A Framework for Incremental Quality Analysis of Large Software Systems

Veronika Bauer, Lars Heinemann, Benjamin Hummel
Technische Universitdt Miinchen, Germany
{bauerv,heineman,hummelb} @in.tum.de

Abstract—To provide rapid feedback to engineers, software
quality analysis must be incremental. However, most existing
analyses are either not incremental, or limited to isolated
quality characteristics. In practice, this prevents their inte-
gration into a uniform quality control approach. In this paper,
we present a framework for the incremental and distributed
computation of quality characteristics. It is fast enough for
real-time analysis of large systems and provides a complete
history of analysis results. An evaluation on several open source
software systems demonstrates its scalability to large code bases
under active development.

I. INTRODUCTION

If no counter-measures are taken, the code quality of long-
lived software systems is likely to decay over time [1],
[2], [3]. In consequence, maintenance efforts increase—
causing higher costs and reduced agility in fixing bugs
or implementing new features. One approach to counter
software decay is the measurement and inspection of key
quality characteristics. If performed on a continuous basis,
this allows to discover quality defects early, while their
removal is still inexpensive. In this paper, we refer to such
approaches as continuous quality control [4], [5].

A plethora of automated software quality analyses have
been proposed for this purpose, including, e. g., clone de-
tection [6], architecture conformance analysis [7], [8], bug
pattern detection [9], or code complexity metrics [10].

Their results are used both by developers and quality
engineers. Developers react to analysis findings in their
code and rectify problems. To be effective, they require
rapid feedback to newly introduced quality defects. Quality
engineers inspect left-over findings to identify and address
root causes. For effective root-cause analysis, they need to be
able to quickly identify changes that introduced problems.
To this end, they require analysis results for each version
in the version history of the software system. To fulfill
both requirements, analysis results must be updated quickly
when code changes. In practice, we can achieve this only
with incremental approaches. This applies especially for
companies with a large code basis and high code churn,
like Google, where in 2011 more than 5000 developers
committed more than 20 changes per minute!.

Uhttp://google-engtools.blogspot.de/2011/05/welcome-to-google-
engineering-tools.html, accessed 2012-04-02

978-1-4673-2312-3/12/$31.00 (© 2012 IEEE

Michael Conradt
Google Germany GmbH
conradt@google.com

Elmar Juergens
CQOSE GmbH, Germany
Juergens@cgqse.eu

Most quality analysis approaches, however, do not work
incrementally. Instead, they (re-)process the entire software.
For real-world systems, this often takes too long to run for
each individual change. Instead, they are run on a nightly
or weekly basis. This significantly delays feedback for
developers, thus increasing accidental complexity involved
in the rectification of the detected quality defects. It also
makes root cause analysis harder for quality engineers, since
the number of changes between two analysis runs, each of
which could have caused a certain change to the quality
indicators, can be large.

Several research groups have recognized this problem
independently and have proposed incremental algorithms for
individual quality analyses [11], [12], [13]. However, they
focus on a single quality aspect in isolation. They lack an
underlying framework, forcing developers of new incremen-
tal analyses to re-implement common functionality, such as
version control synchronization, filtering, visualization and
historization of analysis results. As a consequence, we lack
tool support that can compute a collection of quality analyses
incrementally, as required for continuous quality control.

Problem: To best support continuous quality control,
we need incremental analyses of a comprehensive set of
quality characteristics. Existing incremental analyses, how-
ever, are developed in isolation of each other. To integrate
them into a coherent tool platform required for quality
control, we need a general framework on which to build
incremental quality analyses.

Contribution: In this paper, we present a framework
for the incremental, distributable computation of quality
characteristics. Through it, even complex quality indicators
(such as system-wide cloning) can be computed in real-
time for every commit to a repository to provide rapid
feedback for developers. Furthermore, it stores results for
the entire version history, to support quality engineers during
root cause analysis. We present the results of an evaluation
that demonstrates its scalability to large real-world software
under active development. Our framework is available as
part of the Open Source quality analysis toolkit ConQAT?.

II. TOOL REQUIREMENTS

This section details the requirements that drove the devel-
opment of our tool support for continuous quality control.

Zhttp://www.conqat.org/

They are based on experience the CQSE GmbH gathered
performing software quality control in practice.

A. Background

The CQSE GmbH is a consulting company specialized
in software quality analysis and assessment. It supports its
customers by introducing and performing software quality
control for their own development or for their contractors.
The tool requirements for developers and quality engineers
arise from this context.

B. Rapid Developer Feedback

Quality control involves software developers. They react
to new analysis findings in their code and rectify them. To be
effective, these findings should be available to developers as
early as possible, ideally immediately after committing their
code to the version control system?’.

If several minutes or even hours pass between introduction
of a quality defect and notification, the developer will
probably already be working on a different task and needs
to perform a context switch. If several days or weeks pass,
he will probably need to get re-accustomed with the affected
code. Changes to it are likely to require additional testing
effort, since quality assurance has already inspected the
original modifications. New changes thus need additional
quality assurance efforts. In a nutshell, increasing the time
between introduction and notification increases the acciden-
tal complexity involved in rectifying quality problems.

For rapid feedback, we require analysis tools that update
their results to code repository changes immediately.

C. Historization

Quality control also involves quality engineers, who peri-
odically inspect changes to quality indicators. One important
quality-engineering task is to understand the root causes of
quality problems. As long as they are not rectified, new code
is likely to contain similar problems.

Root cause analysis involves manual inspection of version
control logs to understand how each individual change in
an artifact’s version history affected the quality character-
istic under analysis. When quality control is introduced for
large existing systems, typically a large number of quality
issues are found. From our experience, it is essential to be
able to tell old issues (possibly stemming from a different
development team from the previous contractor) from new
ones, for which developers more readily feel responsible.
In consequence, to support root cause analysis, we require
analysis tools to store results for each revision of the
software in the version history.

3Continuous analysis during typing could provide even quicker feedback.
We analyze commits, however, since we are only interested in logically
complete changes, not incomplete intermediate results.

D. Re-computation of Analysis Results

Quality analyses have parameters. Clone detection, for
example, takes the minimal clone length as a parameter.
As the experience with continuous quality control grows in
an organization, parameter values change. For example, we
often start with rather conservative settings, e. g., a minimal
clone length of 15 statements, to initially limit the number
of analysis findings and focus on the most problematic ones.
When quality control is established and many of the findings
have been cleared up, we can make the tool more sensitive,
e. g., reduce the minimal clone length to 10 and then to 7
statements.

Furthermore, quality analysis software is software, too. It
is thus also subject to software evolution. Often, improve-
ments to the analysis software affect its results. Additional
checks might produce new findings. Better filters could
suppress certain types of false positives previously reported.

To update results if the analysis software or its parameters
change, tool support must be able to re-compute the quality
analyses for each revision in the software history. To be
feasible in practice, this re-computation should be possible
in a manageable time span.

III. APPROACH

In this section, we explain our approach for incremental
quality analysis. We start by explaining the design principles
for our approach, followed by the architecture of the analysis
system. Based on this, we describe the algorithms and
storage layout used to enable the incremental analysis. For
the algorithms we differentiate between local metrics, for
which only information local to a single class, file, or method
is required for its calculation, and global metrics, for which
changes to one file can potentially affect the metric value of
potentially any other file in the system.

A. Design Goals

Our approach evolves around two goals. The first is
to split an analysis into smaller (and as far as possi-
ble independent) steps. The granularity is the source file
level, i.e., it should be possible to perform each analysis
step independently for single files or small sets of files,
and integrate these individual results into a larger metric
database. This allows us to incrementally update analysis
results by performing the analysis only on files affected by
a change (such as a commit to a version control system) and
integrating the results with the existing ones. This allows us
to scale in time, e. g., when analyzing a history of changes,
as at each step we only have to re-compute values for the
(typically small) set of changed files instead of for the entire
system. Additionally, this allows us to utilize multiple cores
of a CPU or many nodes of a compute cluster by distributing
the files to be processed. This allows us to scale in the size
of the analyzed system.

The second goal is to reuse existing quality analysis
tools as far as possible. More concretely, we want to use
the capabilities of ConQAT [4], our Open Source source
code analysis framework, that provides multiple person-
years worth of quality analysis functionality. ConQAT of-
fers both a graphical data-flow configuration language and
hundreds of individual building blocks for analyses, which
we want to reuse. For many of the analyses, our approach
provides a generic way of identifying the affected files and
integrating the analysis results, while the analysis itself can
be performed by the existing code from ConQAT on a
reduced set of files.

B. Technical Architecture

Storage System: To support incremental analysis, we need
a way to store the history of analysis results and intermediate
values. As most of the data we process and store is of a
simple key/value structure, we use a key/value store instead
of a relational database.

Our approach uses a central storage system that provides
access to multiple key/value stores identified by names. It
allows storage (put) and deletion of data based on keys.
It supports queries based on single keys, key ranges (i.e.,
return all keys and values for which the keys are lexico-
graphically between provided keys) and key prefixes (i. e.,
return all keys and values for which a given string is a prefix
of the key).

Configuration: The configuration of the analysis system is
defined by a set of triggers. A trigger describes the individual
steps of an analysis, as well as the names of stores accessed.
Triggers may be configured as periodic, indicating that a
job for this trigger is scheduled repeatedly with a fixed time
delay. Periodic triggers are used, for example, to poll the
version control system for new changes. A simple example
of a configuration is shown in Figure 1, where triggers
correspond to the gray boxes.

Job Scheduling: The execution of the analysis steps on
a set of files is performed in what we call a job. A job is
the unit of distribution and treated as atomic (i.e., is not
parallelized). The input for a job consists of the trigger to
be executed and a set of keys to be treated as new, modified,
or deleted in these stores (called a delta). The output of a
job is directly written into one or more other stores. Jobs for
non-periodic triggers are scheduled when a delta required as
input for the trigger becomes available. After the execution
of a job, a delta based on the changes to one or more stores
is automatically recorded. Thus, executing a job causes a
delta to be created, which in turn may cause another job to
execute if any data was changed.

In the configuration shown in Figure 1, a store containing
the content of the source files is kept up to date by the
periodic trigger A that queries a version control system. Any
changes made to this store cause jobs for triggers B and C'

A: Read from Version
Control System
(periodic)

C: Calculate
Metric 2

B: Calculate
Metric 1

Values for
Metric 1

Symbols Used

D: Calculate
Derived Metric

Values for
Derived Metric

An example analysis configuration.

data flow

exchange
of delta

Trigger

Figure 1.

to be scheduled that update two metrics and persist them in
separate stores. A third metric derived from “metric 2” is
calculated by trigger D based on the delta produced by jobs
for trigger C'. This also means that trigger D is only executed
if there are changes in “metric 2” at all, which might not
be the case for all changes of the file content (e. g., changes
in comments do not affect certain metrics). Especially for
larger configurations, this saves processing time.

C. Implementation Details

The evaluation in this paper is executed on a single
machine. Thus, we use a simple store implementation based
on LevelDB*, an in-process key/value store.

We built our own simple distributed processing system
instead of relying on an existing one (e. g., MapReduce [14])
because the dependencies between the jobs have to be re-
spected. Our system consists of a scheduler that coordinates
the execution of jobs and one or more workers that process
these jobs. The workers are implemented as Java programs
and thus run as separate threads on the same machine to
utilize multi-core processors, or as processes on different
machines. Communication between the scheduler and the
workers is implemented by reading and writing entries to a
dedicated store.

“http://code.google.com/p/leveldb/

Besides creating new jobs for periodic triggers and new
deltas, and assigning them to free workers, the scheduler
also maintains scheduling constraints. One is the maximal
size of deltas, configured in the triggers. If the size of the
deltas (i. e., the number of keys added, changed, or deleted)
exceeds this limit, the delta is split to allow distribution
to multiple workers for parallelization. Additionally, the
scheduler is aware of revisions, i.e., jobs and deltas can
carry information about the revision® they belong to. This
information is used to avoid data from later revisions being
processed before all updates for earlier revisions have been
performed. Finally, there are analysis-specific constraints,
which may cause certain jobs to be only scheduled when
no other job modifies the stores it retrieves data from. This
constraint is required, for example, for the calculation of the
clone coverage metric described in Section III-E.

D. Incremental Update of Local Metrics

A local metric is a metric for which only information
local to a single class, file, or method is required for its
calculation. More specifically, we call a metric local, if for
a given set of changed input keys, the metric values for
non-changed keys do not have to be updated. To calculate
updated metric values for the changed keys, only the values
stored for these keys are required. This definition depends
on the granularity of our keys, i.e., the unit of a system
represented by a key. In our design, a key is in most cases
just the path of a file. Thus, all metrics that can be calculated
for single files are localS.

For the update of local metrics we just have to calculate
the new metric value for each changed file and store the
new value. As this file-based calculation is also common in
analyses built with ConQAT, these are easy to adapt. We
have to adjust the input loading phase to read from a store
instead of from the file system, and the output phase to write
to another store instead of writing a report. The modular
design of ConQAT supports this replacement well.

Many commonly used metrics are local [15], such as lines
of code (in any of its variants), depth of nesting, length of
program elements (classes, methods, functions), cyclomatic
complexity [10], or the per file Halstead volume [16]. Even
metrics that do not seem to be local at first sight can be
calculated in a local fashion. For example the fan-out metric
that calculates the number of references to other classes can
be calculated locally for most programming languages as
all external references can be extracted from the file itself
(unless we include references from super classes as well).

SWe assume that the version control system provides a notion of a
revision. Otherwise, timestamps can be used, as we only require revisions
to be distinct and increasing.

SIf we had chosen a smaller granularity, e. g., representing single lines
by a key, these metrics would require a more complicated update strategy.

A: Read from Version
Control System
(periodic)

Symbols Used

data flow

exchange
of delta

Trigger

D: Calculate
Clone Coverage

Values for
Clone Coverage

Figure 2. A configuration for calculating clone coverage.
cc1, ce2
Figure 3. Example of a clone graph.

E. Incremental Update of Global Metrics

Metrics for which changing a single file might affect the
metric values of other keys are called global. An example of
a global metric is clone coverage. A clone is a piece of code
that appears more than once in the source code [17]. The
clone coverage for a file is defined as the ratio of statements
that are covered by at least one clone [18]. Copying a piece
of code from file A to file B will only change file B,
while the clone coverage might change for both A and B.
Potentially, any changed file can affect the clone coverage
of any other file.

The individual steps performed by our approach to cal-
culate the clone coverage are shown as a configuration in
Figure 2. When a set of files is changed, the first step
is to update a data structure called the clone index. The
clone index supports incremental updates for single files.

Additionally, it can be mapped to our key/value based
storage system and also allows to retrieve the list of all
clone classes (sets of related clones) covering a single file.
The details of the clone index are described in [13]. Based
on the clone index, the clone coverage for a single file
can be easily calculated after retrieving all clones for the
file. However, from the clone index, we do not know for
which files the coverage might have changed. To model this
information, we introduce a second data structure, called
the clone graph. The nodes in this graph represent the
files and an (undirected) edge exists between two nodes
(files), if there is a clone class with instances in both files.
This includes self-loops for clones within a single file. An
example of a clone graph for the three clone classes C'C'1
(files [1, 2, 3]), CC2 (files [2, 3]), and CC3 (in single file 4)
is shown in Figure 3.

To update the clone graph for a changed file, we retrieve
its clone classes from the clone index. From these clone
classes, we can update the incident edges for this file in the
clone graph. This way, the information in the clone graph
is incrementally kept up-to-date and allows us to limit the
number of files for which the clone coverage has to be
calculated. The final step consists of recalculating the clone
coverage for all nodes incident to one of the edges in the
clone graph whose clone class has changed. The coverage
value is determined from the information in the clone index.

The idea of managing a dependency graph that encodes
which metric values need to be updated if a file changes, can
be carried over to other global metrics, such as fan-in, depth
of inheritance tree, or test coverage. For the fan-in metric,
this would be the dependency graph. For inheritance depth,
this is the inheritance tree (or graph for languages with
multiple inheritance). For test coverage, the correspondence
to the clone index would store coverage information for
each unit test, while the dependency graph would link single
test cases to files which can change the outcome of the
test, if changed. Calculating such a graph can be performed
with so-called safe selective regression testing techniques
(see, e. g., [19]). Also the calculation of aggregated metric
values (e. g., along the directory hierarchy) is a global value.
Here the dependency graph is a directory tree augmented
with additional nodes representing directories and transitive
update of parent nodes. Contrary to local metrics, for global
metrics additional code for managing the dependency graph
has to be written to allow incremental analysis. However, our
framework provides suitable abstractions to keep the amount
of additional code for each metric minimal.

F. Historization

We only store a new metric value for a file and revision,
when its value actually changed. This results in a sparse
matrix representation as shown in Figure 47. If a file is

TThe actual store is one-dimensional. The entries of the matrix are stored
by building storage keys from the file name and the revision.

Rev. 1 Rev. 2 Rev.3 Rev. 4 Rev. N
filel.java 60
file2.java 70 50
fileN.java 80 90 80 100

Figure 4. Storage organization for the historized metric values.

deleted and thus no valid metric value exists anymore, a
special deletion token is stored, illustrated by < del > in the
figure. This storage schema allows us to retrieve information
from earlier revisions, e. g., for trend and root cause analysis,
while keeping the space required linear in the number of
file changes, as opposed to a quadratic space requirement
for storing every value for every revision (number of files
times number of revisions). In addition, we store for each
file the value for the current head revision. This allows
for fast access to the complete set of metric values of the
current head revision, which might be needed for calculating
derived metrics. Our implementation uses this historizing
storage strategy not only for metric values, but for all stores,
including the content, which allows us to access all stored
information for any revision.

G. Visualization of Analysis Results

We adapted the visualization back-end of ConQAT to
read metric values from a store (instead of processing the
values computed during a batch analysis). As ConQAT’s
presentation is also configurable, we can use its entire
range of visualizations, including simple lists and trees,
trend charts, and treemaps. A detailed description of the
visualization capabilities of ConQAT is beyond the scope
of this paper. Please refer to the ConQAT documentation on
the ConQAT website for further details.

IV. EVALUATION

We evaluated the performance of our incremental ap-
proach against the non-incremental version of ConQAT. The
reason to limit the comparison to ConQAT and not use
other quality analysis tools is that we are interested in the
performance gain of the incremental approach and not in
a comparison of different analysis engines. Furthermore, as
discussed in Section V, none of the existing tools provides
incremental analysis over a large range of analysis types.

A. Evaluation Objects

Our evaluation objects are three open source software
systems with different sizes and programming languages
to avoid a system-specific bias: JabRef®, ArgoUML’, and

8https://jabref.svn.sourceforge.net/svnroot/jabref/
9http://argouml.tigris.org/svn/argouml/

Table II
COMPUTED METRICS

Table 1
EVALUATION OBJECTS

System JabRef ArgoUML Chromium
Domain Reference mgmt. UML modeling ~ Web browsing
LOC 130,267 362,605 2,569,784
#Files 626 1,866 13,005
Start rev. 6 5487 8
Head Rev. 3683 19744 105817
Timeframe 2003-10-16 2005-02-11 2008-07-26

to 2011-10-14 to 2011-10-09 to 2011-10-17

Chromium'?. All evaluation objects use Subversion (SVN)'!
as their version control system or at least provide an SVN
mirror. They have different characteristics regarding the
commit behavior, i. e., they differ in the “size” and length
of the SVN history. Chromium, although an open source
system, is actively developed by Google engineers. We thus
expect it to show a similar commit behavior as commercially
developed systems. Table I shows overview information
about the evaluation objects. Columns Start rev., Head rev.
and Timeframe illustrate the section of the revision history
that we considered for the analyses. We used the complete
history from the time where the directory containing the
source files was created up to the time when we mirrored
the SVN.

B. Evaluation Questions

EQ 1: What performance challenges arise from the commit
activity in the evaluation objects? We investigate the
commit activity of the evaluation objects and assess the
commit frequency to deduce the performance requirements
for our approach.

EQ 2: How long does a complete non-incremental quality
analysis take? To determine if incremental analysis is
necessary as well as to have a baseline for comparison, we
estimate the required time for running a non-incremental
analysis on all revisions separately.

EQ 3: How long does it take to replay the history with
the incremental approach? We evaluate how well our
approach can handle the reconfiguration requirement, where
all analysis results have to be re-computed.

EQ 4: How long does it take to process a single revision
with the incremental approach? We investigate how well
our approach is capable of providing rapid feedback to
developers in response to individual changes to the code
base.

EQ 5: How long does it take to retrieve historized metric
values? To assess our approach with regards to root cause
analysis of metric changes, we determine the times required
to retrieve historized metric values.

10http://src.chromium.org/svn/
Uhttp://subversion.apache.org/

Metric Description L/G

LOC Total number of lines in source file L

SLOC Total number of non-empty non- L
commented lines in source file

Max. Nesting Depth ~ Maximum number of nested blocks L

Comment Ratio Fraction between characters in L

comments and non-comments

Length in lines of the longest L
method within a source file

Fraction of statements in a source G
code file that are cloned

Longest Method

Clone Coverage

Aggregation Aggregated values of all mentioned G
metrics along the directory tree
Table III
ANALYSIS CONFIGURATIONS

System JabRef ArgoUML Chromium
SVN path | trunk/jabref/src/java trunk/src trunk/src
includes Jjava Jjava .c,.cc,.h,.hh
excludes - - *third_party*

C. Design and Procedure

We mirrored the complete SVN repositories of the evalu-
ation objects on a server in our local network. This ensures
that the impact of network delays in our evaluation is kept
low. Also, this is closer to a realistic production setting
where the quality analysis are performed on a machine with
a fast network connection to the SVN server.

We configured both the non-incremental analysis (EQ 2)
as well as the incremental analysis server (EQ 3-5) to
compute the metrics listed in Table II. The metrics were
chosen to provide some variety in calculation technique, not
to provide a complete quality assessment. Hence, we do
not provide details on the metrics used. The column L/G
indicates whether the metric is local (L) or global (G).

In all analyses, we included only source code files and
thus ignored files that are not relevant for our software
metrics. Moreover, we excluded third-party code, since this
code is usually not maintained to the same extent as own
code. The analysis configurations used for the evaluation
objects are summarized in Table III.

The evaluation was performed on a 64-bit machine with
two Dual Core AMD Opteron 280 2.4 GHz CPUs, 10 GB
of RAM and a Gentoo Linux operating system.

1) EQ 1: Commit activity: We investigated the number of
commits over the project history and assessed the maximum
number of commits per month, day, hour, and minute. In
addition, we determined the average number of files changed
per commit, the largest commit, and the total number of files
changed.

2) EQ 2: Non-incremental quality analysis: We calcu-
lated the metrics mentioned above with a non-incremental

run of ConQAT for both a base revision'? and the head
revision of our evaluation objects. This was performed non-
distributedly on a single CPU core. We measured the times
thase and treqq for the complete analysis process of both
revisions, but did not include the time required for the check-
out from the version management system. Based on these
times, we estimated the time needed to calculate the metric
values for all revisions as ¢, = 0.5 X (tpase + thead) X R,
where R is the number of revisions where at least one code
file was changed (as determined in EQ 1). Using the average
between the analysis time required for the base and head
revision assumes linear growth in size, which is only an
estimate. However, as we expect the system to grow faster
in the beginning, the estimate is likely to be a lower bound.

3) EQ 3: Incremental re-computation of history: We
“replayed” the development history of the evaluation objects
by processing all changes committed to the SVN repository
and incrementally updating the quality indexes. We used
only a single worker thread, thus our tool utilizes a single
core of the CPU most of the time. Additional threads are
used for scheduling and periodic synchronization between
scheduler and worker, but these require nearly no CPU
resources. We measured the processing time for the complete
replay process including fetching revisions and file contents
from SVN and the incremental metric computation of all
metrics.

4) EQ 4: Processing of incremental changes: From the
analysis run of EQ 3 we computed the average time required
to process a single revision. For this average we counted
only revisions where at least one of the files included in the
analysis configuration was changed.

5) EQ 5: Retrieval of historized metric values: We
queried the historized clone index for 100 randomly gener-
ated pairs of file and revision and retrieved the metric value
that the file had in the specific revision. We measured the
minimum, maximum, median, and average query time.

D. Results

1) EQ 1: Commit activity: Table IV summarizes the
commit activity for the evaluation objects. The maximum
number of commits recorded per hour is 50 for ArgoUML.
Chromium accounts for the maximum number of commits
per day, which is 217. This data enables us to make an
estimate about the performance required of our approach.
We are interested in peaks of commit activity which are
displayed in Figure 5 as an aggregated daily trend view
of the development activity over the last six months. All
projects are visibly active, however, Chromium surpasses
JabRef and ArgoUML by one order of magnitude'? in terms
of commit activity, regularly exceeding 100 daily commits.

12We incremented the revision where the source directory was created
by 100 to determine the base revision. This was chosen to skip the phase
where the initial import of existing source code was performed.

13To keep the data for JabRef and ArgoUML visible, the y-axis of the
diagram is plotted in log scale.

Table IV
COMMIT ACTIVITY ON THE EVALUATION OBJECTS

Evaluation object JabRef ArgoUML Chromium
Relevant Commits 1496 3650 53470
Max Commits/Day 23 89 217
Max Commits/Hour 17 50 27
Largest Commit (#Files) 285 3636 2700
Total File Changes 7207 18531 346214
Avg. Files/Commit 4.82 5.07 6.47

Chromium ArgoUML ooeeeeeeneeens JabRef -===m=m=

1000 gr

100

of commits

06/01 07/01 08/01 09/01 10/01
Days

04/01 05/01

Figure 5. The number of commits per day.

2) EQ 2: Non-incremental quality analysis: Table V
shows the analysis times for the non-incremental analysis
of the base and head revision of all evaluation objects as
well as our estimate for the time required for analyzing all
revisions. The analysis of the base revision took from 16
to 83 seconds while the head revision required from 33 to
351 seconds. The resulting estimate for the analysis of all
revision falls in the range of 10.8 hours to more than 4
months for the evaluation objects.

3) EQ 3: Incremental re-computation of history: Table VI
shows the processing statistics for the incremental history
analyses. Column Overall contains the overall time re-
quired for the replay. Column Speedup shows the theoretical
speedup factor (i.e., performance gain) of the incremental
approach compared to the non-incremental estimate. The
overall running times of the incremental analysis ranged
between 20 minutes for JabRef and about two days for
chromium. The speedup factor ranges from about 30 for
the smaller evaluation objects to 65 for Chromium.

4) EQ 4: Processing of incremental changes: Column Per
revision in Table VI shows the average times for processing a
single revision. They are less than one second for the smaller
systems, and less than 4 for Chromium.

Table V
CONQAT NON-INCREMENTAL ANALYSIS TIMES

Evaluation object Analysis of Analysis of

Estimate f. analysis

base rev. head rev. of all revisions
JabRef 19 seconds 33 seconds 10.8 hours
ArgoUML 16 seconds 60 seconds 38.5 hours
Chromium 83 seconds 351 seconds 134.3 days

Table VI
INCREMENTAL ANALYSIS

Evaluation object =~ Analysis of Speedup Per revision
all revisions
JabRef 20 minutes 323 0.8 seconds
ArgoUML 66 minutes 34.9 0.9 seconds
Chromium 49.2 hours 65.5 3.3 seconds
Table VII
TIMES FOR RETRIEVING HISTORIZED VALUES
Evaluation object Min Max Median Average
JabRef 0.003s 0.013s 0.005s 0.005 s
ArgoUML 0.003s 0.012s 0.004 s 0.004 s
Chromium 0.002s 0.018s 0.004 s 0.004 s

5) EQ 5: Retrieval of historized metric values: Table VII
shows the times for retrieving a single historized metric
value. The times for retrieval were below 0.01 seconds for
median and average over all three systems.

E. Discussion

The numbers from Table IV suggest that a “real-time ana-
lysis system” should be able to handle at least 50 commits
per hour to avoid congestion of the analysis queue during
times of many commits. This corresponds to about one
minute per analysis. The times from Table V indicate that a
non-incremental approach might be sufficient for the smaller
systems (at least as long as we do not want to calculate more
metrics), while for Chromium there will be a considerable
delay between the commit and the analysis results if many
commits are performed in a short time interval.

Our incremental analysis approach only requires a couple
of seconds per revision, including communication with the
SVN server'4. This is fast enough for real-time developer
feedback, as typical delays in an IDE for compiling and
committing of changed code are in a similar time range. This
is also fast enough to avoid congestion of the analysis queue
even under heavy load. This makes our approach also useful
for analyzing a larger number of small systems in a software
ecosystem on a single machine, while for non-incremental
analyses a separate machine has to be allocated for every
one or two projects to ensure timely feedback. This is also
backed by the disk space occupied by the storage system in
our approach, which was about 200 MB and 380 MB for the
two smaller systems and 10 GB for Chromium. This allows
many projects to be stored on a single machine.

The speedup when performing full history analysis is a
factor of 30 to 65. As we were using only a single worker
thread, this speedup is not caused by parallel computation
but only by the incremental nature of the algorithms. The

14To estimate the delay caused by communication with the SVN server,
we also analyzed the entire JabRef history from a SVN mirror on the local
hard disk. This took only about 6 instead of 20 minutes. However, we
decided to stick to the setup with a separate SVN server, as this is the
more realistic scenario in a real environment.

higher speedup for the larger system is caused by the
quadratic run-time of the non-incremental analysis (system
size times number of commits), while our approach is
expected to run in sub-quadratic time as we only have to
recalculate a fraction of the metric values. The time per
revision, however, also depends on the size of the system,
as for a larger system potentially more files are affected by
changes in global metrics.

As shown by Table VII, our organization of metric data as
a sparse table in a key/value store is fast enough to support
the use-case of interactive querying of metric values when
needed (e. g., when opening a file). The way we access the
historized metric data (by a prefix query with the file name)
makes accessing the metric value for a single revision and
retrieving the entire metric history for a file essentially the
same operation. Thus, the numbers reported are the same
for accessing the full history, e. g., for root cause analysis.

A possible limitation of our approach is the file granu-
larity. Even if only a single bit in a large file changes, we
have to process the entire file. This is not a problem as long
as the size of the files is within reasonable bounds, as is
recommended by most programming guidelines'>. However,
there may be some fairly large files in generated code.
The (excluded) third-party code of Chromium, for example,
contains a generated file with more than 125,000 lines. Such
a file could significantly impact the required analysis times.
One solution would be to use a more fine grained unit (such
as chunks of lines) for incremental updates. In practice,
however, we expect such large files to be either excluded
(cloning in generated code is typically not interesting) or
to not change very often. In both cases, the impact on the
analysis times is manageable.

F. Threats to validity

The selection of evaluation objects always introduces a
bias, as it remains unclear how representative they are for
the set of all software projects. We tried to mitigate this risk
by choosing systems of different sizes in terms of their code
base, activity, number of developers, and age. Furthermore,
we carefully report the relevant characteristics of the commit
history of the evaluation objects, to help the reader compare
these numbers to other systems.

The usage of ConQAT when comparing analysis time
with a non-incremental approach could bias the results as
other analysis frameworks might be faster. However, we use
the same analysis code for most parts of the incremental
approach as well, thus the difference in time should be only
caused by the incremental approach and not differences in
the analysis code.

Finally, the performance results may be different for
another set of metrics. We tried to use metrics that are well-

15The largest file in our evaluation objects had about 17,000 lines, which
is way larger than most recommendations, but not large enough to seriously
impact our approach.

known, can be applied consistently to both C/C++ and Java
code, and contain both local and global metrics. By using
not a single metric, but a set of metrics, we also expect
to even out major differences in the potential performance
characteristics of different metrics.

V. RELATED WORK

We differentiate between manual and automated quality
analyses. Both have shortcomings if used in isolation. First,
important quality attributes, such as the concise and con-
sistent naming of identifiers [20], elude automatic analy-
sis. Furthermore, questionable quality measures have been
proposed, whose value to engineering is unclear [21], [22].
However, manual inspections alone are infeasible for contin-
uous quality control, too. Real-world software is often too
large for regular, full-blown manual reviews. These weak-
nesses are alleviated to a certain degree, if automated and
manual analyses are combined. Consequently, automated
analyses form the basis of quality control, since they can be
executed inexpensively on a continuous basis. In this paper,
we thus focus on automated analyses.

A lot of work has been done on automated quality analy-
ses for very large software systems. To tackle the scalability
challenges, the following strategies have been proposed: dis-
tributing the analyses, incrementally updating the results, as
well as a combination of both. Some approaches specialize
on a single type of analysis, like architecture conformance
checking or clone detection, while others integrate a variety
of analyses into a framework to support continuous quality
monitoring. We present approaches for each of these strate-
gies, followed by an overview of frameworks designed for
continuous quality monitoring.

Incremental: Already in 1995, Wagner and Graham pro-
posed a combination of incremental analysis algorithms and
version management for implementing an artefact versioning
system [23]. They employ incremental analysis algorithms to
restore consistency in documents after modifications, while
relating the changes to a specific document version. How-
ever, quality, besides consistency, was not yet addressed.

Koschke [12] presents an incremental approach for archi-
tecture conformance checking. By investigating the changes
possible in either the architectural model, the implemen-
tation, or the mapping between those two, strategies are
devised to determine entities affected by a modification and
thus limit the scope of recalculations of the analysis. As
a result, the incremental reflection analysis gives real-time
feedback on changes which occurred during an interactive
assessment of the architecture. Gode and Koschke [11]
present an incremental clone analysis, which calculates the
evolution of clones over a system’s history. It bases the
analysis for each revision on the findings of the earlier ones,
creating a mapping between them. The goal is to integrate
the incremental clone analysis into an IDE for rapid feed-
back to the developer. Unlike our approach, both incremental

approaches are not designed for a distributed environment,
nor do they attempt to integrate multiple analyses.

Distributed: Shang etal. [15] propose to address scal-
ability by adapting tools which originally were designed
for a non-distributed environment and deploying them on
a distributed platform such as MapReduce. They, however,
do not employ incremental analyses.

Incremental and Distributed: In [13], we presented an
approach for incremental clone analysis, which is index-
based, and uses MapReduce to distribute the computation.
As a consequence, the analysis is suitable for being em-
ployed in real-time clone management tools. In this paper,
we extend this approach with support for additional analyses.
Additionally, we provide a change history for the results.

Frameworks: A framework integrating a plethora of ana-
lyses in order to support continuous quality monitoring is
SQUANER [24]. Like our approach, it proceeds incremen-
tally, and updates are triggered by commits to a version
control system. The goal, like ours, is also to provide
rapid developer feedback. In addition, SQUANER presents
advice for improving the analyzed code base, based on the
findings of their analyses. However, the types of analyses
supported differs: SQUANER, unlike our approach, focusses
exclusively on object-oriented systems. Furthermore, the
metrics calculated by SQUANER are file-based and thus
limited to local analyses. Our approach, in contrast, supports
local as well as global analyses. Additionally, we provide
quality history of each file in the system at a per-commit
granularity. The type of continuous quality control data
provided by SQUANER could not be determined, as the
corresponding web site was unreachable. As far as perfor-
mance is concerned, we can not compare our approach to
SQUANER, as no empirical data was available.

Another framework for continuous monitoring of software
evolution is proposed by Robbes et al. [25]. In contrast to our
approach, they propose a change-based granularity, which
draws its information directly from the developers’ IDE.
This way, every single change can be traced, as modifica-
tions are not aggregated in one commit. Instead, we used
a file-commit granularity for the following reasons: Firstly,
the metrics currently computed are commonly reported on a
per-file basis, and aggregated for the entire system. As far as
the size of commits, and thus the accuracy of our increments
are concerned, we assume that providing rapid feedback on
a file-commit granularity to developers might induce them to
commit coherent changes more frequently in order to assess
their effects. Furthermore, the purpose of continuous quality
control is to assess the big picture of a system, instead of
experimental edits by developers.

Also Microsoft provides a reporting framework with its
Team Foundation Server (TFS) [26], which amongst others

also reports on a set of quality metrics!®. Changes by

the developers are stored in relational databases, which
are connected to a data warehouse to which an OLAP'’
cube is attached. Queries requesting quality data run against
either the data warehouse or the OLAP cube. On Microsoft
documentation [27] we could find information on the refresh
rate of the data warehouse, which is by default set to
3600 seconds. The cube cache might even take longer to
learn the new data. Recommendations advise not to set this
interval to considerably smaller values to avoid excessive
blocking of resources. Therefore we assume that metric
calculations might be done periodically in batch mode,
instead of commit-based incrementally. Even though TFS
might be suitable for our continuous quality monitoring
use case, it is not accurate enough when it comes to rapid
feedback, which our approach is providing within seconds.

VI. CONCLUSION AND FUTURE WORK

We have presented a platform for incremental and dis-
tributed computation of quality metrics. To support a broad
range of analysis approaches, it can compute both local (e. g.,
depth of nesting) and global metrics (e. g., clone coverage).
Moreover, it provides functionality common to different in-
cremental analyses such as version control synchronization,
filtering, caching and historization of analysis results, to
simplify the development of novel ones.

The evaluation we performed on three open-source soft-
ware systems demonstrates that it scales both in size and
time: for each evaluation object, incremental computation
of a set of both local and global metrics took less than
4 seconds on average. This is fast enough for real-time
developer feedback. Furthermore, retrieval of metric values
for historic system versions took less than 0.1 seconds,
which is fast enough for interactive use.

We plan several extensions: first, we want to improve
result presentation and visualization. For example, user-
specific views, which allow a developer to focus on the code
she is currently working on could improve usability. Second,
we want to implement interactive filtering capabilities to
exclude individual false positives. Finally, we want to re-
computate the metric values for the program history in
reverse order to quickly produce results for the near past.

REFERENCES

[1] D. L. Parnas, “Software aging,” in ICSE’94, 1994.

[2] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and
A. Mockus, “Does code decay? Assessing the evidence from
change management data,” TSE, vol. 27, no. 1, 2001.

[3] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner,
“Do code clones matter?” in ICSE "09, 2009.

I6TFS is included for the sake of completeness and because of its
industrial presence — despite the fact that not enough information about
its internal mechanisms could be obtained to compare it to our approach.

70n-Line Analytical Processing

(4]

(3]

[6]

(71

(8]

(91

(10]

(11]

[12]

[13]

[14]
[15]
[16]
[17]
(18]
[19]
[20]
(21]

(22]

(23]

[24]

[25]

[26]

(27]

F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner, B. M.
y Parareda, and M. Pizka, “Tool support for continuous
quality control,” IEEE Softw., 2008.

F. Deissenboeck, “Continuous quality control of long-lived
software systems,” Ph.D. dissertation, TU Miinchen, 2009.

C. Roy, J. Cordy, and R. Koschke, “Comparison and evalua-
tion of code clone detection techniques and tools: A qualita-
tive approach,” Science of Computer Programming, 2009.

G. Murphy, D. Notkin, and K. Sullivan, “Software reflexion
models: Bridging the gap between source and high-level
models,” Softw. Eng. Notes, vol. 20, no. 4, 1995.

M. Feilkas, D. Ratiu, and E. Jurgens, “The loss of architec-
tural knowledge during system evolution: An industrial case
study,” in ICPC’09, 2009.

N. Ayewah, D. Hovemeyer, J. Morgenthaler, J. Penix, and
W. Pugh, “Using static analysis to find bugs,” IEEE Softw.,
vol. 25, no. 5, 2008.

T. J. McCabe, “A complexity measure,” in ICSE’76, 1976.

N. Gode and R. Koschke, “Incremental clone detection,” in
CSMR’09, 2009.

R. Koschke, “Incremental reflexion analysis,” in CSMR’10,
2010.

B. Hummel, E. Juergens, L. Heinemann, and M. Conradt,
“Index-based code clone detection: incremental, distributed,
scalable,” in ICSM’10, 2010.

J. Dean and S. Ghemawat, “MapReduce: a flexible data
processing tool,” Commun. ACM, vol. 53, no. 1, 2010.

W. Shang, B. Adams, and A. E. Hassan, “An experience
report on scaling tools for mining software repositories using
mapreduce,” in ASE’10, 2010.

M. H. Halstead, Elements of software science. Elsevier, 1977.

R. Koschke, “Survey of research on software clones,” in
Duplication, Redundancy, and Similarity in Software, 2007.

E. Juergens, “Why and how to control cloning in software
artifacts,” Ph.D. dissertation, TU Miinchen, 2011.

G. Rothermel and M. Harrold, “A safe, efficient regression
test selection technique,” ACM TOSEM, 1997.

F. Deissenboeck and M. Pizka, “Concise and consistent
naming,” Softw. Quality J., vol. 14, no. 3, 2006.

Kitchenham, Jeffery, and Connaughton, “Misleading metrics
and unsound analyses,” IEEE Softw., vol. 24, no. 2, 2007.

C. Kaner and W. P. Bond, “Software engineering metrics:
What do they measure and how do we know?” in Interna-
tional Software Metrics Symposium, 2004.

T. Wagner and S. Graham, “Integrating incremental analysis
with version management,” in ESEC’95, 1995.

N. Haderer, F. Khomh, and G. Antoniol, “SQUANER: A
framework for monitoring the quality of software systems,”
in ICSM’10, 2010.

R. Robbes and M. Lanza, “A change-based approach to
software evolution,” Elec. Notes Comp. S., 2007.

Microsoft team foundation server. [Online]. Avail-

able: http://www.microsoft.com/visualstudio/en-us/products/
2010-editions/team-foundation-server/overview

V. Blasberg. TFS reporting architecture notes. [Online].
Available: http://weblogs.asp.net/vblasberg/archive/2008/06/
04/tfs-reporting-architecture-notes.aspx

