
Empir Software Eng
DOI 10.1007/s10664-012-9211-2

How do open source communities blog?

Dennis Pagano · Walid Maalej

© Springer Science+Business Media, LLC 2012
Editors: Arie van Deursen, Tao Xie and Thomas Zimmermann

Abstract We report on an exploratory study, which aims at understanding how soft-
ware communities use blogs compared to conventional development infrastructures.
We analyzed the behavior of 1,100 bloggers in four large open source communities,
distinguishing between committing bloggers and other community members. We
observed that these communities intensively use blogs with one new entry every
8 h. A blog entry includes 14 times more words than a commit message. When
analyzing the content of the blogs, we found that committers and others bloggers
write about similar topics. Most popular topics in committers’ blogs represent high-
level concepts such as features and domain concepts, while source code related topics
are discussed in 15% of their posts. Other community members frequently write
about community events and conferences as well as configuration and deployment
topics. We found that the blogging peak period is usually after the software is
released. Moreover, committers are more likely to blog after corrective engineering
than after forward engineering and re-engineering activities. Our findings call for
a hypothesis-driven research to (a) further understand the role of social media in
dissolving the collaboration boundaries between developers and other stakeholders
and (b) integrate social media into development processes and tools.

Keywords Social software · Open source · Data mining · Blogs ·
Social software engineering

1 Introduction

Social media enable the creation and exchange of user-generated content (Kaplan
and Haenlein 2010). Individuals can use them to interact with, share information

D. Pagano (B) · W. Maalej (B)
Fakultät für Informatik, Technische Universität München, Munich, Germany
e-mail: pagano@cs.tum.edu, maalejw@cs.tum.edu



Empir Software Eng

with, and meet other individuals presumably with similar interests, forming large
data, knowledge, and user bases. In recent years the number of users and use-
cases of social media has grown rapidly (The Nielsen Company 2010). For example,
Facebook recently announced that it has more active users than the population of
Europe.1 The usage of Facebook, Blogger & Co. is no longer limited to private
scenarios such as finding school friends, sharing photos, or keeping a vacation diary.
Professionals use more and more social media e.g. to organize a conference, market
a new product, or coordinate an open source project.

The software engineering community has also recognized the potentials of social
media to improve communication and collaboration in software projects (Begel et al.
2010). For example, several studies have shown the role of Wikis for managing soft-
ware documentation and collaboration (Maalej et al. 2008). Other authors suggested
the integration of social media into development environments (Treude and Storey
2009; Guzzi et al. 2010; van Deursen et al. 2010). However, there exists no framework
on the use of social media in software engineering. This paper takes a step towards
such a framework by exploring the role of blogs as a popular social medium in open
source communities.

The overall goal of our research is to increase the socialness of software, making
the involvement of software users and their communities a first order concern
of software systems and processes (Maalej and Pagano 2011). In particular, we
aim at systematically utilizing valuable user experiences and volunteered resources,
e.g. published in communities. We hypothesize that social media represent an
important enabler for dissolving the communication and collaboration boundaries
between developers and other stakeholders. We therefore envision a more intensive
and scientific use of social media in software engineering projects.

As a first step, we investigate in this paper how open source communities currently
use social media. We divide the blogging ecosystem in active software developers
and other stakeholders (including the users). We are particularly interested in
understanding how and why these groups use blogs, and how their blogging activities
are related to other project activities. From the results we try to draw conclusions
on how current communication means between developers and other stakeholders
can be improved (e.g. by revising software tools and processes), and how otherwise
stakeholders (in particular users) can be stronger involved in the development
lifecycle.

In the following we report on an exploratory study, which examines the content
and metadata of blogs in four large open source communities. The contribution of the
study is threefold. First, it gives empirical evidence on what a developer’s blog post
typically looks like. Second, it explores usage patterns of blogs during development
and identifies dependencies to other activities: in particular committing code and
releasing software. Third, it gives first insights to tool vendors and practitioners into
how to better integrate social media into development tools and processes.

The remainder of the paper is structured as follows. Section 2 introduces the
research questions, research data, and methodology used. The following three
sections summarize our research findings on the usage of blogs (Section 3), the
information included (Section 4), and the dependencies between blogging, releasing,

1http://www.facebook.com/press/info.php?statistics

http://www.facebook.com/press/info.php?statistics


Empir Software Eng

and committing activities (Section 5). Section 6 discusses our findings while Section 7
presents their limitations. Section 8 surveys related work focusing on studies, which
analyze social media and similar artifacts. Finally, Section 9 concludes the paper and
sketches our future plans.

2 Research Setting

We first summarize the questions that drive our research. Then, we describe the
overall method we used to collect and analyze the data. Finally, we present the actual
data sets collected to perform our analysis.

2.1 Research Questions

Our research goal is to understand how and why blogs are currently used by different
groups in a software community. We focus on three aspects: the actual usage of
blogs in software projects, the content of these blogs, and the integration of blogging
activities into the development workflows.

Blog usage describes how software development communities blog (i.e. share in-
formation in blogs). For that, we analyze the publishing frequency as well as the
structure of blog posts, answering the following questions:

– Publishing frequency: How often do community members blog?
– Post structure: What are typical elements of a blog entry and how often are they

included or referenced?

Blog content describes the information published in the blogs. This includes identi-
fying topics (i.e. semantic entities) and their frequencies. In particular we answer the
following questions:

– Topics: Which topics are discussed in blogs of development communities?
– Topic popularity: How popular are these topics (i.e. frequency distribution)

across different communities?

Blog integration describes how blogging activities are integrated in the development
workflows. We examine usage patterns and content dependencies between blogs,
source code repositories, and release repositories answering the following questions:

– Publishing patterns: Are there particular patterns, which describe when blogs are
used in the communities? In particular:

– Release dependency: When are blogs posted in relationship to the software
releases?

– Activity dependency: When are blogs posted in relationship to particular
development activities?

– Published Information: Are there relationships between the work performed and
the information blogged? In particular:

– Content dependency: Are blog post topics and particular development
activities related?



Empir Software Eng

Fig. 1 Research method

– Time dependency: To which degree are work performed and information
blogged related in terms of time?

When answering these questions we distinguish between active developers (commit-
ters) and other bloggers (others). This allow us to compare the behavior of developers
and other stakeholders in the studied communities.

2.2 Research Method

Our research method consisted of two phases: a data preparation and a data analysis
phase, as depicted in Fig. 1.

2.2.1 Data Preparation Phase

In the data preparation phase, we selected the development communities, from
which research data is to be collected. To qualify for our study a community must
have:

– A public source code repository and a public release history.
– More than 100 bloggers. In a community with 100 different bloggers blogs

are popular enough to be studied and give a representative impression on the
community.

– More than 1,000 project-related (e.g. not private) blog posts. This threshold
provides enough data to discover statistical significant dependencies and means
about the blogs.

– More than ten blogging committers. Studying at least ten different blogging
committers gives enough variation to get common and different behavior of the
developers.

Our study is of exploratory nature and is not designed to be generalizable to an
arbitrary software development project. For the studied cases these criteria are
meant to provide enough data and subjects to represent the community.

To select the communities based on the above criteria, we analyzed Planet,2 a
popular blog aggregator. Planet is used by 43 open source communities to collect

2www.planetplanet.org

http://www.planetplanet.org


Empir Software Eng

blog posts of their members in a single place. Each entry in a particular “planet”
(i.e. community aggregator such as planet Mozilla) includes meta information about
the name of the blogger and the link to the original blog post. Additionally, the
aggregator lists all contributing bloggers, who are usually selected by a community
board. The selection underlies a strict quality policy, since the primary goal of the
common blog is to provide project related knowledge. It is important to notice that
in this study we did not investigate comments or responses to blog posts, but only the
original blog posts.

After querying the blog aggregator and the source code repository, we mapped the
blog posts to the commit history based on the authors’ names. This mapping enabled
us to distinguish between bloggers who commit source code and other bloggers in
the community.

We first built a list of blogger names and a list of committer names. The real names
in the lists were not identical (e.g. “David Wheeler” and “David E. Wheeler”). In
addition most blog posts include the real name of their authors, while most commits
contain only login names. Therefore, we created login name candidates from the
blogger’s real name (e.g. “glefur” from “Goulwen Le Fur”). We also observed that
several commit messages contain meta information such as “Author: 10:44:52 Tim
Janik”, “Author: PST 2006 Michael Emmel”. We extracted this information using
regular expressions and manually corrected the author names when required.

We then compared the entries in the blogger and committer lists using a text
similarity algorithm,3 which is based on the Dice similarity coefficient on bigrams
(Dice 1945):

d(X, Y) = 2 |X ∩ Y|
|X| + |Y| , for two strings X, Y.

The intersection of two strings is defined as the set of common bigrams. The Dice
coefficient is frequently used in information retrieval to find exact matches as well as
slightly diverging pairs. It evaluates to 100% if and only if the words are equal. For
instance, the strings “Dennis” and “Tennis” have a Dice coefficient of 80% while
“Walid” and “Kalid” lead to a coefficient of only 75%. Although both pairs only
differ in one letter, the former includes more common information, since the strings
are longer.

Consequently, login names should match more precisely than real names, as they
are shorter. We manually investigated random probes of the matchings to find
suitable thresholds and ensure the correctness of this approach. We finally used a
threshold of 80% to match two real names (e.g. “David Wheeler” and “David E.
Wheeler”). To match two login names (e.g. “wheeler” and “dwheeler”) we required
their Dice coefficient to be above 90%.

2.2.2 Data Analysis Phase

The data analysis phase consisted of three steps, which respectively answer the usage,
content, and integration questions. To analyze the usage of blogs we applied de-
scriptive statistics (for frequency calculation) and regular expressions (for analyzing
the blog structure). We also conducted statistical tests to exclude the hazard factors

3http://www.catalysoft.com/articles/StrikeAMatch.html

http://www.catalysoft.com/articles/StrikeAMatch.html


Empir Software Eng

Table 1 Overview of collected
data

Eclipse GNOME PostgreSQL Python

# posts 10,333 18,323 3,385 18,660
# bloggers 328 342 112 405
# commits 239,659 252,831 30,745 45,116
# committers 467 2,294 34 178
# blogging 93 250 12 34

committers

and report on the error rates. To analyze the blog content and included information
we used the Latent Dirichlet Allocation (LDA) topic modeling technique (Blei
et al. 2003). When applied on the blogs, this technique extracts keywords which
belong together and groups them as topics. Finally, to study the integration aspect we
ordered commit messages and blog posts as well as commit messages and releases by
time and investigated the resulting stream of events. Thereby we looked for patterns
and regularities using Sequential Pattern Mining (Agrawal and Srikant 1995). We
detail on each of these analysis steps in the corresponding result section.

2.3 Research Data

Our data preparation phase led to the selection of four large open source soft-
ware communities: Eclipse, GNOME, PostgreSQL, and Python. Table 1 shows an
overview of the collected data, which we introduce in the following.

Eclipse is an open development platform, which comprises extensible frameworks,
tools, and runtime environments to build, deploy, and manage software systems.
The Eclipse community is one of the largest open source communities including 11
million users and more than a thousand active developers. From Planet Eclipse4 we
collected 10,333 blog posts of 328 community members over the last seven years.
Eclipse comprises over one hundred sub-projects which use separate source code
repositories. We asked two Eclipse committers and one Eclipse blogger (all were
involved for around three years) to name the most active projects in the community.
Based on their independent feedback, we selected the following 22 projects: atl, cdo,
cdt, compare, dsdp, dtp, e4, ecf, eclipse platform, emf, equinox, gef, gmf, jdt, m2m,
m2t, mylyn, pde, rap, riena, swt, and xtext. From the repositories of these projects we
collected 239,659 commit messages of 467 developers, written over the last ten years.

GNOME is a large community, which develops a free and open source desktop
environment. The GNOME community describes itself as “a worldwide community
of volunteers who hack, translate, design, QA, and generally have fun together.”
From Planet GNOME5 we collected 18,323 blog posts of 342 community members
from the last ten years. GNOME includes about hundred sub-projects, which use
different source code repositories. As in Eclipse we selected the following list after
asking two active committers and one blogger (all were involved for three to four
years) for the most active sub-projects: banshee, empathy, eog, epiphany, evolution,
f-spot, gdk-pixbuf, gdm, gedit, gimp, glib, gnome-applets, gnome-bluetooth, gnome-
control-center, gnome-disk-utility, gnome-keyring, gnome-packagekit, gnome-panel,

4planeteclipse.org
5planet.gnome.org

http://planeteclipse.org
http://planet.gnome.org


Empir Software Eng

gnome-power-manager, gnome-session, gnome-shell, gnome-terminal, gnome-utils,
gnome-vfs, gparted, gtk+, gvfs, libgnome, metacity, nautilus, pitivi, policykit-gnome,
seahorse, and totem. For these 34 sub-projects we collected 252,831 commit messages
of 2,294 developers, written over the last 14 years.

PostgreSQL is an open source database management system developed and
maintained by a global community of developers and companies. The PostgreSQL
community uses two planet websites6 with slightly different contributors. We merged
both contributor lists and obtained 3,385 blog posts of 112 active members from
the last seven years. PostgreSQL is a single project hosted in a single source code
repository. We collected 30,745 commit messages from 34 developers, written over
the last 15 years. PostgreSQL accounts for the smallest data set.

Python is an interpreted, general-purpose programming language, which em-
phasizes code readability and maintainability. From Planet Python7 we collected
18,660 blog posts from 405 community members, published over the last eight years.
Thus, Python comprises the largest number of bloggers and blog posts in our data.
Like PostgreSQL, Python uses a single source code repository. We collected 45,116
commit messages from 178 developers, written over the last 20 years. Python is the
oldest project in the collected data.

After the data preparation phase we found 93 matches of committer and blogger
names in Eclipse, 250 in GNOME, 12 in PostgreSQL, and 34 in Python. These people
are actively committing source code and blogging in their community.

3 Blog Usage

We explore how the studied communities use blogs, by analyzing the publishing
frequency and the post structure.

3.1 Publishing Frequency

We studied the publishing frequency for the whole communities as well as for the
individual bloggers, while distinguishing between active developers (committers)
and other bloggers. Table 2 shows the number of posts by committers and others
in our data sets. In all communities we found less entries from committers (13 to
26% of all entries) than from other bloggers, except in GNOME. Committers in this
community contributed 81% of all blog posts. This result originates not least from
the distribution of committers and other bloggers in the corresponding data sets (see
Table 1).

In all studied communities we observed several blog posts each day. The mean
time between two successive blog posts within a community is 8.1 h. On average,
Python is the most active community with one blog post each 3.9 h. GNOME
bloggers publish one blog post each 4.9 h on average. The mean time between two
posts in the Eclipse community is 5.6 h. PostgreSQL is the least active community
with a post each 18 h. This means the bigger the community is, the more frequent
blog posts it has.

6planet.postgresql.org and www.planetpostgresql.org
7planet.python.org

http://planet.postgresql.org
http://www.planetpostgresql.org
http://planet.python.org


Empir Software Eng

Table 2 Blog post ratios of committers vs. others in the studied communities

Eclipse GNOME PostgreSQL Python Total

Committers 2,651 (26%) 14,893 (81%) 432 (13%) 3,025 (16%) 21,001 (41%)
Others 7,682 (74%) 3,430 (19%) 2,953 (83%) 15,635 (84%) 29,700 (59%)

We observed that the committing frequency in all four communities is significantly
higher than the respective blogging frequency. On average, Eclipse and GNOME
developers committed a source code change twice per hour, while PostgreSQL and
Python developers once in 4 h. This reflects also that the Eclipse and GNOME
communities are larger than PostgreSQL and Python in terms of their development
efforts.

Next, we study the total number of blog posts for the individual bloggers. The
distribution of the individual number of blog posts is positively skewed in all data
sets. We therefore use medians rather than means to describe the distribution. In
all communities, committers had written more blog posts than other bloggers. As
shown in Table 3 we found the biggest difference in the Python community, where
committers wrote more than twice as many posts as other bloggers. PostgreSQL
committers blogged nearly twice as much as other community members. In all four
data sets, 75% of the committers had published more than ten posts, while 75% of the
other bloggers accounted for less than 50 posts. For all communities but PostgreSQL
the difference between the median number of blog posts by committers and others
is statistically significant. A two-sample Wilcoxon rank sum test with continuity
correction rejected the null hypothesis that the medians are equal (p < 0.05 for all
communities but PostgreSQL: p = 0.073, CI = 95%).

Analyzing the individual contributions, we found that committers in general blog
more frequently than other community members. Figure 2 shows the publishing
frequency of bloggers in the four communities. The distributions of the frequencies
in the data sets are positively skewed. There are bloggers who post only once in
seven months. We therefore use again medians rather than means to describe the
distribution. The average time between two successive blog posts based on median
lies between 17 and 33 days in all data sets. For committers the median blog post
rate is 26 days (39 days based on mean). 75% of all committers publish a blog post
latest every 44 days. Other bloggers in the communities post once in 28 days (43 days
mean). We conclude that in all communities except Eclipse, committers posted more
frequently than other bloggers. However, neither a two-sample Wilcoxon rank sum
test for medians, nor a two-sample t-test for means could show that the observed
difference is statistically significant (medians: p = 0.15, means: p = 0.079).

Eclipse committers publish every 34 days based on median and 44 days based on
mean. Other bloggers in the Eclipse community post every 29 days based on median
and every 40 days based on mean. 25% of the Eclipse committers post less often
than once in 54 days, while 75% of other bloggers in the community post more often
than once every 50 days. We discussed this observation with active members of the

Table 3 Total number of blog
posts per person (medians)

Eclipse GNOME PostgreSQL Python

Committers 18 28 21 35
Other bloggers 14 24 11 17



Empir Software Eng

Fig. 2 Publishing frequency of bloggers

Eclipse community (committers and other bloggers). We also randomly selected five
frequent Eclipse bloggers and investigated their web profiles and activities. We found
that Eclipse evangelists regularly provide information to the community without
being actively involved in the development of the software itself.

Finally, we analyzed how long the community members have used blogs. Com-
mitters had a medium blog usage time of 2.2 years. 75% of them have used blogs
longer than 1.2 years. The medium usage time of other bloggers is 1.6 years, 75% of
them have blogged for less than 2.6 years. This observation is statistically significant
for both medians and means (two-sample Wilcoxon rank sum test with continuity
correction for medians, two-sample t-test for means, p < 0.001).

Fig. 3 Average lengths of blog posts



Empir Software Eng

Table 4 Blog posts containing source code

Eclipse GNOME PostgreSQL Python Total

Committers 332 (13%) 884 (6%) 46 (11%) 438 (14%) 1,700 (8%)
Other bloggers 583 (8%) 209 (6%) 579 (4%) 2,674 (17%) 4,045 (14%)

To summarize, studied open source communities frequently and continuously
publish information in blogs. Committers blog slightly more often and for longer time
periods than other community members.

3.2 Post Structure

To study the structure of blogs, we examined the length of the posts and analyzed the
included source code, links, and images. We used regular expressions to extract these
elements. In the remainder of this section we describe the analysis results.

3.2.1 Blog Post Length

The median blog post length is 150 words (273 words average), which is about 14
times the median length of a commit message (11 words) in our data sets. As shown
in Fig. 3, the distribution of post lengths is positively skewed in all data sets, since
single posts comprise several thousand words. The longest blog post of our data
sets was entered in the GNOME community. It contains 9,265 words and describes
experiments with a new Linux init system. 1,102 posts (2%) comprise less than ten
words. Examples of posts with only three words are “GNOME lacks stetic” and
“Amazing, absolutely amazing”. Over 95% of all posts are shorter than 1,000 words,
which corresponds to four printed pages.

On average, committers of all studied communities except Eclipse write shorter
posts than other bloggers (for Eclipse, GNOME, and Python two-sample Wilcoxon
rank sum test leads to p < 0.001 , PostgreSQL: p = 0.14). The Eclipse committers
account for the longest blog posts across all communities (214 words median). Over
75% of their blog posts are longer than 100 words. The Python committers on the
other hand account for the shortest blog posts, 25% of which comprise less than 45
words.

3.2.2 Source Code

We scanned the HTML source of the blog posts for the tag “<pre>”, which is
commonly used to markup source code paragraphs. From all 50,701 studied blog
posts we were able to find source code paragraphs in 5,745 posts (11.3%).8 As shown
in Table 4, GNOME has overall the least amount of blog posts with source code
while Python has the highest. This reflects the nature of these systems. The use of
Python as an API library is rather source code based, while GNOME present other
aspects such as user interfaces. A senior GNOME committer, who regularly attended

8In an earlier version (Pagano and Maalej 2011) we reported a much smaller rate. After a manual
analysis of 100 randomly selected blog posts, we discovered that the original scanning algorithm
missed certain blocks. We are more confident with the results presented in this paper.



Empir Software Eng

Table 5 Blog posts containing links

Eclipse GNOME PostgreSQL Python Total

Committers 2,384 (90%) 12,418 (83%) 366 (85%) 2,332 (77%) 17,500 (83%)
Others 6,171 (80%) 2,893 (84%) 1,934 (65%) 12,328 (79%) 23,326 (78%)

community events, confirmed this finding. Since April 2007 he contributed over 600
commits, and also blogged occasionally with 14 blog posts since December 2009. He
explained that developers only include source code in their posts to show “new cool
features” and explain “how things are done right”.

In Eclipse and PostgreSQL committers published more source code in their blogs
than other bloggers as opposed to Python. In the GNOME community, both groups
show approximately the same behavior. However two-sample t-tests could not prove
that these differences are statistically significant (p > 0.05). Committers and other
bloggers tend to include source code only in about every tenth post.

3.2.3 Links

We observed that links are frequently included in blog posts. In total of 40,826 posts
(80.5%) contain links. We compared the behavior of active developers against other
community members in including links in their blog posts. We found that on average
83.3% of committers’ posts and 78.5% of other bloggers’ posts contain links, as
shown in Table 5.

We randomly selected 400 blog posts from each community (200 posts from
developers and 200 posts from other bloggers) and investigated their links using
regular expressions and manual peer reviews. This sample included in total 5,313
links. In a first step we removed about 19% of all links, which we rated as off topic
(e.g. links to private sites). In the remaining links, we found that committers on
average included more links to Wikis (11%) than other bloggers (8%). Similarly,
the posts of committers included more links to other blog posts (28%) than posts
of other community members (25%). The remaining links were links to project-
related websites (39%) like the official project website, reference documentation of
source code (7%), source code (7%), other downloads (3%), issue trackers (3%),
newsgroups (1%), micro-blogs (1%), project download pages (1%), and videos
(1%).

We think that committers tend to reference knowledge rather than to re-write or
copy it more frequently than other community members. Committers also seems to
know public knowledge sources better than other bloggers.

3.2.4 Images

Last, we investigated the usage of images in our data sets. We found that 14,605 blog
posts contain images (28.8% of all posts). As shown in Table 6, developers in all

Table 6 Blog posts containing images

Eclipse GNOME PostgreSQL Python Total

Committers 1,463 (55%) 5,523 (37%) 41 (10%) 274 (9%) 7,301 (35%)
Others 2,672 (35%) 1,387 (40%) 343 (12%) 2,902 (19%) 7,304 (25%)



Empir Software Eng

Table 7 Images in blog posts
(semi-automated analysis)

Screenshots Community Graphics Diagrams

Committers 22.3% 6.8% 8.9% 3.4%
Other bloggers 18.0% 6.2% 3.3% 2.6%
Total 20.1% 6.5% 6.1% 3.0%

communities but Eclipse publish about 2 to 10% less images in their blogs than other
community members. In Eclipse, every second developer post includes images while
every third post of other community members does.

Overall the Eclipse and GNOME communities upload more images (> 37% of
all posts) than the PostgreSQL and Python communities (< 18%). We think that this
partly results from the fact that several sub-projects of Eclipse and GNOME are user
interface projects, while in PostgreSQL and Python user interfaces are secondary
concepts.

Again we created a random sample of 400 blog posts from each community
and manually assessed 1,231 included images. We found that 25% of all included
images are thumbnails of social bookmarking sites, comment counters, or other
automatically added images. 15% of all images were not accessible (broken links)
and 24% were off topic (e.g. vacation pictures). About 20% of the images are
screenshots, 7% community pictures (e.g. conferences or meetings), 6% graphics
such as function plots and charts, and 3% diagrams (e.g. UML diagrams). Table 7
shows that committers tend to use slightly more screenshots (22.3%) in their posts
than other bloggers (18.0%).

To summarize, studied software communities and in particular active developers
use blogs to communicate on a relative high level of abstraction. Further, based on the
publication of community pictures, it seems that the community itself is an important
topic in blogs.

4 Blog Content

We analyzed the content of the blogs to find out which information is included
in community posts and how frequently. We used the Latent Dirichlet Allocation
(LDA) topic modeling technique (Blei et al. 2003) to derive topics from the blog
posts in each project. With LDA a topic emerges as a set of words that are correlated
with a certain probability because of their co-occurrence in the same document. Our
topic extraction process involved four steps. First, we created two document corpora
for each community: the first comprising all blog posts of the active (committing)
developers, and the second comprising all other blog posts in the community.
To create these corpora we used a list of English stop words and a stemmer to
remove word inflexions beforehand. Second, we performed multiple runs of the
LDA algorithm on the four data sets and experimented with different numbers of
topics. We found that using 50 topics leads to the most meaningful results (i.e. a
total list of 200 topics from the four data sets). Third, both authors independently
inspected the results and manually added topic descriptions (labels) based on the top
20 most influential words (obtained by LDA). To support the labeling, we randomly
selected few associated blog posts and analyzed them manually until we identified a
topic label which covers the different aspects of the associated words. We repeated



Empir Software Eng

this step until the agreements on the labels by the authors were over 90%. In this
step, a label could be assigned to multiple topics. This led to fewer descriptions than
the original topics. We observed the resulting merged topics with the same labels
(i.e. topics with the same semantics but potentially different words or word sets) are
more consistent than the results of running LDA with an up-front reduced number
of topics (i.e. pure syntactic clustering). Fourth, we grouped similar topics across
the data sets to project-independent themes (such as grouping the topics “domain
concepts”, “legal requirements”, and “features” to the theme “requirement”).

To quantify the popularity of the topics we calculated the occurrences of the topics
within the blog posts using the document-topic matrix from LDA. Since a single blog
post may contain multiple topics, we selected the most predominant topics per post
by evaluating for each post and topic the number of words in the post belonging to
that topic. We defined a topic to be predominant if at least 10% of the words in the
blog post belong to the topic. This threshold results from two observations:

1. Single words from most topics are present in a large number of posts (e.g. “use”).
These words do not determine the topic sufficiently without other words from
that topic.

2. Over 90% of the posts contain at least one predominant topic.

In the following we report on the topics included in committers’ blogs as well as in
the posts of other bloggers. Then we discuss themes and compare their popularities
among committers and other bloggers.

4.1 Topics of Committers

Table 8 shows the list of topics extracted from committers’ blogs across the four
communities with their popularity and examples of influential words. From 200
topics we were able to identify semantic descriptions for 194 topics with 23 labels. The
remaining six topics exhibited heterogeneous words with inconsistent or no meanings
in the associated blogs (e.g. “word”, “net”, “50”, “77”, “att”, “en”, “45”, “resolv”,
“ironpython”, “de”, “på”, “och”, “det”, “et”, “silverlight”, “som”, “int”, “85”, “ou”,
“spreadsheet”). These “unknown” topics together have a popularity of 12.3%.

We found that the most popular topic is “features & domain concepts”. This topic
is predominant in around 42% of all blog posts. Further the topics “community &
contributions” as well as “API usage & project documentation” are predominant in
about a third of the blog posts over all studied communities. The topic “source code”
is covered in less than 15% of all blog posts.

Table 9 shows the most popular topics with their corresponding frequencies
among the communities. With the exception of PostgreSQL, the topic “architecture
& packages” is predominant in about one third of all posts. However, in the
PostgreSQL data set we were unable to extract this topic. Python blogs frequently
include information about “API usage & project documentation”. As this is an old,
infrastructure project (> 19 years) we think that bloggers particularly stress the reuse
of its API. In PostgreSQL blogs non-functional requirements represent a popular
topic. This is reasonable, since such requirements are crucial for a database system
(e.g. performance, security, or scalability).



Empir Software Eng

Table 8 List of identified topics in the blogs of committers

# Topic description Pop. Examples of influential words

C1 Features & domain concepts 42.2% radio, listen, player, sync, song, music, play,
ipod, album, artist, band

C2 Community & contributions 37.7% people, community, contribute, group, help,
news, post, comment

C3 API usage & project 30.0% wiki, write, project, api, document, use,
documentation review, text, output

C4 Release management & 28.6% release, try, helios, download, board,
announcements committee, foundation

C5 Solution concepts & technology 26.8% rest, uri, response, rule, parser, syntax,
widget, javascript, client

C6 Architecture & packages 24.7% start, component, register, import, service,
osgi, bundle, framework

C7 Target platform 23.4% linux, android, vm, platform, device,
system, run, environment

C8 Deployment & dependencies 20.9% ant, zip, publish, target, jar, install,
depend, distribute, plugin

C9 Conferences 17.4% session, democamp, present, eclipsecon,
conference, event, talk

C10 Development activities 16.3% work, implement, develop, test, code,
improve, task, maintain

C11 Non-functional requirements 15.7% cache, memory, perform, high, quality,
limit, secure, cost

C12 Communication, discussion 15.7% send, address, mail, call, discuss, answer,
question, decision, phone

C13 Debugging & troubleshooting 15.0% debug, address, process, warning, problem,
exception, raise, error

C14 Licensing 14.8% free, company, open, source, community,
business, foundation

C15 Source code 14.7% void, new, import, public, final, string,
class, return, private, true

C16 Competitors & related work 14.6% more, think, performance, product, oracle,
sun, mysql, experience

C17 Version control 13.3% trunk, commit, repository, merge, clone,
svn, git, master, csv, push

C18 Tips, tricks & tutorials 11.2% tutorial, tool, practical, summary, support,
article, website

C19 User interface & user interaction 11.0% tab, view, menu, dialog, button, text,
mockup, select, click, interact

C20 Corrective maintenance 10.2% support, report, fix, improve, bug, bugzilla,
issue

C21 Database access & external data 10.1% jpa, import, store, table, sqlite, database,
schema

C22 Testing 7.5% write, test, case, manual, unit, check,
build, system, patch, junit

C23 Continuous integration 2.5% resource, test, source, build, configure,
hudson, project, generate



Empir Software Eng

Table 9 Most popular topics in committers’ blogs

Eclipse GNOME PostgreSQL Python

Features & domain Community & Features & domain API usage & project
concepts (47%) contributions (36%) concepts (47%) documentation (50%)

Community & Features & domain Non-functional Features & domain
contributions (33%) concepts (33%) requirements (40%) concepts (42%)

Architecture & User interface & user Community & Community &
packages (31%) interaction (32%) contributions (39%) contributions (42%)

Target platform Architecture & Release management & Deployment &
(26%) packages (32%) announcements (38%) dependencies (36%)

Solution concepts & Development Conferences (25%) Architecture &
technology (26%) activities (31%) packages (36%)

To summarize, developers include more high-level than low-level concepts in their
blogs. The large amount of posts dealing with community aspects f its to the “social na-
ture” of blogs. In particular open source communities depend on the active discussion
of social aspects, dissemination of community news, and requests for contribution.

4.2 Topics of Other Bloggers

Table 10 shows the list of topics extracted from the blogs of other community
members. From the studied 200 topics we were able to label 177 topics with 22 labels.
The remaining 23 topics included heterogeneous words or noise. We were unable to
agree on their semantics even after consulting associated blog posts. The popularity
of these “unknown” topics is 35.8%. Most of the identified topics were also found in
the committers’ blogs, except “education, learning & training”, “development tools &
technology”, “applications, related tools & technologies”, and “business & industrial
use”.

The results are slightly different from the topic popularities in the committers’
blogs (shown in Table 8). Other bloggers blog most frequently about “community
& contributions”. This topic is predominant in about 38.6% of their blogs. The
second topic is “features & domain concepts” (38%), which we had found to be the
most frequent committer topic. Unlike in committers’ blogs, the topic “deployment,
conf iguration & dependencies” is among the top five topics. Other bloggers seem to
share more knowledge about using and configuring the software systems than com-
mitters in the studied communities. Surprisingly, “solution concepts & technology” is
also ranked among the most popular topics. When looking at several posts with these
topics, we found that the four studied software systems have rather a framework
nature. Other bloggers, who are not contributing to these frameworks, often use
them to build their own tools. Thereby they make considerable experience on how
to engineer specific tasks. Therefore blogs of other community members often share
knowledge about solution concepts and how-to’s.

Table 11 shows the most popular topics in the different communities. The topic
“deployment, conf iguration & dependencies” is predominant in more than 40% of
all posts in the Eclipse and PostgreSQL communities. We think that this is an
indicator for the variety of different installations and configurations of these systems.
Moreover, we found the topic “source code” among the top five topics in the Python
community, which is reasonable as Python is a programming language.



Empir Software Eng

Table 10 List of identified topics in the blogs of other community members

# Topic description Pop. Examples of influential words #C
O1 Community & 38.6% community, member, meet, discuss, people, C2

contributions blog, mentor, team, comment,
contribute, newsgroup

O2 Features & domain 38.0% use, feature, video, audio, effect, C1
concepts player, flash, filter, user, apply

O3 Solution concepts & 37.1% thread, send, close, websocket, deadlock, C5
technology request asynchronous, handle, response

O4 Deployment, configuration 35.9% install, deploy, system, include, configure, C8
& dependencies jar, file, web.xml, plugin

O5 Conferences 26.4% present, eclipsecon, talk, interesting, C9
conference, attend, session, people,
guadec, thank, organize

O6 Release management & 23.0% release, galileo, europa, plan, update, version, C4
announcements now, announce, available, download

O7 User interface & 21.4% swing, grid, style, button, look, theme, design, C19
usability usable, switch, widget, window, gui, form

O8 Source code 20.6% int, string, void, return, class, implements, C15
extends, public, import, new, final

O9 Version control 19.5% repository, change, commit, file, store, svn, C17
local, version, git, branch, merge, push, trunk

O10 Target platform & 18.3% platform, phone, device, android, linux, system, C7
operating system mobile, nokia, iphone, hardware, ubuntu

O11 Licensing, legal & 17.9% source, open, foundation, license, brand, C14
commercial use commercial, gpl, company, trademark, free

O12 Education, learning 16.6% webinar, video, demo, show, present, learn,
& training school, student, university, education, research

O13 Development tools & 16.5% script, tool, source, project, pydev, dlr, debug,
technology editor, emacs, ide, highlight, vim, eclipse

O14 Software evolution 15.0% version, extension, now, patch, bug, fix, feature, C20
improve, new, issue, report, change,
update, major

O15 Non-functional 14.9% buffer, performance, time, statistic, more, C11
requirements & quality checkpoint, tune, optimize, benchmark, high

O16 Development activities & 14.7% team, design, develop, process, concept, time, C10
work descriptions implement, day, start, work, week,

month, today

O17 User support 13.3% user, problem, wiki, patch, need, help, start, C18
show, work, support, please, soon, thank,
beta, conflict

O18 Testing 11.4% test, automate, junit, unit, hudson, write, case, C22
doctest, suite, assert, fail, run, code,
unittest, pass

O19 Applications, related tools 9.3% software, adobe, mac, windows, pro, upgrade,
& technologies microsoft, edition, cable, power,

modem, oracle

O20 Persistency management 9.3% database, create, store, server, sync, service, C21
row, query, key, data, table, model, insert

O21 Frameworks & 9.3% rcp, rap, sdk, android, layer, osgi, service, C6
architecture provider, framework, spring, distribute,

bundle, ajax

O22 Business & 6.1% business, market, company, job, public, interest,
industrial use cost, person, industry, manage, offer, vendor



Empir Software Eng

Table 11 Most popular topics in other bloggers’ posts

Eclipse GNOME PostgreSQL Python

Community & Community & Solution concepts & Features & domain
contributions (49%) contributions (44%) technology (46%) concepts (37%)

Deployment, Features & domain Deployment, Solution concepts &
configuration & concepts (32%) configuration & technology (35%)
dependencies (44%) dependencies (46%)

Features & domain Conferences (29%) Features & domain Development tools &
concepts (42%) concepts (41%) technology (34%)

Solution concepts & User interface & Target platform & User interface &
technology (39%) usability (28%) operating system usability (31%)

(33%)

Release management Solution concepts & Community & Source code (30%)
& announcements technology (28%) contributions (33%)
(38%)

To summarize, other bloggers exhibit a similar blogging behavior as committers,
writing about many high-level and few low-level topics. We observed frequent posts
about community aspects and about using and conf iguring the studied software
systems.

4.3 Comparison of Themes

To further interpret and compare the information included the different blogs, we
grouped the resulting topics into the following themes:

1. Requirements. This theme contains topics that are related to requirements
engineering, particularly application domain concepts, features, user interface
design, legal requirements and licenses, as well as non-functional requirements.
Topics describing competitors or describing related work, as well as discussions
about business strategies and the open source and closed source character of a
project belong to this theme as well.

2. Community. These topics represent community and social aspects like contribu-
tions of specific members, communication, and project news. Conferences orga-
nized by the community that provide possibilities to meet, learn, and exchange
belong to this theme as well.

3. Project knowledge. This theme captures topics related to knowledge and public
information in a project. The system’s API, documentation, and information
regarding the usage of the system belong to this theme. But also tips and tricks,
documented user support as well as tutorials are a form of project knowledge.

4. Deployment. Topics in this theme deal with information regarding the deploy-
ment and configuration of a system. This includes topics describing artifacts and
processes of system deployment, but also dependencies and plugins. Information
about the target platform as well as the runtime environment is also included
in this theme. Further, this theme contains topics about deployment context,
i.e. other technological relationships such as other software applications, related
tools and technologies.



Empir Software Eng

5. Management. This theme comprises all management related topics. Apart from
release management, we found several other management topics like project and
technology management. As representatives of configuration management we
found continuous integration and version control.

6. Implementation and Design. This theme describes implementation details like
source code, solution domain concepts, and other technology related artifacts.
Topics that describe architecture concepts and discussions about dependencies
and access to external data belong to this theme as well. Further, this theme
contains topics describing development tools.

7. Activities and Tasks. This theme contains topics describing development activities
and task such as corrective maintenance and testing, debugging, troubleshooting,
modeling, and implementing.

Table 12 shows the identified themes and their popularities by committers and other
bloggers across the communities. The theme popularity denotes the percentage of
all blog posts that contained at least one of the associated topics in the according
community.

The three most popular themes are common among committers and other blog-
gers. However, the popularity ranks are slightly different. The most popular theme
in both cases is “Requirements”, which is predominant in more than half of all
committers’ blog posts, and in nearly half of all other bloggers’ posts. The second
most popular theme in committers’ blogs is “Community,” which is predominant in
around 45% of all their posts. In the posts of other bloggers this theme ranks third,
with 43% popularity. Since community building is a major goal of social media this
result seems reasonable. “Implementation and Design” topics are present in about
38% of committers’ and 43% of others’ posts. It seems that developers use blogs
primarily to document system requirements and features. Source code and low-level
concepts are rather less frequently discussed. This difference is particularly high in
committers’ posts (54% “Requirements” vs. 38% “Implementation and Design”).

Table 12 Themes and their popularity among committers and other bloggers

Theme Mean Eclipse GNOME PostgreSQL Python

Blogging committers
Requirements 54% 58% 40% 66% 49%
Community 45% 39% 40% 50% 52%
Implementation and design 38% 46% 37% 23% 48%
Project knowledge 34% 30% 28% 30% 51%
Deployment 33% 32% 32% 31% 38%
Management 33% 30% 31% 43% 29%
Activities and tasks 31% 19% 35% 36% 35%

Other bloggers
Requirements 48% 49% 40% 56% 45%
Implementation and design 43% 51% 31% 46% 45%
Community 43% 50% 47% 40% 34%
Deployment 37% 44% 32% 46% 27%
Activities and tasks 33% 40% 29% 31% 34%
Project knowledge 32% 35% 23% 41% 30%
Management 24% 41% 16% 18% 21%



Empir Software Eng

The remaining four themes differ slightly regarding their popularities among
committers and other bloggers. While committers tend to write more about project
knowledge, other bloggers include more information about the deployment and
conf iguration of the system in their posts. Other bloggers share more information
about using and configuring the software in particular environments, while com-
mitters tend to share more generic project knowledge. Among other bloggers, the
“management” theme has the least popularity with only about 24%. We think that
this is reasonable, since in an open source community these stakeholders are less
considered with management issues than the core members (i.e. committers).

To summarize, high-level concepts such as requirements and features as well
as community aspects are important topics in the blogs of both active committers
and other bloggers. Committers share more generic project knowledge, while other
bloggers often discuss usage and conf iguration of the systems.

5 Blog Integration

To study how blogging activities are integrated into developers’ workflows, we first
explore publishing patterns of blog posts, releases, and commits. We then investigate
relations between the content of blogs and commit messages.

5.1 Publishing Patterns

In this section we examine when developers post new blog entries with respect to
other activities in the software projects. To investigate the influence of the project
status on passive community members (non-committers), we study relationships
between releases and their blog posts. For committers on the other hand, we examine
relations between specific development activities expressed in their commit messages
and their corresponding blogging behavior.

5.1.1 Release Dependency

We studied whether the project status has any influence on the blogging behavior
of non-committers. We first created a histogram for each community, depicting the
number of blog posts that were entered per day over the whole project lifetime, and
marked the release dates of the according products on these figures. The results in
Fig. 4 show an increasing activity in all four communities over time. From the mid of
2005 the blogging activities in all communities are continuous. Interestingly, we can
observe peaks in the number of blogs per day around the release dates, especially in
the last three years. Consequently, we hypothesize that releases influence the number
of non-committing bloggers’ posts. To further study this hypothesis, we tested the
relative distribution of blog posts between two releases in the four communities.
We first estimated the relative position of each blog post between the previous and
the following release. Then, we calculated the distribution of the blog posts on this
relative interval (see Fig. 5). Afterwards, we showed that this distribution is not
uniform using the Kolmogorov-Smirnov test. Therefore we could reject the null
hypothesis with p < 0.002 for all four communities. The corresponding histograms
illustrate that most blog posts are made during the first 5% of the time span between
two subsequent releases in all but the PostgreSQL communities.



Empir Software Eng

Fig. 4 Histogram of non-committing bloggers’ posts and releases

We also studied the corresponding histograms for committers’ blogs. For the
GNOME and PostgreSQL communities we were not able to identify any significant
difference for the blogging frequency compared with the release times, although



Empir Software Eng

Fig. 5 Relative distributions of non-committing bloggers’ posts between releases

it seems that in these communities blogs are slightly more frequent after product
releases. The Eclipse and Python committers instead seem to post more frequently
before product releases (cf. Fig. 6).

To summarize, in particular non-committers often blog more frequently shortly
after product releases. Reporting about new product features and usage experiences
could be triggers for these posts.

5.1.2 Activity Dependency

Next, we wanted to find out if committers make a particular use of social media
after having accomplished certain types of development activities. To answer this
question, we investigated their work descriptions in the commit messages. That
is, our goal was to identify from the commit message the development activity
performed before writing a post.

To this end we classified commit messages made by bloggers using the clas-
sification algorithm proposed by Hattori and Lanza (2008). The algorithm classifies
commit messages according to disjoint sets of keywords by assigning a commit
message the category of the first matching keyword in the text. Hattori and Lanza
proposed the four categories forward engineering, re-engineering, corrective engineer-
ing, and management and provided an according keyword list for each category.
Before the classification we applied a word stemmer on the commit messages to
obtain more generic matches. The algorithm was able to classify about 83% of all
bloggers’ commit messages, while 1% of their commit messages were empty. We
checked the validity of the classification using a random sample of 500 messages. We
observed an accuracy of over 75%. Figure 7 depicts the classification results.

Fig. 6 Relative distributions of committers’ posts between two subsequent releases



Empir Software Eng

Fig. 7 Frequencies of commit
categories

In the next step, we used a sequential pattern mining algorithm by Zaki (2001)
to analyze the sequences of developers’ commit messages and blog posts. Since we
assume that the analyzed values are discrete (blogging and committing are non-
continuous activities) and that the temporal order of the activities is important
(e.g. blogging before a commit activity would be a different finding from blogging
after the commit activity) sequential pattern mining is more appropriate than stan-
dard association rule mining (Agrawal et al. 1993).

Sequential pattern mining (Agrawal and Srikant 1995) allows finding frequent
patterns in sequence databases. A sequence database contains a number of data
sequences, which are ordered lists of elements. Elements are also called itemsets since
they may contain multiple items. In our case, an item is either a commit message
of a certain category or a blog post. We denote a commit message by a small
letter according to its category (e.g. “c” for corrective engineering) and a blog post
by “B”. An example sequence would be 〈{ f, m}, {c}, {B}〉, which comprises three
elements. The first element contains two commit messages describing a forward
engineering and a management activity. The second element represents a commit
message describing a corrective engineering activity. The last element denotes a blog
post. Given a sequence database S and a minimum support σ , sequential pattern
mining yields all subsequences s of the sequences in S that are contained in a fraction
of at least σ percent of all sequences. Each subsequence found is called sequential
pattern.

Sequential pattern mining allows to find regularities in elements of a linear order.
In our case the linear order is established by the time when a commit message or a
blog post is published. We assume that items within an element happen at the same
time or as part of the same session. We consider a session as a time interval, in which
a developer performed a particular activity. Restricting a session to simultaneously
published commit messages or blog posts makes less sense. Instead we use an upper
bound of 120 min. This represents the mean session duration reported by Maalej and
Happel (2009).

From the data sets we created a sequence database for each community as follows.
The list of items Id contains all commit messages and blog posts of developer d in
chronological order. The items are then inspected one by one, oldest item first. A
sequence ends when a blog post is made. All items before and including this blog



Empir Software Eng

Fig. 8 Categories of commits
before blog posts

post belong to this sequence. Items that occur within 120 min belong to same element
within the sequence. For example the sequence 〈{ f }, {c, f, r}, {m}, {c}, {B}〉 denotes
five elements ending with a blog post. The second element contains the three items
c, f, r which took place within 120 min. As an additional step, we removed sequences
〈{B}〉 that consist only of a single blog post. We repeated the sequence generation
process for each developer d, resulting in a sequence database per community.

We analyzed these sequence databases in order to calculate the probability that
the last commit message given a developers’ blog post belongs to a certain category.
To this end, we generated all sequential patterns of length 2 that ended with a blog
post with a maximum gap value of 1 for each community. That is, two adjacent
elements in a resulting sequential pattern are at most consecutive. For example the
result 〈{c}, {B}〉 means that a developer published a post after describing a corrective
activity in a commit message. We compared the according support values for all
patterns across the different communities.

Our results show that a plurality of blog posts (30 to 43%) follow a commit
message describing a corrective engineering activity. Least blog posts (13 to 25%)
follow a commit message describing a management activity. Regarding the forward
engineering and re-engineering categories we found two different situations. In
Eclipse and Python, there are less re-engineering than forward engineering commits
which precede blog posts. In the other two projects we observed the opposite
situation. Figure 8 shows the results.

We compare these results to the commit classification results (depicted in Fig. 7).
In the GNOME and PostgreSQL communities there are less commit messages
describing corrective engineering activities than commit messages describing for-
ward engineering and re-engineering activities. Nevertheless, more blog posts are
preceded by commit messages describing corrective engineering activities.

To summarize, committers blog most frequently after corrective engineering activi-
ties, and least frequently after management activities.

5.2 Published Information

In the last question we analyzed if and how information in commit messages and blog
posts is related in the studied open source communities.



Empir Software Eng

5.2.1 Content Dependency

First, we investigated relations between committers’ blog post topics and the cat-
egories of their preceding commits. Initially, we calculated the most predominant
topic of each blog post in the obtained sequential patterns using the LDA document-
topic matrix. Then, we associated the category of the preceding commit message with
this topic and thus successively created a distribution of commit categories per blog
post topic. The results are shown in Table 13. For each topic in committers’ blog posts
the distribution of the associated commit categories is stacked in a barplot, including
the fraction of commit messages that were not classifiable by the heuristic of Hattori
and Lanza.

Table 13 Distribution of commit categories per committer blog post topic – corrective engineering,
forward engineering, management, re-engineering, not classifiable

# Topic description Pop. Distribution of preceding commit categories

C1 Features & domain concepts 42.2%

C2 Community & contributions 37.7%

C3 API usage & project 30.0%

documentation

C4 Release management & 28.6%

announcements

C5 Solution concepts & technology 26.8%

C6 Architecture & packages 24.7%

C7 Target platform 23.4%

C8 Deployment & dependencies 20.9%

C9 Conferences 17.4%

C10 Development activities 16.3%

C11 Non-functional requirements 15.7%

C12 Communication, discussion 15.7%

C13 Debugging & troubleshooting 15.0%

C14 Licensing 14.8%

C15 Source code 14.7%

C16 Competitors & related work 14.6%

C17 Version control 13.3%

C18 Tips, tricks & tutorials 11.2%

C19 User interface & user interaction 11.0%

C20 Corrective maintenance 10.2%

C21 Database access & external data 10.1%

C22 Testing 7.5%

C23 Continuous integration 2.5%



Empir Software Eng

We found “API usage & project documentation” among the top three topics
associated with corrective engineering commits. We think that this is reasonable,
since corrective actions can influence a system API (e.g. deprecated methods)
and project documentation (e.g. issue tracking). The three most frequent topics
associated with forward engineering commits include “features & domain concepts”,
as well as “non-functional requirements”, which reflect the incorporation of new
features and implementation of new (functional and non-functional) requirements.
Management commits were mostly associated with “licensing”, “version control”, and
“development activities”, which fits the character of these topics as they are mostly
unrelated to direct coding. Further, among the three most frequent topics associated
with re-engineering commits we found “database access & external data”, as well as
“non-functional requirements”. The former topic rises the assumption that external
data sources are a frequent trigger for refactoring activities, the latter is concerned
with code quality, which is often targeted in re-engineering activities.

To summarize, even if commit messages and blog posts are completely different
project media, our results show that their contents are related in many cases, depending
on factors such as presumably the time between their creations. This will be analyzed
in detail in the next section.

5.2.2 Time Dependency

Last, we studied the dependency degree between the content of commit messages and
the content of blog posts, with respect to the time between them. To achieve this, we
randomly selected a set of 200 sequences, each containing at least three commits
and one blog post. The three commit messages represented activities from the same
category (e.g. three consecutive commit messages describing corrective engineering
activities). For each of these sequences we created a document containing the last
three commit messages and the following blog post. Then two independent persons
manually rated the degree of dependency between the commit messages and the blog
post, by giving each sequence one of the following grades:

– 3: Information strongly related to the commits (e.g. summary of what has been
done in the commits)

– 2: Information partly related to the commits (e.g. advice on coding conventions
after code refactoring)

– 1: General project information (e.g. plans or infrastructure)
– 0: Unrelated information (e.g. private notes)

For example the commit message “Enable multiple selection in download dialog,
now you can cancel more than one download at a time. Note that this has no effect
over the Pause button, only over Stop. Bug #327734.” and the following blog post
“Also, gnome bug #327734 has just been half fixed, meaning that you can now cancel
more than one download at a time” are strongly related and should be rated with
grade 3. We found that in 94 of 200 cases (46.5%) the content of commit messages
and blog posts are unrelated (grade 0), whereas in 13 cases (6.5%) they are strongly
related (grade 3). We found information partly describing the commit messages in 18
cases (9.0%). In total 15.5% of the evaluated blog post samples include information
which refer to one or more of the developer’s previously entered commit messages.
This percentage shows that developers also use blogs to describe their changes to the
code summarizing the work they have done. To understand the influence of the time



Empir Software Eng

Fig. 9 Dependencies between
blogs and commits in terms of
time

between commit messages and blog post on this result, we calculated the average
time period for each grade. Figure 9 shows the results. The strength of dependency
between a commit message and a blog post decreases with an increasing time period
between the commit and the post.

To summarize, developers also use blogs to summarize their work. They are more
likely to publish information about recent activities they have performed than about
old activities.

6 Discussion

In this section we highlight three main findings. First, we discuss the importance of
blogs as a project medium and blogging as a project function. Second, we discuss
the purpose of blogging in open source software projects based on our results, dif-
ferentiating between blogging committers and other stakeholders. Finally, we derive
insights for future research, in particular how to integrate blogs into development
environments and blogging into developers’ workflows as well as how to dissolve
boundaries between developers and other stakeholders.

6.1 Blogging is a Project Function

In all studied open source communities we observed regular and frequent blogging
activities since several years and across many releases. This is not surprising, as
blogs became one of the most popular media for sharing and accessing software
engineering knowledge in the last years (Parnin and Treude 2011). While individual
developers only blog occasionally, the community as a whole constantly shares
information and produces an average of up to six blog posts per day. These posts
are written equally by committers as well as other community members.

Unlike committers in large open source projects, which have been studied quite
thoroughly (e.g. Mockus et al. 2002), other community members are less researched.
This non-committing group includes not only actual users of the software, but also
other stakeholders such as evangelists, community coordinators, companies’ proxies,
and managers. Evangelists might have created the project long time ago. They have
large experience and special interests in the success of an open source project, and
therefore advertise it and demonstrate its usefulness. Managers and coordinators
might be hired by the community to plan releases or organize conferences. Crowston
et al. (2005) studied the social structure of open source projects and suggested an



Empir Software Eng

“onion model” for describing it. Accordingly, a small group of core developers is
surrounded by several layers of peripheral helpers, ranging from occasional problem
solvers, to mainstream users whose contribution is limited to the occasional submis-
sion of bug reports. We think that our non-committing group of other members
mainly overlaps with the periphery of an open source community according to the
onion model.

Committers publish more frequently and over a longer time period than other
members. This can be explained by their deep knowledge about the software as
well as their high level of involvement in the community. But other community
members blog regularly and about a broad spectrum of topics: from component
dependencies to education and training. We observed that blogs are an important
medium, and blogging (sharing knowledge) is an important activity for the studied
open software communities. Future studies should also investigate, how community
members discover and use (e.g. comment, rate, or share) knowledge captured in blogs,
as this was not part of this research.

6.2 Why Do Developers and Other Stakeholders Blog?

Our results show that the studied communities use blogs as documentation tool to
share knowledge and experiences, and to socialize and maintain community struc-
tures. A major finding of this study is that the studied developers blog in a high level
of abstraction, e.g. frequently about features and domain concepts. At first glance this
is surprising, as we expected developers to blog about models, technical abstractions,
and source code related concepts. However, the public, “social”, and rather informal
nature of blogs can be one of the reasons behind this information granularity. Blogs
enable developers to document features, dependencies, known issues, and qualities
of new releases in an informal and time-ordered way and to a broad audience.
Studies showed that developers describe their work in short but regular commit
messages (Maalej and Happel 2010). Blog posts on the other hand are less frequent
than commit messages, but comprise significantly more content. They rarely include
source code but frequently high-level information and images. Therefore, blog posts
seem to have rather the character of short documentations and tutorials.

Unexpectedly, we found that non-committers blog about more technical topics
than committers in all studied communities. We think that this due to the framework
nature of the studied projects. Non-committers use Eclipse, GNOME, PostgreSQL
and Python as infrastructure for their own projects. In their blogs, they frequently
reflect their technical experiences, share code examples, patterns to solve particular
engineering tasks, and howtos. This shows the importance of blogs for making end
users an integral part of software projects, enabling them to share their experience
and helping to create and maintain project knowledge (Maalej and Pagano 2011).

Further, we observed a high fraction of posts dealing with community building
aspects, such as advertising or summarizing events and conferences. This seems
to be typical for social media. Developers and other stakeholders include this
information orthogonally to other topics in their posts. In particular, open source
communities depend on an active discussion of social and collaboration activities—
where collaborators barely know each other. This serves as dissemination of results,
requests for contribution, as well as creation and diffusion of a “social and community
feeling”, by using terms as “great”, “community”, “fun”, etc.



Empir Software Eng

6.3 Impacts

6.3.1 Integration of Blogging

Social activities like blogging are currently barely integrated into development
processes and tools. However, we think the way developers blog calls for revisiting
current development practices with more emphasis on integrating social activities
and media.

Blog posts frequently contain information about recent activities described shortly
before in previous commit messages. We found that developers post more often after
corrective engineering than after forward engineering or re-engineering tasks. One
silent implication of this finding is that bug fixes represent important information
which should be shared with all stakeholders in a software community. Communicat-
ing these corrective actions to the community might have two implications. First,
developers publicly show their personal contributions and merits—an important
social and motivational factor. Second, many solved issues indicate a healthy project.
On the other hand, posts about release announces and release plans make the
community aware of the overall project status. We found that currently in particular
non-committers publish more blog posts shortly after a new release.

Tools can help developers to reuse available knowledge in their posts, e.g. by
linking to blogs and Wikis, or capturing particular screenshots. In particular, fa-
cilitating blogging after a particular development activity, or after using a new
software release would be beneficial to developers. Moreover, tools may annotate
blog posts with frequent topics to facilitate information structuring and access. To
analyze the relationship between blog content and time of blogging further studies
and experiments need to be conducted. An exploration of further social activities
and their roles—in particular in requirements engineering—will also lead to a better
integration of blogging into development processes.

6.3.2 Dissolving Boundaries Between Developers and Other Stakeholders

In today’s software projects, users are neither an integral part of the software
engineering processes, nor of the software systems themselves (Maalej and Pagano
2011). On the one hand, software engineering processes are rather transactional and
focus on a small number of representative users to give feedback in requirements
engineering activities. Contributing to other activities such as testing, documentation,
integration, or design is exceptional. On the other hand, user feedback mechanisms
in software systems are not standardized and rather ad hoc—if they exist at all.
Typically the software “core features” are more important than user feedback or
community features (typically found in the “Help” menu). Communication channels
that allow for collaboration among users or between users and developers are usually
decoupled from a software system and its development infrastructure.

Blogs seem to support dissolving the boundaries between developers and other
stakeholders and encourage the involvement of users and their communities as a
first order citizen of software projects. In all studied open source communities,
we did not discover any major and signif icant difference between developers’ and
other stakeholders’ blogging habits. Both groups seem to frequently rely on social
media to publish project-related information in a similar level of abstraction and
formality. In particular the content of blogs presents strong overlaps in the discussed



Empir Software Eng

topics and their popularities. Developers as well as other stakeholders discuss about
requirements, implementation, and community aspects. On the one hand, developers
report about their recent development activities to communicate their project work
to a broad audience, including users and other stakeholders. On the other hand
users and other stakeholders seem to have their blogging peak time shortly after new
versions are released—reporting on their experiences with the new changes. Utilizing
these experiences and the volunteered resources provides a huge benefit for software
projects. We claim that communities should be created systematically and integrated
in software systems utilizing social media such as blogs. In (Maalej and Pagano 2011)
we envision a software framework that enables the development and maintenance of
such social software.

7 Results Validity

7.1 External Validity

Although our study was neither designed to be generalizable nor representative
for all developers and communities, we think that most of the results have a high
degree of generalizability, in particular for large open source communities. At
the design time of the study, we knew neither the entire population of software
development blogs, nor of blogging developers. Therefore we were unable to study
a random representative sample of blogs and bloggers. Instead, we aimed at a rather
exploratory, hypothesis-generating study to better understand blogs, their usage, and
role in the development project. The four studied communities should rather be
interpreted as four cases than as one homogeneous dataset. However, the careful
selection of these communities, their leading role in open source software, and the
large number of their blogs and bloggers give confidence that many of the results
apply for other comparable communities as well.

We think that our results are representative for each of the studied communities
due to the following reasons.

– Our datasets include all community blogs from the last seven years.
– We conducted statistical tests to check the statistical significance of our results

and exclude hazard factors.
– We got similar results using different analysis methods (e.g. descriptive statistics

and topic analysis).
– In two of the studied communities (Eclipse and GNOME), we were able to

contact three senior active members. Among them were both committers, who
had contributed for around three to four years (92 to over 600 commits each),
and evangelists, who had been involved at least three years in the community.
While discussing the results in detail they confirmed the findings based on their
experiences.

Nevertheless, there are three limitations which should be considered when interpret-
ing the results. First, for Eclipse and GNOME we were unable to analyze the blogs of
all sub-projects. Both communities are very broad and use different infrastructures.
We think though that the large sub-project selection is representative, which was
confirmed by active members of both communities. Second, some of the findings



Empir Software Eng

for PostgreSQL—in particular those comparing the behavior of committers and
other bloggers—were not statistically significant (i.e. p > 0.05). This results from the
relatively low number of blogging committers in this community. Since comparable
results from the other communities passed the statistical tests, we think that the
results of PostgreSQL are not due to chance. Finally, we only studied blogs collected
from the community aggregators. We did not collect other blog posts (e.g. private
blogs of users via a web search engine). Our study is community centric rather
than developer or user centric. The aggregators collect the official blogs of all
“known” members. They are controlled by a community board and obey strict
quality measures. We found that our data mostly excludes “noise” such as private or
project unrelated topics. However, studying other blogs from outside the aggregators
might lead to additional results such as the behavior and the topics of unsatisfied
stakeholders.

7.2 Construct Validity

We made the following simplifying assumptions during our analysis, which might
partly limit the construct and internal validity of the results:

– To connect blogs and commit messages we mapped the names of committers and
bloggers using a text similarity algorithm (Dice 1945). We chose a pessimistic
mapping that creates false negatives rather than false positives. That is, the size
of the data might be affected but not the analysis results. As a side effect, few
bloggers, which we classified as other community members, might be committers.
Since the number of non-committers is much larger than the number of blogging
committers a pessimistic approach is more appropriate. We were able to map
between 19,1% (Python) and 73,1% (GNOME) of all blog authors in the data
sets. For each community, we randomly picked about half of the remaining
committers, and we manually searched their names among the other community
members—without any success.

– To study the integration of blog posts into the development workflow, we use
the commit time and blog publishing time to order the corresponding artifacts
chronologically. However, blogs and repositories may reside on different servers
with slightly different time settings. To reduce the effects of such synchronization
errors we considered activities within 2 h as the same session. All the 200
manually investigated sample sequences were correctly ordered.

– We used the heuristic of Hattori and Lanza (2008) for the categorization of
commit messages. Testing the categorization of 500 randomly selected commits
shows that this algorithm has an accuracy of about 75% on our data. Therefore,
the calculated blogging probability after a commit category might be erroneous.
This marginal error does not bias the resulting trends, though.

– We used regular expressions to extract source code blocks, images, and links.
Unlike for links and images, there are no standard HTML tags for code blocks.
Therefore, more advanced mining mechanisms such as Bettenburg et al. (2008,
2011) might have extracted more code blocks leading to higher ratios. However,
the weak frequency of the according source code topic gives confidence that this
ratio remains below 15%.

– Part of our results relies on manual analysis such as the categorization of images,
links and the labeling of blog topics. These results are subject to experimenter



Empir Software Eng

bias. To reduce this risk, we conducted pair analysis independently from each
other. We iterated this activity by refining the rating criteria to improve the
inter-raters agreement. We only reported on results where the rates of inter-rater
agreement were over 90%.

8 Related Work

We focus the related work discussion on three fields: studies on mining blogs,
studies on mining artifacts similar to blogs, and research on social media in software
engineering.

8.1 Mining Blogs

To our knowledge there are no published empirical studies on how developers and
development communities use blogs—except the first published version of this paper
(Pagano and Maalej 2011). However, there exist several studies on mining blogs in
general. We distinguish studies, which target community-related aspects and others,
which target content-related aspects of blogs.

Several authors discussed how to discover, visualize, and study the dynamics of
communities by analyzing the content of blogs. Gruhl et al. (2004) propose a gener-
ative blog topic model to identify external influences on bloggers and their topics.
Tseng et al. (2005) explore different communities of interest in a set of blogs. They
propose visualization techniques that help to explore further dependencies between
blog topics. The goal of our study is to explore basic questions on how developers
blog. Therefore we focus on single, open source, development communities. We
model blog posts as community documents with multiple latent topics, assuming
that topics included in these blogs are either related to software development or
to the project. This enables us to quantify the popularity of particular topics of
interest to the software engineering research, such as “API usage”, or “community &
collaboration”.

Other blog studies aimed at extracting meaningful knowledge, automating trend
discovery, and identifying opinion leaders. Glance et al. (2004) visualize the popular-
ity of blog topics over time and show a correlation with real world trends. Similarly,
we observed that developers are more likely to blog about recent activities. Song
et al. (2007) identify opinion leaders in a set of blogs based on information novelty
and influence on other blogs. We also observed that committers, technology experts,
and evangelists share their knowledge in their development communities by using
blogs. In addition, we were able to quantify the semantic entities in developers’ blogs,
i.e. which types of information are included.

8.2 Mining Related Artifacts

There is a large research community, which applies data mining techniques to analyze
development artifacts. Related studies analyze commits, work descriptions, and
other social media. Several authors explored commit histories to identify reasons
for software changes and to understand the software evolution. Our work is based



Empir Software Eng

on these results. In particular we use the algorithm of Hattori and Lanza (2008) to
classify commit messages according to the development activity accomplished by the
commit.

Other authors analyzed informal artifacts, in which developers summarize what
they have done in a particular work session. Maalej and Happel (2010) used NLP
techniques to analyze personal notes and commit messages and found regularities
in how developers describe their work. This work extends these findings by showing
that developers also describe their activities in blogs.

Researchers spend considerable effort on the analysis of other social media such
as social networks and mailing lists. Social network analysis itself is an established
research field (Wasserman and Faust 1994). Several publications study individual and
group behavior as well as the explicit or latent structure of social networks. We focus
our research on the medium blog as well as the blogging behavior of developers. Bird
et al. (2006) create social networks from developer email communication and study
similarities to development teams. They show that sub-community movements in
these social media reflect development activities. Bacchelli et al. (2010) showed how
e-mail archives enclose significant information on the software system they discuss.
The authors presented a benchmark for recovering traceability links between e-mails
and source code. In our work we found similar relations between blogging as social
activity and development activities on an individual level.

8.3 Integrating Social Media

Recent papers (Begel et al. 2010; Guzzi et al. 2010; Treude and Storey 2009; van
Deursen et al. 2010) suggest the integration of social media into the development
environment and development processes. Guzzi et al. (2010) claim that integrating
blog user interfaces into the IDE would foster the reuse and sharing of program
knowledge. Treude and Storey (2009) discussed how the informal and lightweight use
of social media can be integrated into development processes. The authors concluded
that informal processes are usually carried out via communication mechanisms.
Our study is not based on blogs that are already integrated into the development
environments and processes. We analyzed the current practices of using social media
by a large number of developers. Our findings on the blogging frequency, blogging
time, and information included give empirical evidence to the claims of these studies
as well as new insights into integration “features”. For example the type of images,
links, and information included by developers and the probability of blogging after
certain activities or releases can help to further tighten this integration. van Deursen
et al. (2010) envision an IDE that uses both tagging and blogging strategies to
facilitate collaboration, program comprehension, and traceability in development
teams. In our vision, even users and other stakeholders contribute to project activities
using such social media.

9 Conclusion

How do developers and other stakeholders in open source communities blog? In
this paper we reported on a first study which systematically explores this question.
We found that open source communities blog frequently and continuously with 2–6



Empir Software Eng

blogs per day. An average developer posts a new project-related blog entry every 26
days, slightly more often than other community members. While 29% of the posts
include images, only few contain source code blocks. Developers frequently link to
existing information like Wiki pages and other blog posts. Topics representing high-
level concepts such as features and domain concepts are predominant in more than
one third of the blog posts of studied communities, while only 15 to 20% deal with
source code concepts. This reveals the documentation function of blogs in software
projects. Moreover, more than 43% of the studied posts include community related
information, which reveals the social and motivational function of blogs.

We also identified interesting patterns in when community members blog. The
peak time of blogging seems to correlate with the releases of the software, and occurs
usually after the software is released. In addition, committers are more likely to
blog after corrective engineering than after forward engineering and re-engineering
activities. Their blog posts frequently contain information about activities described
shortly before in commit messages.

Our results represent a starting point towards the empirical framework of the use
of social media in software engineering. We think that there are two lines of future
research towards this framework: a hypothesis-driven and a content analysis line. Hy-
pothesis-driven research enables us to explore the role of social media and allows for
a need-driven integration of these media into development processes and tools. A
content analysis research enables a more in-depth analysis of the knowledge shared
in blogs, giving more reliable results on the roles, efficiency, and the quality of blogs
and blogging. Questions such as “does the post report on requirements or on user
experience?”, “how are posts structured?”, or “which decision rationale is discussed
and explained in the blog posts?” are better answered with a manual content analysis.
Currently, we are studying how developers and end users use other social media like
micro-blogs or content communities. In addition we plan to replicate our results and
conduct a more in-depth analysis using different content analysis techniques on a
representative sample.

Acknowledgements This work has been supported by the FastFix project, which is funded by the
7th Framework Programme of the European Commission, grant agreement no. FP7-258109. We
would like to thank Enrique Garcia Perez, Damir Ismailović, Amel Mahmuzić, Helmut Naughton,
Tobias Roehm, Alex Waldmann, and the anonymous MSR’11 and EMSE reviewers for their
valuable feedback. We are further thankful to Jonas Helming, Felix Kaser, and Daniel G. Siegel
for helpful insights into the Eclipse and GNOME communities.

References

Agrawal R, Srikant R (1995) Mining sequential patterns. In: Proceedings of the eleventh interna-
tional conference on data engineering. IEEE, pp 3–14

Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large
databases. In: Proceedings of the 1993 SIGMOD conference on management of data, ACM,
Washington, DC, USA, pp 207–216

Bacchelli A, Lanza M, Robbes R (2010) Linking e-mails and source code artifacts. In: Proceedings
of the 32nd ACM/IEEE international conference on software engineering—ICSE ’10, p 375

Begel A, DeLine R, Zimmermann T (2010) Social media for software engineering. In: Proceedings
of the FSE/SDP workshop on future of software engineering research. ACM, pp 33–38

Bettenburg N, Adams B, Hassan AE, Smidt M (2011) A lightweight approach to uncover technical
artifacts in unstructured data. In: 2011 IEEE 19th international conference on program compre-
hension, pp 185–188



Empir Software Eng

Bettenburg N, Premraj R, Zimmermann T, Kim S (2008) Extracting structural information from bug
reports. In: Proceedings of the 2008 international workshop on mining software repositories—
MSR ’08, p 27

Bird C, Gourley A, Devanbu P, Gertz M, Swaminathan A (2006) Mining email social networks.
In: Proceedings of the 2006 international workshop on mining software repositories. ACM,
pp 137–143

Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3(4–5):993–1022
Crowston K, Heckman R, Annabi H, Masango C (2005) A structurational perspective on leadership

in Free/libre open source software teams. In: Proceedings of the 1st conference on open source
systems (OSS), Genova, Italy

Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–
302v

Glance N, Hurst M, Tomokiyo T (2004) BlogPulse: Automated trend discovery for weblogs. In:
Proceedings of the WWW 2004 workshop on the weblogging ecosystem: aggregation, analysis
and dynamics, ACM, New York, NY, USA

Gruhl D, Liben-Nowell D, Guha R, Tomkins A (2004) Information diffusion through blogspace.
ACM SIGKDD Explorations Newsletter 6(2):43–52

Guzzi A, Pinzger M, van Deursen A (2010) Combining micro-blogging and IDE interactions to
support developers in their quests. In: Proceedings of the 26th international conference on
software maintenance (ICSM), IEEE, 2010, pp 1–5

Hattori L, Lanza M (2008) On the nature of commits. In: ASE workshops. IEEE, pp 63–71
Kaplan AM, Haenlein M (2010) Users of the world, unite! The challenges and opportunities of social

media. Bus Horiz 53(1):59–68
Maalej W, Happel H (2009) From work to word: how do software developers describe their work?

In: Working conference on mining software repositories, pp 121–130
Maalej W, Happel H-J (2010) Can development work describe itself? In: 2010 7th IEEE working

conference on mining software repositories (MSR 2010), pp 191–200
Maalej W, Pagano D (2011) On the socialness of software. In: Proceedings of the international

conference on social computing and its applications. Sydney, Australia, IEEE
Maalej W, Panagiotou D, Happel H-J (2008) Towards effective management of software knowledge

exploiting the semantic wiki paradigm. In: Herrmann K, Brügge B (eds) Software engineering.
Bonn, Germany, GI, pp 183–197

Mockus A, Fielding RT, Herbsleb JD (2002) Two case studies of open source software development:
Apache and Mozilla. ACM Trans Softw Eng Methodol 11(3):309–346

Pagano D, Maalej W (2011) How do developers blog? an exploratory study. In: Proceedings of the
8th conference on mining software repositories. ACM

Parnin C, Treude C (2011) Measuring API documentation on the web. In: Proceeding of the 2nd
international workshop on web 2.0 for software engineering, Web2SE ’11. ACM, New York,
NY, USA, pp 25–30

Song X, Chi Y, Hino K, Tseng B (2007) Identifying opinion leaders in the blogosphere. In: Proceed-
ings of the sixteenth ACM conference on conference on information and knowledge manage-
ment. ACM, New York, New York, USA, pp 971–974

The Nielsen Company (2010) Led by Facebook, Twitter, global time spent on social media sites up
82% year over year

Treude C, Storey M-A (2009) How tagging helps bridge the gap between social and technical
aspects in software development. In: ICSE ’09: proceedings of the 2009 IEEE 31st international
conference on software engineering. IEEE Computer Society, Washington, DC, USA, pp 12–22

Tseng B, Tatemura J, Wu Y (2005) Tomographic clustering to visualize blog communities as moun-
tain views. In: WWW 2005 workshop on the weblogging ecosystem. Citeseer

van Deursen A, Mesbah A, Cornelissen B, Zaidman A, Pinzger M, Guzzi A (2010) Adinda : a
knowledgeable , browser-based IDE. In: Proceedings of the 32nd ACM/IEEE international
conference on software engineering. ACM, vol 2, pp 203–206

Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge Uni-
versity Press

Zaki M (2001) SPADE: an efficient algorithm for mining frequent sequences. Mach Learn 42(1):
31–60



Empir Software Eng

Dennis Pagano received the German Diploma degree in computer science (equivalent to B.Sc. +
M.Sc.) from the Technische Universität München in 2008. He is currently a 4th year Ph.D. student
at the TUM and a scientific staff member at the Chair for Applied Software Engineering. His
research interests include human factors in software engineering with a focus on user involvement,
mining software repositories, and recommender systems. He participated actively in the open source
research projects TeamWeaver and FastFix at the TUM.

Walid Maalej leads a research group on human and context aspects in software at the TU München
(Germany). In his Ph.D. he developed a context-aware approach to detect developer’s intentions and
support software engineering tasks. His current research interests include group recommendation
systems and collaboration with end users. Walid published more than 30 papers and supervised more
than 20 theses on these topics. He co-organized international events such as the Social Software
Engineering and Managing Requirements Knowledge workshop series. Walid served on the PCs of
numerous conferences, including the ESEC/FSE 2011, RE’11, and OSS’12. He previously served
as consultant for Siemens, Deutsche Telecom, and Rohde & Schwarz, and TATA Consulting
Services. He has been distinguished by the Werner-von-Siemens-Ring foundation as Germany’s
Junior Researcher in Informatics for 2010–2013.


	How do open source communities blog?
	Abstract
	Introduction
	Research Setting
	Research Questions
	Research Method
	Data Preparation Phase
	Data Analysis Phase

	Research Data

	Blog Usage
	Publishing Frequency
	Post Structure
	Blog Post Length
	Source Code
	Links
	Images


	Blog Content
	Topics of Committers
	Topics of Other Bloggers
	Comparison of Themes

	Blog Integration
	Publishing Patterns
	Release Dependency
	Activity Dependency

	Published Information
	Content Dependency
	Time Dependency


	Discussion
	Blogging is a Project Function
	Why Do Developers and Other Stakeholders Blog?
	Impacts
	Integration of Blogging 
	Dissolving Boundaries Between Developers and Other Stakeholders


	Results Validity
	External Validity
	Construct Validity

	Related Work
	Mining Blogs
	Mining Related Artifacts
	Integrating Social Media

	Conclusion
	References



