How Much Does Unused Code Matter for Maintenance?

Sebastian Eder, Maximilian Junker, Elmar Jiirgens, Benedikt Hauptmann

Institut fiir Informatik

Technische Universitdt Miinchen, Germany

Garching b. Miinchen, Germany

Rudolf Vaas, Karl-Heinz Prommer
Munich Re
Miinchen, Germany
{rvaas,hprommer} @munichre.com

{eders,junkerm,juergens, hauptmab} @in.tum.de

Abstract—Software systems contain unnecessary code. Its
maintenance causes unnecessary costs. We present tool-support
that employs dynamic analysis of deployed software to detect
unused code as an approximation of unnecessary code, and
static analysis to reveal its changes during maintenance. We
present a case study on maintenance of unused code in an
industrial software system over the course of two years. It
quantifies the amount of code that is unused, the amount of
maintenance activity that went into it and makes the potential
benefit of tool support explicit, which informs maintainers that
are about to modify unused code.

Keywords-Software maintenance, dynamic analysis, unneces-
sary code, unused code

I. INTRODUCTION

Many software systems contain unnecessary functionality.
In [1], Johnson reports that 45% of the features in the
analyzed systems were never used. Our own study on
the usage of an industrial business information system [2]
showed that 28% of its features were never used.

For consumer software, speculative or even unnecessary
features might be justified to lure new customers into buying
a product. For custom developed software, such as the
business information systems developed and maintained at
Munich Re, a re-insurance company in Germany, however,
they provide no value at all.

For such systems, maintenance of unnecessary features
is a waste of development effort. To avoid such waste,
maintainers must know which code is still used and useful,
and which is not. Unfortunately, such information is often
not available to software maintainers. In our own study [2],
expected and actual usage frequency deviated from 40%
to 53% of the cases (depending on which stakeholder was
involved in the evaluation). The picture was even clearer for
entirely unused features: for over 70% of them, it surprised
the stakeholders that they were not used at all.

Whether unnecessary code causes maintenance efforts
depends on whether it actually needs to be adapted during
maintenance. On the one hand, we expect perfective and
corrective change requests [3] to mostly arise for features
that are important to their users—otherwise they would not
complain about bugs or demand changes. For unnecessary
features, perfective and corrective maintenance effort can

thus be expected to be low. On the other hand, however,
preventive and adaptive maintenance [3] regularly affect
code independent of the functionality it implements. Ex-
amples include the migration of a software system to a
new programming language or platform, or the replacement
of a component, such as the underlying database. Such
changes also affect unused code. Both adaptive and preven-
tive maintenance are regularly performed during software
evolution. Extensive studies on maintenance effort reported
that perfective and corrective maintenance constitute merely
48% [4], 64% [5], and 75% [6] of all change requests.
The remaining changes comprise adaptive and preventive
maintenance. We thus have to expect unnecessary code to be
subject to maintenance, too. To perform maintenance tasks
cost-effectively, maintainers must know which code is still
necessary, and which is not.

Whether code is still necessary or not is determined by
the function it fulfills for its users. The value of code is
thus not an inherent property, but determined by its context.
One way to approximate usefulness of code to its users
is to monitor its usage in production, and compare it to
its expected usage. If code is never used, and does not
implement infrequently used functionality such as failure
recovery, maintainers should investigate if the effort for its
modification is justified.

However, the recording of usage information and consid-
eration of unused code is not an integral part of software
maintenance practice. Based on our experience and that of
our industrial partners, we see two reasons for this. First,
we have little empirical data on how much unused code
exists in software and how strongly it affects maintenance.
Second, we lack suitable tool support to capture usage data
in production and present it in a way suitable to maintainers.
As a consequence, it remains unclear how important unused
code for cost-effective maintenance really is in practice.
Given the amount of unused code in industrial software, we
consider this precarious both for practice and for education.

Problem: Real-world software contains unnecessary
code. Its maintenance is a waste of development resources.
Unfortunately, we lack tool support to identify unnecessary
code and empirical data on the magnitude of its impact on

maintenance effort. As a consequence, it is unclear how
harmful unnecessary code is for software maintenance.
Contribution: In this paper, we present tool support to
collect code-level usage information in a production envi-
ronment, to approximate unnecessary code. We contribute a
case study that analyzes the usage of an industrial business
information system over the period of over 2 years. The
study quantifies maintenance effort in unused code and
shows the potential benefits of the tool support we propose.

II. OUTLINE

The paper is structured as follows: In the next section,
we define important terms. Afterwards, we introduce our
tool support in detail, followed by a description of the case
study. We then discuss our results and related work. We
conclude with an overview of future work and a summary
of our results.

III. TERMS

Method: Units of functionality of a software system.
Methods consist of a signature and a body.

Method genealogy: List of methods that represent the
evolution of a single method over different versions of a
software system. The list contains all versions of one method
in chronological order.

Modified: A method genealogy is modified if not all
its methods are equal with respect to their signatures and
bodies. A method is modified if it is part of a genealogy
which is modified.

Unused: A method genealogy is unused, if none of its
methods is executed in a productive environment. This is
not necessarily useless or dead code, but code that was just
not executed in a considered time frame.

Unnecessary: A method is unnecessary, if it is not
needed to fulfill the system’s intended purpose and could be
removed. Domain and development knowledge is necessary
to decide whether a method is unnecessary.

IV. TOOL SUPPORT

The proposed tool support is divided into four steps:
the collection of usage data, the analysis of the program
structure, the combination of both in a data repository, and
the generation of statistics that can be used by developers.
The tool chain is illustrated in Figure 1.

Profiler:
Collection of
Data repository: .
usage data P y Query interface:
Storage of)
—> Selection and
program structure Ageregation
Manual: and usage data geres
Collection of
program structure

Figure 1. Schematic illustration of the proposed tool chain.

For collecting usage data, we use a profiler based on the
NET profiling API that logs method invocations.

For each program version that gets deployed, we collect
assemblies (compilation units in .NET) manually to obtain
the structure and functionality of the program. The reason
why we work on the binary level and not directly on the
source code level is that the system includes several compo-
nents which are developed by different teams, have different
release cycles and are only integrated in binary form. It is
thus non-trivial to determine the complete source code for
a program version that ran in the productive environment.

Usage data, as well as the software system’s structure
and functionality are stored in a central data repository. For
calculating statistics, we provide a query interface. In the
following sections, we explain the different steps in more
detail.

A. Profiling Usage Data

When collecting usage data, we need to minimize the
impact on the productive system while still providing enough
accuracy to gain valuable information. Therefore, we use
an ephemeral [7] profiler that records which methods were
called within a certain time interval. The profiler does not
record how often a method was called, just if it was called
in a given time interval. For our study, we set the time
interval to one day, to gain data that is accurate enough but
produces very low performance impact. More information
on the profiler can be found in [2].

Every method is instrumented with a profiling hook at
(re-)start of the software system. This hook is removed after
the first call of the method and therefore yields no perfor-
mance impact on later invocations. This technique may miss
methods that were inlined by the just-in-time compiler for
performance issues, and, thus, we also instrument methods
for the inlining event and count this event as an invocation.
This is valid, because inlining is performed just in time by
the virtual machine. The resulting data is written to a file
at every shutdown of the system. Our approach is based on
NET, but not limited to it. It can also be applied to other
environments with a virtual machine, such as Java.

B. Data Repository

To store usage data and the structure of every version of
the examined software system, we use a database.

For every program version, the structure of the program is
stored hierarchically. Program versions are decomposed into
assemblies. Every assembly contains types (e.g., classes),
which are themselves decomposed into methods. Types and
assemblies only carry their names, whereas methods carry
their signature and body. Figure 2 illustrates our data model.

After storing the program structure and usage data for all
of the program versions, we map methods from one version
to the next. Typically, one program version is succeeded
by another version including bug fixes and change requests.

Program version Type
Name Name
1 1.* 1
1.* 1 *
Assembly Method
Name Signature
Body
Figure 2. Data model of the program structure.

These changes are reflected in differences in method bodies
and signatures, as well as in the structure of types and
assemblies and their names. Because of these changes and
in order to gain accurate usage data, methods have to be
mapped from one program version to another. We perform
this mapping by comparing the methods of succeeding
program versions with respect to their signatures, bodies,
enclosing types, and assemblies. We find the most accurate
match for each method by first looking in the original type in
the original assembly of the next program version. Types and
assemblies are matched based on their names and contained
methods. We then rate the similarity of methods, whereas
the maximum similarity is given, if a method in the next
program version is found in the same type and assembly
with an exact match in the method name and parameters. The
confidence in the similarity is hampered, if parameters or the
enclosing type of a method have changed. The confidence
is even lower, if only the parameter types of two methods
are the same. We map methods to the most accurate match
in the next version. This enables us to build lists of methods
of different program versions that evolved from each other.
We manage to map about 98% of all methods from one
program version to the next. The list follows the ordering of
the software system’s versions. We call these lists method
genealogies, as defined in Section III.

Maintenance between two versions is detected by compar-
ing two consecutive methods in the same genealogy. There
are three possible actions, a developer could have performed:
Add, remove, or change methods.

All of the three actions can be detected in genealogies.
If a method was added during the program evolution, its
genealogy does not reach to the first program version. If a
method was removed, its genealogy does not reach to the
last program version and if a method was changed, the body
or signature changes in the method genealogy.

Figure 3 depicts the most important kinds of method
genealogies. The first genealogy is used twice, but never
modified. The second genealogy is never used, but modified
twice. The third genealogy is used twice and modified once.

Figure 4 illustrates the sets of method genealogies and
their relationships. The method genealogies, that are interest-

usage
> M > M

usage
—» M

M M — M

(a) Used and unmodified method genealogy.

M _;_> Ml N Mr _;_> MH N M" N Mu

(modification) (modification)

(b) Unused and modified method genealogy.

—>» M > —» M

M M o W

(c) Used and modified method genealogy.

Figure 3.

Different types of method genealogies.

necessarily
maintained

unnecessarily
maintained

modified

all method

genealogies Unused and modified

Figure 4. Analyzed sets of method genealogies and their composition.

ing for our analysis, are unused and modified. These methods
then can be split up into two sets again: Methods that were
modified necessarily and unnecessarily.

Having the time interval a program version was produc-
tive, we can reconstruct the possible time interval in which a
method was changed: Between the start of its own program
version and the beginning of the next. We used this infor-
mation in order to retrieve the source code that was affected
by a modification and to discuss it with the developers. If
a method was modified, each of its maintenance actions is
recorded as single event.

C. Query Interface for Developers

To support developers in maintenance, we provide a
query interface for the analysis results. This interface allows
generating statistics about the percentage of unused method
genealogies, the number of maintenance actions that have
been performed on unused method genealogies, and the
development of both over time. Thus, we use the query
interface for obtaining the relevant number for the case
study.

Furthermore, developers can search for methods they
are maintaining and retrieve the usage frequency of these

methods. With the help of this information, developers can
direct their maintenance effort.

V. CASE STUDY

In this section, we explain the case study we conducted
to quantify the impact of unused code on maintenance.

A. Research Questions

We formulate our research objective using the Goal-
Question-Metric approach from [8]. The research objective
is defined using the goal definition template as proposed
in [9]:

We analyze usage and maintenance of a large

industrial software system for the purpose of

exploring the role of unused code with respect

to its effect on maintenance from the viewpoint

of maintenance engineers and developers in the

context of industrially hosted business information

systems.

We infer the following research questions:

RQI: How much code is unused in industrial systems?
This question targets the existence and extent of unused code
in industrial systems. If there is no unused code, our study
would be irrelevant.

RQ2: How much maintenance is done in unused code?
Having identified unused code, we answer the question about
the existence and extent of maintenance effort that is spent
on unused code.

RQ3: How much maintenance in unused code is un-

necessary?
This research questions targets the existence and extent
of maintenance that gets spent on unnecessary code. This
question determines the severity of the problems caused by
maintenance actions in unused code and the potential of
savings of maintenance effort.

RQ4: Do maintainers perceive knowledge of unused
code useful for maintenance tasks?

This question determines the usefulness of the proposed
analysis. It is especially interesting whether the analysis
helps developers to direct their maintenance effort.

B. Study Object and Subjects

We evaluated the research questions with respect to a
business information system being in production at Munich
Re Group. Munich Re Group is one of the largest reinsur-
ance companies in the world and employs more than 47,000
people in over 50 locations. For their insurance business,
they develop a variety of custom supporting software sys-
tems. The analyzed business information system implements
damage prediction functionality and supports about 150
expert users in over 10 countries. An overview is shown
in Table L.

We chose this system as study object for several reasons.
First, the system has been in successful use for 8 years

Table 1
STUDY OBJECT.

Language C#
Age (years) 8
Size at beginning (kLOC) 360
Engineers (max) 9 (16)
Min. # Methods (size at beginning) 13908
Max. # Methods (size at end) 21664
Versions 19

and is still actively used and maintained. Understanding the
impact of unnecessary code on maintenance is thus likely
to decrease maintenance costs. Second, the development
and usage context is typical for the Munich Re Group. Its
users are distributed across different countries. The software
engineers are from different companies (some are employed
by Munich Re, some by software suppliers) and work at
different sites. This distribution of users and engineers com-
plicates communication inside and across the stakeholder
groups and could thus lead to a lack of usage information.
Third, it is a web application. Its server offers a single
point for usage data collection. Our study subjects are two
maintainers of the system. Both have been working in the
system for 8 years actively. Thus, they have deep knowledge
about the system.

C. Study Design

We conduct our study in two major steps. First, we collect
program and usage data. Second, we analyze the data in four
steps oriented at our research questions.

RQ1: Amount of unused code: We answer RQI1 using
the profiling data. We calculate the fraction of the number
of unused method genealogies off the overall number of
method genealogies for all individual program versions as
well as in total.

RQ2: Maintenance in unused code: For RQ2, we need
to identify modifications in method genealogies. Modifica-
tions in a genealogy occur between two program versions.
Therefore, we compare successive methods and determine if
they differ. This way, we find all modifications for a geneal-
ogy. If a modification took place in an unused genealogy,
we conclude that the maintenance effort for this modification
was spent on unused code.

RQ3: Amount of unnecessary maintenance and RQ4:
How does the analysis help the developers In order to
answer RQ3 and RQ4, we discuss our findings with the
developers of the system. There are typically large parts of
a system’s code that are systematically unused in production
such as unit tests or code related to batch jobs that are
not executed in the productive environment. In order to get
meaningful results, it is important to exclude such code from
the analysis. Therefore, in a first round, we select unused, but

maintained methods in a way that every part of the system
that exhibited unused code is represented in the sample.
Additionally, we select methods that seem to be noticeable
(e.g., methods with a large change in size or methods whose
names suggest unit tests). This results in a set of 24 methods.
We present this sample to a developer and use the results
to improve the filters in our analysis. These filters are also
applied for the measurements to answer RQ1 and RQ2. In a
second round, we take a random sample of cases, which we
discuss in detail with a different developer of the system in
order to elicit the reasons why the code was not used and
to quantify the fraction of unnecessary maintenance. We are
able to discuss 27 cases with this developer. Furthermore,
we investigate how the developer would have acted with
knowledge about the unused code and discuss if a tooling
as proposed would be helpful for supporting maintenance
tasks.

D. Execution

During the analysis period of two years, we gathered
usage data of 19 different program versions. Figure 5 shows
the distribution of the program versions over time. The
uncovered time intervals exist due to missing data that was
lost because of technical errors.

Program Version
01 (wmm

2008-11-20

Figure 5.

2011-02-17

All program versions with their time span of deployment.

In the following, we discuss the concrete procedure for
answering our research questions.

RQI: The investigation of RQ1 requires some prerequi-
sites. The program structure, consisting of assemblies, types,
and methods, is extracted from the binary versions of the
software system by using the .NET reflection technique. We
then store the whole structure of the program in a relational
database to perform the method mapping. We map methods
based on several heuristics that consider the signature and
location of a method, the name of its containing type and
assembly.

This results in a multistage mapping procedure to find
methods in the succeeding program version. At first, the
algorithm maps assemblies and types in the next program

version based on their names and contents. Based on the
found relations between assemblies and types, methods are
mapped. Methods are preferably matched if they have the
same location and the same signature. If no completely
matching method is found at the exact location, methods
are compared based on the method’s signature (name, return
type and argument types). This way, we can match methods
with arguments added and removed or with a changed name.
If no match was found at this stage, the whole software
system is searched for the method based on the same
heuristics as before. This way, we find methods that were
moved.

If iterated over all pairs of consecutive program versions,
this procedure leads to method genealogies that reach at
most from the first program version to the last.

RQ?2: Maintenance actions can be derived by compar-
ing method signatures (name, return type, and argument
types) and bodies of consecutive methods. For method
bodies, we check intermediate language code of methods for
equality. If signatures or bodies differ within one genealogy,
we count this as a modification.

RQ3: To obtain information about how much code
is unnecessary, we present a random sample of method
genealogies from the unused, but modified, method genealo-
gies to maintainers. With the help of the maintainers, we split
our sample into two groups: A set of maintained and unused,
but necessary, method genealogies and a set of maintained,
but unnecessary, methods.

RQ4: The interviews we conducted to answer RQ3
also provided information for RQ4. In the interviews, we
asked the developers, how useful and interesting the pro-
vided information was. Furthermore, having identified the
unnecessarily maintained method genealogies, we quantify
the accuracy of our analysis by comparing the set of un-
used, but maintained, method genealogies with the set of
unnecessarily maintained method genealogies.

Technical details: We conducted the study using a
machine with two 2.4 GHz processor cores and dedicated
4 GB of RAM. We were using a relational database for
storing the program structure and usage data. The complete
evaluation toolkit is written in Java. Inserting the program
structure and usage data of all 19 program versions into
the database took about 7 hours. Mapping methods and
generating the results took about 5 minutes.

Table 11
DISTRIBUTION OF MODIFIED AND UNMODIFIED METHOD
GENEALOGIES, DEPENDING ON USAGE.

Used Unused Total

Unmodified 53.3% 229% 76.2%
Modified 21.7% 2.1% 23.8%
Total 75% 25% 100%

25000

20000
0
o
2
£ 15000
E
ks B Unused
5 10000
2 W Used
£
E
z 5000
0
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Program version
Figure 6. Number of used and unused methods per program version.
E. Results

In the following, we present the results of our study by
providing numbers for our research questions. The numbers
are based on the method genealogies we obtained after
filtering. That means unit tests and code related to batch
jobs that are not executed in production are not included.

In the system, we identified 25,390 method genealogies.
Of these, 6,028 were modified with a total of 9,987 individ-
ual modifications. This means that considerable maintenance
effort took place during the analysis period.

RQI: Amount of unused code: Table II shows the
distribution of used and unused method genealogies. We
found that 25% of all method genealogies were never used
during the complete period. The fraction of unused methods
is roughly stable across program versions, as illustrated by
Figure 6.

RQ2: Maintenance in unused code: We first compared
the degree of maintenance (i.e. percentage of maintained
genealogies) between used and unused method genealogies.
We found that 40.7% of the used method genealogies
were maintained, but only 8.3% of the unused method
genealogies. That means, unused methods were maintained
less intensively than used methods. The unused genealogies
account for 7.6% of the total number of modifications.
Figure 7 shows how the modifications are distributed over
the program versions in absolute numbers and Figure 8
shows the percentage of the number of unused methods off
the number of modified methods for each program version.

RQ3: Amount of unnecessary maintenance: We re-
viewed the examples of unused maintenance with the devel-
opers. By inspecting the affected code and researching the
reason why it is not used, we found that in 9 of 27 (33%)
cases, the unused code was indeed unnecessary. In another
4 cases (15%) the code in question was no longer existent
as it was either deleted or moved. That means that in nearly
every second case unused methods were either unnecessary
or potentially deleted from the system. The exact actions
could not be retrieved from the versioning system.

RQ4: How does the analysis help the developers:
In both discussion rounds, we encountered great interest
in the analysis results, especially in the cases in which

3000

n
£ 2500 u
s
& 2000 .
°
2 1500 =
B | M Unused
o -
g 1000 Used
5 500 B
-3
23 45 67 89 1011 12-13 14-15 16-17 18-19
12 34 56 78 910 1112 13-14 15-16 17-18
Program version
Figure 7. Number of methods that were modified from one program

version to the next. The grey bar shows the part of the methods that are
used; the black bar shows the part of methods that are unused.

10
8
6
4
2 II
0
4 7-8

1112 13-14 1516 17-18
1011 12-13 1415 1617 1819

Program versions

Percentage

Figure 8. The fraction of the modified and unused methods of all modified
methods.

unused methods were maintained. Often, the developers
were surprised that the respective method was not used.
When investigating the reason why a particular method was
not used, in some cases the developers discovered a bug
(e.g., a business function was not correctly hooked into
the UI). Regarding the tool support we got the feedback
that information about unused methods would be helpful to
support maintenance.

Experiences with the mapping of methods: In general,
we found that our procedure to identify genealogies works
well in the majority of cases. The fraction of methods
that could be mapped from one program version to the
next usually was around 98%. Only in two cases it was
significantly lower (90% and 93%). As it is sensible to
assume that a certain number of methods are deleted without
replacement due to refactoring or changed requirements,
the fraction of methods genealogies that are erroneously
terminated should be very small. To support this claim we
manually inspected 20 genealogies. As far as we could tell
all of them were correct.

FE. Interpretation

This section presents an interpretation of the results based
on the research questions.
RQI: Amount of unused code: In our case study,
25% of the implemented code has never been executed
and, therefore, can be considered as unused. However, this

amount does not only consist of code of unused features, but
also of error handling routines such as exception handlers.

RQ2: Maintenance in unused code: Bringing together
the code usage with the locality of the changes, it is notice-
able that most of the modifications have been done in code
which has been executed. Only 7.6% of the system’s changes
affect methods that have never been executed. This means
that most of the maintenance (92.4%) has been spend on
actually used code. For this, we have the following explana-
tion. Change requests primary address the key functionality
of a system. Functionality, which is rarely or never executed,
is less likely affected by change requests. Furthermore, it is
more likely to find bugs in executed code as in code which
is not executed at all. Additionally, developers are aware
that some code is seldom or never executed and focus their
maintenance effort on actually used code.

RQ3: Amount of unnecessary maintenance: Based on
our measurements, 7.6% of all maintenance modifications
have been performed in unused code regions. To decide
whether modifications are unnecessary or not, we can com-
bine the answers from the developer interviews. Therefore,
48% of all modifications performed in unused code can be
considered unnecessary. The cleanup of all unused code
would cause unreasonable effort. Thus, we suggest tool
support to warn developers in case they are performing
maintenance tasks in an unused code region. With this, the
developer can decide individually if the planned maintenance
modifications are necessary or not. During our interviews
with the developers, we found that the actions taken to
maintain unused and unnecessary code are very similar to
the actions that are taken to maintain used code (from
refactoring to more complex adaptions). This implies that
the actual effort spent on unnecessary code is comparable
to the aforementioned numbers.

RQ4: How does the analysis help the developers:
Connecting the amount of maintenance in unused code
(7.6%) with the ratio of unnecessary maintenance from
the interviews (48%), 3.6% of the overall maintenance is
needless. However, using usage data during maintenance, a
developer can be sure in 92.4% that the performed changes
are definitely necessary, whereas in the remaining 7.6%
which are not used there is a 48% chance to avoid unneces-
sary changes. Furthermore, during the developer interviews,
several bugs have been detected which are directly related
with unused code.

G. Threats to Validity

In this section, we discuss the threats to validity in our
study. We structure the threats by internal, external and
construct validity.

Internal validity: We consider genealogies as used, if
they were used at an arbitrary time during the examination
period. If a method was modified after its last usage, we
are still considering the method genealogy as used and

modified. Therefore, we are missing method genealogies
that are unnecessarily maintained after their last usage,
because they are not used in the future. This results in an
underapproximation of the amount of maintenance actions in
unused code and implicates more conservative estimations,
which we see, however, as a minor threat.

There are two missing time intervals in our study due
to technical errors as shown in Figure 5. Because of that,
we compared program versions that did not follow each
other directly. However, we are able to map nearly as many
methods between these program versions as between all
other versions. Thus, we consider this to be a minor threat.
The missing data also affects usage data. This results in
method usages, which are not considered in our analysis.
The discussion with the maintainers did not show any
methods that were used in the maintainers’ opinion. Thus,
we consider this as a minor threat.

External validity: We examined only one system with
our analysis. To gain more general numbers about how much
unnecessary code is maintained during the software life
cycle, the investigation of our research questions on more
systems is needed. This allows for a generalization of our
findings, whereby we currently plan similar studies on other
systems.

Construct validity: Another threat to validity is that
method mapping may produce false method genealogies.
This effect can be divided into two classes: Methods are
set into relation that should not be and methods are not
set into relation that should be. This can cause under- and
overestimation of the maintenance actions on unused code.

These imprecisions arise due to the lack of information
about the exact history of methods, types, and namespaces
and the resulting estimation of relationships of different
methods. We minimize these effects by implementing a
rather conservative search algorithm, which matches method
based on several heuristics, considering all possible succes-
sors and matching methods with the highest probability. In
addition, we manually analyze further random samples of
method genealogies. Since we did not find any errors, this
strengthens our confidence in a low overall amount of errors.

VI. DISCUSSION

Our analyses, as well as the interviews with the maintain-
ers show results that exceed our research questions. In this
section, we discuss these results.

The analysis shows that 3.6% of the maintenance was
unnecessary. We expect this low number to be caused by
the structure of the development team. Most of the devel-
opers are maintaining and developing the system since the
beginning and are experts for the domain, as well as for the
system. In an environment where developers change more
frequently, it is likely that there is less knowledge about the
actual usage of the program and, thus, more maintenance in
unnecessary code.

According to the developers, the main causes for mainte-
nance of unused code are:

o Exception handling

o Interfaces that had to be implemented
o Code for future use

o Code for testing

We also detected code that was about to be removed or
was removed shortly after our examination interval. This
means that our analysis was able to identify unnecessary
code the developers were aware of.

However, the maintaining developers found the infor-
mation our analysis provided very useful. In 48% of our
findings for maintenance of unused code, the developers
did not know why the method was not used. Knowledge
about the usage frequency would significantly have changed
the behavior of the developers regarding maintenance. In
the sample set of methods, the most interesting findings
pointed to bugs. For example, we found a method that
checked certain conditions that validated a data set. With
this check not being performed, it was possible to insert
inconsistent data into the system’s database. According to
the maintainers, the unnecessarily maintained methods are
undergoing deeper investigation. These methods are either
used in the future or subject to removal.

With our analysis, we narrowed the set of methods to
look for unnecessary maintenance from 6369 (all unused
method genealogies) to 529 methods (maintained method
genealogies that were not used). This makes it a lot easier
for maintainers to identify misdirected maintenance effort.
This effect was also confirmed by the maintainers. These
results and their interpretation as well as the feedback of
the developers, points out that this analysis is useful for
maintainers in practice.

VII. RELATED WORK

To the best of our knowledge, other approaches that
use usage information to find out unused code to support
maintenance do not exist. However, our approach builds on
existing work from several areas. We relate it to remote anal-
ysis of deployed software, program profiling, code coverage
testing, diff and semantic diff, as well as unnecessary code
elimination.

Remote analysis of deployed software: has been pro-
posed by several researchers. Hilbert [10] proposes to
employ agents to collect usage information in deployed
software to support usability engineering. Orso etal. [11]
investigate means to distribute monitoring tasks across users
to reduce associated impact. Liblit etal. [12], [13] propose
remote program sampling to isolate bugs. Elbaum and Diep
[14] survey existing approaches to support testing by profil-
ing deployed software. Haran etal. [15] present approaches
to classify execution data gathered during remote program
analysis in support of further analysis. These approaches
were a valuable inspiration for our work and provide general

indication for the feasibility of profiling deployed software.
However, to the best of our knowledge, none of them are
targeted at usage analysis and maintenance.

Program profiling: [16] is an established practice in
performance engineering to identify problematic code. Exist-
ing approaches can be categorized into exact and statistical
profilers. While exact profilers yield precise results, their
potentially devastating impact on performance inhibits their
application on production machines. Statistic approaches
sacrifice precision to reduce performance impact and, thus,
can be applied to continuous profiling of deployed software
[17]. Ephemeral profiling [7], as we employ it, combines
exact results with minimal impact, thus, combines the ad-
vantages of both approaches.

Code coverage testing: In software testing, metrics
such as instruction, branch, path, or condition coverage are
used to measure the quality of test suites. These metrics
describe to which degree a program has been tested based
on its control flow graph. Many testing tools track the control
flow during test execution by either injecting additional
measurement code or using a system’s debugging interface.
Both affect the execution time and memory consumption in a
negative way. Since our test object was under productive use,
none of these techniques could be applied. We focused on
tracking just method executions in a lightweight way, which
affects the system’s run time behavior in a minimal way. We
injected measurement code, which is executed just once for
every first execution of a method. Since the application has
been restarted every day, method usage could be tracked on
a day time precision.

Syntactic and semantic diff: Differences between pro-
grams can be determined on several levels. There are
approaches comparing two versions of a program on the
syntactic, as well as on the semantic level. The UNIX diff
tool, for example, performs a lexical analysis of two text
sources. Even little textual changes, which have no effect on
the compilation, such as removing unnecessary line brakes
or spaces, will be detected as changes. Some work has
been done in finding differences based on abstract syntax
trees (AST) of programs [18], [19], [20]. By comparing
programs on their abstract structure, lexical changes, which
do not affect the behavior, are ignored. Another approach
is to compare programs on the semantic level. Semantic
Diff [21], for example, creates local dependency graphs to
compare their observable input-output behavior. LSdiff [22]
uses logical structural deltas to detect and understand sim-
ilarities in Java code. Since compiling source code already
filters little changes of the source code, which does not
change the system’s semantics, we focused on comparing
the binary representation of the system. However, during the
compilation of .NET applications, some information, which
is necessary to understand the intention of the developer,
gets lost.

Unnecessary code elimination: Most compilers per-
form optimizations to remove unnecessary code. Code,
which does not affect the applications result (dead code)
or cannot be executed at all (unreachable code), is detected
and not included in the compilation result [23], [24], [25].
In some development environments, this analysis is already
performed during coding which helps the developer to re-
move this code. Since all this is performed before executing
the system, the decision whether code is unnecessary is
based on the static information available at compile time.
In our approach, we perform a dynamic analysis using the
actual usage data, which exists not until the execution of the
system. To this end, we can detect code, which is technically
reachable, but still never executed.

VIII. FUTURE WORK AND CONCLUSION

In this section, we provide a conclusion, a short summary
of our work, and an overview of the results of our case study.
Afterwards, we outline our future research plans.

A. Conclusion

Real-world software systems typically contain unneces-
sary code. Maintenance of this code is unnecessary and
produces unnecessary maintenance costs.

To understand the impact of unused code on maintenance,
we monitored the usage and maintenance actions of an
industrially hosted business information system for over
two years. We quantified the amount of unused code and
measured how often such code is maintained. Furthermore,
we investigated to what extent maintenance tasks on unused
code are unnecessary. We conducted our study by using the
presented tool support.

From our analysis, we draw two main conclusions: A
large portion of the code has not been used over the
analysis period of two years (25% of all methods). However,
a surprisingly low amount of maintenance (7.6% of all
maintenance actions) is spent on this fraction of the software
system. Therefore, unused code is not a severe problem
in the maintenance of the examined system. But nearly
50% of the maintenance actions that were performed on
the unused parts of the system affected methods that were
unnecessary and caused unnecessary maintenance effort or
even bugs. The information received during interviews with
the maintainers of the examined software system indicates
that our analysis is helpful for them.

We believe that our analysis would show a greater amount
of unnecessary maintenance for projects with a different
structure of the maintaining team. We are optimistic that this
analysis helps directing maintenance efforts more effectively.

B. Future Work

Motivated by the results of our study, we plan a number
of improvements and validations for the proposed analysis
in the future.

Increase accuracy: At this stage, we are not able to
map functionality of methods that is migrated into other
methods. In order to gain more precise statistics, we plan to
improve our mapping mechanisms. Moreover, we are work-
ing on more elaborated statistics and metrics that measure
unnecessary maintenance effort.

Another possibility to increase the accuracy of our analy-
sis is to employ procedures for filtering exception handlers
and similar parts of the code from the set of unused and
maintained methods. We are optimistic to raise the ratio of
unnecessarily maintained code in our findings.

Test control: Our tooling can also be applied to test
systems. Combined with knowledge about changes to an
underlying system, we can point testers to methods that were
changed, but not tested afterwards.

Representative study: In this study, we only observed
one large software system. In the future, we will monitor
more systems to gain more general results about the main-
tenance of unused code. Furthermore, the presented tool
support only targets systems written in C#. As our approach
is not limited to this programming language, we plan to
adopt it also for other systems that work on virtual machines,
for example, Java.

ACKNOWLEDGMENT

We are grateful to Markus Herrmannsdoerfer for his
help with the execution of the study. We also thank Lars
Heinemann, Markus Herrmannsdoerfer, and Daniel Méndez
Fernandez for their helpful comments.

REFERENCES
[1] J. Johnson, “Roi, it’s your job,” Keynote at XP ’02.

[2] E. Juergens, M. Feilkas, M. Herrmannsdoerfer, F. Deis-
senboeck, R. Vaas, and K. Prommer, “Feature profiling for
evolving systems,” in ICPC 11, 2011.

[3] IEEE, “IEEE standard glossary of software engineering ter-
minology,” Standard, 1990.

[4] D. Yeh and J.-H. Jeng, “An empirical study of the influence of
departmentalization and organizational position on software
maintenance,” J. Softw. Maint. Evol. Res. Pr., 2002.

[5] H. D. Rombach, B. T. Ulery, and J. D. Valett, “Toward full
life cycle control: Adding maintenance measurement to the
SEL,” J. Syst. Softw., 1992.

[6] V. Basili, L. Briand, S. Condon, Y.-M. Kim, W. L. Melo,
and J. D. Valett, “Understanding and predicting the process
of software maintenance release,” in ICSE 96, 1996.

[7] O. Traub, S. Schechter, and M. D. Smith, “Ephemeral in-
strumentation for lightweight program profiling,” School of
engineering and Applied Sciences, Harvard University, Tech.
Rep., 2000.

[8] V. Basili, G. Caldiera, and H. Rombach, “The Goal Question
Metric Approach,” Encyclopedia of Software Engineering,
vol. 1, 1994.

(91

(10]

(11]

[12]

(13]

(14]

[15]

(16]

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell,
and A. Wesslén, Experimentation in software engineering: An
introduction. Kluwer Academic Publishers, 2000.

D. M. Hilbert, “Large-scale collection of application usage
data and user feedback to inform interactive software devel-
opment,” Ph.D. dissertation, University of California, Irvine,
1999.

A. Orso, D. Liang, M. J. Harrold, and R. Lipton, “Gamma
system: Continuous evolution of software after deployment,”
SIGSOFT Softw. Eng. Notes, vol. 27, no. 4, 2002.

B. Liblit, A. Aiken, A. X. Zheng, and M. 1. Jordan, “Bug
isolation via remote program sampling,” SIGPLAN Notices
’03, vol. 38, no. 5, 2003.

B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan,
“Scalable statistical bug isolation,” in PLDI ’05, 2005.

S. Elbaum and M. Diep, “Profiling deployed software: As-
sessing strategies and testing opportunities,” IEEE Trans.
Softw. Eng., vol. 31, no. 4, 2005.

M. Haran, A. Karr, M. Last, A. Orso, Alessandro d A. Porter,
A. Sanil, and S. Fouche, “Techniques for classifying execu-
tions of deployed software to support software engineering
tasks,” IEEE Trans. Softw. Eng., vol. 33, no. 5, 2007.

S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A
call graph execution profiler,” in SIGPLAN Notices 82, 1982.

(7]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R.
Henzinger, S.-T. A. Leung, R. L. Sites, M. T. Vandevoorde,
C. A. Waldspurger, and W. E. Weihl, “Continuous profiling:
Where have all the cycles gone?” ACM Trans. Comput. Syst.,
vol. 15, no. 4, 1997.

S. Horwitz, “Identifying the semantic and textual differences
between two versions of a program,” in PLDI ’90, 1990.

W. Yang, “Identifying syntactic differences between two
programs,” Softw., Pract. Exper., vol. 21, no. 7, 1991.

J. E. Grass, “Cdiff: A syntax directed differencer for C++
programs,” in UXENIX C++ 92, 1992.

D. Jackson and D. A. Ladd, “Semantic diff: A tool for
summarizing the effects of modifications,” in ICSM ’94, 1994.

M. Kim and D. Notkin, “Discovering and representing sys-
tematic code changes,” in ICSE '09, 2009.

R. U. J. D. Aho, Alfred V.; Sethi, Compilers - Principles,
Techniques and Tools. Addison Wesley, 1986.

A. Appel, Modern Compiler Implementation in Java. Cam-
bridge University Press, 1998.

S. K. Debray, W. Evans, R. Muth, and B. De Sutter, “Com-
piler techniques for code compaction,” ACM Trans. Program.
Lang. Syst., vol. 22, 2000.

