
Towards Systematic Analysis of Continuous User Input

Dennis Pagano
Technische Universität München

Munich, Germany
pagano@cs.tum.edu

ABSTRACT
Novel requirements elicitation approaches suggest to con-
tinuously gather and communicate user input to engineer-
ing teams. The resulting data usually consists of a large
amount of unstructured information in the form of natural
language and may include conflicting user needs that have
to be detected and resolved to obtain consistent require-
ments. This position paper provides a first step towards a
systematic analysis of continuous user input by identifying
its main challenges and aligning helpful techniques from re-
quirements engineering research to address the challenges in
a common framework.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tions

General Terms
Human Factors, Documentation, Measurement

Keywords
Social software, continuous user input, requirements elicita-
tion, systematic analysis, user community

1. INTRODUCTION
The success of a software product depends to a substantial

amount on its users [3]. Engineers gather input and feedback
from users throughout the software lifecycle, since adapting
to changing user demands is necessary to continuously meet
users’ expectations [10]. To elicit requirements for a system,
analysts typically mediate users while they provide informa-
tion defining their needs. Further, when actually using a
system, users may give feedback in the form of bug reports
and feature requests.

Novel approaches suggest to continuously and remotely
gather input from the users of a system to be able to ad-
just to changing requirements and user needs [13, 17–19].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

SSE’11, September 5, 2011, Szeged, Hungary.

Copyright 2011 ACM 978-1-4503-0850-2/11/09...$10.00.

However, eliciting requirements from continuous user input
poses several technical challenges, in particular because a
large amount of data has to be analyzed. We argue that
these challenges have to be addressed in a systematic way
to facilitate the analysis of continuous user input.

The contribution of this paper is threefold. First, we iden-
tify the main technical challenges for the analysis of continu-
ous user input. Second, we provide a summary of techniques
and approaches from requirements engineering research that
help to solve the occurring problems. Third, we align these
techniques and propose a common framework for the sys-
tematic analysis of continuous user input.

The paper is structured as follows. We start by describing
which factors complicate eliciting requirements from con-
tinuous user input (Section 2). We then summarize tech-
niques from requirements engineering research that address
the identified challenges on similar data (Section 3). Next,
we illustrate how these methods can be combined in a com-
mon framework to systematically analyze continuous user
input (Section 4). Finally, we describe our plans for future
work (Section 5) and conclude the paper (Section 6).

2. CHALLENGES
Engineers have to interpret, analyze, model, and validate

user input to elicit formal requirements of a system [14].
Traditional techniques for requirements elicitation rely on
input gathered from a small number of selected users and
during a pre-defined time period. Requirements elicitation
becomes more complicated if users continuously, and while
using the system, provide information without being guided
by analysts. In the remainder of this section we describe the
main technical reasons for this.

C1. Quantity of Data.
Continuously gathering user input results in large amounts

of data, complicating manual analysis techniques. For in-
stance, Maalej et al. [13] suggest to instrument software to
continuously gather usage and feedback data from all users.
The quantity of collected user input data, however, imposes
limits on how this information can be processed by require-
ments engineers. With increasing number of users and fre-
quent collection of their input, manual analysis techniques
become infeasible.

C2. Missing Structure.
Gathering user input without formal limits results in un-

structured data, complicating automated analysis techniques.
Engineers have to interpret information provided by users to

understand their needs. The structure of this information
determines which analysis techniques can be applied and
how difficult an automated interpretation is. For instance,
Seyff et al. [19] introduce a framework that allows users to
capture their individual needs using natural language text.
However, informal data such as natural language is gener-
ally hard to analyze using automated techniques because of
its high degree of freedom.

C3. Content and Quality.
Gathering user input without mediation results in unpre-

dictable content and quality, complicating automated analy-
sis techniques. If users provide input without professional
support, the resulting information content and quality is
unpredictable, what can lead to misunderstandings [13, 20].
For example, users might express system properties using
their own, possibly inhomogeneous terminology. In addi-
tion, users are often not motivated to invest the necessary
time to provide useful information. Although studies showed
that engineers are able to manually transcribe remotely col-
lected user needs into requirements [19], their content and
quality pose challenges for automated approaches.

C4. Conflicting Preferences.
Continuously gathered user input can lead to frequent con-

flicts, complicating manual identification and resolution tech-
niques. A major aim of continuous feedback approaches is
to collect user input individually [17], whereas traditional
requirements elicitation approaches typically generalize the
input of single users into categories to satisfy the majority of
all users. However, different users will have different, possi-
bly conflicting preferences, needs, and expectations regard-
ing the system. To construct requirements and features from
this data, conflicts have to be identified and resolved. Man-
ual techniques such as requirements negotiation attempt to
resolve such conflicts between stakeholders [14]. However,
research has shown that users’ preferences regarding system
features do not remain stable [9].

3. ENABLING TECHNIQUES
In this section we discuss techniques from requirements

engineering research that address the challenges we iden-
tified above. We focus on automated or semi-automated
methods, due to the large amount of data generated when
continuously gathering user input data. Most of the tech-
niques we found originate from research for large-scale and
distributed projects.

We first study techniques that can help requirements en-
gineers to deal with a large amount of user input. Second,
we investigate methods to analyze requirements specifica-
tions written in natural language. Third, we discuss how
user input can be enriched to gain more expressive informa-
tion. Last, we survey techniques that facilitate the identi-
fication and resolution of preference conflicts regarding re-
quirements.

3.1 Addressing Quantity of Data (C1)
Requirements engineering research for large-scale projects

suggests filtering and prioritizing of information to deal with
the large number of emerging requirements. Recent publica-
tions investigate the exploitation of social network analysis
techniques to select relevant stakeholders for specific require-

ments engineering tasks [9,11]. The results show that social
network measures provide means to estimate the relevance of
specific requirements to individual stakeholders and enable
the prioritization of requirements based on stakeholders’ rat-
ings. Consequently, requirements can be filtered, prioritized
and proposed to stakeholders according to their preferences
and competencies. Moreover, several authors [6, 9, 11] sug-
gest recommendation techniques such as collaborative filter-
ing to proactively recommend additional relevant require-
ments to stakeholders.

3.2 Addressing Missing Structure (C2)
A growing body of research investigates how data min-

ing and information retrieval methods can support the con-
struction and refinement of requirements and feature models
from natural language specifications. Their goal is to sup-
port requirements engineers in large-scale projects by auto-
matically consolidating user input. Castro-Herrera et al. [6]
analyze tf-idf1 values to identify key topics in a large num-
ber of feature requests written in natural language. Using
unsupervised clustering methods, they further group the fea-
ture requests according to these topics. Similarly, Alves et
al. [1] derive similarities between requirements from different
requirements specifications using the Latent Semantic Anal-
ysis (LSA) and Vector Space Model (VSM) techniques, and
identify requirements clusters based on these results. Du-
mitru et al. [7] utilize text mining techniques and propose
incremental diffusive clustering (IDC) to discover domain-
specific features from product descriptions.

Although they are set up in different contexts, all ap-
proaches consolidate a large number of natural language re-
quirements documents in two steps. First, they apply text
mining methods to identify important concepts across the
documents. Second, they use clustering techniques to iden-
tify a structure according to these concepts.

3.3 Addressing Content and Quality (C3)
Information content and quality of user input directly im-

pact how precisely requirements engineers can understand
users’ needs. User input with low quality and in partic-
ular inhomogeneous language is hard to analyze. Several
researchers suggest to use semantically rich context infor-
mation to augment user input and thus reduce communica-
tion gaps. Schneider et al. [18] let users themselves annotate
their feedback with a selection regarding the type of feed-
back (e.g. complaint) and the context where the feedback
applies (e.g. subsystem). Though this additional input fa-
cilitates automatic data pre-processing, not all users might
be able to provide such information. Maalej et al. [13] pro-
pose a framework to automatically collect relevant context
information by instrumenting the software and the users’
working environment.

3.4 Addressing Conflicting Preferences (C4)
Research has shown that there are ways to identify and

resolve inconsistencies in stakeholder preferences regarding
requirements. Lim et al. [11] present a tool that identifies
stakeholders with conflicting preferences for requirements
based on a social network of these stakeholders. They fur-
ther suggest that social network measures can be utilized
to guide the conflict resolution process. Felfernig et al. [8]
introduce a method to automatically detect minimal sets of
1term frequency, inverse document frequency

Text Mining &
Information Retrieval

Clustering & Tagging

Identify Domain
Concepts

Identify Structure

Continuous
User Input

Social Network Analysis &
Collaborative FilteringFilter & Prioritize

Identify Conflicts Social Network Analysis &
Group Recommendations

Enabling TechniquesSystematic Analysis Process

Engineer
Community

User
Community

?

Figure 1: Proposed Framework for Systematic Anal-
ysis of Continuous User Input.

inconsistent stakeholder preferences. Moreover, they pro-
pose to exploit group recommendations to proactively sup-
port stakeholders in their decision making [9].

Though we found techniques that address conflicting pref-
erences, they only work with clearly specified preferences
over defined requirements. Consequently, user input first
needs to be transformed into more formal requirements and
preferences, before these methods can be applied. We could
not find studies showing if and how it is possible to trans-
form user specified information into preferences regarding
requirements. However, recent research from social network
analysis and data mining investigates the identification of
themes and sentiments in social media [16]. Though the
results show that it is possible to extract users’ opinions re-
garding specific products or features, more research has to
be done to evaluate the applicability of such approaches in
the context of continuous user input.

4. PROPOSED SOLUTION
Researchers spend considerable effort to improve require-

ments elicitation by providing tool support for complex and
time consuming tasks. Consequently we could find existing
work that addresses one or even more of the identified chal-
lenges that continuous user input presents. However, there
is little work on holistic approaches or frameworks that de-
scribe how to tailor requirements elicitation to continuous
user input. Castro-Herrera et al. [6] describe a framework
that identifies and groups similar feature requests and proac-
tively recommends relevant stakeholders to collaboratively
transcribe these requests into more formal requirements. Al-
though this approach is capable of supporting the analysis
of user input in projects with many stakeholders, it does not
include activities to identify conflicting requirements prefer-
ences.

We claim that approaches to continuously gather user
input call for a common framework to systematically an-
alyze the collected information during requirements elicita-
tion. Figure 1 shows our proposal towards such a frame-
work. Our approach is based on the suggestion of several
researchers [13, 17–19] to continuously and remotely gather
user input in the form of user feedback (e.g. modification,
enhancement, or feature requests), specified in natural lan-

guage artifacts. The goal of the proposed framework is to
support requirements engineers during the elicitation of for-
mal requirements from continuous user input by reducing
the amount of information that engineers have to analyze
manually. We identified four main steps that constitute a
systematic analysis process. Moreover, we claim that these
steps can be realized by a hybrid approach that uses tech-
niques we surveyed in Section 3.

In the first step, gathered user input has to be analyzed
to identify included domain concepts that represent com-
mon semantic entities. To this end, a document corpus is
generated from user input data, using a word stemmer and
removing stop words. Text mining and information retrieval
techniques such as LSA can then identify important terms
in the raw data and measure their overall influence (e.g. us-
ing tf-idf). As a result, each user input artifact is finally
annotated with a weighted vector of terms representing the
contained domain concepts.

In the second step, these domain concepts are used to
identify underlying structure in the user input data. To this
end, unsupervised clustering techniques such as bisect k-
means clustering are applied on the user input data. The
optimal number of clusters k can be determined using heuris-
tics based on the identified domain concepts [5]. User input
artifacts are then grouped into the emerging clusters, leading
to a structure based on the identified domain concepts. The
identified structure can finally be represented using tags.
Novel unsupervised clustering methods like IDC [7] already
include a pre-processing routine to identify semantic entities,
and thus combine the first two steps we propose.

The third step is in charge of filtering and prioritizing
data to reduce the amount of information for engineers. In
our approach, user input can be prioritized according to its
relevance for both users and engineers. First, the relevance
of a certain user input to the user community can be assessed
by measuring the amount of similar information gathered
from other users (expressed for instance by the cluster size).
On the other hand, we propose to predict the relevance of
user input clusters to specific engineers using social network
analysis methods. This information can aid to determine
which engineer should be responsible for a given set of user
input data [9]. As a prerequisite for this step, there has
to be a social network of engineers that can be analyzed.
Research has shown that such networks can be constructed
[11]. Additionally, and more proactively, information can
be suggested to engineers using techniques like collaborative
filtering.

In a fourth step, conflicting user preferences have to be
identified. We claim that social network analysis techniques
should be utilized to identify possible users whose prefer-
ences are conflicting. However, as a prerequisite for conflict
identification gathered user input data first has to be inter-
preted to determine user preferences. We are not aware of an
automated way of performing such an interpretation in the
current state of research. However, recently described tech-
niques to automatically identify sentiments from user gener-
ated content [16] could help to derive user preferences from
user input data by selecting according candidates that have
to be reviewed by engineers. Moreover, group recommenda-
tion techniques can support users proactively while creating
their preferences to reduce or even avoid conflicts [9].

The degree of automation that can be achieved in the de-
scribed steps is limited. Consequently, the proposed frame-

work represents a set of tools that help to analyze large
amounts of user input data in a systematic way rather than
an autonomous solution. In particular conflict identifica-
tion techniques can only generate candidates for conflicting
user preferences which have to be reviewed, discussed, and
acknowledged by engineers.

The goals of both last steps can be reached performing
social network analyses on engineer and user communities.
However, social networks of engineers and users allow for a
bidirectional communication. We currently see two benefits,
which have to be elaborated in future work. First, analysis
results can be integrated in social networks of engineers.
Second, social networks of users can be utilized to make
clarification requests and to report about current progress
regarding a specific issue.

While not explicitly mentioned in the proposed frame-
work, we expect additional context information to facilitate
the analysis process. The complementary nature of this in-
formation could in particular support the identification of
domain concepts and conflicting preferences.

5. FUTURE WORK
This position paper represents a starting point. Further

effort needs to be put into the development and evaluation
of the proposed framework, as well as into the investigation
of the degree of automation that can be reached. Moreover,
systematic analysis of continuous user input is no end in
itself. Further research has to investigate how the proposed
process fits into existing requirements elicitation approaches.

Likewise, further research is necessary to investigate how
the different techniques we proposed in our approach can be
combined best, and what are necessary preconditions. More-
over, existing work does not analyze data that was gathered
directly from users, but rather requirements specifications or
other data generated by general project stakeholders. Con-
sequently, future studies should evaluate how these tech-
niques perform on real user input data.

Our proposed framework suggests to utilize both engi-
neer and user communities in a systematic analysis process.
We think that communication channels between engineers
and users are essential, for instance to request clarifications
when the gathered information is not clear enough. Begel
et al. [4] claim that social media supports two-way com-
munication between users and companies in a scalable way.
Moreover, Pagano and Maalej [15] found that engineers in
open source communities already use social media to discuss
requirements. We plan to further study communication and
influences between both communities, what is highlighted
by the question mark in Figure 1.

Social media enabled platforms like UserVoice2 and Get-
Satisfaction3 allow users to collaboratively share new ideas
and vote on existing suggestions for new features. Bajic and
Lyons [2] found that this collaboration focuses users’ efforts,
which leads to more homogeneous feature requests. We plan
to investigate if and how such platforms can be beneficial for
gathering and analyzing continuous user input.

During our research, we found relations to requirements
engineering research for large-scale and distributed projects.
Both have to deal with similar challenges, such as informa-
tion overload, inadequate stakeholder input, and the need

2http://uservoice.com
3http://getsatisfaction.com

for requirements prioritization [12]. We plan to further in-
vestigate possible alignments of both research lines.

6. CONCLUSION
Novel requirements elicitation approaches propose to con-

tinuously collect and communicate user input to engineer-
ing teams. We identified several challenges for requirements
elicitation activities that arise from continuous user input.
Resulting data usually consists of a large number of natural
language information with possibly inhomogeneous termi-
nology. It may further include conflicting user needs that
have to be detected and resolved to obtain consistent re-
quirements. We discussed several techniques from require-
ments engineering research that address the identified chal-
lenges on similar data. Moreover, we aligned these tech-
niques in a common framework to systematically analyze
continuous user input during requirements elicitation. Our
results call for further research that aims at developing and
evaluating the proposed framework in a real-world setting.

7. ACKNOWLEDGEMENT
This work has been supported by the FastFix project,

which is funded by the 7th Framework Programme of the
European Commission, grant agreement no. FP7-258109.

8. REFERENCES
[1] V. Alves, C. Schwanninger, L. Barbosa, A. Rashid,

P. Sawyer, P. Rayson, C. Pohl, and A. Rummler. An
Exploratory Study of Information Retrieval Techniques in
Domain Analysis. 2008 12th International Software
Product Line Conference, pages 67–76, Sept. 2008.

[2] D. Bajic and K. Lyons. Leveraging social media to gather
user feedback for software development. In Proceeding of
the 2nd international workshop on Web 2.0 for software
engineering, pages 1–6. ACM, 2011.

[3] H. Barki and J. Hartwick. User participation and user
involvement in information system development. In System
Sciences, 1991. Proceedings of the Twenty-Fourth Annual
Hawaii International Conference on, pages 487–492,
Hawaii, USA, 1991.

[4] A. Begel, R. DeLine, and T. Zimmermann. Social media for
software engineering. In Proceedings of the FSE/SDP
workshop on Future of software engineering research, pages
33–38. ACM, 2010.

[5] F. Can and E. A. Ozkarahan. Concepts and Effectiveness of
the Clustering Methodology for Text Databases. ACM
Transactions on Database Systems, 15(4):483–517, 1990.

[6] C. Castro-Herrera, C. Duan, J. Cleland-Huang, and
B. Mobasher. Using Data Mining and Recommender
Systems to Facilitate Large-Scale, Open, and Inclusive
Requirements Elicitation Processes. Proceedings of the 16th
IEEE International Requirements Engineering Conference,
pages 165–168, Sept. 2008.

[7] H. Dumitru, M. Gibiec, N. Hariri, J. Cleland-Huang,
B. Mobasher, C. Castro-Herrera, and M. Mirakhorli.
On-demand feature recommendations derived from mining
public product descriptions. In Proceedings of the 33rd
International Conference on Software Engineering, pages
181–190. ACM, 2011.

[8] A. Felfernig, M. Schubert, M. Mandl, and P. Ghirardini.
Diagnosing Inconsistent Requirements Preferences in
Distributed Software Projects. In Proceedings of the 3rd
International Workshop on Social Software Engineering,
pages 1–8, Paderborn, Germany, 2010.

[9] A. Felfernig, M. Schubert, M. Mandl, F. Ricci, and
W. Maalej. Recommendation and decision technologies for

requirements engineering. Proceedings of the 2nd
International Workshop on Recommendation Systems for
Software Engineering - RSSE ’10, pages 11–15, 2010.

[10] M. Lehman. Programs, life cycles, and laws of software
evolution. Proceedings of the IEEE, 68(9):1060–1076, 1980.

[11] S. L. Lim, D. Damian, and A. Finkelstein. StakeSource2. 0:
Using Social Networks of Stakeholders to Identify and
Prioritise Requirements. In Proceedings of the 33rd
ACM/IEEE International Conference on Software
Engineering, in press, 2011.

[12] S. L. Lim and A. Finkelstein. StakeRare: Using Social
Networks and Collaborative Filtering for Large-Scale
Requirements Elicitation. IEEE Transactions on Software
Engineering, pages 1–32, 2011.

[13] W. Maalej, H. Happel, and A. Rashid. When users become
collaborators: towards continuous and context-aware user
input. Proceedings of the 24th ACM SIGPLAN conference
companion on Object oriented programming systems
languages and applications, pages 981–990, 2009.

[14] B. Nuseibeh and S. Easterbrook. Requirements engineering:
a roadmap. In Proceedings of the Conference on the Future
of Software Engineering, pages 35–46. ACM, 2000.

[15] D. Pagano and W. Maalej. How Do Developers Blog? An

Exploratory Study. In Proceedings of the 8th Conference
on Mining Software Repositories. ACM, 2011.

[16] J. Pal and A. Saha. Identifying Themes in Social Media
and Detecting Sentiments. In 2010 International
Conference on Advances in Social Networks Analysis and
Mining, pages 452–457. IEEE, Aug. 2010.

[17] N. Qureshi, N. Seyff, and A. Perini. Satisfying User Needs
at the Right Time and in the Right Place: A Research
Preview. Proceedings of the 17th International Working
Conference on Requirements Engineering: Foundation for
Software Quality, pages 94–99, 2011.

[18] K. Schneider, S. Meyer, M. Peters, F. Schliephacke,
J. Mörschbach, and L. Aguirre. Feedback in Context :
Supporting the Evolution of IT-Ecosystems. Springer Berlin
/ Heidelberg, 2010.

[19] N. Seyff, F. Graf, and N. Maiden. Using Mobile RE Tools
to Give End-Users Their Own Voice. In Requirements
Engineering, IEEE International Conference on, pages
37–46, 2010.

[20] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just,
A. Schroter, and C. Weiss. What Makes a Good Bug
Report? IEEE Transactions on Software Engineering,
36(5):618–643, Sept. 2010.

