterns of the
Java Standard API,” in APSEC’06, 2006.

