Facilitating Reuse in Model-Based Development
with Context-Dependent Model Element Recommendations

Lars Heinemann
Technische Universitdit Miinchen, Germany
heineman@in.tum.de

Abstract—Reuse recommendation systems suggest code en-
tities useful for the task at hand within the IDE. Current
approaches focus on code-based development. However, model-
based development poses similar challenges to developers
regarding the identification of useful elements in large and
complex reusable modeling libraries. This paper proposes
an approach for recommending library elements for domain
specific languages. We instantiate the approach for Simulink
models and evaluate it by recommending library blocks for
a body of 165 Simulink files from a public repository. We
compare two alternative variants for computing recommenda-
tions: association rules and collaborative filtering. Our results
indicate that the collaborative filtering approach performs
better and produces recommendations for Simulink models
with satisfactory precision and recall.

Keywords-model-based development; software reuse; recom-
mendation system; data mining

I. INTRODUCTION

Model-based development has gained increased attention
due to its promise of improved productivity. Models become
primary development artifacts and, in order to obtain a
running system, the models are interpreted or executable
code is generated from them. The main development and
maintenance activities shift their focus from code to mod-
els. Instead of writing code, developers work with models
represented in a domain specific language. The modeling
languages for data flow and processing models, used, for in-
stance, in the area of control systems, often have a notion of
reuse. Model elements can be composed hierarchically and
reuse occurs by using elements multiple times. Moreover,
often the modeling language toolkit provides collections of
reusable elements in form of libraries. Since the amount
of reusable elements can grow large, just as with classical
code-based development, it is a challenge to find a reusable
element for a given task. For code based development, rec-
ommendation systems have been proposed to alleviate this.
These systems suggest library elements, such as methods or
classes, useful for the task at hand [1]-[3]. In this paper, we
transfer this idea to the field of model-based development.

Mathworks Simulink! is a development environment for
modeling and simulating dynamic systems which utilizes a
block diagram notation [4]. Simulink has become a prevalent

Uhttp://www.mathworks.com/products/simulink/

technology in the embedded systems domain, especially in
the automotive field. TargetLink®> is a C code generator
for Simulink models that allows to automatically generate
executable C code. Simulink models are constructed from
blocks, the atomic functional units of the Simulink language.
The Simulink development environment offers a large va-
riety of predefined blocks, arranged in block libraries. To
use these block libraries, the Simulink development tool
suite provides a library browser that allows to navigate a
hierarchical categorization of the blocks. The 16 standard
Simulink libraries consist of 135 blocks. In addition to the
provided libraries, Simulink can be extended with custom
libraries. A number of additional libraries are provided by
Mathworks as well as third-party vendors. These block
libraries and the size of industrial Simulink models, which
can grow as large as 20.000 model elements [5], motivate
the adoption of recommendation systems for model-based
development.

A. Problem

Existing work on recommendation systems focuses on
code-based development. However, model-based develop-
ment poses similar challenges to developers, regarding the
identification of useful elements in large and complex mod-
eling libraries. Even for experienced developers, finding the
right element in large libraries for a given task can be
challenging. Thus, new approaches are required to assist de-
velopers in effectively using modeling libraries and thereby
facilitate reuse in model-based development.

B. Contribution

This paper introduces an approach for the context-
dependent recommendation of elements from reusable mod-
eling libraries during model based development. It uses
data mining techniques to extract knowledge from exist-
ing models that is used to produce recommendations for
unfinished models under development. We instantiate the
approach for the Simulink modeling language and evaluate
the quality of the recommendations with a case study using
165 model files from a public repository. We compare two
variants for producing recommendations: association rules
and collaborative filtering.

Zhttp://www.dspace.de/en/pub/home/products/sw/pcgs/targetli.cfm

II. DATA MINING BACKGROUND

Before we describe our approach, this section briefly
introduces the data mining concepts this work is based on.

A. Association Rules

Association rules (ARs) are commonly employed for
shopping basket analysis [6]. The goal is to identify reg-
ularities in transaction data which can be used, for in-
stance, to better align the business to customer needs. A
transaction (or shopping basket) is typically given as a
set of purchased items where quantities are abstracted. An
example is {nachos, dipping sauce, cola}. ARs are of the
form I — j, where I is a set of items and j is an
item. An example is {nachos, dipping sauce} — cola
denoting that customers who bought nachos and dipping
sauce “typically” also bought cola. The Apriori algorithm [7]
mines ARs from a set of shopping baskets. It computes
frequent item sets in the shopping baskets that have a certain
support threshold, i.e., fraction of baskets in which the
item set occurs. From the frequent item sets, association
rules are built that have a desired confidence threshold. The
confidence for an association rule I — j is given by the
ratio between the number of baskets containing both I and
j and the number of baskets that contain /. The ARs can
then be used to recommend additional items for shopping
baskets that they are applicable to. An AR is applicable to a
given shopping basket if the left side of the rule is a subset
of the shopping basket. The two threshold parameters of the
algorithm influence the number and quality of the obtained
ARs.

B. Collaborative Filtering

The basic idea of collaborative filtering (CF) is that users
with similar preferences regarding items will rate other items
similarly as well [8]. CF uses a database of users, items and
a like-relation between users and items, to recommend items
to users. Based on what a user already likes, similar users are
searched and additional items that the similar users like are
recommended. As an example, let us assume that we have
data about which movies users like. In the data base, there
exists a user u; who likes the movies {The Time Machine,
Star Wars, Moby Dick}. For a user us who likes the movies
{The Time Machine, Moby Dick, Back to the Future}, we
may recommend the movie Star Wars as uy showed similar
interest for other movies.

A common approach for implementing a CF-based rec-
ommendation system is to encode the items which a user
likes as a vector and define similarity among users as the
similarity between the corresponding vectors in the vector
space. A vector similarity measure that is often used is the
cosine similarity, which corresponds to the cosine of the
angle between the vectors. It is computed as follows:

- a-b

cosine_similarity(d,b) = ———=
|| x [b]

To obtain recommendations, the k-nearest-neighbor algo-
rithm can be used. The k most similar users are determined
according to the similarity measure. Their item preferences
are aggregated and the set of recommended items is derived.
The value of k influences the number and quality of the
recommendations.

III. APPROACH

Our approach assumes that the modeling language has
the concept of functional elements that can be used for
composing models. We abstract a model as the set of distinct
elements used by it. Hence, we do not consider in what quan-
tities the elements are used or how they are interconnected.
Our approach analyzes which distinct elements are used in
the models of a training corpus in the training phase. In the
recommendation phase, elements that are not used yet are
recommended for unfinished models. We implemented two
variants of the model recommendation approach: an AR-
based and a CF-based variant.

A. AR-Based Recommendation System

Training Phase: We adopt ARs for model-based devel-
opment by considering the set of distinct elements used in
a model as a shopping basket and the individual elements
as items. The mining process analyzes a corpus of training
models by extracting the set of elements employed in the
models. It uses the Apriori algorithm to mine association
rules, which are stored in a file for later use in the recom-
mendation phase.

Recommendation Phase: Using the mined association
rules, the recommendation system suggests additional model
elements for partial models. For this, the recommendation
system is given the set of elements employed so far in an
incomplete model. The recommendation system iterates over
all association rules and recommends the associated element
of each applicable rule if it is not yet employed in the model.

B. CF-Based Recommendation System

Training Phase: For the CF-based recommendation
system, we consider the models as users and the model
elements as items. Also here, we abstract how many times an
element is used in a model. The training phase only consists
of the extraction of the element usage for each model. We
store a list of sets of model elements for later use in the
recommendation phase.

Recommendation Phase: For a query, given as a set
of model elements, the & most similar sets from the train-
ing phase are determined. All elements that the neighbors
collectively use and that are not already used in the query
model are returned as recommendations.

C. Instantiation for Simulink Models

Simulink models are a hierarchical composition of
Simulink subsystems, whereby the atomic units are Simulink

Table I
NUMBER OF DISTINCT BLOCKS USED PER SUBSYSTEM

min max mean p25 median p75
2 16 4.72 3 4 6

1000
>
2 100 f
o
=
=)
e
o
)
<
3 10

1
Blocks sorted by usage frequency descending
Figure 1. Log-scale diagram of block usage in study objects

blocks. For AR mining, each Simulink subsystem is consid-
ered as a shopping basket. Consequently, the ARs associate
library blocks. As an example, the following AR means that
models using the blocks Gain, Integrator and Constant
typically also use the Sum block:

{Gain, Integrator, Constant} — Sum

For CF, we consider Simulink subsystems as users and
blocks as items. The block usage of a subsystem is encoded
as an n-dimensional boolean vector, where each component
refers to a specific block and thus n corresponds to the
overall number of different blocks among all models. Within
the vector, a component of “1” indicates that a particular
block was employed (one or more times) in the model and
a “0” means that it was not employed.

IV. CASE STUDY
A. Study Objects

We used as study objects 165 Simulink files downloaded
from the Matlab Central File Exchange’. We excluded uses
of the blocks Inport, Outport and SubSystem completely,
since these elements do not provide functionality on their
own and occur very often in the models. We also filtered
models that used only one type of block, since no association
rules can be mined from them. Thereby, we obtained 1103
subsystems which collectively used 335 distinct library
blocks. Table I shows information on the number of distinct
blocks used per subsystem.

To illustrate the recommendation problem, Figure 1 shows
a log-scale diagram of the block usage frequency among the
study objects. The distribution can be compared to the long
tail effect in marketing. While there are few blocks that are

3http://www.mathworks.com/matlabcentral/fileexchange/

used very frequently, there is a large amount of blocks that
are used infrequently but in sum account for a large fraction
of the usages. As an illustration, if we exclude the 20 most
used blocks, still about 35% of all block usages employ none
of the “popular” blocks. In other words, during modeling,
in 35% of the cases, a modeler needs a “non-commodity”
block and could thus benefit from a recommendation system.

B. Design and Procedure

We performed a 10-fold cross validation, i.e., we con-
ducted 10 evaluations where in each we used 90% of the
1103 subsystems as the training set and the remaining
10% as the test set. To evaluate the approach for a given
subsystem in the test set, we created an artificial unfinished
subsystem by randomly removing half of its blocks and
queried the recommendation system with the remaining half.
Depending on the recommendations made and the blocks
actually employed (removed previously), we assessed the
quality of the recommendations by measuring precision,
recall and F-measure. Formally, these are computed as
follows:

correct recommendations

precision = -
total recommendations

correct recommendations
recall =

actually employed blocks

2 X precision X recall
F-measure =

precision + recall

In addition to our approach, we evaluated a trivial base-
line recommendation system, which always recommends a
certain amount of the most frequently used blocks. For
the AR-based variant, we chose, as a result of preliminary
experiments, 1% as support threshold. We evaluated differ-
ent values for the confidence threshold. For the CF-based
variant, we evaluated different values for k.

C. Results

Baseline Recommendation System: Figure 2 shows the
precision, recall and F-measure values for the baseline
recommendation system. The results depend on the number
of blocks recommended from the top used blocks. For a
value of 3 recommended blocks, the recommendation system
performs best and achieves an F-measure of 0.19. For this
setting the precision is 0.17 and the recall is 0.21.

AR-Based Recommendation System: Figure 3 shows
the results for the AR-based recommendation system for
different values of the confidence threshold. As expected,
the precision increases and the recall decreases with an
increasing confidence threshold. For a confidence threshold
of 0.4, the F-measure assumes the best value of 0.31. For
this optimal setting, precision and recall are 0.32 and 0.30
respectively. Table II shows information on the number of
recommendations returned per query for this setting.

Precision —+—
Recall ---->¢--
0.8 | F-Measure -

1 2 3 4 5 6 7 8 9 10
Number of recommended blocks

Figure 2. Baseline recommendation system

Precision —+—
Recall ¢

0.8 | F-Measure %

0.6 |

04 F e

02 %"

0

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
Confidence threshold

Figure 3. AR-based recommendation system

CF-Based Recommendation System: Figure 4 shows
the results for the CF-based recommendation system for
different values of k£ (number of neighbors considered). The
diagram shows that for increasing values of k, the recall
is increasing whereas the precision is decreasing. The F-
measure has its optimum value of 0.56 for k = 1, where the
precision is 0.66 and the recall is 0.49. Information on the
number of recommendations returned per query for k = 1
is shown in Table II.

V. DISCUSSION

The results show that both the AR-based and the CF-based
variant of the recommendation system clearly outperform
the baseline approach. The results also make the trade-
off between precision and recall for both variants apparent,
which depends on the chosen parameter values. While there
is an optimum of the parameters with regards to F-measure,
the variability allows to adjust the recommendations to a

Table II
NUMBER OF RECOMMENDATIONS PER QUERY

min max mean p25 median p75
AR (conf=0.4) 0 11 2.26 1 2 3
CF (k=1) 0 9 1.75 1 1 2

Precision —+—
Recall -
0.8 | F-Measure ¥

1 2 3 4 5 6 7 8 9 10
k (Number of neighbors considered)

Figure 4. CF-based recommendation system

user’s preference. For instance, an unexperienced user might
want to rather obtain more recommendations while accepting
to also receive potentially irrelevant recommendations.
Moreover, it can be seen that the AR-based variant in
general achieves better values for precision in comparison
to the CF-based variant whereas for recall, the relation is
the other way round. In terms of F-measure however, taking
the trade-off between precision and recall into account, the
CF-based variant outperforms the AR-based variant.

VI. THREATS TO VALIDITY
A. Internal Validity

The twinning problem denotes duplicate or near duplicate
values in the data set. If, during cross validation, one twin
is in the training data set and the corresponding twin is
in the test data set, better evaluation results are obtained.
We mitigated this with a simple duplicate detection on
the Simulink files. We excluded files whose content was
identical to another file.

We performed an automated evaluation by predicting
removed blocks from subsystems. We thus do not know how
useful the recommendations would be perceived by a user.
However, we assume that users may even consider blocks
other than those eventually employed in a model as useful.

The evaluation assumed that half of the blocks of a sub-
system were already employed to produce recommendations.
However, a user would ideally like to get recommendations
with less blocks already employed.

We determined the query set for the evaluation randomly.
However, the resulting partial subsystem might not corre-
spond to an intermediate state as it would occur during
modeling. This can lead to an error in both directions, i. e.,
better or worse recommendation quality during real use.

B. External Validity

It is unclear how the study objects are representative for
all Simulink models. However, since the models of the case
study collectively used a total of 335 distinct blocks, we
assume a certain diversity among the study objects.

Since we restricted our evaluation to Simulink models,
we do not know how the approach transfers to other model-
based development approaches. We consider this an impor-
tant direction for future work.

VII. RELATED WORK
A. Recommendation Systems in Software Engineering

A general introduction to recommendation systems in
software engineering is given by Robillard etal. in [9]. A
number of approaches have been proposed for recommend-
ing API elements such as types and methods [1]-[3], [10],
[11] or code examples [12], [13] based on the code being
edited in the IDE. However, to the best of our knowledge,
this is the first work to transfer the idea of recommendation
systems to model-based development.

B. Content-based Model Search

In content-based model search, the task is to find models
in a repository that are similar to a given query model
(fragment). Therefore, as for our approach, a notion of
similarity between (partial) models is required. Existing ap-
proaches [14], [15] use different graph-matching techniques
to retrieve similar models. In contrast to these approaches,
we use a very simple notion of similarity between models,
abstracting completely from the number and interconnec-
tions of model elements, focussing only on the set of distinct
model elements that are used.

VIII. CONCLUSION AND FUTURE WORK

We presented an approach for recommending useful
model elements during model-based development that assists
developers in using large and complex modeling libraries.
Our results show that the approach can produce recommen-
dations for Simulink modeling with satisfactory precision
and recall. We conclude that the transfer of recommendation
system approaches to model-based development is a promis-
ing path to follow. As the work presented in this paper is
still in early stages, a number of interesting open research
questions remain.

A possible direction for future research is to experiment
with different notions of similarity of (partial) models for
collaborative filtering. One option would be to take into
account other aspects of the model, such as the intercon-
nections between the model elements.

Currently, the recommendations depend on all blocks
employed in an unfinished subsystem. Thus, the recommen-
dations are independent of where a new model element is to
be inserted during editing. An alternative would be a more
narrow context as given by a certain amount of predecessors
of a given model element. It is an interesting open question,
if this could lead to a higher precision.

We are also interested in applying our approach to other
modeling languages as well as to evaluate our method for
models from industrial systems.

ACKNOWLEDGEMENT

The author is grateful to Benjamin Hummel and Andreas
Vogelsang for inspiring discussions and helpful comments.

REFERENCES

[1] M. Tsunoda, T. Kakimoto, N. Ohsugi, A. Monden, and
K. Matsuméto, “Javawock: A Java Class Recommender Sys-
tem Based on Collaborative Filtering,” in SEKEOS, 2005.

[2] F. Mccarey, M. Cinnéide, and N. Kushmerick, “Rascal: A
recommender agent for agile reuse,” Artificial Intelligence
Review, vol. 24, pp. 253-276, 2005.

[3] L. Heinemann, V. Bauer, M. Herrmannsdoerfer, and B. Hum-
mel, “Identifier-Based Context-Dependent API Method Rec-
ommendation,” in CSMR’12, 2012.

[4] J. Dabney and T. Harman, Mastering Simulink. Prentice

Hall, 2004.

[5] F. Deissenboeck, B. Hummel, E. Jurgens, B. Schatz, S. Wag-
ner, J. Girard, and S. Teuchert, “Clone detection in automotive
model-based development,” in /CSE’08, 2008.

[6] M. Bramer, Principles of data mining. Springer, 2007.

[71 R. Agrawal, R. Srikant et al., “Fast algorithms for mining
association rules,” in VLDB’94, 1994.

[8] X. Su and T. Khoshgoftaar, “A survey of collaborative filter-
ing techniques,” Advances in Artificial Intelligence, vol. 2009,
p. 4, 2009.

[9] M. Robillard, R. Walker, and T. Zimmermann, “Recommen-
dation systems for software engineering,” IEEE Software,
vol. 27, no. 4, pp. 80-86, 2010.

[10] M. Bruch, M. Monperrus, and M. Mezini, “Learning from
examples to improve code completion systems,” in ESEC-
FSE’09, 2009.

[11] S. Thummalapenta and T. Xie, ‘“Parseweb: a programmer
assistant for reusing open source code on the web,” in ASE’07,
2007.

[12] R. Holmes and G. C. Murphy, “Using structural context to
recommend source code examples,” in /CSE’05, 2005.

[13] H.Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO: Min-
ing and recommending API usage patterns,” in ECOOP’09,
2009.

[14] B. Bislimovska, A. Bozzon, M. Brambilla, and P. Frater-
nali, “Content-based search of model repositories with graph
matching techniques,” in SUITE’11, 2011.

[15] R. Dijkman, M. Dumas, and L. Garcia-Bafiuelos, “Graph
matching algorithms for business process model similarity
search,” Business Process Management, pp. 48—63, 2009.

